ARM: pass 'struct reg *' to register r/w routines
[openocd/cortex.git] / src / target / arm7_9_common.c
blob3a32764662ad2b35d63f7a4ef317b7a7ac2d26ff
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2008 by Hongtao Zheng *
12 * hontor@126.com *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
28 ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
33 #include "breakpoints.h"
34 #include "embeddedice.h"
35 #include "target_request.h"
36 #include "etm.h"
37 #include "time_support.h"
38 #include "arm_simulator.h"
39 #include "algorithm.h"
40 #include "register.h"
43 /**
44 * @file
45 * Hold common code supporting the ARM7 and ARM9 core generations.
47 * While the ARM core implementations evolved substantially during these
48 * two generations, they look quite similar from the JTAG perspective.
49 * Both have similar debug facilities, based on the same two scan chains
50 * providing access to the core and to an EmbeddedICE module. Both can
51 * support similar ETM and ETB modules, for tracing. And both expose
52 * what could be viewed as "ARM Classic", with multiple processor modes,
53 * shadowed registers, and support for the Thumb instruction set.
55 * Processor differences include things like presence or absence of MMU
56 * and cache, pipeline sizes, use of a modified Harvard Architecure
57 * (with separate instruction and data busses from the CPU), support
58 * for cpu clock gating during idle, and more.
61 static int arm7_9_debug_entry(struct target *target);
63 /**
64 * Clear watchpoints for an ARM7/9 target.
66 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
67 * @return JTAG error status after executing queue
69 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
71 LOG_DEBUG("-");
72 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
73 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
74 arm7_9->sw_breakpoint_count = 0;
75 arm7_9->sw_breakpoints_added = 0;
76 arm7_9->wp0_used = 0;
77 arm7_9->wp1_used = arm7_9->wp1_used_default;
78 arm7_9->wp_available = arm7_9->wp_available_max;
80 return jtag_execute_queue();
83 /**
84 * Assign a watchpoint to one of the two available hardware comparators in an
85 * ARM7 or ARM9 target.
87 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
88 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
90 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
92 if (!arm7_9->wp0_used)
94 arm7_9->wp0_used = 1;
95 breakpoint->set = 1;
96 arm7_9->wp_available--;
98 else if (!arm7_9->wp1_used)
100 arm7_9->wp1_used = 1;
101 breakpoint->set = 2;
102 arm7_9->wp_available--;
104 else
106 LOG_ERROR("BUG: no hardware comparator available");
108 LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
109 breakpoint->unique_id,
110 breakpoint->address,
111 breakpoint->set );
115 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
117 * @param arm7_9 Pointer to common struct for ARM7/9 targets
118 * @return Error codes if there is a problem finding a watchpoint or the result
119 * of executing the JTAG queue
121 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
123 if (arm7_9->sw_breakpoints_added)
125 return ERROR_OK;
127 if (arm7_9->wp_available < 1)
129 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
130 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
132 arm7_9->wp_available--;
134 /* pick a breakpoint unit */
135 if (!arm7_9->wp0_used)
137 arm7_9->sw_breakpoints_added = 1;
138 arm7_9->wp0_used = 3;
139 } else if (!arm7_9->wp1_used)
141 arm7_9->sw_breakpoints_added = 2;
142 arm7_9->wp1_used = 3;
144 else
146 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
147 return ERROR_FAIL;
150 if (arm7_9->sw_breakpoints_added == 1)
152 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
153 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
154 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
155 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
156 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
158 else if (arm7_9->sw_breakpoints_added == 2)
160 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
161 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
162 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
163 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
164 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
166 else
168 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
169 return ERROR_FAIL;
171 LOG_DEBUG("SW BP using hw wp: %d",
172 arm7_9->sw_breakpoints_added );
174 return jtag_execute_queue();
178 * Setup the common pieces for an ARM7/9 target after reset or on startup.
180 * @param target Pointer to an ARM7/9 target to setup
181 * @return Result of clearing the watchpoints on the target
183 int arm7_9_setup(struct target *target)
185 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
187 return arm7_9_clear_watchpoints(arm7_9);
191 * Set either a hardware or software breakpoint on an ARM7/9 target. The
192 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
193 * might have erased the values in Embedded ICE.
195 * @param target Pointer to the target device to set the breakpoints on
196 * @param breakpoint Pointer to the breakpoint to be set
197 * @return For hardware breakpoints, this is the result of executing the JTAG
198 * queue. For software breakpoints, this will be the status of the
199 * required memory reads and writes
201 int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
203 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
204 int retval = ERROR_OK;
206 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
207 breakpoint->unique_id,
208 breakpoint->address,
209 breakpoint->type);
211 if (target->state != TARGET_HALTED)
213 LOG_WARNING("target not halted");
214 return ERROR_TARGET_NOT_HALTED;
217 if (breakpoint->type == BKPT_HARD)
219 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
220 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
222 /* reassign a hw breakpoint */
223 if (breakpoint->set == 0)
225 arm7_9_assign_wp(arm7_9, breakpoint);
228 if (breakpoint->set == 1)
230 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
231 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
232 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
233 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
234 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
236 else if (breakpoint->set == 2)
238 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
239 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
240 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
241 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
242 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
244 else
246 LOG_ERROR("BUG: no hardware comparator available");
247 return ERROR_OK;
250 retval = jtag_execute_queue();
252 else if (breakpoint->type == BKPT_SOFT)
254 /* did we already set this breakpoint? */
255 if (breakpoint->set)
256 return ERROR_OK;
258 if (breakpoint->length == 4)
260 uint32_t verify = 0xffffffff;
261 /* keep the original instruction in target endianness */
262 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
264 return retval;
266 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
267 if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
269 return retval;
272 if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
274 return retval;
276 if (verify != arm7_9->arm_bkpt)
278 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
279 return ERROR_OK;
282 else
284 uint16_t verify = 0xffff;
285 /* keep the original instruction in target endianness */
286 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
288 return retval;
290 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
291 if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
293 return retval;
296 if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
298 return retval;
300 if (verify != arm7_9->thumb_bkpt)
302 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
303 return ERROR_OK;
307 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
308 return retval;
310 arm7_9->sw_breakpoint_count++;
312 breakpoint->set = 1;
315 return retval;
319 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
320 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
321 * will be updated. Otherwise, the software breakpoint will be restored to its
322 * original instruction if it hasn't already been modified.
324 * @param target Pointer to ARM7/9 target to unset the breakpoint from
325 * @param breakpoint Pointer to breakpoint to be unset
326 * @return For hardware breakpoints, this is the result of executing the JTAG
327 * queue. For software breakpoints, this will be the status of the
328 * required memory reads and writes
330 int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
332 int retval = ERROR_OK;
333 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
335 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
336 breakpoint->unique_id,
337 breakpoint->address );
339 if (!breakpoint->set)
341 LOG_WARNING("breakpoint not set");
342 return ERROR_OK;
345 if (breakpoint->type == BKPT_HARD)
347 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
348 breakpoint->unique_id,
349 breakpoint->set );
350 if (breakpoint->set == 1)
352 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
353 arm7_9->wp0_used = 0;
354 arm7_9->wp_available++;
356 else if (breakpoint->set == 2)
358 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
359 arm7_9->wp1_used = 0;
360 arm7_9->wp_available++;
362 retval = jtag_execute_queue();
363 breakpoint->set = 0;
365 else
367 /* restore original instruction (kept in target endianness) */
368 if (breakpoint->length == 4)
370 uint32_t current_instr;
371 /* check that user program as not modified breakpoint instruction */
372 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
374 return retval;
376 if (current_instr == arm7_9->arm_bkpt)
377 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
379 return retval;
382 else
384 uint16_t current_instr;
385 /* check that user program as not modified breakpoint instruction */
386 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
388 return retval;
390 if (current_instr == arm7_9->thumb_bkpt)
391 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
393 return retval;
397 if (--arm7_9->sw_breakpoint_count==0)
399 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
400 if (arm7_9->sw_breakpoints_added == 1)
402 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
404 else if (arm7_9->sw_breakpoints_added == 2)
406 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
410 breakpoint->set = 0;
413 return retval;
417 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
418 * dangling breakpoints and that the desired breakpoint can be added.
420 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
421 * @param breakpoint Pointer to the breakpoint to be added
422 * @return An error status if there is a problem adding the breakpoint or the
423 * result of setting the breakpoint
425 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
427 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
429 if (target->state != TARGET_HALTED)
431 LOG_WARNING("target not halted");
432 return ERROR_TARGET_NOT_HALTED;
435 if (arm7_9->breakpoint_count == 0)
437 /* make sure we don't have any dangling breakpoints. This is vital upon
438 * GDB connect/disconnect
440 arm7_9_clear_watchpoints(arm7_9);
443 if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
445 LOG_INFO("no watchpoint unit available for hardware breakpoint");
446 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
449 if ((breakpoint->length != 2) && (breakpoint->length != 4))
451 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
452 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
455 if (breakpoint->type == BKPT_HARD)
457 arm7_9_assign_wp(arm7_9, breakpoint);
460 arm7_9->breakpoint_count++;
462 return arm7_9_set_breakpoint(target, breakpoint);
466 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
467 * dangling breakpoints and updates available watchpoints if it is a hardware
468 * breakpoint.
470 * @param target Pointer to the target to have a breakpoint removed
471 * @param breakpoint Pointer to the breakpoint to be removed
472 * @return Error status if there was a problem unsetting the breakpoint or the
473 * watchpoints could not be cleared
475 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
477 int retval = ERROR_OK;
478 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
480 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
482 return retval;
485 if (breakpoint->type == BKPT_HARD)
486 arm7_9->wp_available++;
488 arm7_9->breakpoint_count--;
489 if (arm7_9->breakpoint_count == 0)
491 /* make sure we don't have any dangling breakpoints */
492 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
494 return retval;
498 return ERROR_OK;
502 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
503 * considered a bug to call this function when there are no available watchpoint
504 * units.
506 * @param target Pointer to an ARM7/9 target to set a watchpoint on
507 * @param watchpoint Pointer to the watchpoint to be set
508 * @return Error status if watchpoint set fails or the result of executing the
509 * JTAG queue
511 int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
513 int retval = ERROR_OK;
514 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
515 int rw_mask = 1;
516 uint32_t mask;
518 mask = watchpoint->length - 1;
520 if (target->state != TARGET_HALTED)
522 LOG_WARNING("target not halted");
523 return ERROR_TARGET_NOT_HALTED;
526 if (watchpoint->rw == WPT_ACCESS)
527 rw_mask = 0;
528 else
529 rw_mask = 1;
531 if (!arm7_9->wp0_used)
533 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
534 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
535 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
536 if (watchpoint->mask != 0xffffffffu)
537 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
538 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
539 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
541 if ((retval = jtag_execute_queue()) != ERROR_OK)
543 return retval;
545 watchpoint->set = 1;
546 arm7_9->wp0_used = 2;
548 else if (!arm7_9->wp1_used)
550 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
551 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
552 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
553 if (watchpoint->mask != 0xffffffffu)
554 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
555 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
556 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
558 if ((retval = jtag_execute_queue()) != ERROR_OK)
560 return retval;
562 watchpoint->set = 2;
563 arm7_9->wp1_used = 2;
565 else
567 LOG_ERROR("BUG: no hardware comparator available");
568 return ERROR_OK;
571 return ERROR_OK;
575 * Unset an existing watchpoint and clear the used watchpoint unit.
577 * @param target Pointer to the target to have the watchpoint removed
578 * @param watchpoint Pointer to the watchpoint to be removed
579 * @return Error status while trying to unset the watchpoint or the result of
580 * executing the JTAG queue
582 int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
584 int retval = ERROR_OK;
585 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
587 if (target->state != TARGET_HALTED)
589 LOG_WARNING("target not halted");
590 return ERROR_TARGET_NOT_HALTED;
593 if (!watchpoint->set)
595 LOG_WARNING("breakpoint not set");
596 return ERROR_OK;
599 if (watchpoint->set == 1)
601 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
602 if ((retval = jtag_execute_queue()) != ERROR_OK)
604 return retval;
606 arm7_9->wp0_used = 0;
608 else if (watchpoint->set == 2)
610 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
611 if ((retval = jtag_execute_queue()) != ERROR_OK)
613 return retval;
615 arm7_9->wp1_used = 0;
617 watchpoint->set = 0;
619 return ERROR_OK;
623 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
624 * available, an error response is returned.
626 * @param target Pointer to the ARM7/9 target to add a watchpoint to
627 * @param watchpoint Pointer to the watchpoint to be added
628 * @return Error status while trying to add the watchpoint
630 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
632 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
634 if (target->state != TARGET_HALTED)
636 LOG_WARNING("target not halted");
637 return ERROR_TARGET_NOT_HALTED;
640 if (arm7_9->wp_available < 1)
642 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
645 if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
647 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
650 arm7_9->wp_available--;
652 return ERROR_OK;
656 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
657 * the used watchpoint unit will be reopened.
659 * @param target Pointer to the target to remove a watchpoint from
660 * @param watchpoint Pointer to the watchpoint to be removed
661 * @return Result of trying to unset the watchpoint
663 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
665 int retval = ERROR_OK;
666 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
668 if (watchpoint->set)
670 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
672 return retval;
676 arm7_9->wp_available++;
678 return ERROR_OK;
682 * Restarts the target by sending a RESTART instruction and moving the JTAG
683 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
684 * asserted by the processor.
686 * @param target Pointer to target to issue commands to
687 * @return Error status if there is a timeout or a problem while executing the
688 * JTAG queue
690 int arm7_9_execute_sys_speed(struct target *target)
692 int retval;
693 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
694 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
695 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
697 /* set RESTART instruction */
698 jtag_set_end_state(TAP_IDLE);
699 if (arm7_9->need_bypass_before_restart) {
700 arm7_9->need_bypass_before_restart = 0;
701 arm_jtag_set_instr(jtag_info, 0xf, NULL);
703 arm_jtag_set_instr(jtag_info, 0x4, NULL);
705 long long then = timeval_ms();
706 int timeout;
707 while (!(timeout = ((timeval_ms()-then) > 1000)))
709 /* read debug status register */
710 embeddedice_read_reg(dbg_stat);
711 if ((retval = jtag_execute_queue()) != ERROR_OK)
712 return retval;
713 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
714 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
715 break;
716 if (debug_level >= 3)
718 alive_sleep(100);
719 } else
721 keep_alive();
724 if (timeout)
726 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
727 return ERROR_TARGET_TIMEOUT;
730 return ERROR_OK;
734 * Restarts the target by sending a RESTART instruction and moving the JTAG
735 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
736 * waiting until they are.
738 * @param target Pointer to the target to issue commands to
739 * @return Always ERROR_OK
741 int arm7_9_execute_fast_sys_speed(struct target *target)
743 static int set = 0;
744 static uint8_t check_value[4], check_mask[4];
746 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
747 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
748 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
750 /* set RESTART instruction */
751 jtag_set_end_state(TAP_IDLE);
752 if (arm7_9->need_bypass_before_restart) {
753 arm7_9->need_bypass_before_restart = 0;
754 arm_jtag_set_instr(jtag_info, 0xf, NULL);
756 arm_jtag_set_instr(jtag_info, 0x4, NULL);
758 if (!set)
760 /* check for DBGACK and SYSCOMP set (others don't care) */
762 /* NB! These are constants that must be available until after next jtag_execute() and
763 * we evaluate the values upon first execution in lieu of setting up these constants
764 * during early setup.
765 * */
766 buf_set_u32(check_value, 0, 32, 0x9);
767 buf_set_u32(check_mask, 0, 32, 0x9);
768 set = 1;
771 /* read debug status register */
772 embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
774 return ERROR_OK;
778 * Get some data from the ARM7/9 target.
780 * @param target Pointer to the ARM7/9 target to read data from
781 * @param size The number of 32bit words to be read
782 * @param buffer Pointer to the buffer that will hold the data
783 * @return The result of receiving data from the Embedded ICE unit
785 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
787 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
788 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
789 uint32_t *data;
790 int retval = ERROR_OK;
791 uint32_t i;
793 data = malloc(size * (sizeof(uint32_t)));
795 retval = embeddedice_receive(jtag_info, data, size);
797 /* return the 32-bit ints in the 8-bit array */
798 for (i = 0; i < size; i++)
800 h_u32_to_le(buffer + (i * 4), data[i]);
803 free(data);
805 return retval;
809 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
810 * target is running and the DCC control register has the W bit high, this will
811 * execute the request on the target.
813 * @param priv Void pointer expected to be a struct target pointer
814 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
815 * from the Embedded ICE unit
817 int arm7_9_handle_target_request(void *priv)
819 int retval = ERROR_OK;
820 struct target *target = priv;
821 if (!target_was_examined(target))
822 return ERROR_OK;
823 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
824 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
825 struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
827 if (!target->dbg_msg_enabled)
828 return ERROR_OK;
830 if (target->state == TARGET_RUNNING)
832 /* read DCC control register */
833 embeddedice_read_reg(dcc_control);
834 if ((retval = jtag_execute_queue()) != ERROR_OK)
836 return retval;
839 /* check W bit */
840 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
842 uint32_t request;
844 if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
846 return retval;
848 if ((retval = target_request(target, request)) != ERROR_OK)
850 return retval;
855 return ERROR_OK;
859 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
860 * is manipulated to the right halted state based on its current state. This is
861 * what happens:
863 * <table>
864 * <tr><th > State</th><th > Action</th></tr>
865 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
866 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
867 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
868 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
869 * </table>
871 * If the target does not end up in the halted state, a warning is produced. If
872 * DBGACK is cleared, then the target is expected to either be running or
873 * running in debug.
875 * @param target Pointer to the ARM7/9 target to poll
876 * @return ERROR_OK or an error status if a command fails
878 int arm7_9_poll(struct target *target)
880 int retval;
881 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
882 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
884 /* read debug status register */
885 embeddedice_read_reg(dbg_stat);
886 if ((retval = jtag_execute_queue()) != ERROR_OK)
888 return retval;
891 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
893 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
894 if (target->state == TARGET_UNKNOWN)
896 /* Starting OpenOCD with target in debug-halt */
897 target->state = TARGET_RUNNING;
898 LOG_DEBUG("DBGACK already set during server startup.");
900 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
902 int check_pc = 0;
903 if (target->state == TARGET_RESET)
905 if (target->reset_halt)
907 enum reset_types jtag_reset_config = jtag_get_reset_config();
908 if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
910 check_pc = 1;
915 target->state = TARGET_HALTED;
917 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
918 return retval;
920 if (check_pc)
922 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
923 uint32_t t=*((uint32_t *)reg->value);
924 if (t != 0)
926 LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
930 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
932 return retval;
935 if (target->state == TARGET_DEBUG_RUNNING)
937 target->state = TARGET_HALTED;
938 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
939 return retval;
941 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
943 return retval;
946 if (target->state != TARGET_HALTED)
948 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
951 else
953 if (target->state != TARGET_DEBUG_RUNNING)
954 target->state = TARGET_RUNNING;
957 return ERROR_OK;
961 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
962 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
963 * affected) completely stop the JTAG clock while the core is held in reset
964 * (SRST). It isn't possible to program the halt condition once reset is
965 * asserted, hence a hook that allows the target to set up its reset-halt
966 * condition is setup prior to asserting reset.
968 * @param target Pointer to an ARM7/9 target to assert reset on
969 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
971 int arm7_9_assert_reset(struct target *target)
973 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
975 LOG_DEBUG("target->state: %s",
976 target_state_name(target));
978 enum reset_types jtag_reset_config = jtag_get_reset_config();
979 if (!(jtag_reset_config & RESET_HAS_SRST))
981 LOG_ERROR("Can't assert SRST");
982 return ERROR_FAIL;
985 /* At this point trst has been asserted/deasserted once. We would
986 * like to program EmbeddedICE while SRST is asserted, instead of
987 * depending on SRST to leave that module alone. However, many CPUs
988 * gate the JTAG clock while SRST is asserted; or JTAG may need
989 * clock stability guarantees (adaptive clocking might help).
991 * So we assume JTAG access during SRST is off the menu unless it's
992 * been specifically enabled.
994 bool srst_asserted = false;
996 if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
997 && (jtag_reset_config & RESET_SRST_NO_GATING))
999 jtag_add_reset(0, 1);
1000 srst_asserted = true;
1003 if (target->reset_halt)
1006 * Some targets do not support communication while SRST is asserted. We need to
1007 * set up the reset vector catch here.
1009 * If TRST is asserted, then these settings will be reset anyway, so setting them
1010 * here is harmless.
1012 if (arm7_9->has_vector_catch)
1014 /* program vector catch register to catch reset vector */
1015 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1017 /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1018 jtag_add_runtest(1, jtag_get_end_state());
1020 else
1022 /* program watchpoint unit to match on reset vector address */
1023 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1024 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1025 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1026 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1027 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1031 /* here we should issue an SRST only, but we may have to assert TRST as well */
1032 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1034 jtag_add_reset(1, 1);
1035 } else if (!srst_asserted)
1037 jtag_add_reset(0, 1);
1040 target->state = TARGET_RESET;
1041 jtag_add_sleep(50000);
1043 register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1045 if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1047 /* debug entry was already prepared in arm7_9_assert_reset() */
1048 target->debug_reason = DBG_REASON_DBGRQ;
1051 return ERROR_OK;
1055 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1056 * and the target is being reset into a halt, a warning will be triggered
1057 * because it is not possible to reset into a halted mode in this case. The
1058 * target is halted using the target's functions.
1060 * @param target Pointer to the target to have the reset deasserted
1061 * @return ERROR_OK or an error from polling or halting the target
1063 int arm7_9_deassert_reset(struct target *target)
1065 int retval = ERROR_OK;
1066 LOG_DEBUG("target->state: %s",
1067 target_state_name(target));
1069 /* deassert reset lines */
1070 jtag_add_reset(0, 0);
1072 enum reset_types jtag_reset_config = jtag_get_reset_config();
1073 if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1075 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1076 /* set up embedded ice registers again */
1077 if ((retval = target_examine_one(target)) != ERROR_OK)
1078 return retval;
1080 if ((retval = target_poll(target)) != ERROR_OK)
1082 return retval;
1085 if ((retval = target_halt(target)) != ERROR_OK)
1087 return retval;
1091 return retval;
1095 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1096 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1097 * vector catch was used, it is restored. Otherwise, the control value is
1098 * restored and the watchpoint unit is restored if it was in use.
1100 * @param target Pointer to the ARM7/9 target to have halt cleared
1101 * @return Always ERROR_OK
1103 int arm7_9_clear_halt(struct target *target)
1105 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1106 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1108 /* we used DBGRQ only if we didn't come out of reset */
1109 if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1111 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1113 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1114 embeddedice_store_reg(dbg_ctrl);
1116 else
1118 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1120 /* if we came out of reset, and vector catch is supported, we used
1121 * vector catch to enter debug state
1122 * restore the register in that case
1124 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1126 else
1128 /* restore registers if watchpoint unit 0 was in use
1130 if (arm7_9->wp0_used)
1132 if (arm7_9->debug_entry_from_reset)
1134 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1136 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1137 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1138 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1140 /* control value always has to be restored, as it was either disabled,
1141 * or enabled with possibly different bits
1143 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1147 return ERROR_OK;
1151 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1152 * and then there is a wait until the processor shows the halt. This wait can
1153 * timeout and results in an error being returned. The software reset involves
1154 * clearing the halt, updating the debug control register, changing to ARM mode,
1155 * reset of the program counter, and reset of all of the registers.
1157 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1158 * @return Error status if any of the commands fail, otherwise ERROR_OK
1160 int arm7_9_soft_reset_halt(struct target *target)
1162 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1163 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1164 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1165 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1166 int i;
1167 int retval;
1169 /* FIX!!! replace some of this code with tcl commands
1171 * halt # the halt command is synchronous
1172 * armv4_5 core_state arm
1176 if ((retval = target_halt(target)) != ERROR_OK)
1177 return retval;
1179 long long then = timeval_ms();
1180 int timeout;
1181 while (!(timeout = ((timeval_ms()-then) > 1000)))
1183 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1184 break;
1185 embeddedice_read_reg(dbg_stat);
1186 if ((retval = jtag_execute_queue()) != ERROR_OK)
1187 return retval;
1188 if (debug_level >= 3)
1190 alive_sleep(100);
1191 } else
1193 keep_alive();
1196 if (timeout)
1198 LOG_ERROR("Failed to halt CPU after 1 sec");
1199 return ERROR_TARGET_TIMEOUT;
1201 target->state = TARGET_HALTED;
1203 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1204 * ensure that DBGRQ is cleared
1206 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1207 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1208 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1209 embeddedice_store_reg(dbg_ctrl);
1211 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1213 return retval;
1216 /* if the target is in Thumb state, change to ARM state */
1217 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1219 uint32_t r0_thumb, pc_thumb;
1220 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1221 /* Entered debug from Thumb mode */
1222 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1223 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1226 /* all register content is now invalid */
1227 register_cache_invalidate(armv4_5->core_cache);
1229 /* SVC, ARM state, IRQ and FIQ disabled */
1230 buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3);
1231 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
1232 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1234 /* start fetching from 0x0 */
1235 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1236 armv4_5->core_cache->reg_list[15].dirty = 1;
1237 armv4_5->core_cache->reg_list[15].valid = 1;
1239 armv4_5->core_mode = ARMV4_5_MODE_SVC;
1240 armv4_5->core_state = ARMV4_5_STATE_ARM;
1242 /* reset registers */
1243 for (i = 0; i <= 14; i++)
1245 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1246 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1247 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1250 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1252 return retval;
1255 return ERROR_OK;
1259 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1260 * line or by programming a watchpoint to trigger on any address. It is
1261 * considered a bug to call this function while the target is in the
1262 * TARGET_RESET state.
1264 * @param target Pointer to the ARM7/9 target to be halted
1265 * @return Always ERROR_OK
1267 int arm7_9_halt(struct target *target)
1269 if (target->state == TARGET_RESET)
1271 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1272 return ERROR_OK;
1275 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1276 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1278 LOG_DEBUG("target->state: %s",
1279 target_state_name(target));
1281 if (target->state == TARGET_HALTED)
1283 LOG_DEBUG("target was already halted");
1284 return ERROR_OK;
1287 if (target->state == TARGET_UNKNOWN)
1289 LOG_WARNING("target was in unknown state when halt was requested");
1292 if (arm7_9->use_dbgrq)
1294 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1296 if (arm7_9->set_special_dbgrq) {
1297 arm7_9->set_special_dbgrq(target);
1298 } else {
1299 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1300 embeddedice_store_reg(dbg_ctrl);
1303 else
1305 /* program watchpoint unit to match on any address
1307 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1308 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1309 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1310 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1313 target->debug_reason = DBG_REASON_DBGRQ;
1315 return ERROR_OK;
1319 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1320 * ARM. The JTAG queue is then executed and the reason for debug entry is
1321 * examined. Once done, the target is verified to be halted and the processor
1322 * is forced into ARM mode. The core registers are saved for the current core
1323 * mode and the program counter (register 15) is updated as needed. The core
1324 * registers and CPSR and SPSR are saved for restoration later.
1326 * @param target Pointer to target that is entering debug mode
1327 * @return Error code if anything fails, otherwise ERROR_OK
1329 static int arm7_9_debug_entry(struct target *target)
1331 int i;
1332 uint32_t context[16];
1333 uint32_t* context_p[16];
1334 uint32_t r0_thumb, pc_thumb;
1335 uint32_t cpsr;
1336 int retval;
1337 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1338 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1339 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1340 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1342 #ifdef _DEBUG_ARM7_9_
1343 LOG_DEBUG("-");
1344 #endif
1346 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1347 * ensure that DBGRQ is cleared
1349 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1350 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1351 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1352 embeddedice_store_reg(dbg_ctrl);
1354 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1356 return retval;
1359 if ((retval = jtag_execute_queue()) != ERROR_OK)
1361 return retval;
1364 if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1365 return retval;
1368 if (target->state != TARGET_HALTED)
1370 LOG_WARNING("target not halted");
1371 return ERROR_TARGET_NOT_HALTED;
1374 /* if the target is in Thumb state, change to ARM state */
1375 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1377 LOG_DEBUG("target entered debug from Thumb state");
1378 /* Entered debug from Thumb mode */
1379 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1380 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1381 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32 ", pc_thumb: 0x%8.8" PRIx32 "", r0_thumb, pc_thumb);
1383 else
1385 LOG_DEBUG("target entered debug from ARM state");
1386 /* Entered debug from ARM mode */
1387 armv4_5->core_state = ARMV4_5_STATE_ARM;
1390 for (i = 0; i < 16; i++)
1391 context_p[i] = &context[i];
1392 /* save core registers (r0 - r15 of current core mode) */
1393 arm7_9->read_core_regs(target, 0xffff, context_p);
1395 arm7_9->read_xpsr(target, &cpsr, 0);
1397 if ((retval = jtag_execute_queue()) != ERROR_OK)
1398 return retval;
1400 /* if the core has been executing in Thumb state, set the T bit */
1401 if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1402 cpsr |= 0x20;
1404 buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
1405 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1406 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1408 armv4_5->core_mode = cpsr & 0x1f;
1410 if (!is_arm_mode(armv4_5->core_mode))
1412 target->state = TARGET_UNKNOWN;
1413 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1414 return ERROR_TARGET_FAILURE;
1417 LOG_DEBUG("target entered debug state in %s mode",
1418 arm_mode_name(armv4_5->core_mode));
1420 if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1422 LOG_DEBUG("thumb state, applying fixups");
1423 context[0] = r0_thumb;
1424 context[15] = pc_thumb;
1425 } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1427 /* adjust value stored by STM */
1428 context[15] -= 3 * 4;
1431 if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1432 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1433 else
1434 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1436 for (i = 0; i <= 15; i++)
1438 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1439 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1440 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1441 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1444 LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1446 /* exceptions other than USR & SYS have a saved program status register */
1447 if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1449 uint32_t spsr;
1450 arm7_9->read_xpsr(target, &spsr, 1);
1451 if ((retval = jtag_execute_queue()) != ERROR_OK)
1453 return retval;
1455 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1456 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1457 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1460 /* r0 and r15 (pc) have to be restored later */
1461 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1462 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1464 if ((retval = jtag_execute_queue()) != ERROR_OK)
1465 return retval;
1467 if (arm7_9->post_debug_entry)
1468 arm7_9->post_debug_entry(target);
1470 return ERROR_OK;
1474 * Validate the full context for an ARM7/9 target in all processor modes. If
1475 * there are any invalid registers for the target, they will all be read. This
1476 * includes the PSR.
1478 * @param target Pointer to the ARM7/9 target to capture the full context from
1479 * @return Error if the target is not halted, has an invalid core mode, or if
1480 * the JTAG queue fails to execute
1482 int arm7_9_full_context(struct target *target)
1484 int i;
1485 int retval;
1486 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1487 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1489 LOG_DEBUG("-");
1491 if (target->state != TARGET_HALTED)
1493 LOG_WARNING("target not halted");
1494 return ERROR_TARGET_NOT_HALTED;
1497 if (!is_arm_mode(armv4_5->core_mode))
1498 return ERROR_FAIL;
1500 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1501 * SYS shares registers with User, so we don't touch SYS
1503 for (i = 0; i < 6; i++)
1505 uint32_t mask = 0;
1506 uint32_t* reg_p[16];
1507 int j;
1508 int valid = 1;
1510 /* check if there are invalid registers in the current mode
1512 for (j = 0; j <= 16; j++)
1514 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1515 valid = 0;
1518 if (!valid)
1520 uint32_t tmp_cpsr;
1522 /* change processor mode (and mask T bit) */
1523 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1524 tmp_cpsr |= armv4_5_number_to_mode(i);
1525 tmp_cpsr &= ~0x20;
1526 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1528 for (j = 0; j < 15; j++)
1530 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1532 reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1533 mask |= 1 << j;
1534 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1535 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1539 /* if only the PSR is invalid, mask is all zeroes */
1540 if (mask)
1541 arm7_9->read_core_regs(target, mask, reg_p);
1543 /* check if the PSR has to be read */
1544 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1546 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1547 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1548 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1553 /* restore processor mode (mask T bit) */
1554 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
1556 if ((retval = jtag_execute_queue()) != ERROR_OK)
1558 return retval;
1560 return ERROR_OK;
1564 * Restore the processor context on an ARM7/9 target. The full processor
1565 * context is analyzed to see if any of the registers are dirty on this end, but
1566 * have a valid new value. If this is the case, the processor is changed to the
1567 * appropriate mode and the new register values are written out to the
1568 * processor. If there happens to be a dirty register with an invalid value, an
1569 * error will be logged.
1571 * @param target Pointer to the ARM7/9 target to have its context restored
1572 * @return Error status if the target is not halted or the core mode in the
1573 * armv4_5 struct is invalid.
1575 int arm7_9_restore_context(struct target *target)
1577 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1578 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1579 struct reg *reg;
1580 struct arm_reg *reg_arch_info;
1581 enum armv4_5_mode current_mode = armv4_5->core_mode;
1582 int i, j;
1583 int dirty;
1584 int mode_change;
1586 LOG_DEBUG("-");
1588 if (target->state != TARGET_HALTED)
1590 LOG_WARNING("target not halted");
1591 return ERROR_TARGET_NOT_HALTED;
1594 if (arm7_9->pre_restore_context)
1595 arm7_9->pre_restore_context(target);
1597 if (!is_arm_mode(armv4_5->core_mode))
1598 return ERROR_FAIL;
1600 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1601 * SYS shares registers with User, so we don't touch SYS
1603 for (i = 0; i < 6; i++)
1605 LOG_DEBUG("examining %s mode",
1606 arm_mode_name(armv4_5->core_mode));
1607 dirty = 0;
1608 mode_change = 0;
1609 /* check if there are dirty registers in the current mode
1611 for (j = 0; j <= 16; j++)
1613 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1614 reg_arch_info = reg->arch_info;
1615 if (reg->dirty == 1)
1617 if (reg->valid == 1)
1619 dirty = 1;
1620 LOG_DEBUG("examining dirty reg: %s", reg->name);
1621 if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1622 && (reg_arch_info->mode != current_mode)
1623 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1624 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1626 mode_change = 1;
1627 LOG_DEBUG("require mode change");
1630 else
1632 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1637 if (dirty)
1639 uint32_t mask = 0x0;
1640 int num_regs = 0;
1641 uint32_t regs[16];
1643 if (mode_change)
1645 uint32_t tmp_cpsr;
1647 /* change processor mode (mask T bit) */
1648 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1649 tmp_cpsr |= armv4_5_number_to_mode(i);
1650 tmp_cpsr &= ~0x20;
1651 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1652 current_mode = armv4_5_number_to_mode(i);
1655 for (j = 0; j <= 14; j++)
1657 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1658 reg_arch_info = reg->arch_info;
1661 if (reg->dirty == 1)
1663 regs[j] = buf_get_u32(reg->value, 0, 32);
1664 mask |= 1 << j;
1665 num_regs++;
1666 reg->dirty = 0;
1667 reg->valid = 1;
1668 LOG_DEBUG("writing register %i mode %s "
1669 "with value 0x%8.8" PRIx32, j,
1670 arm_mode_name(armv4_5->core_mode),
1671 regs[j]);
1675 if (mask)
1677 arm7_9->write_core_regs(target, mask, regs);
1680 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1681 reg_arch_info = reg->arch_info;
1682 if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1684 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1685 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1690 if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode))
1692 /* restore processor mode (mask T bit) */
1693 uint32_t tmp_cpsr;
1695 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1696 tmp_cpsr |= armv4_5_number_to_mode(i);
1697 tmp_cpsr &= ~0x20;
1698 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1699 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1701 else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1)
1703 /* CPSR has been changed, full restore necessary (mask T bit) */
1704 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32));
1705 arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0);
1706 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1707 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1710 /* restore PC */
1711 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1712 arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1713 armv4_5->core_cache->reg_list[15].dirty = 0;
1715 if (arm7_9->post_restore_context)
1716 arm7_9->post_restore_context(target);
1718 return ERROR_OK;
1722 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1723 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1724 * restart.
1726 * @param target Pointer to the ARM7/9 target to be restarted
1727 * @return Result of executing the JTAG queue
1729 int arm7_9_restart_core(struct target *target)
1731 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1732 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1734 /* set RESTART instruction */
1735 jtag_set_end_state(TAP_IDLE);
1736 if (arm7_9->need_bypass_before_restart) {
1737 arm7_9->need_bypass_before_restart = 0;
1738 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1740 arm_jtag_set_instr(jtag_info, 0x4, NULL);
1742 jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1743 return jtag_execute_queue();
1747 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1748 * iterated through and are set on the target if they aren't already set.
1750 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1752 void arm7_9_enable_watchpoints(struct target *target)
1754 struct watchpoint *watchpoint = target->watchpoints;
1756 while (watchpoint)
1758 if (watchpoint->set == 0)
1759 arm7_9_set_watchpoint(target, watchpoint);
1760 watchpoint = watchpoint->next;
1765 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1766 * iterated through and are set on the target.
1768 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1770 void arm7_9_enable_breakpoints(struct target *target)
1772 struct breakpoint *breakpoint = target->breakpoints;
1774 /* set any pending breakpoints */
1775 while (breakpoint)
1777 arm7_9_set_breakpoint(target, breakpoint);
1778 breakpoint = breakpoint->next;
1782 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1784 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1785 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1786 struct breakpoint *breakpoint = target->breakpoints;
1787 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1788 int err, retval = ERROR_OK;
1790 LOG_DEBUG("-");
1792 if (target->state != TARGET_HALTED)
1794 LOG_WARNING("target not halted");
1795 return ERROR_TARGET_NOT_HALTED;
1798 if (!debug_execution)
1800 target_free_all_working_areas(target);
1803 /* current = 1: continue on current pc, otherwise continue at <address> */
1804 if (!current)
1805 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1807 uint32_t current_pc;
1808 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1810 /* the front-end may request us not to handle breakpoints */
1811 if (handle_breakpoints)
1813 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1815 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1816 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1818 return retval;
1821 /* calculate PC of next instruction */
1822 uint32_t next_pc;
1823 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1825 uint32_t current_opcode;
1826 target_read_u32(target, current_pc, &current_opcode);
1827 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1828 return retval;
1831 LOG_DEBUG("enable single-step");
1832 arm7_9->enable_single_step(target, next_pc);
1834 target->debug_reason = DBG_REASON_SINGLESTEP;
1836 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1838 return retval;
1841 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1842 arm7_9->branch_resume(target);
1843 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1845 arm7_9->branch_resume_thumb(target);
1847 else
1849 LOG_ERROR("unhandled core state");
1850 return ERROR_FAIL;
1853 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1854 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1855 err = arm7_9_execute_sys_speed(target);
1857 LOG_DEBUG("disable single-step");
1858 arm7_9->disable_single_step(target);
1860 if (err != ERROR_OK)
1862 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1864 return retval;
1866 target->state = TARGET_UNKNOWN;
1867 return err;
1870 arm7_9_debug_entry(target);
1871 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1873 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1874 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1876 return retval;
1881 /* enable any pending breakpoints and watchpoints */
1882 arm7_9_enable_breakpoints(target);
1883 arm7_9_enable_watchpoints(target);
1885 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1887 return retval;
1890 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1892 arm7_9->branch_resume(target);
1894 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1896 arm7_9->branch_resume_thumb(target);
1898 else
1900 LOG_ERROR("unhandled core state");
1901 return ERROR_FAIL;
1904 /* deassert DBGACK and INTDIS */
1905 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1906 /* INTDIS only when we really resume, not during debug execution */
1907 if (!debug_execution)
1908 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1909 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1911 if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1913 return retval;
1916 target->debug_reason = DBG_REASON_NOTHALTED;
1918 if (!debug_execution)
1920 /* registers are now invalid */
1921 register_cache_invalidate(armv4_5->core_cache);
1922 target->state = TARGET_RUNNING;
1923 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1925 return retval;
1928 else
1930 target->state = TARGET_DEBUG_RUNNING;
1931 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1933 return retval;
1937 LOG_DEBUG("target resumed");
1939 return ERROR_OK;
1942 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1944 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1945 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1946 uint32_t current_pc;
1947 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1949 if (next_pc != current_pc)
1951 /* setup an inverse breakpoint on the current PC
1952 * - comparator 1 matches the current address
1953 * - rangeout from comparator 1 is connected to comparator 0 rangein
1954 * - comparator 0 matches any address, as long as rangein is low */
1955 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1956 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1957 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1958 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1959 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1960 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1961 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1962 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1963 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1965 else
1967 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1968 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1969 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1970 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1971 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1972 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1973 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1974 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1975 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1979 void arm7_9_disable_eice_step(struct target *target)
1981 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1983 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1984 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1985 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1986 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1987 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1988 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1989 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1990 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1991 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1994 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
1996 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1997 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1998 struct breakpoint *breakpoint = NULL;
1999 int err, retval;
2001 if (target->state != TARGET_HALTED)
2003 LOG_WARNING("target not halted");
2004 return ERROR_TARGET_NOT_HALTED;
2007 /* current = 1: continue on current pc, otherwise continue at <address> */
2008 if (!current)
2009 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2011 uint32_t current_pc;
2012 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2014 /* the front-end may request us not to handle breakpoints */
2015 if (handle_breakpoints)
2016 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2017 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2019 return retval;
2022 target->debug_reason = DBG_REASON_SINGLESTEP;
2024 /* calculate PC of next instruction */
2025 uint32_t next_pc;
2026 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2028 uint32_t current_opcode;
2029 target_read_u32(target, current_pc, &current_opcode);
2030 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2031 return retval;
2034 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2036 return retval;
2039 arm7_9->enable_single_step(target, next_pc);
2041 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2043 arm7_9->branch_resume(target);
2045 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2047 arm7_9->branch_resume_thumb(target);
2049 else
2051 LOG_ERROR("unhandled core state");
2052 return ERROR_FAIL;
2055 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2057 return retval;
2060 err = arm7_9_execute_sys_speed(target);
2061 arm7_9->disable_single_step(target);
2063 /* registers are now invalid */
2064 register_cache_invalidate(armv4_5->core_cache);
2066 if (err != ERROR_OK)
2068 target->state = TARGET_UNKNOWN;
2069 } else {
2070 arm7_9_debug_entry(target);
2071 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2073 return retval;
2075 LOG_DEBUG("target stepped");
2078 if (breakpoint)
2079 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2081 return retval;
2084 return err;
2087 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2088 int num, enum armv4_5_mode mode)
2090 uint32_t* reg_p[16];
2091 uint32_t value;
2092 int retval;
2093 struct arm_reg *areg = r->arch_info;
2094 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2095 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2097 if (!is_arm_mode(armv4_5->core_mode))
2098 return ERROR_FAIL;
2099 if ((num < 0) || (num > 16))
2100 return ERROR_INVALID_ARGUMENTS;
2102 if ((mode != ARMV4_5_MODE_ANY)
2103 && (mode != armv4_5->core_mode)
2104 && (areg->mode != ARMV4_5_MODE_ANY))
2106 uint32_t tmp_cpsr;
2108 /* change processor mode (mask T bit) */
2109 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2110 tmp_cpsr |= mode;
2111 tmp_cpsr &= ~0x20;
2112 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2115 if ((num >= 0) && (num <= 15))
2117 /* read a normal core register */
2118 reg_p[num] = &value;
2120 arm7_9->read_core_regs(target, 1 << num, reg_p);
2122 else
2124 /* read a program status register
2125 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2127 arm7_9->read_xpsr(target, &value, areg->mode != ARMV4_5_MODE_ANY);
2130 if ((retval = jtag_execute_queue()) != ERROR_OK)
2132 return retval;
2135 r->valid = 1;
2136 r->dirty = 0;
2137 buf_set_u32(r->value, 0, 32, value);
2139 if ((mode != ARMV4_5_MODE_ANY)
2140 && (mode != armv4_5->core_mode)
2141 && (areg->mode != ARMV4_5_MODE_ANY)) {
2142 /* restore processor mode (mask T bit) */
2143 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2146 return ERROR_OK;
2149 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2150 int num, enum armv4_5_mode mode, uint32_t value)
2152 uint32_t reg[16];
2153 struct arm_reg *areg = r->arch_info;
2154 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2155 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2157 if (!is_arm_mode(armv4_5->core_mode))
2158 return ERROR_FAIL;
2159 if ((num < 0) || (num > 16))
2160 return ERROR_INVALID_ARGUMENTS;
2162 if ((mode != ARMV4_5_MODE_ANY)
2163 && (mode != armv4_5->core_mode)
2164 && (areg->mode != ARMV4_5_MODE_ANY)) {
2165 uint32_t tmp_cpsr;
2167 /* change processor mode (mask T bit) */
2168 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2169 tmp_cpsr |= mode;
2170 tmp_cpsr &= ~0x20;
2171 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2174 if ((num >= 0) && (num <= 15))
2176 /* write a normal core register */
2177 reg[num] = value;
2179 arm7_9->write_core_regs(target, 1 << num, reg);
2181 else
2183 /* write a program status register
2184 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2186 int spsr = (areg->mode != ARMV4_5_MODE_ANY);
2188 /* if we're writing the CPSR, mask the T bit */
2189 if (!spsr)
2190 value &= ~0x20;
2192 arm7_9->write_xpsr(target, value, spsr);
2195 r->valid = 1;
2196 r->dirty = 0;
2198 if ((mode != ARMV4_5_MODE_ANY)
2199 && (mode != armv4_5->core_mode)
2200 && (areg->mode != ARMV4_5_MODE_ANY)) {
2201 /* restore processor mode (mask T bit) */
2202 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2205 return jtag_execute_queue();
2208 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2210 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2211 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2212 uint32_t reg[16];
2213 uint32_t num_accesses = 0;
2214 int thisrun_accesses;
2215 int i;
2216 uint32_t cpsr;
2217 int retval;
2218 int last_reg = 0;
2220 LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2222 if (target->state != TARGET_HALTED)
2224 LOG_WARNING("target not halted");
2225 return ERROR_TARGET_NOT_HALTED;
2228 /* sanitize arguments */
2229 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2230 return ERROR_INVALID_ARGUMENTS;
2232 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2233 return ERROR_TARGET_UNALIGNED_ACCESS;
2235 /* load the base register with the address of the first word */
2236 reg[0] = address;
2237 arm7_9->write_core_regs(target, 0x1, reg);
2239 int j = 0;
2241 switch (size)
2243 case 4:
2244 while (num_accesses < count)
2246 uint32_t reg_list;
2247 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2248 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2250 if (last_reg <= thisrun_accesses)
2251 last_reg = thisrun_accesses;
2253 arm7_9->load_word_regs(target, reg_list);
2255 /* fast memory reads are only safe when the target is running
2256 * from a sufficiently high clock (32 kHz is usually too slow)
2258 if (arm7_9->fast_memory_access)
2259 retval = arm7_9_execute_fast_sys_speed(target);
2260 else
2261 retval = arm7_9_execute_sys_speed(target);
2262 if (retval != ERROR_OK)
2263 return retval;
2265 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2267 /* advance buffer, count number of accesses */
2268 buffer += thisrun_accesses * 4;
2269 num_accesses += thisrun_accesses;
2271 if ((j++%1024) == 0)
2273 keep_alive();
2276 break;
2277 case 2:
2278 while (num_accesses < count)
2280 uint32_t reg_list;
2281 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2282 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2284 for (i = 1; i <= thisrun_accesses; i++)
2286 if (i > last_reg)
2287 last_reg = i;
2288 arm7_9->load_hword_reg(target, i);
2289 /* fast memory reads are only safe when the target is running
2290 * from a sufficiently high clock (32 kHz is usually too slow)
2292 if (arm7_9->fast_memory_access)
2293 retval = arm7_9_execute_fast_sys_speed(target);
2294 else
2295 retval = arm7_9_execute_sys_speed(target);
2296 if (retval != ERROR_OK)
2298 return retval;
2303 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2305 /* advance buffer, count number of accesses */
2306 buffer += thisrun_accesses * 2;
2307 num_accesses += thisrun_accesses;
2309 if ((j++%1024) == 0)
2311 keep_alive();
2314 break;
2315 case 1:
2316 while (num_accesses < count)
2318 uint32_t reg_list;
2319 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2320 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2322 for (i = 1; i <= thisrun_accesses; i++)
2324 if (i > last_reg)
2325 last_reg = i;
2326 arm7_9->load_byte_reg(target, i);
2327 /* fast memory reads are only safe when the target is running
2328 * from a sufficiently high clock (32 kHz is usually too slow)
2330 if (arm7_9->fast_memory_access)
2331 retval = arm7_9_execute_fast_sys_speed(target);
2332 else
2333 retval = arm7_9_execute_sys_speed(target);
2334 if (retval != ERROR_OK)
2336 return retval;
2340 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2342 /* advance buffer, count number of accesses */
2343 buffer += thisrun_accesses * 1;
2344 num_accesses += thisrun_accesses;
2346 if ((j++%1024) == 0)
2348 keep_alive();
2351 break;
2352 default:
2353 LOG_ERROR("BUG: we shouldn't get here");
2354 exit(-1);
2355 break;
2358 if (!is_arm_mode(armv4_5->core_mode))
2359 return ERROR_FAIL;
2361 for (i = 0; i <= last_reg; i++)
2362 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2364 arm7_9->read_xpsr(target, &cpsr, 0);
2365 if ((retval = jtag_execute_queue()) != ERROR_OK)
2367 LOG_ERROR("JTAG error while reading cpsr");
2368 return ERROR_TARGET_DATA_ABORT;
2371 if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2373 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2375 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2377 return ERROR_TARGET_DATA_ABORT;
2380 return ERROR_OK;
2383 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2385 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2386 struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2387 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2389 uint32_t reg[16];
2390 uint32_t num_accesses = 0;
2391 int thisrun_accesses;
2392 int i;
2393 uint32_t cpsr;
2394 int retval;
2395 int last_reg = 0;
2397 #ifdef _DEBUG_ARM7_9_
2398 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2399 #endif
2401 if (target->state != TARGET_HALTED)
2403 LOG_WARNING("target not halted");
2404 return ERROR_TARGET_NOT_HALTED;
2407 /* sanitize arguments */
2408 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2409 return ERROR_INVALID_ARGUMENTS;
2411 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2412 return ERROR_TARGET_UNALIGNED_ACCESS;
2414 /* load the base register with the address of the first word */
2415 reg[0] = address;
2416 arm7_9->write_core_regs(target, 0x1, reg);
2418 /* Clear DBGACK, to make sure memory fetches work as expected */
2419 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2420 embeddedice_store_reg(dbg_ctrl);
2422 switch (size)
2424 case 4:
2425 while (num_accesses < count)
2427 uint32_t reg_list;
2428 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2429 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2431 for (i = 1; i <= thisrun_accesses; i++)
2433 if (i > last_reg)
2434 last_reg = i;
2435 reg[i] = target_buffer_get_u32(target, buffer);
2436 buffer += 4;
2439 arm7_9->write_core_regs(target, reg_list, reg);
2441 arm7_9->store_word_regs(target, reg_list);
2443 /* fast memory writes are only safe when the target is running
2444 * from a sufficiently high clock (32 kHz is usually too slow)
2446 if (arm7_9->fast_memory_access)
2447 retval = arm7_9_execute_fast_sys_speed(target);
2448 else
2449 retval = arm7_9_execute_sys_speed(target);
2450 if (retval != ERROR_OK)
2452 return retval;
2455 num_accesses += thisrun_accesses;
2457 break;
2458 case 2:
2459 while (num_accesses < count)
2461 uint32_t reg_list;
2462 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2463 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2465 for (i = 1; i <= thisrun_accesses; i++)
2467 if (i > last_reg)
2468 last_reg = i;
2469 reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2470 buffer += 2;
2473 arm7_9->write_core_regs(target, reg_list, reg);
2475 for (i = 1; i <= thisrun_accesses; i++)
2477 arm7_9->store_hword_reg(target, i);
2479 /* fast memory writes are only safe when the target is running
2480 * from a sufficiently high clock (32 kHz is usually too slow)
2482 if (arm7_9->fast_memory_access)
2483 retval = arm7_9_execute_fast_sys_speed(target);
2484 else
2485 retval = arm7_9_execute_sys_speed(target);
2486 if (retval != ERROR_OK)
2488 return retval;
2492 num_accesses += thisrun_accesses;
2494 break;
2495 case 1:
2496 while (num_accesses < count)
2498 uint32_t reg_list;
2499 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2500 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2502 for (i = 1; i <= thisrun_accesses; i++)
2504 if (i > last_reg)
2505 last_reg = i;
2506 reg[i] = *buffer++ & 0xff;
2509 arm7_9->write_core_regs(target, reg_list, reg);
2511 for (i = 1; i <= thisrun_accesses; i++)
2513 arm7_9->store_byte_reg(target, i);
2514 /* fast memory writes are only safe when the target is running
2515 * from a sufficiently high clock (32 kHz is usually too slow)
2517 if (arm7_9->fast_memory_access)
2518 retval = arm7_9_execute_fast_sys_speed(target);
2519 else
2520 retval = arm7_9_execute_sys_speed(target);
2521 if (retval != ERROR_OK)
2523 return retval;
2528 num_accesses += thisrun_accesses;
2530 break;
2531 default:
2532 LOG_ERROR("BUG: we shouldn't get here");
2533 exit(-1);
2534 break;
2537 /* Re-Set DBGACK */
2538 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2539 embeddedice_store_reg(dbg_ctrl);
2541 if (!is_arm_mode(armv4_5->core_mode))
2542 return ERROR_FAIL;
2544 for (i = 0; i <= last_reg; i++)
2545 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2547 arm7_9->read_xpsr(target, &cpsr, 0);
2548 if ((retval = jtag_execute_queue()) != ERROR_OK)
2550 LOG_ERROR("JTAG error while reading cpsr");
2551 return ERROR_TARGET_DATA_ABORT;
2554 if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2556 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2558 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2560 return ERROR_TARGET_DATA_ABORT;
2563 return ERROR_OK;
2566 static int dcc_count;
2567 static uint8_t *dcc_buffer;
2569 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2571 int retval = ERROR_OK;
2572 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2574 if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2575 return retval;
2577 int little = target->endianness == TARGET_LITTLE_ENDIAN;
2578 int count = dcc_count;
2579 uint8_t *buffer = dcc_buffer;
2580 if (count > 2)
2582 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2583 * core function repeated. */
2584 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2585 buffer += 4;
2587 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2588 uint8_t reg_addr = ice_reg->addr & 0x1f;
2589 struct jtag_tap *tap;
2590 tap = ice_reg->jtag_info->tap;
2592 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2593 buffer += (count-2)*4;
2595 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2596 } else
2598 int i;
2599 for (i = 0; i < count; i++)
2601 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2602 buffer += 4;
2606 if ((retval = target_halt(target))!= ERROR_OK)
2608 return retval;
2610 return target_wait_state(target, TARGET_HALTED, 500);
2613 static const uint32_t dcc_code[] =
2615 /* r0 == input, points to memory buffer
2616 * r1 == scratch
2619 /* spin until DCC control (c0) reports data arrived */
2620 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2621 0xe3110001, /* tst r1, #1 */
2622 0x0afffffc, /* bne w */
2624 /* read word from DCC (c1), write to memory */
2625 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2626 0xe4801004, /* str r1, [r0], #4 */
2628 /* repeat */
2629 0xeafffff9 /* b w */
2632 int armv4_5_run_algorithm_inner(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2634 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2636 int retval;
2637 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2638 int i;
2640 if (!arm7_9->dcc_downloads)
2641 return target_write_memory(target, address, 4, count, buffer);
2643 /* regrab previously allocated working_area, or allocate a new one */
2644 if (!arm7_9->dcc_working_area)
2646 uint8_t dcc_code_buf[6 * 4];
2648 /* make sure we have a working area */
2649 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2651 LOG_INFO("no working area available, falling back to memory writes");
2652 return target_write_memory(target, address, 4, count, buffer);
2655 /* copy target instructions to target endianness */
2656 for (i = 0; i < 6; i++)
2658 target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2661 /* write DCC code to working area */
2662 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2664 return retval;
2668 struct armv4_5_algorithm armv4_5_info;
2669 struct reg_param reg_params[1];
2671 armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2672 armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2673 armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2675 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2677 buf_set_u32(reg_params[0].value, 0, 32, address);
2679 dcc_count = count;
2680 dcc_buffer = buffer;
2681 retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2682 arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2684 if (retval == ERROR_OK)
2686 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2687 if (endaddress != (address + count*4))
2689 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2690 retval = ERROR_FAIL;
2694 destroy_reg_param(&reg_params[0]);
2696 return retval;
2700 * Perform per-target setup that requires JTAG access.
2702 int arm7_9_examine(struct target *target)
2704 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2705 int retval;
2707 if (!target_was_examined(target)) {
2708 struct reg_cache *t, **cache_p;
2710 t = embeddedice_build_reg_cache(target, arm7_9);
2711 if (t == NULL)
2712 return ERROR_FAIL;
2714 cache_p = register_get_last_cache_p(&target->reg_cache);
2715 (*cache_p) = t;
2716 arm7_9->eice_cache = (*cache_p);
2718 if (arm7_9->armv4_5_common.etm)
2719 (*cache_p)->next = etm_build_reg_cache(target,
2720 &arm7_9->jtag_info,
2721 arm7_9->armv4_5_common.etm);
2723 target_set_examined(target);
2726 retval = embeddedice_setup(target);
2727 if (retval == ERROR_OK)
2728 retval = arm7_9_setup(target);
2729 if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2730 retval = etm_setup(target);
2731 return retval;
2734 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2736 struct target *target = get_current_target(CMD_CTX);
2737 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2739 if (!is_arm7_9(arm7_9))
2741 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2742 return ERROR_TARGET_INVALID;
2745 if (CMD_ARGC > 0)
2746 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2748 command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2750 return ERROR_OK;
2753 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2755 struct target *target = get_current_target(CMD_CTX);
2756 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2758 if (!is_arm7_9(arm7_9))
2760 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2761 return ERROR_TARGET_INVALID;
2764 if (CMD_ARGC > 0)
2765 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2767 command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2769 return ERROR_OK;
2772 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2774 struct target *target = get_current_target(CMD_CTX);
2775 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2777 if (!is_arm7_9(arm7_9))
2779 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2780 return ERROR_TARGET_INVALID;
2783 if (CMD_ARGC > 0)
2784 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2786 command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2788 return ERROR_OK;
2791 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2793 int retval = ERROR_OK;
2794 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2796 arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2798 if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2799 return retval;
2801 /* caller must have allocated via calloc(), so everything's zeroed */
2803 arm7_9->wp_available_max = 2;
2805 arm7_9->fast_memory_access = false;
2806 arm7_9->dcc_downloads = false;
2808 armv4_5->arch_info = arm7_9;
2809 armv4_5->read_core_reg = arm7_9_read_core_reg;
2810 armv4_5->write_core_reg = arm7_9_write_core_reg;
2811 armv4_5->full_context = arm7_9_full_context;
2813 if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
2814 return retval;
2816 return target_register_timer_callback(arm7_9_handle_target_request,
2817 1, 1, target);
2820 int arm7_9_register_commands(struct command_context *cmd_ctx)
2822 struct command *arm7_9_cmd;
2824 arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9",
2825 NULL, COMMAND_ANY, "arm7/9 specific commands");
2827 register_command(cmd_ctx, arm7_9_cmd, "dbgrq",
2828 handle_arm7_9_dbgrq_command, COMMAND_ANY,
2829 "use EmbeddedICE dbgrq instead of breakpoint "
2830 "for target halt requests <enable | disable>");
2831 register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access",
2832 handle_arm7_9_fast_memory_access_command, COMMAND_ANY,
2833 "use fast memory accesses instead of slower "
2834 "but potentially safer accesses <enable | disable>");
2835 register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads",
2836 handle_arm7_9_dcc_downloads_command, COMMAND_ANY,
2837 "use DCC downloads for larger memory writes <enable | disable>");
2839 armv4_5_register_commands(cmd_ctx);
2841 etm_register_commands(cmd_ctx);
2843 return ERROR_OK;