1 /***************************************************************************
2 * Copyright (C) 2011 by Mathias Kuester *
5 * Copyright (C) 2011 sleep(5) ltd *
6 * tomas@sleepfive.com *
8 * Copyright (C) 2012 by Christopher D. Kilgour *
9 * techie at whiterocker.com *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
32 #include "helper/binarybuffer.h"
35 * Implementation Notes
37 * The persistent memories in the Kinetis chip families K10 through
38 * K70 are all manipulated with the Flash Memory Module. Some
39 * variants call this module the FTFE, others call it the FTFL. To
40 * indicate that both are considered here, we use FTFX.
42 * Within the module, according to the chip variant, the persistent
43 * memory is divided into what Freescale terms Program Flash, FlexNVM,
44 * and FlexRAM. All chip variants have Program Flash. Some chip
45 * variants also have FlexNVM and FlexRAM, which always appear
48 * A given Kinetis chip may have 2 or 4 blocks of flash. Here we map
49 * each block to a separate bank. Each block size varies by chip and
50 * may be determined by the read-only SIM_FCFG1 register. The sector
51 * size within each bank/block varies by the chip granularity as
54 * Kinetis offers four different of flash granularities applicable
55 * across the chip families. The granularity is apparently reflected
56 * by at least the reference manual suffix. For example, for chip
57 * MK60FN1M0VLQ12, reference manual K60P144M150SF3RM ends in "SF3RM",
58 * where the "3" indicates there are four flash blocks with 4kiB
59 * sectors. All possible granularities are indicated below.
61 * The first half of the flash (1 or 2 blocks, depending on the
62 * granularity) is always Program Flash and always starts at address
63 * 0x00000000. The "PFLSH" flag, bit 23 of the read-only SIM_FCFG2
64 * register, determines whether the second half of the flash is also
65 * Program Flash or FlexNVM+FlexRAM. When PFLSH is set, the second
66 * half of flash is Program Flash and is contiguous in the memory map
67 * from the first half. When PFLSH is clear, the second half of flash
68 * is FlexNVM and always starts at address 0x10000000. FlexRAM, which
69 * is also present when PFLSH is clear, always starts at address
72 * The Flash Memory Module provides a register set where flash
73 * commands are loaded to perform flash operations like erase and
74 * program. Different commands are available depending on whether
75 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
76 * the commands used are quite consistent between flash blocks, the
77 * parameters they accept differ according to the flash granularity.
78 * Some Kinetis chips have different granularity between Program Flash
79 * and FlexNVM/FlexRAM, so flash command arguments may differ between
80 * blocks in the same chip.
82 * Although not documented as such by Freescale, it appears that bits
83 * 8:7 of the read-only SIM_SDID register reflect the granularity
84 * settings 0..3, so sector sizes and block counts are applicable
85 * according to the following table.
88 unsigned pflash_sector_size_bytes
;
89 unsigned nvm_sector_size_bytes
;
91 } kinetis_flash_params
[4] = {
98 struct kinetis_flash_bank
{
100 unsigned bank_ordinal
;
101 uint32_t sector_size
;
102 uint32_t protection_size
;
116 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command
)
118 struct kinetis_flash_bank
*bank_info
;
121 return ERROR_COMMAND_SYNTAX_ERROR
;
123 LOG_INFO("add flash_bank kinetis %s", bank
->name
);
125 bank_info
= malloc(sizeof(struct kinetis_flash_bank
));
127 memset(bank_info
, 0, sizeof(struct kinetis_flash_bank
));
129 bank
->driver_priv
= bank_info
;
134 static int kinetis_protect(struct flash_bank
*bank
, int set
, int first
,
137 LOG_WARNING("kinetis_protect not supported yet");
140 if (bank
->target
->state
!= TARGET_HALTED
) {
141 LOG_ERROR("Target not halted");
142 return ERROR_TARGET_NOT_HALTED
;
145 return ERROR_FLASH_BANK_INVALID
;
148 static int kinetis_protect_check(struct flash_bank
*bank
)
150 struct kinetis_flash_bank
*kinfo
= bank
->driver_priv
;
152 if (bank
->target
->state
!= TARGET_HALTED
) {
153 LOG_ERROR("Target not halted");
154 return ERROR_TARGET_NOT_HALTED
;
157 if (kinfo
->flash_class
== FC_PFLASH
) {
160 uint32_t fprot
, psec
;
163 /* read protection register FTFx_FPROT */
164 result
= target_read_memory(bank
->target
, 0x40020010, 1, 4, buffer
);
166 if (result
!= ERROR_OK
)
169 fprot
= target_buffer_get_u32(bank
->target
, buffer
);
172 * Every bit protects 1/32 of the full flash (not necessarily
173 * just this bank), but we enforce the bank ordinals for
174 * PFlash to start at zero.
176 b
= kinfo
->bank_ordinal
* (bank
->size
/ kinfo
->protection_size
);
177 for (psec
= 0, i
= 0; i
< bank
->num_sectors
; i
++) {
178 if ((fprot
>> b
) & 1)
179 bank
->sectors
[i
].is_protected
= 0;
181 bank
->sectors
[i
].is_protected
= 1;
183 psec
+= bank
->sectors
[i
].size
;
185 if (psec
>= kinfo
->protection_size
) {
191 LOG_ERROR("Protection checks for FlexNVM not yet supported");
192 return ERROR_FLASH_BANK_INVALID
;
198 static int kinetis_ftfx_command(struct flash_bank
*bank
, uint32_t w0
,
199 uint32_t w1
, uint32_t w2
, uint8_t *ftfx_fstat
)
205 for (i
= 0; i
< 50; i
++) {
207 target_read_memory(bank
->target
, 0x40020000, 1, 1, buffer
);
209 if (result
!= ERROR_OK
)
212 if (buffer
[0] & 0x80)
218 if (buffer
[0] != 0x80) {
219 /* reset error flags */
222 target_write_memory(bank
->target
, 0x40020000, 1, 1, buffer
);
223 if (result
!= ERROR_OK
)
227 target_buffer_set_u32(bank
->target
, buffer
, w0
);
228 target_buffer_set_u32(bank
->target
, buffer
+ 4, w1
);
229 target_buffer_set_u32(bank
->target
, buffer
+ 8, w2
);
231 result
= target_write_memory(bank
->target
, 0x40020004, 4, 3, buffer
);
233 if (result
!= ERROR_OK
)
238 result
= target_write_memory(bank
->target
, 0x40020000, 1, 1, buffer
);
239 if (result
!= ERROR_OK
)
243 for (i
= 0; i
< 50; i
++) {
245 target_read_memory(bank
->target
, 0x40020000, 1, 1, ftfx_fstat
);
247 if (result
!= ERROR_OK
)
250 if (*ftfx_fstat
& 0x80)
254 if ((*ftfx_fstat
& 0xf0) != 0x80) {
256 ("ftfx command failed FSTAT: %02X W0: %08X W1: %08X W2: %08X",
257 *ftfx_fstat
, w0
, w1
, w2
);
259 return ERROR_FLASH_OPERATION_FAILED
;
265 static int kinetis_erase(struct flash_bank
*bank
, int first
, int last
)
268 uint32_t w0
= 0, w1
= 0, w2
= 0;
270 if (bank
->target
->state
!= TARGET_HALTED
) {
271 LOG_ERROR("Target not halted");
272 return ERROR_TARGET_NOT_HALTED
;
275 if ((first
> bank
->num_sectors
) || (last
> bank
->num_sectors
))
276 return ERROR_FLASH_OPERATION_FAILED
;
279 * FIXME: TODO: use the 'Erase Flash Block' command if the
280 * requested erase is PFlash or NVM and encompasses the entire
281 * block. Should be quicker.
283 for (i
= first
; i
<= last
; i
++) {
285 /* set command and sector address */
286 w0
= (0x09 << 24) | (bank
->base
+ bank
->sectors
[i
].offset
);
288 result
= kinetis_ftfx_command(bank
, w0
, w1
, w2
, &ftfx_fstat
);
290 if (result
!= ERROR_OK
) {
291 LOG_WARNING("erase sector %d failed", i
);
292 return ERROR_FLASH_OPERATION_FAILED
;
295 bank
->sectors
[i
].is_erased
= 1;
300 ("flash configuration field erased, please reset the device");
306 static int kinetis_write(struct flash_bank
*bank
, uint8_t *buffer
,
307 uint32_t offset
, uint32_t count
)
309 unsigned int i
, result
, fallback
= 0;
311 uint32_t wc
, w0
= 0, w1
= 0, w2
= 0;
312 struct kinetis_flash_bank
*kinfo
= bank
->driver_priv
;
314 if (bank
->target
->state
!= TARGET_HALTED
) {
315 LOG_ERROR("Target not halted");
316 return ERROR_TARGET_NOT_HALTED
;
319 if (kinfo
->flash_class
== FC_FLEX_NVM
) {
322 LOG_DEBUG("flash write into FlexNVM @%08X", offset
);
324 /* make flex ram available */
325 w0
= (0x81 << 24) | 0x00ff0000;
327 result
= kinetis_ftfx_command(bank
, w0
, w1
, w2
, &ftfx_fstat
);
329 if (result
!= ERROR_OK
)
330 return ERROR_FLASH_OPERATION_FAILED
;
332 /* check if ram ready */
333 result
= target_read_memory(bank
->target
, 0x40020001, 1, 1, buf
);
335 if (result
!= ERROR_OK
)
338 if (!(buf
[0] & (1 << 1))) {
339 /* fallback to longword write */
342 LOG_WARNING("ram not ready, fallback to slow longword write (FCNFG: %02X)",
346 LOG_DEBUG("flash write into PFLASH @08%X", offset
);
350 /* program section command */
352 unsigned prog_section_bytes
= kinfo
->sector_size
>> 8;
353 for (i
= 0; i
< count
; i
+= kinfo
->sector_size
) {
355 * The largest possible Kinetis "section" is
356 * 16 bytes. A full Kinetis sector is always
359 uint8_t residual_buffer
[16];
361 uint32_t section_count
= 256;
362 uint32_t residual_wc
= 0;
365 * Assume the word count covers an entire
368 wc
= kinfo
->sector_size
/ 4;
371 * If bytes to be programmed are less than the
372 * full sector, then determine the number of
373 * full-words to program, and put together the
374 * residual buffer so that a full "section"
375 * may always be programmed.
377 if ((count
- i
) < kinfo
->sector_size
) {
378 /* number of bytes to program beyond full section */
379 unsigned residual_bc
= (count
-i
) % prog_section_bytes
;
381 /* number of complete words to copy directly from buffer */
382 wc
= (count
- i
) / 4;
384 /* number of total sections to write, including residual */
385 section_count
= DIV_ROUND_UP((count
-i
), prog_section_bytes
);
387 /* any residual bytes delivers a whole residual section */
388 residual_wc
= (residual_bc
? prog_section_bytes
: 0)/4;
390 /* clear residual buffer then populate residual bytes */
391 (void) memset(residual_buffer
, 0xff, prog_section_bytes
);
392 (void) memcpy(residual_buffer
, &buffer
[i
+4*wc
], residual_bc
);
395 LOG_DEBUG("write section @ %08X with length %d bytes",
396 offset
+ i
, (count
- i
));
398 /* write data to flexram as whole-words */
399 result
= target_write_memory(bank
->target
, 0x14000000, 4, wc
,
402 if (result
!= ERROR_OK
) {
403 LOG_ERROR("target_write_memory failed");
407 /* write the residual words to the flexram */
409 result
= target_write_memory(bank
->target
,
414 if (result
!= ERROR_OK
) {
415 LOG_ERROR("target_write_memory failed");
420 /* execute section-write command */
421 w0
= (0x0b << 24) | (bank
->base
+ offset
+ i
);
422 w1
= section_count
<< 16;
424 result
= kinetis_ftfx_command(bank
, w0
, w1
, w2
, &ftfx_fstat
);
426 if (result
!= ERROR_OK
)
427 return ERROR_FLASH_OPERATION_FAILED
;
430 /* program longword command, not supported in "SF3" devices */
431 else if (kinfo
->granularity
!= 3) {
432 for (i
= 0; i
< count
; i
+= 4) {
435 LOG_DEBUG("write longword @ %08X", offset
+ i
);
437 w0
= (0x06 << 24) | (bank
->base
+ offset
+ i
);
439 uint32_t padding
= 0xffffffff;
440 memcpy(&padding
, buffer
+ i
, count
- i
);
441 w1
= buf_get_u32(&padding
, 0, 32);
443 w1
= buf_get_u32(buffer
+ i
, 0, 32);
446 result
= kinetis_ftfx_command(bank
, w0
, w1
, w2
, &ftfx_fstat
);
448 if (result
!= ERROR_OK
)
449 return ERROR_FLASH_OPERATION_FAILED
;
452 LOG_ERROR("Flash write strategy not implemented");
453 return ERROR_FLASH_OPERATION_FAILED
;
459 static int kinetis_read_part_info(struct flash_bank
*bank
)
464 uint8_t fcfg1_nvmsize
, fcfg1_pfsize
, fcfg1_eesize
, fcfg2_pflsh
;
465 uint32_t nvm_size
= 0, pf_size
= 0, ee_size
= 0;
466 unsigned granularity
, num_blocks
= 0, num_pflash_blocks
= 0, num_nvm_blocks
= 0,
467 first_nvm_bank
= 0, reassign
= 0;
468 struct kinetis_flash_bank
*kinfo
= bank
->driver_priv
;
470 result
= target_read_memory(bank
->target
, 0x40048024, 1, 4, buf
);
471 if (result
!= ERROR_OK
)
473 kinfo
->sim_sdid
= target_buffer_get_u32(bank
->target
, buf
);
474 granularity
= (kinfo
->sim_sdid
>> 7) & 0x03;
475 result
= target_read_memory(bank
->target
, 0x4004804c, 1, 4, buf
);
476 if (result
!= ERROR_OK
)
478 kinfo
->sim_fcfg1
= target_buffer_get_u32(bank
->target
, buf
);
479 result
= target_read_memory(bank
->target
, 0x40048050, 1, 4, buf
);
480 if (result
!= ERROR_OK
)
482 kinfo
->sim_fcfg2
= target_buffer_get_u32(bank
->target
, buf
);
483 fcfg2_pflsh
= (kinfo
->sim_fcfg2
>> 23) & 0x01;
485 LOG_DEBUG("SDID: %08X FCFG1: %08X FCFG2: %08X", kinfo
->sim_sdid
,
486 kinfo
->sim_fcfg1
, kinfo
->sim_fcfg2
);
488 fcfg1_nvmsize
= (uint8_t)((kinfo
->sim_fcfg1
>> 28) & 0x0f);
489 fcfg1_pfsize
= (uint8_t)((kinfo
->sim_fcfg1
>> 24) & 0x0f);
490 fcfg1_eesize
= (uint8_t)((kinfo
->sim_fcfg1
>> 16) & 0x0f);
492 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
494 switch (fcfg1_nvmsize
) {
499 nvm_size
= 1 << (14 + (fcfg1_nvmsize
>> 1));
502 if (granularity
== 3)
512 switch (fcfg1_eesize
) {
523 ee_size
= (16 << (10 - fcfg1_eesize
));
531 switch (fcfg1_pfsize
) {
538 pf_size
= 1 << (14 + (fcfg1_pfsize
>> 1));
541 if (granularity
== 3)
543 else if (fcfg2_pflsh
)
553 LOG_DEBUG("FlexNVM: %d PFlash: %d FlexRAM: %d PFLSH: %d",
554 nvm_size
, pf_size
, ee_size
, fcfg2_pflsh
);
556 num_blocks
= kinetis_flash_params
[granularity
].num_blocks
;
557 num_pflash_blocks
= num_blocks
/ (2 - fcfg2_pflsh
);
558 first_nvm_bank
= num_pflash_blocks
;
559 num_nvm_blocks
= num_blocks
- num_pflash_blocks
;
561 LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
562 num_blocks
, num_pflash_blocks
, num_nvm_blocks
);
565 * If the flash class is already assigned, verify the
568 if (kinfo
->flash_class
!= FC_AUTO
) {
569 if (kinfo
->bank_ordinal
!= (unsigned) bank
->bank_number
) {
570 LOG_WARNING("Flash ordinal/bank number mismatch");
572 } else if (kinfo
->granularity
!= granularity
) {
573 LOG_WARNING("Flash granularity mismatch");
576 switch (kinfo
->flash_class
) {
578 if (kinfo
->bank_ordinal
>= first_nvm_bank
) {
579 LOG_WARNING("Class mismatch, bank %d is not PFlash",
582 } else if (bank
->size
!= (pf_size
/ num_pflash_blocks
)) {
583 LOG_WARNING("PFlash size mismatch");
585 } else if (bank
->base
!=
586 (0x00000000 + bank
->size
* kinfo
->bank_ordinal
)) {
587 LOG_WARNING("PFlash address range mismatch");
589 } else if (kinfo
->sector_size
!=
590 kinetis_flash_params
[granularity
].pflash_sector_size_bytes
) {
591 LOG_WARNING("PFlash sector size mismatch");
594 LOG_DEBUG("PFlash bank %d already configured okay",
595 kinfo
->bank_ordinal
);
599 if ((kinfo
->bank_ordinal
>= num_blocks
) ||
600 (kinfo
->bank_ordinal
< first_nvm_bank
)) {
601 LOG_WARNING("Class mismatch, bank %d is not FlexNVM",
604 } else if (bank
->size
!= (nvm_size
/ num_nvm_blocks
)) {
605 LOG_WARNING("FlexNVM size mismatch");
607 } else if (bank
->base
!=
608 (0x10000000 + bank
->size
* kinfo
->bank_ordinal
)) {
609 LOG_WARNING("FlexNVM address range mismatch");
611 } else if (kinfo
->sector_size
!=
612 kinetis_flash_params
[granularity
].nvm_sector_size_bytes
) {
613 LOG_WARNING("FlexNVM sector size mismatch");
616 LOG_DEBUG("FlexNVM bank %d already configured okay",
617 kinfo
->bank_ordinal
);
621 if (kinfo
->bank_ordinal
!= num_blocks
) {
622 LOG_WARNING("Class mismatch, bank %d is not FlexRAM",
625 } else if (bank
->size
!= ee_size
) {
626 LOG_WARNING("FlexRAM size mismatch");
628 } else if (bank
->base
!= 0x14000000) {
629 LOG_WARNING("FlexRAM address mismatch");
631 } else if (kinfo
->sector_size
!=
632 kinetis_flash_params
[granularity
].nvm_sector_size_bytes
) {
633 LOG_WARNING("FlexRAM sector size mismatch");
636 LOG_DEBUG("FlexRAM bank %d already configured okay",
637 kinfo
->bank_ordinal
);
642 LOG_WARNING("Unknown or inconsistent flash class");
648 LOG_INFO("Probing flash info for bank %d", bank
->bank_number
);
655 kinfo
->granularity
= granularity
;
657 if ((unsigned)bank
->bank_number
< num_pflash_blocks
) {
658 /* pflash, banks start at address zero */
659 kinfo
->flash_class
= FC_PFLASH
;
660 bank
->size
= (pf_size
/ num_pflash_blocks
);
661 bank
->base
= 0x00000000 + bank
->size
* bank
->bank_number
;
662 kinfo
->sector_size
= kinetis_flash_params
[granularity
].pflash_sector_size_bytes
;
663 kinfo
->protection_size
= pf_size
/ 32;
664 } else if ((unsigned)bank
->bank_number
< num_blocks
) {
665 /* nvm, banks start at address 0x10000000 */
666 kinfo
->flash_class
= FC_FLEX_NVM
;
667 bank
->size
= (nvm_size
/ num_nvm_blocks
);
668 bank
->base
= 0x10000000 + bank
->size
* (bank
->bank_number
- first_nvm_bank
);
669 kinfo
->sector_size
= kinetis_flash_params
[granularity
].nvm_sector_size_bytes
;
670 kinfo
->protection_size
= 0; /* FIXME: TODO: depends on DEPART bits, chip */
671 } else if ((unsigned)bank
->bank_number
== num_blocks
) {
672 LOG_ERROR("FlexRAM support not yet implemented");
673 return ERROR_FLASH_OPER_UNSUPPORTED
;
675 LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
676 bank
->bank_number
, num_blocks
);
677 return ERROR_FLASH_BANK_INVALID
;
682 bank
->sectors
= NULL
;
685 bank
->num_sectors
= bank
->size
/ kinfo
->sector_size
;
686 assert(bank
->num_sectors
> 0);
687 bank
->sectors
= malloc(sizeof(struct flash_sector
) * bank
->num_sectors
);
689 for (i
= 0; i
< bank
->num_sectors
; i
++) {
690 bank
->sectors
[i
].offset
= offset
;
691 bank
->sectors
[i
].size
= kinfo
->sector_size
;
692 offset
+= kinfo
->sector_size
;
693 bank
->sectors
[i
].is_erased
= -1;
694 bank
->sectors
[i
].is_protected
= 1;
700 static int kinetis_probe(struct flash_bank
*bank
)
702 if (bank
->target
->state
!= TARGET_HALTED
) {
703 LOG_WARNING("Cannot communicate... target not halted.");
704 return ERROR_TARGET_NOT_HALTED
;
707 return kinetis_read_part_info(bank
);
710 static int kinetis_auto_probe(struct flash_bank
*bank
)
712 struct kinetis_flash_bank
*kinfo
= bank
->driver_priv
;
717 return kinetis_probe(bank
);
720 static int kinetis_info(struct flash_bank
*bank
, char *buf
, int buf_size
)
722 const char *bank_class_names
[] = {
723 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
726 struct kinetis_flash_bank
*kinfo
= bank
->driver_priv
;
728 (void) snprintf(buf
, buf_size
,
729 "%s driver for %s flash bank %s at 0x%8.8" PRIx32
"",
730 bank
->driver
->name
, bank_class_names
[kinfo
->flash_class
],
731 bank
->name
, bank
->base
);
736 static int kinetis_blank_check(struct flash_bank
*bank
)
738 struct kinetis_flash_bank
*kinfo
= bank
->driver_priv
;
740 if (bank
->target
->state
!= TARGET_HALTED
) {
741 LOG_ERROR("Target not halted");
742 return ERROR_TARGET_NOT_HALTED
;
745 if (kinfo
->flash_class
== FC_PFLASH
) {
747 uint32_t w0
= 0, w1
= 0, w2
= 0;
750 /* check if whole bank is blank */
751 w0
= (0x00 << 24) | bank
->base
;
752 w1
= 0; /* "normal margin" */
754 result
= kinetis_ftfx_command(bank
, w0
, w1
, w2
, &ftfx_fstat
);
756 if (result
!= ERROR_OK
)
759 if (ftfx_fstat
& 0x01) {
760 /* the whole bank is not erased, check sector-by-sector */
762 for (i
= 0; i
< bank
->num_sectors
; i
++) {
763 w0
= (0x01 << 24) | (bank
->base
+ bank
->sectors
[i
].offset
);
764 w1
= (0x100 << 16) | 0; /* normal margin */
766 result
= kinetis_ftfx_command(bank
, w0
, w1
, w2
, &ftfx_fstat
);
768 if (result
== ERROR_OK
) {
769 bank
->sectors
[i
].is_erased
= !(ftfx_fstat
& 0x01);
771 LOG_DEBUG("Ignoring errored PFlash sector blank-check");
772 bank
->sectors
[i
].is_erased
= -1;
776 /* the whole bank is erased, update all sectors */
778 for (i
= 0; i
< bank
->num_sectors
; i
++)
779 bank
->sectors
[i
].is_erased
= 1;
782 LOG_WARNING("kinetis_blank_check not supported yet for FlexNVM");
783 return ERROR_FLASH_OPERATION_FAILED
;
789 static int kinetis_flash_read(struct flash_bank
*bank
,
790 uint8_t *buffer
, uint32_t offset
, uint32_t count
)
792 LOG_WARNING("kinetis_flash_read not supported yet");
794 if (bank
->target
->state
!= TARGET_HALTED
) {
795 LOG_ERROR("Target not halted");
796 return ERROR_TARGET_NOT_HALTED
;
799 return ERROR_FLASH_OPERATION_FAILED
;
802 struct flash_driver kinetis_flash
= {
804 .flash_bank_command
= kinetis_flash_bank_command
,
805 .erase
= kinetis_erase
,
806 .protect
= kinetis_protect
,
807 .write
= kinetis_write
,
808 .read
= kinetis_flash_read
,
809 .probe
= kinetis_probe
,
810 .auto_probe
= kinetis_auto_probe
,
811 .erase_check
= kinetis_blank_check
,
812 .protect_check
= kinetis_protect_check
,
813 .info
= kinetis_info
,