1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2006 by Magnus Lundin *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
14 * Copyright (C) 2010 Øyvind Harboe *
15 * oyvind.harboe@zylin.com *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
32 * Cortex-A8(tm) TRM, ARM DDI 0344H *
34 ***************************************************************************/
39 #include "breakpoints.h"
40 #include "cortex_a8.h"
42 #include "target_request.h"
43 #include "target_type.h"
44 #include "arm_opcodes.h"
45 #include <helper/time_support.h>
47 static int cortex_a8_poll(struct target
*target
);
48 static int cortex_a8_debug_entry(struct target
*target
);
49 static int cortex_a8_restore_context(struct target
*target
, bool bpwp
);
50 static int cortex_a8_set_breakpoint(struct target
*target
,
51 struct breakpoint
*breakpoint
, uint8_t matchmode
);
52 static int cortex_a8_unset_breakpoint(struct target
*target
,
53 struct breakpoint
*breakpoint
);
54 static int cortex_a8_dap_read_coreregister_u32(struct target
*target
,
55 uint32_t *value
, int regnum
);
56 static int cortex_a8_dap_write_coreregister_u32(struct target
*target
,
57 uint32_t value
, int regnum
);
58 static int cortex_a8_mmu(struct target
*target
, int *enabled
);
59 static int cortex_a8_virt2phys(struct target
*target
,
60 uint32_t virt
, uint32_t *phys
);
61 static void cortex_a8_disable_mmu_caches(struct target
*target
, int mmu
,
62 int d_u_cache
, int i_cache
);
63 static void cortex_a8_enable_mmu_caches(struct target
*target
, int mmu
,
64 int d_u_cache
, int i_cache
);
65 static int cortex_a8_get_ttb(struct target
*target
, uint32_t *result
);
69 * FIXME do topology discovery using the ROM; don't
70 * assume this is an OMAP3. Also, allow for multiple ARMv7-A
71 * cores, with different AP numbering ... don't use a #define
72 * for these numbers, use per-core armv7a state.
74 #define swjdp_memoryap 0
75 #define swjdp_debugap 1
76 #define OMAP3530_DEBUG_BASE 0x54011000
79 * Cortex-A8 Basic debug access, very low level assumes state is saved
81 static int cortex_a8_init_debug_access(struct target
*target
)
83 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
84 struct adiv5_dap
*swjdp
= &armv7a
->dap
;
91 /* Unlocking the debug registers for modification */
92 /* The debugport might be uninitialised so try twice */
93 retval
= mem_ap_write_atomic_u32(swjdp
, armv7a
->debug_base
+ CPUDBG_LOCKACCESS
, 0xC5ACCE55);
94 if (retval
!= ERROR_OK
)
97 retval
= mem_ap_write_atomic_u32(swjdp
, armv7a
->debug_base
+ CPUDBG_LOCKACCESS
, 0xC5ACCE55);
98 if (retval
== ERROR_OK
)
100 LOG_USER("Locking debug access failed on first, but succeeded on second try.");
103 if (retval
!= ERROR_OK
)
105 /* Clear Sticky Power Down status Bit in PRSR to enable access to
106 the registers in the Core Power Domain */
107 retval
= mem_ap_read_atomic_u32(swjdp
, armv7a
->debug_base
+ CPUDBG_PRSR
, &dummy
);
108 if (retval
!= ERROR_OK
)
111 /* Enabling of instruction execution in debug mode is done in debug_entry code */
113 /* Resync breakpoint registers */
115 /* Since this is likely called from init or reset, update target state information*/
116 retval
= cortex_a8_poll(target
);
121 /* To reduce needless round-trips, pass in a pointer to the current
122 * DSCR value. Initialize it to zero if you just need to know the
123 * value on return from this function; or DSCR_INSTR_COMP if you
124 * happen to know that no instruction is pending.
126 static int cortex_a8_exec_opcode(struct target
*target
,
127 uint32_t opcode
, uint32_t *dscr_p
)
131 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
132 struct adiv5_dap
*swjdp
= &armv7a
->dap
;
134 dscr
= dscr_p
? *dscr_p
: 0;
136 LOG_DEBUG("exec opcode 0x%08" PRIx32
, opcode
);
138 /* Wait for InstrCompl bit to be set */
139 while ((dscr
& DSCR_INSTR_COMP
) == 0)
141 retval
= mem_ap_read_atomic_u32(swjdp
,
142 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
143 if (retval
!= ERROR_OK
)
145 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32
, opcode
);
150 retval
= mem_ap_write_u32(swjdp
, armv7a
->debug_base
+ CPUDBG_ITR
, opcode
);
151 if (retval
!= ERROR_OK
)
156 retval
= mem_ap_read_atomic_u32(swjdp
,
157 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
158 if (retval
!= ERROR_OK
)
160 LOG_ERROR("Could not read DSCR register");
164 while ((dscr
& DSCR_INSTR_COMP
) == 0); /* Wait for InstrCompl bit to be set */
172 /**************************************************************************
173 Read core register with very few exec_opcode, fast but needs work_area.
174 This can cause problems with MMU active.
175 **************************************************************************/
176 static int cortex_a8_read_regs_through_mem(struct target
*target
, uint32_t address
,
179 int retval
= ERROR_OK
;
180 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
181 struct adiv5_dap
*swjdp
= &armv7a
->dap
;
183 retval
= cortex_a8_dap_read_coreregister_u32(target
, regfile
, 0);
184 if (retval
!= ERROR_OK
)
186 retval
= cortex_a8_dap_write_coreregister_u32(target
, address
, 0);
187 if (retval
!= ERROR_OK
)
189 retval
= cortex_a8_exec_opcode(target
, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL
);
190 if (retval
!= ERROR_OK
)
193 dap_ap_select(swjdp
, swjdp_memoryap
);
194 retval
= mem_ap_read_buf_u32(swjdp
, (uint8_t *)(®file
[1]), 4*15, address
);
195 if (retval
!= ERROR_OK
)
197 dap_ap_select(swjdp
, swjdp_debugap
);
202 static int cortex_a8_dap_read_coreregister_u32(struct target
*target
,
203 uint32_t *value
, int regnum
)
205 int retval
= ERROR_OK
;
206 uint8_t reg
= regnum
&0xFF;
208 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
209 struct adiv5_dap
*swjdp
= &armv7a
->dap
;
216 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
217 retval
= cortex_a8_exec_opcode(target
,
218 ARMV4_5_MCR(14, 0, reg
, 0, 5, 0),
220 if (retval
!= ERROR_OK
)
225 /* "MOV r0, r15"; then move r0 to DCCTX */
226 retval
= cortex_a8_exec_opcode(target
, 0xE1A0000F, &dscr
);
227 if (retval
!= ERROR_OK
)
229 retval
= cortex_a8_exec_opcode(target
,
230 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
232 if (retval
!= ERROR_OK
)
237 /* "MRS r0, CPSR" or "MRS r0, SPSR"
238 * then move r0 to DCCTX
240 retval
= cortex_a8_exec_opcode(target
, ARMV4_5_MRS(0, reg
& 1), &dscr
);
241 if (retval
!= ERROR_OK
)
243 retval
= cortex_a8_exec_opcode(target
,
244 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
246 if (retval
!= ERROR_OK
)
250 /* Wait for DTRRXfull then read DTRRTX */
251 while ((dscr
& DSCR_DTR_TX_FULL
) == 0)
253 retval
= mem_ap_read_atomic_u32(swjdp
,
254 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
255 if (retval
!= ERROR_OK
)
259 retval
= mem_ap_read_atomic_u32(swjdp
,
260 armv7a
->debug_base
+ CPUDBG_DTRTX
, value
);
261 LOG_DEBUG("read DCC 0x%08" PRIx32
, *value
);
266 static int cortex_a8_dap_write_coreregister_u32(struct target
*target
,
267 uint32_t value
, int regnum
)
269 int retval
= ERROR_OK
;
270 uint8_t Rd
= regnum
&0xFF;
272 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
273 struct adiv5_dap
*swjdp
= &armv7a
->dap
;
275 LOG_DEBUG("register %i, value 0x%08" PRIx32
, regnum
, value
);
277 /* Check that DCCRX is not full */
278 retval
= mem_ap_read_atomic_u32(swjdp
,
279 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
280 if (retval
!= ERROR_OK
)
282 if (dscr
& DSCR_DTR_RX_FULL
)
284 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32
, dscr
);
285 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */
286 retval
= cortex_a8_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
288 if (retval
!= ERROR_OK
)
295 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
296 LOG_DEBUG("write DCC 0x%08" PRIx32
, value
);
297 retval
= mem_ap_write_u32(swjdp
,
298 armv7a
->debug_base
+ CPUDBG_DTRRX
, value
);
299 if (retval
!= ERROR_OK
)
304 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
305 retval
= cortex_a8_exec_opcode(target
, ARMV4_5_MRC(14, 0, Rd
, 0, 5, 0),
307 if (retval
!= ERROR_OK
)
312 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
315 retval
= cortex_a8_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
317 if (retval
!= ERROR_OK
)
319 retval
= cortex_a8_exec_opcode(target
, 0xE1A0F000, &dscr
);
320 if (retval
!= ERROR_OK
)
325 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
326 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
328 retval
= cortex_a8_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
330 if (retval
!= ERROR_OK
)
332 retval
= cortex_a8_exec_opcode(target
, ARMV4_5_MSR_GP(0, 0xF, Rd
& 1),
334 if (retval
!= ERROR_OK
)
337 /* "Prefetch flush" after modifying execution status in CPSR */
340 retval
= cortex_a8_exec_opcode(target
,
341 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
343 if (retval
!= ERROR_OK
)
351 /* Write to memory mapped registers directly with no cache or mmu handling */
352 static int cortex_a8_dap_write_memap_register_u32(struct target
*target
, uint32_t address
, uint32_t value
)
355 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
356 struct adiv5_dap
*swjdp
= &armv7a
->dap
;
358 retval
= mem_ap_write_atomic_u32(swjdp
, address
, value
);
364 * Cortex-A8 implementation of Debug Programmer's Model
366 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
367 * so there's no need to poll for it before executing an instruction.
369 * NOTE that in several of these cases the "stall" mode might be useful.
370 * It'd let us queue a few operations together... prepare/finish might
371 * be the places to enable/disable that mode.
374 static inline struct cortex_a8_common
*dpm_to_a8(struct arm_dpm
*dpm
)
376 return container_of(dpm
, struct cortex_a8_common
, armv7a_common
.dpm
);
379 static int cortex_a8_write_dcc(struct cortex_a8_common
*a8
, uint32_t data
)
381 LOG_DEBUG("write DCC 0x%08" PRIx32
, data
);
382 return mem_ap_write_u32(&a8
->armv7a_common
.dap
,
383 a8
->armv7a_common
.debug_base
+ CPUDBG_DTRRX
, data
);
386 static int cortex_a8_read_dcc(struct cortex_a8_common
*a8
, uint32_t *data
,
389 struct adiv5_dap
*swjdp
= &a8
->armv7a_common
.dap
;
390 uint32_t dscr
= DSCR_INSTR_COMP
;
396 /* Wait for DTRRXfull */
397 while ((dscr
& DSCR_DTR_TX_FULL
) == 0) {
398 retval
= mem_ap_read_atomic_u32(swjdp
,
399 a8
->armv7a_common
.debug_base
+ CPUDBG_DSCR
,
401 if (retval
!= ERROR_OK
)
405 retval
= mem_ap_read_atomic_u32(swjdp
,
406 a8
->armv7a_common
.debug_base
+ CPUDBG_DTRTX
, data
);
407 if (retval
!= ERROR_OK
)
409 //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
417 static int cortex_a8_dpm_prepare(struct arm_dpm
*dpm
)
419 struct cortex_a8_common
*a8
= dpm_to_a8(dpm
);
420 struct adiv5_dap
*swjdp
= &a8
->armv7a_common
.dap
;
424 /* set up invariant: INSTR_COMP is set after ever DPM operation */
425 long long then
= timeval_ms();
428 retval
= mem_ap_read_atomic_u32(swjdp
,
429 a8
->armv7a_common
.debug_base
+ CPUDBG_DSCR
,
431 if (retval
!= ERROR_OK
)
433 if ((dscr
& DSCR_INSTR_COMP
) != 0)
435 if (timeval_ms() > then
+ 1000)
437 LOG_ERROR("Timeout waiting for dpm prepare");
442 /* this "should never happen" ... */
443 if (dscr
& DSCR_DTR_RX_FULL
) {
444 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32
, dscr
);
446 retval
= cortex_a8_exec_opcode(
447 a8
->armv7a_common
.armv4_5_common
.target
,
448 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
450 if (retval
!= ERROR_OK
)
457 static int cortex_a8_dpm_finish(struct arm_dpm
*dpm
)
459 /* REVISIT what could be done here? */
463 static int cortex_a8_instr_write_data_dcc(struct arm_dpm
*dpm
,
464 uint32_t opcode
, uint32_t data
)
466 struct cortex_a8_common
*a8
= dpm_to_a8(dpm
);
468 uint32_t dscr
= DSCR_INSTR_COMP
;
470 retval
= cortex_a8_write_dcc(a8
, data
);
471 if (retval
!= ERROR_OK
)
474 return cortex_a8_exec_opcode(
475 a8
->armv7a_common
.armv4_5_common
.target
,
480 static int cortex_a8_instr_write_data_r0(struct arm_dpm
*dpm
,
481 uint32_t opcode
, uint32_t data
)
483 struct cortex_a8_common
*a8
= dpm_to_a8(dpm
);
484 uint32_t dscr
= DSCR_INSTR_COMP
;
487 retval
= cortex_a8_write_dcc(a8
, data
);
488 if (retval
!= ERROR_OK
)
491 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
492 retval
= cortex_a8_exec_opcode(
493 a8
->armv7a_common
.armv4_5_common
.target
,
494 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
496 if (retval
!= ERROR_OK
)
499 /* then the opcode, taking data from R0 */
500 retval
= cortex_a8_exec_opcode(
501 a8
->armv7a_common
.armv4_5_common
.target
,
508 static int cortex_a8_instr_cpsr_sync(struct arm_dpm
*dpm
)
510 struct target
*target
= dpm
->arm
->target
;
511 uint32_t dscr
= DSCR_INSTR_COMP
;
513 /* "Prefetch flush" after modifying execution status in CPSR */
514 return cortex_a8_exec_opcode(target
,
515 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
519 static int cortex_a8_instr_read_data_dcc(struct arm_dpm
*dpm
,
520 uint32_t opcode
, uint32_t *data
)
522 struct cortex_a8_common
*a8
= dpm_to_a8(dpm
);
524 uint32_t dscr
= DSCR_INSTR_COMP
;
526 /* the opcode, writing data to DCC */
527 retval
= cortex_a8_exec_opcode(
528 a8
->armv7a_common
.armv4_5_common
.target
,
531 if (retval
!= ERROR_OK
)
534 return cortex_a8_read_dcc(a8
, data
, &dscr
);
538 static int cortex_a8_instr_read_data_r0(struct arm_dpm
*dpm
,
539 uint32_t opcode
, uint32_t *data
)
541 struct cortex_a8_common
*a8
= dpm_to_a8(dpm
);
542 uint32_t dscr
= DSCR_INSTR_COMP
;
545 /* the opcode, writing data to R0 */
546 retval
= cortex_a8_exec_opcode(
547 a8
->armv7a_common
.armv4_5_common
.target
,
550 if (retval
!= ERROR_OK
)
553 /* write R0 to DCC */
554 retval
= cortex_a8_exec_opcode(
555 a8
->armv7a_common
.armv4_5_common
.target
,
556 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
558 if (retval
!= ERROR_OK
)
561 return cortex_a8_read_dcc(a8
, data
, &dscr
);
564 static int cortex_a8_bpwp_enable(struct arm_dpm
*dpm
, unsigned index_t
,
565 uint32_t addr
, uint32_t control
)
567 struct cortex_a8_common
*a8
= dpm_to_a8(dpm
);
568 uint32_t vr
= a8
->armv7a_common
.debug_base
;
569 uint32_t cr
= a8
->armv7a_common
.debug_base
;
573 case 0 ... 15: /* breakpoints */
574 vr
+= CPUDBG_BVR_BASE
;
575 cr
+= CPUDBG_BCR_BASE
;
577 case 16 ... 31: /* watchpoints */
578 vr
+= CPUDBG_WVR_BASE
;
579 cr
+= CPUDBG_WCR_BASE
;
588 LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
589 (unsigned) vr
, (unsigned) cr
);
591 retval
= cortex_a8_dap_write_memap_register_u32(dpm
->arm
->target
,
593 if (retval
!= ERROR_OK
)
595 retval
= cortex_a8_dap_write_memap_register_u32(dpm
->arm
->target
,
600 static int cortex_a8_bpwp_disable(struct arm_dpm
*dpm
, unsigned index_t
)
602 struct cortex_a8_common
*a8
= dpm_to_a8(dpm
);
607 cr
= a8
->armv7a_common
.debug_base
+ CPUDBG_BCR_BASE
;
610 cr
= a8
->armv7a_common
.debug_base
+ CPUDBG_WCR_BASE
;
618 LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr
);
620 /* clear control register */
621 return cortex_a8_dap_write_memap_register_u32(dpm
->arm
->target
, cr
, 0);
624 static int cortex_a8_dpm_setup(struct cortex_a8_common
*a8
, uint32_t didr
)
626 struct arm_dpm
*dpm
= &a8
->armv7a_common
.dpm
;
629 dpm
->arm
= &a8
->armv7a_common
.armv4_5_common
;
632 dpm
->prepare
= cortex_a8_dpm_prepare
;
633 dpm
->finish
= cortex_a8_dpm_finish
;
635 dpm
->instr_write_data_dcc
= cortex_a8_instr_write_data_dcc
;
636 dpm
->instr_write_data_r0
= cortex_a8_instr_write_data_r0
;
637 dpm
->instr_cpsr_sync
= cortex_a8_instr_cpsr_sync
;
639 dpm
->instr_read_data_dcc
= cortex_a8_instr_read_data_dcc
;
640 dpm
->instr_read_data_r0
= cortex_a8_instr_read_data_r0
;
642 dpm
->bpwp_enable
= cortex_a8_bpwp_enable
;
643 dpm
->bpwp_disable
= cortex_a8_bpwp_disable
;
645 retval
= arm_dpm_setup(dpm
);
646 if (retval
== ERROR_OK
)
647 retval
= arm_dpm_initialize(dpm
);
654 * Cortex-A8 Run control
657 static int cortex_a8_poll(struct target
*target
)
659 int retval
= ERROR_OK
;
661 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
662 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
663 struct adiv5_dap
*swjdp
= &armv7a
->dap
;
664 enum target_state prev_target_state
= target
->state
;
665 uint8_t saved_apsel
= dap_ap_get_select(swjdp
);
667 dap_ap_select(swjdp
, swjdp_debugap
);
668 retval
= mem_ap_read_atomic_u32(swjdp
,
669 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
670 if (retval
!= ERROR_OK
)
672 dap_ap_select(swjdp
, saved_apsel
);
675 cortex_a8
->cpudbg_dscr
= dscr
;
677 if ((dscr
& 0x3) == 0x3)
679 if (prev_target_state
!= TARGET_HALTED
)
681 /* We have a halting debug event */
682 LOG_DEBUG("Target halted");
683 target
->state
= TARGET_HALTED
;
684 if ((prev_target_state
== TARGET_RUNNING
)
685 || (prev_target_state
== TARGET_RESET
))
687 retval
= cortex_a8_debug_entry(target
);
688 if (retval
!= ERROR_OK
)
691 target_call_event_callbacks(target
,
692 TARGET_EVENT_HALTED
);
694 if (prev_target_state
== TARGET_DEBUG_RUNNING
)
698 retval
= cortex_a8_debug_entry(target
);
699 if (retval
!= ERROR_OK
)
702 target_call_event_callbacks(target
,
703 TARGET_EVENT_DEBUG_HALTED
);
707 else if ((dscr
& 0x3) == 0x2)
709 target
->state
= TARGET_RUNNING
;
713 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32
, dscr
);
714 target
->state
= TARGET_UNKNOWN
;
717 dap_ap_select(swjdp
, saved_apsel
);
722 static int cortex_a8_halt(struct target
*target
)
724 int retval
= ERROR_OK
;
726 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
727 struct adiv5_dap
*swjdp
= &armv7a
->dap
;
728 uint8_t saved_apsel
= dap_ap_get_select(swjdp
);
729 dap_ap_select(swjdp
, swjdp_debugap
);
732 * Tell the core to be halted by writing DRCR with 0x1
733 * and then wait for the core to be halted.
735 retval
= mem_ap_write_atomic_u32(swjdp
,
736 armv7a
->debug_base
+ CPUDBG_DRCR
, 0x1);
737 if (retval
!= ERROR_OK
)
741 * enter halting debug mode
743 retval
= mem_ap_read_atomic_u32(swjdp
, armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
744 if (retval
!= ERROR_OK
)
747 retval
= mem_ap_write_atomic_u32(swjdp
,
748 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
| DSCR_HALT_DBG_MODE
);
749 if (retval
!= ERROR_OK
)
752 long long then
= timeval_ms();
755 retval
= mem_ap_read_atomic_u32(swjdp
,
756 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
757 if (retval
!= ERROR_OK
)
759 if ((dscr
& DSCR_CORE_HALTED
) != 0)
763 if (timeval_ms() > then
+ 1000)
765 LOG_ERROR("Timeout waiting for halt");
770 target
->debug_reason
= DBG_REASON_DBGRQ
;
773 dap_ap_select(swjdp
, saved_apsel
);
777 static int cortex_a8_resume(struct target
*target
, int current
,
778 uint32_t address
, int handle_breakpoints
, int debug_execution
)
780 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
781 struct arm
*armv4_5
= &armv7a
->armv4_5_common
;
782 struct adiv5_dap
*swjdp
= &armv7a
->dap
;
785 // struct breakpoint *breakpoint = NULL;
786 uint32_t resume_pc
, dscr
;
788 uint8_t saved_apsel
= dap_ap_get_select(swjdp
);
789 dap_ap_select(swjdp
, swjdp_debugap
);
791 if (!debug_execution
)
792 target_free_all_working_areas(target
);
797 /* Disable interrupts */
798 /* We disable interrupts in the PRIMASK register instead of
799 * masking with C_MASKINTS,
800 * This is probably the same issue as Cortex-M3 Errata 377493:
801 * C_MASKINTS in parallel with disabled interrupts can cause
802 * local faults to not be taken. */
803 buf_set_u32(armv7m
->core_cache
->reg_list
[ARMV7M_PRIMASK
].value
, 0, 32, 1);
804 armv7m
->core_cache
->reg_list
[ARMV7M_PRIMASK
].dirty
= 1;
805 armv7m
->core_cache
->reg_list
[ARMV7M_PRIMASK
].valid
= 1;
807 /* Make sure we are in Thumb mode */
808 buf_set_u32(armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].value
, 0, 32,
809 buf_get_u32(armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].value
, 0, 32) | (1 << 24));
810 armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].dirty
= 1;
811 armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].valid
= 1;
815 /* current = 1: continue on current pc, otherwise continue at <address> */
816 resume_pc
= buf_get_u32(armv4_5
->pc
->value
, 0, 32);
820 /* Make sure that the Armv7 gdb thumb fixups does not
821 * kill the return address
823 switch (armv4_5
->core_state
)
826 resume_pc
&= 0xFFFFFFFC;
828 case ARM_STATE_THUMB
:
829 case ARM_STATE_THUMB_EE
:
830 /* When the return address is loaded into PC
831 * bit 0 must be 1 to stay in Thumb state
835 case ARM_STATE_JAZELLE
:
836 LOG_ERROR("How do I resume into Jazelle state??");
839 LOG_DEBUG("resume pc = 0x%08" PRIx32
, resume_pc
);
840 buf_set_u32(armv4_5
->pc
->value
, 0, 32, resume_pc
);
841 armv4_5
->pc
->dirty
= 1;
842 armv4_5
->pc
->valid
= 1;
844 retval
= cortex_a8_restore_context(target
, handle_breakpoints
);
845 if (retval
!= ERROR_OK
)
849 /* the front-end may request us not to handle breakpoints */
850 if (handle_breakpoints
)
852 /* Single step past breakpoint at current address */
853 if ((breakpoint
= breakpoint_find(target
, resume_pc
)))
855 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint
->address
);
856 cortex_m3_unset_breakpoint(target
, breakpoint
);
857 cortex_m3_single_step_core(target
);
858 cortex_m3_set_breakpoint(target
, breakpoint
);
863 /* Restart core and wait for it to be started
864 * NOTE: this clears DSCR_ITR_EN and other bits.
866 * REVISIT: for single stepping, we probably want to
867 * disable IRQs by default, with optional override...
869 retval
= mem_ap_write_atomic_u32(swjdp
, armv7a
->debug_base
+ CPUDBG_DRCR
, 0x2);
870 if (retval
!= ERROR_OK
)
873 long long then
= timeval_ms();
876 retval
= mem_ap_read_atomic_u32(swjdp
,
877 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
878 if (retval
!= ERROR_OK
)
880 if ((dscr
& DSCR_CORE_RESTARTED
) != 0)
882 if (timeval_ms() > then
+ 1000)
884 LOG_ERROR("Timeout waiting for resume");
889 target
->debug_reason
= DBG_REASON_NOTHALTED
;
890 target
->state
= TARGET_RUNNING
;
892 /* registers are now invalid */
893 register_cache_invalidate(armv4_5
->core_cache
);
895 if (!debug_execution
)
897 target
->state
= TARGET_RUNNING
;
898 target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
);
899 LOG_DEBUG("target resumed at 0x%" PRIx32
, resume_pc
);
903 target
->state
= TARGET_DEBUG_RUNNING
;
904 target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_RESUMED
);
905 LOG_DEBUG("target debug resumed at 0x%" PRIx32
, resume_pc
);
908 dap_ap_select(swjdp
, saved_apsel
);
913 static int cortex_a8_debug_entry(struct target
*target
)
916 uint32_t regfile
[16], cpsr
, dscr
;
917 int retval
= ERROR_OK
;
918 struct working_area
*regfile_working_area
= NULL
;
919 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
920 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
921 struct arm
*armv4_5
= &armv7a
->armv4_5_common
;
922 struct adiv5_dap
*swjdp
= &armv7a
->dap
;
925 LOG_DEBUG("dscr = 0x%08" PRIx32
, cortex_a8
->cpudbg_dscr
);
927 /* REVISIT surely we should not re-read DSCR !! */
928 retval
= mem_ap_read_atomic_u32(swjdp
,
929 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
930 if (retval
!= ERROR_OK
)
933 /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
934 * imprecise data aborts get discarded by issuing a Data
935 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
938 /* Enable the ITR execution once we are in debug mode */
940 retval
= mem_ap_write_atomic_u32(swjdp
,
941 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
);
942 if (retval
!= ERROR_OK
)
945 /* Examine debug reason */
946 arm_dpm_report_dscr(&armv7a
->dpm
, cortex_a8
->cpudbg_dscr
);
948 /* save address of instruction that triggered the watchpoint? */
949 if (target
->debug_reason
== DBG_REASON_WATCHPOINT
) {
952 retval
= mem_ap_read_atomic_u32(swjdp
,
953 armv7a
->debug_base
+ CPUDBG_WFAR
,
955 if (retval
!= ERROR_OK
)
957 arm_dpm_report_wfar(&armv7a
->dpm
, wfar
);
960 /* REVISIT fast_reg_read is never set ... */
962 /* Examine target state and mode */
963 if (cortex_a8
->fast_reg_read
)
964 target_alloc_working_area(target
, 64, ®file_working_area
);
966 /* First load register acessible through core debug port*/
967 if (!regfile_working_area
)
969 retval
= arm_dpm_read_current_registers(&armv7a
->dpm
);
973 dap_ap_select(swjdp
, swjdp_memoryap
);
974 retval
= cortex_a8_read_regs_through_mem(target
,
975 regfile_working_area
->address
, regfile
);
976 dap_ap_select(swjdp
, swjdp_memoryap
);
977 target_free_working_area(target
, regfile_working_area
);
978 if (retval
!= ERROR_OK
)
983 /* read Current PSR */
984 retval
= cortex_a8_dap_read_coreregister_u32(target
, &cpsr
, 16);
985 if (retval
!= ERROR_OK
)
987 dap_ap_select(swjdp
, swjdp_debugap
);
988 LOG_DEBUG("cpsr: %8.8" PRIx32
, cpsr
);
990 arm_set_cpsr(armv4_5
, cpsr
);
993 for (i
= 0; i
<= ARM_PC
; i
++)
995 reg
= arm_reg_current(armv4_5
, i
);
997 buf_set_u32(reg
->value
, 0, 32, regfile
[i
]);
1002 /* Fixup PC Resume Address */
1003 if (cpsr
& (1 << 5))
1005 // T bit set for Thumb or ThumbEE state
1006 regfile
[ARM_PC
] -= 4;
1011 regfile
[ARM_PC
] -= 8;
1015 buf_set_u32(reg
->value
, 0, 32, regfile
[ARM_PC
]);
1016 reg
->dirty
= reg
->valid
;
1020 /* TODO, Move this */
1021 uint32_t cp15_control_register
, cp15_cacr
, cp15_nacr
;
1022 cortex_a8_read_cp(target
, &cp15_control_register
, 15, 0, 1, 0, 0);
1023 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register
);
1025 cortex_a8_read_cp(target
, &cp15_cacr
, 15, 0, 1, 0, 2);
1026 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr
);
1028 cortex_a8_read_cp(target
, &cp15_nacr
, 15, 0, 1, 1, 2);
1029 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr
);
1032 /* Are we in an exception handler */
1033 // armv4_5->exception_number = 0;
1034 if (armv7a
->post_debug_entry
)
1035 armv7a
->post_debug_entry(target
);
1040 static void cortex_a8_post_debug_entry(struct target
*target
)
1042 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1043 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
1046 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1047 retval
= armv7a
->armv4_5_common
.mrc(target
, 15,
1048 0, 0, /* op1, op2 */
1049 1, 0, /* CRn, CRm */
1050 &cortex_a8
->cp15_control_reg
);
1051 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32
, cortex_a8
->cp15_control_reg
);
1053 if (armv7a
->armv4_5_mmu
.armv4_5_cache
.ctype
== -1)
1055 uint32_t cache_type_reg
;
1057 /* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
1058 retval
= armv7a
->armv4_5_common
.mrc(target
, 15,
1059 0, 1, /* op1, op2 */
1060 0, 0, /* CRn, CRm */
1062 LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg
);
1064 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
1065 armv4_5_identify_cache(cache_type_reg
,
1066 &armv7a
->armv4_5_mmu
.armv4_5_cache
);
1069 armv7a
->armv4_5_mmu
.mmu_enabled
=
1070 (cortex_a8
->cp15_control_reg
& 0x1U
) ? 1 : 0;
1071 armv7a
->armv4_5_mmu
.armv4_5_cache
.d_u_cache_enabled
=
1072 (cortex_a8
->cp15_control_reg
& 0x4U
) ? 1 : 0;
1073 armv7a
->armv4_5_mmu
.armv4_5_cache
.i_cache_enabled
=
1074 (cortex_a8
->cp15_control_reg
& 0x1000U
) ? 1 : 0;
1079 static int cortex_a8_step(struct target
*target
, int current
, uint32_t address
,
1080 int handle_breakpoints
)
1082 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1083 struct arm
*armv4_5
= &armv7a
->armv4_5_common
;
1084 struct breakpoint
*breakpoint
= NULL
;
1085 struct breakpoint stepbreakpoint
;
1091 if (target
->state
!= TARGET_HALTED
)
1093 LOG_WARNING("target not halted");
1094 return ERROR_TARGET_NOT_HALTED
;
1097 /* current = 1: continue on current pc, otherwise continue at <address> */
1101 buf_set_u32(r
->value
, 0, 32, address
);
1105 address
= buf_get_u32(r
->value
, 0, 32);
1108 /* The front-end may request us not to handle breakpoints.
1109 * But since Cortex-A8 uses breakpoint for single step,
1110 * we MUST handle breakpoints.
1112 handle_breakpoints
= 1;
1113 if (handle_breakpoints
) {
1114 breakpoint
= breakpoint_find(target
, address
);
1116 cortex_a8_unset_breakpoint(target
, breakpoint
);
1119 /* Setup single step breakpoint */
1120 stepbreakpoint
.address
= address
;
1121 stepbreakpoint
.length
= (armv4_5
->core_state
== ARM_STATE_THUMB
)
1123 stepbreakpoint
.type
= BKPT_HARD
;
1124 stepbreakpoint
.set
= 0;
1126 /* Break on IVA mismatch */
1127 cortex_a8_set_breakpoint(target
, &stepbreakpoint
, 0x04);
1129 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
1131 retval
= cortex_a8_resume(target
, 1, address
, 0, 0);
1132 if (retval
!= ERROR_OK
)
1135 while (target
->state
!= TARGET_HALTED
)
1137 retval
= cortex_a8_poll(target
);
1138 if (retval
!= ERROR_OK
)
1142 LOG_ERROR("timeout waiting for target halt");
1147 cortex_a8_unset_breakpoint(target
, &stepbreakpoint
);
1149 target
->debug_reason
= DBG_REASON_BREAKPOINT
;
1152 cortex_a8_set_breakpoint(target
, breakpoint
, 0);
1154 if (target
->state
!= TARGET_HALTED
)
1155 LOG_DEBUG("target stepped");
1160 static int cortex_a8_restore_context(struct target
*target
, bool bpwp
)
1162 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1166 if (armv7a
->pre_restore_context
)
1167 armv7a
->pre_restore_context(target
);
1169 return arm_dpm_write_dirty_registers(&armv7a
->dpm
, bpwp
);
1174 * Cortex-A8 Breakpoint and watchpoint functions
1177 /* Setup hardware Breakpoint Register Pair */
1178 static int cortex_a8_set_breakpoint(struct target
*target
,
1179 struct breakpoint
*breakpoint
, uint8_t matchmode
)
1184 uint8_t byte_addr_select
= 0x0F;
1185 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1186 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
1187 struct cortex_a8_brp
* brp_list
= cortex_a8
->brp_list
;
1189 if (breakpoint
->set
)
1191 LOG_WARNING("breakpoint already set");
1195 if (breakpoint
->type
== BKPT_HARD
)
1197 while (brp_list
[brp_i
].used
&& (brp_i
< cortex_a8
->brp_num
))
1199 if (brp_i
>= cortex_a8
->brp_num
)
1201 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1204 breakpoint
->set
= brp_i
+ 1;
1205 if (breakpoint
->length
== 2)
1207 byte_addr_select
= (3 << (breakpoint
->address
& 0x02));
1209 control
= ((matchmode
& 0x7) << 20)
1210 | (byte_addr_select
<< 5)
1212 brp_list
[brp_i
].used
= 1;
1213 brp_list
[brp_i
].value
= (breakpoint
->address
& 0xFFFFFFFC);
1214 brp_list
[brp_i
].control
= control
;
1215 retval
= cortex_a8_dap_write_memap_register_u32(target
, armv7a
->debug_base
1216 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1217 brp_list
[brp_i
].value
);
1218 if (retval
!= ERROR_OK
)
1220 retval
= cortex_a8_dap_write_memap_register_u32(target
, armv7a
->debug_base
1221 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1222 brp_list
[brp_i
].control
);
1223 if (retval
!= ERROR_OK
)
1225 LOG_DEBUG("brp %i control 0x%0" PRIx32
" value 0x%0" PRIx32
, brp_i
,
1226 brp_list
[brp_i
].control
,
1227 brp_list
[brp_i
].value
);
1229 else if (breakpoint
->type
== BKPT_SOFT
)
1232 if (breakpoint
->length
== 2)
1234 buf_set_u32(code
, 0, 32, ARMV5_T_BKPT(0x11));
1238 buf_set_u32(code
, 0, 32, ARMV5_BKPT(0x11));
1240 retval
= target
->type
->read_memory(target
,
1241 breakpoint
->address
& 0xFFFFFFFE,
1242 breakpoint
->length
, 1,
1243 breakpoint
->orig_instr
);
1244 if (retval
!= ERROR_OK
)
1246 retval
= target
->type
->write_memory(target
,
1247 breakpoint
->address
& 0xFFFFFFFE,
1248 breakpoint
->length
, 1, code
);
1249 if (retval
!= ERROR_OK
)
1251 breakpoint
->set
= 0x11; /* Any nice value but 0 */
1257 static int cortex_a8_unset_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
1260 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1261 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
1262 struct cortex_a8_brp
* brp_list
= cortex_a8
->brp_list
;
1264 if (!breakpoint
->set
)
1266 LOG_WARNING("breakpoint not set");
1270 if (breakpoint
->type
== BKPT_HARD
)
1272 int brp_i
= breakpoint
->set
- 1;
1273 if ((brp_i
< 0) || (brp_i
>= cortex_a8
->brp_num
))
1275 LOG_DEBUG("Invalid BRP number in breakpoint");
1278 LOG_DEBUG("rbp %i control 0x%0" PRIx32
" value 0x%0" PRIx32
, brp_i
,
1279 brp_list
[brp_i
].control
, brp_list
[brp_i
].value
);
1280 brp_list
[brp_i
].used
= 0;
1281 brp_list
[brp_i
].value
= 0;
1282 brp_list
[brp_i
].control
= 0;
1283 retval
= cortex_a8_dap_write_memap_register_u32(target
, armv7a
->debug_base
1284 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1285 brp_list
[brp_i
].control
);
1286 if (retval
!= ERROR_OK
)
1288 retval
= cortex_a8_dap_write_memap_register_u32(target
, armv7a
->debug_base
1289 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1290 brp_list
[brp_i
].value
);
1291 if (retval
!= ERROR_OK
)
1296 /* restore original instruction (kept in target endianness) */
1297 if (breakpoint
->length
== 4)
1299 retval
= target
->type
->write_memory(target
,
1300 breakpoint
->address
& 0xFFFFFFFE,
1301 4, 1, breakpoint
->orig_instr
);
1302 if (retval
!= ERROR_OK
)
1307 retval
= target
->type
->write_memory(target
,
1308 breakpoint
->address
& 0xFFFFFFFE,
1309 2, 1, breakpoint
->orig_instr
);
1310 if (retval
!= ERROR_OK
)
1314 breakpoint
->set
= 0;
1319 static int cortex_a8_add_breakpoint(struct target
*target
,
1320 struct breakpoint
*breakpoint
)
1322 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1324 if ((breakpoint
->type
== BKPT_HARD
) && (cortex_a8
->brp_num_available
< 1))
1326 LOG_INFO("no hardware breakpoint available");
1327 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1330 if (breakpoint
->type
== BKPT_HARD
)
1331 cortex_a8
->brp_num_available
--;
1332 cortex_a8_set_breakpoint(target
, breakpoint
, 0x00); /* Exact match */
1337 static int cortex_a8_remove_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
1339 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1342 /* It is perfectly possible to remove breakpoints while the target is running */
1343 if (target
->state
!= TARGET_HALTED
)
1345 LOG_WARNING("target not halted");
1346 return ERROR_TARGET_NOT_HALTED
;
1350 if (breakpoint
->set
)
1352 cortex_a8_unset_breakpoint(target
, breakpoint
);
1353 if (breakpoint
->type
== BKPT_HARD
)
1354 cortex_a8
->brp_num_available
++ ;
1364 * Cortex-A8 Reset functions
1367 static int cortex_a8_assert_reset(struct target
*target
)
1369 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1373 /* FIXME when halt is requested, make it work somehow... */
1375 /* Issue some kind of warm reset. */
1376 if (target_has_event_action(target
, TARGET_EVENT_RESET_ASSERT
)) {
1377 target_handle_event(target
, TARGET_EVENT_RESET_ASSERT
);
1378 } else if (jtag_get_reset_config() & RESET_HAS_SRST
) {
1379 /* REVISIT handle "pulls" cases, if there's
1380 * hardware that needs them to work.
1382 jtag_add_reset(0, 1);
1384 LOG_ERROR("%s: how to reset?", target_name(target
));
1388 /* registers are now invalid */
1389 register_cache_invalidate(armv7a
->armv4_5_common
.core_cache
);
1391 target
->state
= TARGET_RESET
;
1396 static int cortex_a8_deassert_reset(struct target
*target
)
1402 /* be certain SRST is off */
1403 jtag_add_reset(0, 0);
1405 retval
= cortex_a8_poll(target
);
1406 if (retval
!= ERROR_OK
)
1409 if (target
->reset_halt
) {
1410 if (target
->state
!= TARGET_HALTED
) {
1411 LOG_WARNING("%s: ran after reset and before halt ...",
1412 target_name(target
));
1413 if ((retval
= target_halt(target
)) != ERROR_OK
)
1422 * Cortex-A8 Memory access
1424 * This is same Cortex M3 but we must also use the correct
1425 * ap number for every access.
1428 static int cortex_a8_read_phys_memory(struct target
*target
,
1429 uint32_t address
, uint32_t size
,
1430 uint32_t count
, uint8_t *buffer
)
1432 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1433 struct adiv5_dap
*swjdp
= &armv7a
->dap
;
1434 int retval
= ERROR_INVALID_ARGUMENTS
;
1436 /* cortex_a8 handles unaligned memory access */
1438 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1439 LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d", address
, size
, count
);
1440 if (count
&& buffer
) {
1443 retval
= mem_ap_read_buf_u32(swjdp
, buffer
, 4 * count
, address
);
1446 retval
= mem_ap_read_buf_u16(swjdp
, buffer
, 2 * count
, address
);
1449 retval
= mem_ap_read_buf_u8(swjdp
, buffer
, count
, address
);
1457 static int cortex_a8_read_memory(struct target
*target
, uint32_t address
,
1458 uint32_t size
, uint32_t count
, uint8_t *buffer
)
1461 uint32_t virt
, phys
;
1464 /* cortex_a8 handles unaligned memory access */
1466 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1467 LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address
, size
, count
);
1468 retval
= cortex_a8_mmu(target
, &enabled
);
1469 if (retval
!= ERROR_OK
)
1475 retval
= cortex_a8_virt2phys(target
, virt
, &phys
);
1476 if (retval
!= ERROR_OK
)
1479 LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x", virt
, phys
);
1483 return cortex_a8_read_phys_memory(target
, address
, size
, count
, buffer
);
1486 static int cortex_a8_write_phys_memory(struct target
*target
,
1487 uint32_t address
, uint32_t size
,
1488 uint32_t count
, uint8_t *buffer
)
1490 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1491 struct adiv5_dap
*swjdp
= &armv7a
->dap
;
1492 int retval
= ERROR_INVALID_ARGUMENTS
;
1494 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1496 LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address
, size
, count
);
1497 if (count
&& buffer
) {
1500 retval
= mem_ap_write_buf_u32(swjdp
, buffer
, 4 * count
, address
);
1503 retval
= mem_ap_write_buf_u16(swjdp
, buffer
, 2 * count
, address
);
1506 retval
= mem_ap_write_buf_u8(swjdp
, buffer
, count
, address
);
1511 /* REVISIT this op is generic ARMv7-A/R stuff */
1512 if (retval
== ERROR_OK
&& target
->state
== TARGET_HALTED
)
1514 struct arm_dpm
*dpm
= armv7a
->armv4_5_common
.dpm
;
1516 retval
= dpm
->prepare(dpm
);
1517 if (retval
!= ERROR_OK
)
1520 /* The Cache handling will NOT work with MMU active, the
1521 * wrong addresses will be invalidated!
1523 * For both ICache and DCache, walk all cache lines in the
1524 * address range. Cortex-A8 has fixed 64 byte line length.
1526 * REVISIT per ARMv7, these may trigger watchpoints ...
1529 /* invalidate I-Cache */
1530 if (armv7a
->armv4_5_mmu
.armv4_5_cache
.i_cache_enabled
)
1532 /* ICIMVAU - Invalidate Cache single entry
1534 * MCR p15, 0, r0, c7, c5, 1
1536 for (uint32_t cacheline
= address
;
1537 cacheline
< address
+ size
* count
;
1539 retval
= dpm
->instr_write_data_r0(dpm
,
1540 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
1542 if (retval
!= ERROR_OK
)
1547 /* invalidate D-Cache */
1548 if (armv7a
->armv4_5_mmu
.armv4_5_cache
.d_u_cache_enabled
)
1550 /* DCIMVAC - Invalidate data Cache line
1552 * MCR p15, 0, r0, c7, c6, 1
1554 for (uint32_t cacheline
= address
;
1555 cacheline
< address
+ size
* count
;
1557 retval
= dpm
->instr_write_data_r0(dpm
,
1558 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
1560 if (retval
!= ERROR_OK
)
1565 /* (void) */ dpm
->finish(dpm
);
1571 static int cortex_a8_write_memory(struct target
*target
, uint32_t address
,
1572 uint32_t size
, uint32_t count
, uint8_t *buffer
)
1575 uint32_t virt
, phys
;
1578 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1580 LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address
, size
, count
);
1581 retval
= cortex_a8_mmu(target
, &enabled
);
1582 if (retval
!= ERROR_OK
)
1587 retval
= cortex_a8_virt2phys(target
, virt
, &phys
);
1588 if (retval
!= ERROR_OK
)
1590 LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt
, phys
);
1594 return cortex_a8_write_phys_memory(target
, address
, size
,
1598 static int cortex_a8_bulk_write_memory(struct target
*target
, uint32_t address
,
1599 uint32_t count
, uint8_t *buffer
)
1601 return cortex_a8_write_memory(target
, address
, 4, count
, buffer
);
1605 static int cortex_a8_dcc_read(struct adiv5_dap
*swjdp
, uint8_t *value
, uint8_t *ctrl
)
1610 mem_ap_read_buf_u16(swjdp
, (uint8_t*)&dcrdr
, 1, DCB_DCRDR
);
1611 *ctrl
= (uint8_t)dcrdr
;
1612 *value
= (uint8_t)(dcrdr
>> 8);
1614 LOG_DEBUG("data 0x%x ctrl 0x%x", *value
, *ctrl
);
1616 /* write ack back to software dcc register
1617 * signify we have read data */
1618 if (dcrdr
& (1 << 0))
1621 mem_ap_write_buf_u16(swjdp
, (uint8_t*)&dcrdr
, 1, DCB_DCRDR
);
1628 static int cortex_a8_handle_target_request(void *priv
)
1630 struct target
*target
= priv
;
1631 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1632 struct adiv5_dap
*swjdp
= &armv7a
->dap
;
1635 if (!target_was_examined(target
))
1637 if (!target
->dbg_msg_enabled
)
1640 if (target
->state
== TARGET_RUNNING
)
1645 retval
= cortex_a8_dcc_read(swjdp
, &data
, &ctrl
);
1646 if (retval
!= ERROR_OK
)
1649 /* check if we have data */
1650 if (ctrl
& (1 << 0))
1654 /* we assume target is quick enough */
1656 retval
= cortex_a8_dcc_read(swjdp
, &data
, &ctrl
);
1657 if (retval
!= ERROR_OK
)
1659 request
|= (data
<< 8);
1660 retval
= cortex_a8_dcc_read(swjdp
, &data
, &ctrl
);
1661 if (retval
!= ERROR_OK
)
1663 request
|= (data
<< 16);
1664 retval
= cortex_a8_dcc_read(swjdp
, &data
, &ctrl
);
1665 if (retval
!= ERROR_OK
)
1667 request
|= (data
<< 24);
1668 target_request(target
, request
);
1676 * Cortex-A8 target information and configuration
1679 static int cortex_a8_examine_first(struct target
*target
)
1681 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1682 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
1683 struct adiv5_dap
*swjdp
= &armv7a
->dap
;
1685 int retval
= ERROR_OK
;
1686 uint32_t didr
, ctypr
, ttypr
, cpuid
;
1688 /* stop assuming this is an OMAP! */
1689 LOG_DEBUG("TODO - autoconfigure");
1691 /* Here we shall insert a proper ROM Table scan */
1692 armv7a
->debug_base
= OMAP3530_DEBUG_BASE
;
1694 /* We do one extra read to ensure DAP is configured,
1695 * we call ahbap_debugport_init(swjdp) instead
1697 retval
= ahbap_debugport_init(swjdp
);
1698 if (retval
!= ERROR_OK
)
1701 retval
= mem_ap_read_atomic_u32(swjdp
, armv7a
->debug_base
+ CPUDBG_CPUID
, &cpuid
);
1702 if (retval
!= ERROR_OK
)
1705 if ((retval
= mem_ap_read_atomic_u32(swjdp
,
1706 armv7a
->debug_base
+ CPUDBG_CPUID
, &cpuid
)) != ERROR_OK
)
1708 LOG_DEBUG("Examine %s failed", "CPUID");
1712 if ((retval
= mem_ap_read_atomic_u32(swjdp
,
1713 armv7a
->debug_base
+ CPUDBG_CTYPR
, &ctypr
)) != ERROR_OK
)
1715 LOG_DEBUG("Examine %s failed", "CTYPR");
1719 if ((retval
= mem_ap_read_atomic_u32(swjdp
,
1720 armv7a
->debug_base
+ CPUDBG_TTYPR
, &ttypr
)) != ERROR_OK
)
1722 LOG_DEBUG("Examine %s failed", "TTYPR");
1726 if ((retval
= mem_ap_read_atomic_u32(swjdp
,
1727 armv7a
->debug_base
+ CPUDBG_DIDR
, &didr
)) != ERROR_OK
)
1729 LOG_DEBUG("Examine %s failed", "DIDR");
1733 LOG_DEBUG("cpuid = 0x%08" PRIx32
, cpuid
);
1734 LOG_DEBUG("ctypr = 0x%08" PRIx32
, ctypr
);
1735 LOG_DEBUG("ttypr = 0x%08" PRIx32
, ttypr
);
1736 LOG_DEBUG("didr = 0x%08" PRIx32
, didr
);
1738 armv7a
->armv4_5_common
.core_type
= ARM_MODE_MON
;
1739 retval
= cortex_a8_dpm_setup(cortex_a8
, didr
);
1740 if (retval
!= ERROR_OK
)
1743 /* Setup Breakpoint Register Pairs */
1744 cortex_a8
->brp_num
= ((didr
>> 24) & 0x0F) + 1;
1745 cortex_a8
->brp_num_context
= ((didr
>> 20) & 0x0F) + 1;
1746 cortex_a8
->brp_num_available
= cortex_a8
->brp_num
;
1747 cortex_a8
->brp_list
= calloc(cortex_a8
->brp_num
, sizeof(struct cortex_a8_brp
));
1748 // cortex_a8->brb_enabled = ????;
1749 for (i
= 0; i
< cortex_a8
->brp_num
; i
++)
1751 cortex_a8
->brp_list
[i
].used
= 0;
1752 if (i
< (cortex_a8
->brp_num
-cortex_a8
->brp_num_context
))
1753 cortex_a8
->brp_list
[i
].type
= BRP_NORMAL
;
1755 cortex_a8
->brp_list
[i
].type
= BRP_CONTEXT
;
1756 cortex_a8
->brp_list
[i
].value
= 0;
1757 cortex_a8
->brp_list
[i
].control
= 0;
1758 cortex_a8
->brp_list
[i
].BRPn
= i
;
1761 LOG_DEBUG("Configured %i hw breakpoints", cortex_a8
->brp_num
);
1763 target_set_examined(target
);
1767 static int cortex_a8_examine(struct target
*target
)
1769 int retval
= ERROR_OK
;
1771 /* don't re-probe hardware after each reset */
1772 if (!target_was_examined(target
))
1773 retval
= cortex_a8_examine_first(target
);
1775 /* Configure core debug access */
1776 if (retval
== ERROR_OK
)
1777 retval
= cortex_a8_init_debug_access(target
);
1783 * Cortex-A8 target creation and initialization
1786 static int cortex_a8_init_target(struct command_context
*cmd_ctx
,
1787 struct target
*target
)
1789 /* examine_first() does a bunch of this */
1793 static int cortex_a8_init_arch_info(struct target
*target
,
1794 struct cortex_a8_common
*cortex_a8
, struct jtag_tap
*tap
)
1796 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
1797 struct arm
*armv4_5
= &armv7a
->armv4_5_common
;
1798 struct adiv5_dap
*dap
= &armv7a
->dap
;
1800 armv7a
->armv4_5_common
.dap
= dap
;
1802 /* Setup struct cortex_a8_common */
1803 cortex_a8
->common_magic
= CORTEX_A8_COMMON_MAGIC
;
1804 armv4_5
->arch_info
= armv7a
;
1806 /* prepare JTAG information for the new target */
1807 cortex_a8
->jtag_info
.tap
= tap
;
1808 cortex_a8
->jtag_info
.scann_size
= 4;
1810 /* Leave (only) generic DAP stuff for debugport_init() */
1811 dap
->jtag_info
= &cortex_a8
->jtag_info
;
1812 dap
->memaccess_tck
= 80;
1814 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1815 dap
->tar_autoincr_block
= (1 << 10);
1817 cortex_a8
->fast_reg_read
= 0;
1819 /* Set default value */
1820 cortex_a8
->current_address_mode
= ARM_MODE_ANY
;
1822 /* register arch-specific functions */
1823 armv7a
->examine_debug_reason
= NULL
;
1825 armv7a
->post_debug_entry
= cortex_a8_post_debug_entry
;
1827 armv7a
->pre_restore_context
= NULL
;
1828 armv7a
->armv4_5_mmu
.armv4_5_cache
.ctype
= -1;
1829 armv7a
->armv4_5_mmu
.get_ttb
= cortex_a8_get_ttb
;
1830 armv7a
->armv4_5_mmu
.read_memory
= cortex_a8_read_phys_memory
;
1831 armv7a
->armv4_5_mmu
.write_memory
= cortex_a8_write_phys_memory
;
1832 armv7a
->armv4_5_mmu
.disable_mmu_caches
= cortex_a8_disable_mmu_caches
;
1833 armv7a
->armv4_5_mmu
.enable_mmu_caches
= cortex_a8_enable_mmu_caches
;
1834 armv7a
->armv4_5_mmu
.has_tiny_pages
= 1;
1835 armv7a
->armv4_5_mmu
.mmu_enabled
= 0;
1838 // arm7_9->handle_target_request = cortex_a8_handle_target_request;
1840 /* REVISIT v7a setup should be in a v7a-specific routine */
1841 arm_init_arch_info(target
, armv4_5
);
1842 armv7a
->common_magic
= ARMV7_COMMON_MAGIC
;
1844 target_register_timer_callback(cortex_a8_handle_target_request
, 1, 1, target
);
1849 static int cortex_a8_target_create(struct target
*target
, Jim_Interp
*interp
)
1851 struct cortex_a8_common
*cortex_a8
= calloc(1, sizeof(struct cortex_a8_common
));
1853 return cortex_a8_init_arch_info(target
, cortex_a8
, target
->tap
);
1856 static int cortex_a8_get_ttb(struct target
*target
, uint32_t *result
)
1858 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1859 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
1860 uint32_t ttb
= 0, retval
= ERROR_OK
;
1862 /* current_address_mode is set inside cortex_a8_virt2phys()
1863 where we can determine if address belongs to user or kernel */
1864 if(cortex_a8
->current_address_mode
== ARM_MODE_SVC
)
1866 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1867 retval
= armv7a
->armv4_5_common
.mrc(target
, 15,
1868 0, 1, /* op1, op2 */
1869 2, 0, /* CRn, CRm */
1871 if (retval
!= ERROR_OK
)
1874 else if(cortex_a8
->current_address_mode
== ARM_MODE_USR
)
1876 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1877 retval
= armv7a
->armv4_5_common
.mrc(target
, 15,
1878 0, 0, /* op1, op2 */
1879 2, 0, /* CRn, CRm */
1881 if (retval
!= ERROR_OK
)
1884 /* we don't know whose address is: user or kernel
1885 we assume that if we are in kernel mode then
1886 address belongs to kernel else if in user mode
1888 else if(armv7a
->armv4_5_common
.core_mode
== ARM_MODE_SVC
)
1890 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1891 retval
= armv7a
->armv4_5_common
.mrc(target
, 15,
1892 0, 1, /* op1, op2 */
1893 2, 0, /* CRn, CRm */
1895 if (retval
!= ERROR_OK
)
1898 else if(armv7a
->armv4_5_common
.core_mode
== ARM_MODE_USR
)
1900 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1901 retval
= armv7a
->armv4_5_common
.mrc(target
, 15,
1902 0, 0, /* op1, op2 */
1903 2, 0, /* CRn, CRm */
1905 if (retval
!= ERROR_OK
)
1908 /* finally we don't know whose ttb to use: user or kernel */
1910 LOG_ERROR("Don't know how to get ttb for current mode!!!");
1919 /* FIX! error propagation missing from this fn */
1920 static void cortex_a8_disable_mmu_caches(struct target
*target
, int mmu
,
1921 int d_u_cache
, int i_cache
)
1923 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1924 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
1925 uint32_t cp15_control
;
1927 /* read cp15 control register */
1928 armv7a
->armv4_5_common
.mrc(target
, 15,
1929 0, 0, /* op1, op2 */
1930 1, 0, /* CRn, CRm */
1935 cp15_control
&= ~0x1U
;
1938 cp15_control
&= ~0x4U
;
1941 cp15_control
&= ~0x1000U
;
1943 armv7a
->armv4_5_common
.mcr(target
, 15,
1944 0, 0, /* op1, op2 */
1945 1, 0, /* CRn, CRm */
1949 /* FIX! error propagation missing from this fn */
1950 static void cortex_a8_enable_mmu_caches(struct target
*target
, int mmu
,
1951 int d_u_cache
, int i_cache
)
1953 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1954 struct armv7a_common
*armv7a
= &cortex_a8
->armv7a_common
;
1955 uint32_t cp15_control
;
1957 /* read cp15 control register */
1958 armv7a
->armv4_5_common
.mrc(target
, 15,
1959 0, 0, /* op1, op2 */
1960 1, 0, /* CRn, CRm */
1964 cp15_control
|= 0x1U
;
1967 cp15_control
|= 0x4U
;
1970 cp15_control
|= 0x1000U
;
1972 armv7a
->armv4_5_common
.mcr(target
, 15,
1973 0, 0, /* op1, op2 */
1974 1, 0, /* CRn, CRm */
1979 static int cortex_a8_mmu(struct target
*target
, int *enabled
)
1981 if (target
->state
!= TARGET_HALTED
) {
1982 LOG_ERROR("%s: target not halted", __func__
);
1983 return ERROR_TARGET_INVALID
;
1986 *enabled
= target_to_cortex_a8(target
)->armv7a_common
.armv4_5_mmu
.mmu_enabled
;
1990 static int cortex_a8_virt2phys(struct target
*target
,
1991 uint32_t virt
, uint32_t *phys
)
1994 struct cortex_a8_common
*cortex_a8
= target_to_cortex_a8(target
);
1995 // struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1996 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1998 /* We assume that virtual address is separated
1999 between user and kernel in Linux style:
2000 0x00000000-0xbfffffff - User space
2001 0xc0000000-0xffffffff - Kernel space */
2002 if( virt
< 0xc0000000 ) /* Linux user space */
2003 cortex_a8
->current_address_mode
= ARM_MODE_USR
;
2004 else /* Linux kernel */
2005 cortex_a8
->current_address_mode
= ARM_MODE_SVC
;
2007 int retval
= armv4_5_mmu_translate_va(target
,
2008 &armv7a
->armv4_5_mmu
, virt
, &cb
, &ret
);
2009 if (retval
!= ERROR_OK
)
2011 /* Reset the flag. We don't want someone else to use it by error */
2012 cortex_a8
->current_address_mode
= ARM_MODE_ANY
;
2018 COMMAND_HANDLER(cortex_a8_handle_cache_info_command
)
2020 struct target
*target
= get_current_target(CMD_CTX
);
2021 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2023 return armv4_5_handle_cache_info_command(CMD_CTX
,
2024 &armv7a
->armv4_5_mmu
.armv4_5_cache
);
2028 COMMAND_HANDLER(cortex_a8_handle_dbginit_command
)
2030 struct target
*target
= get_current_target(CMD_CTX
);
2031 if (!target_was_examined(target
))
2033 LOG_ERROR("target not examined yet");
2037 return cortex_a8_init_debug_access(target
);
2040 static const struct command_registration cortex_a8_exec_command_handlers
[] = {
2042 .name
= "cache_info",
2043 .handler
= cortex_a8_handle_cache_info_command
,
2044 .mode
= COMMAND_EXEC
,
2045 .help
= "display information about target caches",
2049 .handler
= cortex_a8_handle_dbginit_command
,
2050 .mode
= COMMAND_EXEC
,
2051 .help
= "Initialize core debug",
2053 COMMAND_REGISTRATION_DONE
2055 static const struct command_registration cortex_a8_command_handlers
[] = {
2057 .chain
= arm_command_handlers
,
2060 .chain
= armv7a_command_handlers
,
2063 .name
= "cortex_a8",
2064 .mode
= COMMAND_ANY
,
2065 .help
= "Cortex-A8 command group",
2066 .chain
= cortex_a8_exec_command_handlers
,
2068 COMMAND_REGISTRATION_DONE
2071 struct target_type cortexa8_target
= {
2072 .name
= "cortex_a8",
2074 .poll
= cortex_a8_poll
,
2075 .arch_state
= armv7a_arch_state
,
2077 .target_request_data
= NULL
,
2079 .halt
= cortex_a8_halt
,
2080 .resume
= cortex_a8_resume
,
2081 .step
= cortex_a8_step
,
2083 .assert_reset
= cortex_a8_assert_reset
,
2084 .deassert_reset
= cortex_a8_deassert_reset
,
2085 .soft_reset_halt
= NULL
,
2087 /* REVISIT allow exporting VFP3 registers ... */
2088 .get_gdb_reg_list
= arm_get_gdb_reg_list
,
2090 .read_memory
= cortex_a8_read_memory
,
2091 .write_memory
= cortex_a8_write_memory
,
2092 .bulk_write_memory
= cortex_a8_bulk_write_memory
,
2094 .checksum_memory
= arm_checksum_memory
,
2095 .blank_check_memory
= arm_blank_check_memory
,
2097 .run_algorithm
= armv4_5_run_algorithm
,
2099 .add_breakpoint
= cortex_a8_add_breakpoint
,
2100 .remove_breakpoint
= cortex_a8_remove_breakpoint
,
2101 .add_watchpoint
= NULL
,
2102 .remove_watchpoint
= NULL
,
2104 .commands
= cortex_a8_command_handlers
,
2105 .target_create
= cortex_a8_target_create
,
2106 .init_target
= cortex_a8_init_target
,
2107 .examine
= cortex_a8_examine
,
2109 .read_phys_memory
= cortex_a8_read_phys_memory
,
2110 .write_phys_memory
= cortex_a8_write_phys_memory
,
2111 .mmu
= cortex_a8_mmu
,
2112 .virt2phys
= cortex_a8_virt2phys
,