1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * Copyright (C) 2008 by Hongtao Zheng *
14 * Copyright (C) 2009 by David Brownell *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
30 ***************************************************************************/
35 #include "breakpoints.h"
36 #include "embeddedice.h"
37 #include "target_request.h"
39 #include <helper/time_support.h>
40 #include "arm_simulator.h"
41 #include "arm_semihosting.h"
42 #include "algorithm.h"
49 * Hold common code supporting the ARM7 and ARM9 core generations.
51 * While the ARM core implementations evolved substantially during these
52 * two generations, they look quite similar from the JTAG perspective.
53 * Both have similar debug facilities, based on the same two scan chains
54 * providing access to the core and to an EmbeddedICE module. Both can
55 * support similar ETM and ETB modules, for tracing. And both expose
56 * what could be viewed as "ARM Classic", with multiple processor modes,
57 * shadowed registers, and support for the Thumb instruction set.
59 * Processor differences include things like presence or absence of MMU
60 * and cache, pipeline sizes, use of a modified Harvard Architecure
61 * (with separate instruction and data busses from the CPU), support
62 * for cpu clock gating during idle, and more.
65 static int arm7_9_debug_entry(struct target
*target
);
68 * Clear watchpoints for an ARM7/9 target.
70 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71 * @return JTAG error status after executing queue
73 static int arm7_9_clear_watchpoints(struct arm7_9_common
*arm7_9
)
76 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
77 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
78 arm7_9
->sw_breakpoint_count
= 0;
79 arm7_9
->sw_breakpoints_added
= 0;
81 arm7_9
->wp1_used
= arm7_9
->wp1_used_default
;
82 arm7_9
->wp_available
= arm7_9
->wp_available_max
;
84 return jtag_execute_queue();
88 * Assign a watchpoint to one of the two available hardware comparators in an
89 * ARM7 or ARM9 target.
91 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
94 static void arm7_9_assign_wp(struct arm7_9_common
*arm7_9
, struct breakpoint
*breakpoint
)
96 if (!arm7_9
->wp0_used
)
100 arm7_9
->wp_available
--;
102 else if (!arm7_9
->wp1_used
)
104 arm7_9
->wp1_used
= 1;
106 arm7_9
->wp_available
--;
110 LOG_ERROR("BUG: no hardware comparator available");
112 LOG_DEBUG("BPID: %d (0x%08" PRIx32
") using hw wp: %d",
113 breakpoint
->unique_id
,
119 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
121 * @param arm7_9 Pointer to common struct for ARM7/9 targets
122 * @return Error codes if there is a problem finding a watchpoint or the result
123 * of executing the JTAG queue
125 static int arm7_9_set_software_breakpoints(struct arm7_9_common
*arm7_9
)
127 if (arm7_9
->sw_breakpoints_added
)
131 if (arm7_9
->wp_available
< 1)
133 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
134 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
136 arm7_9
->wp_available
--;
138 /* pick a breakpoint unit */
139 if (!arm7_9
->wp0_used
)
141 arm7_9
->sw_breakpoints_added
= 1;
142 arm7_9
->wp0_used
= 3;
143 } else if (!arm7_9
->wp1_used
)
145 arm7_9
->sw_breakpoints_added
= 2;
146 arm7_9
->wp1_used
= 3;
150 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
154 if (arm7_9
->sw_breakpoints_added
== 1)
156 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], arm7_9
->arm_bkpt
);
157 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0x0);
158 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffffu
);
159 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
160 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
162 else if (arm7_9
->sw_breakpoints_added
== 2)
164 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], arm7_9
->arm_bkpt
);
165 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0x0);
166 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0xffffffffu
);
167 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
168 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
172 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
175 LOG_DEBUG("SW BP using hw wp: %d",
176 arm7_9
->sw_breakpoints_added
);
178 return jtag_execute_queue();
182 * Setup the common pieces for an ARM7/9 target after reset or on startup.
184 * @param target Pointer to an ARM7/9 target to setup
185 * @return Result of clearing the watchpoints on the target
187 static int arm7_9_setup(struct target
*target
)
189 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
191 return arm7_9_clear_watchpoints(arm7_9
);
195 * Set either a hardware or software breakpoint on an ARM7/9 target. The
196 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
197 * might have erased the values in Embedded ICE.
199 * @param target Pointer to the target device to set the breakpoints on
200 * @param breakpoint Pointer to the breakpoint to be set
201 * @return For hardware breakpoints, this is the result of executing the JTAG
202 * queue. For software breakpoints, this will be the status of the
203 * required memory reads and writes
205 static int arm7_9_set_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
207 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
208 int retval
= ERROR_OK
;
210 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32
", Type: %d" ,
211 breakpoint
->unique_id
,
215 if (target
->state
!= TARGET_HALTED
)
217 LOG_WARNING("target not halted");
218 return ERROR_TARGET_NOT_HALTED
;
221 if (breakpoint
->type
== BKPT_HARD
)
223 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
224 uint32_t mask
= (breakpoint
->length
== 4) ? 0x3u
: 0x1u
;
226 /* reassign a hw breakpoint */
227 if (breakpoint
->set
== 0)
229 arm7_9_assign_wp(arm7_9
, breakpoint
);
232 if (breakpoint
->set
== 1)
234 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], breakpoint
->address
);
235 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
236 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffffu
);
237 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
238 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
240 else if (breakpoint
->set
== 2)
242 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], breakpoint
->address
);
243 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
244 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffffu
);
245 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
246 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
250 LOG_ERROR("BUG: no hardware comparator available");
254 retval
= jtag_execute_queue();
256 else if (breakpoint
->type
== BKPT_SOFT
)
258 /* did we already set this breakpoint? */
262 if (breakpoint
->length
== 4)
264 uint32_t verify
= 0xffffffff;
265 /* keep the original instruction in target endianness */
266 if ((retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
270 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
271 if ((retval
= target_write_u32(target
, breakpoint
->address
, arm7_9
->arm_bkpt
)) != ERROR_OK
)
276 if ((retval
= target_read_u32(target
, breakpoint
->address
, &verify
)) != ERROR_OK
)
280 if (verify
!= arm7_9
->arm_bkpt
)
282 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32
" - check that memory is read/writable", breakpoint
->address
);
288 uint16_t verify
= 0xffff;
289 /* keep the original instruction in target endianness */
290 if ((retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
294 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
295 if ((retval
= target_write_u16(target
, breakpoint
->address
, arm7_9
->thumb_bkpt
)) != ERROR_OK
)
300 if ((retval
= target_read_u16(target
, breakpoint
->address
, &verify
)) != ERROR_OK
)
304 if (verify
!= arm7_9
->thumb_bkpt
)
306 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32
" - check that memory is read/writable", breakpoint
->address
);
311 if ((retval
= arm7_9_set_software_breakpoints(arm7_9
)) != ERROR_OK
)
314 arm7_9
->sw_breakpoint_count
++;
323 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
324 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
325 * will be updated. Otherwise, the software breakpoint will be restored to its
326 * original instruction if it hasn't already been modified.
328 * @param target Pointer to ARM7/9 target to unset the breakpoint from
329 * @param breakpoint Pointer to breakpoint to be unset
330 * @return For hardware breakpoints, this is the result of executing the JTAG
331 * queue. For software breakpoints, this will be the status of the
332 * required memory reads and writes
334 static int arm7_9_unset_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
336 int retval
= ERROR_OK
;
337 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
339 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32
,
340 breakpoint
->unique_id
,
341 breakpoint
->address
);
343 if (!breakpoint
->set
)
345 LOG_WARNING("breakpoint not set");
349 if (breakpoint
->type
== BKPT_HARD
)
351 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
352 breakpoint
->unique_id
,
354 if (breakpoint
->set
== 1)
356 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
357 arm7_9
->wp0_used
= 0;
358 arm7_9
->wp_available
++;
360 else if (breakpoint
->set
== 2)
362 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
363 arm7_9
->wp1_used
= 0;
364 arm7_9
->wp_available
++;
366 retval
= jtag_execute_queue();
371 /* restore original instruction (kept in target endianness) */
372 if (breakpoint
->length
== 4)
374 uint32_t current_instr
;
375 /* check that user program as not modified breakpoint instruction */
376 if ((retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, (uint8_t*)¤t_instr
)) != ERROR_OK
)
380 current_instr
= target_buffer_get_u32(target
, (uint8_t *)¤t_instr
);
381 if (current_instr
== arm7_9
->arm_bkpt
)
382 if ((retval
= target_write_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
389 uint16_t current_instr
;
390 /* check that user program as not modified breakpoint instruction */
391 if ((retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, (uint8_t*)¤t_instr
)) != ERROR_OK
)
395 if (current_instr
== arm7_9
->thumb_bkpt
)
396 if ((retval
= target_write_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
402 if (--arm7_9
->sw_breakpoint_count
==0)
404 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
405 if (arm7_9
->sw_breakpoints_added
== 1)
407 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0);
409 else if (arm7_9
->sw_breakpoints_added
== 2)
411 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0);
422 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
423 * dangling breakpoints and that the desired breakpoint can be added.
425 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
426 * @param breakpoint Pointer to the breakpoint to be added
427 * @return An error status if there is a problem adding the breakpoint or the
428 * result of setting the breakpoint
430 int arm7_9_add_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
432 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
434 if (arm7_9
->breakpoint_count
== 0)
436 /* make sure we don't have any dangling breakpoints. This is vital upon
437 * GDB connect/disconnect
439 arm7_9_clear_watchpoints(arm7_9
);
442 if ((breakpoint
->type
== BKPT_HARD
) && (arm7_9
->wp_available
< 1))
444 LOG_INFO("no watchpoint unit available for hardware breakpoint");
445 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
448 if ((breakpoint
->length
!= 2) && (breakpoint
->length
!= 4))
450 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
451 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
454 if (breakpoint
->type
== BKPT_HARD
)
456 arm7_9_assign_wp(arm7_9
, breakpoint
);
459 arm7_9
->breakpoint_count
++;
461 return arm7_9_set_breakpoint(target
, breakpoint
);
465 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
466 * dangling breakpoints and updates available watchpoints if it is a hardware
469 * @param target Pointer to the target to have a breakpoint removed
470 * @param breakpoint Pointer to the breakpoint to be removed
471 * @return Error status if there was a problem unsetting the breakpoint or the
472 * watchpoints could not be cleared
474 int arm7_9_remove_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
476 int retval
= ERROR_OK
;
477 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
479 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
484 if (breakpoint
->type
== BKPT_HARD
)
485 arm7_9
->wp_available
++;
487 arm7_9
->breakpoint_count
--;
488 if (arm7_9
->breakpoint_count
== 0)
490 /* make sure we don't have any dangling breakpoints */
491 if ((retval
= arm7_9_clear_watchpoints(arm7_9
)) != ERROR_OK
)
501 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
502 * considered a bug to call this function when there are no available watchpoint
505 * @param target Pointer to an ARM7/9 target to set a watchpoint on
506 * @param watchpoint Pointer to the watchpoint to be set
507 * @return Error status if watchpoint set fails or the result of executing the
510 static int arm7_9_set_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
512 int retval
= ERROR_OK
;
513 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
517 mask
= watchpoint
->length
- 1;
519 if (target
->state
!= TARGET_HALTED
)
521 LOG_WARNING("target not halted");
522 return ERROR_TARGET_NOT_HALTED
;
525 if (watchpoint
->rw
== WPT_ACCESS
)
530 if (!arm7_9
->wp0_used
)
532 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], watchpoint
->address
);
533 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
534 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], watchpoint
->mask
);
535 if (watchpoint
->mask
!= 0xffffffffu
)
536 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], watchpoint
->value
);
537 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
538 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
540 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
545 arm7_9
->wp0_used
= 2;
547 else if (!arm7_9
->wp1_used
)
549 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], watchpoint
->address
);
550 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
551 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], watchpoint
->mask
);
552 if (watchpoint
->mask
!= 0xffffffffu
)
553 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], watchpoint
->value
);
554 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
555 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
557 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
562 arm7_9
->wp1_used
= 2;
566 LOG_ERROR("BUG: no hardware comparator available");
574 * Unset an existing watchpoint and clear the used watchpoint unit.
576 * @param target Pointer to the target to have the watchpoint removed
577 * @param watchpoint Pointer to the watchpoint to be removed
578 * @return Error status while trying to unset the watchpoint or the result of
579 * executing the JTAG queue
581 static int arm7_9_unset_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
583 int retval
= ERROR_OK
;
584 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
586 if (target
->state
!= TARGET_HALTED
)
588 LOG_WARNING("target not halted");
589 return ERROR_TARGET_NOT_HALTED
;
592 if (!watchpoint
->set
)
594 LOG_WARNING("breakpoint not set");
598 if (watchpoint
->set
== 1)
600 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
601 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
605 arm7_9
->wp0_used
= 0;
607 else if (watchpoint
->set
== 2)
609 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
610 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
614 arm7_9
->wp1_used
= 0;
622 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
623 * available, an error response is returned.
625 * @param target Pointer to the ARM7/9 target to add a watchpoint to
626 * @param watchpoint Pointer to the watchpoint to be added
627 * @return Error status while trying to add the watchpoint
629 int arm7_9_add_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
631 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
633 if (arm7_9
->wp_available
< 1)
635 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
638 if ((watchpoint
->length
!= 1) && (watchpoint
->length
!= 2) && (watchpoint
->length
!= 4))
640 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
643 arm7_9
->wp_available
--;
649 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
650 * the used watchpoint unit will be reopened.
652 * @param target Pointer to the target to remove a watchpoint from
653 * @param watchpoint Pointer to the watchpoint to be removed
654 * @return Result of trying to unset the watchpoint
656 int arm7_9_remove_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
658 int retval
= ERROR_OK
;
659 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
663 if ((retval
= arm7_9_unset_watchpoint(target
, watchpoint
)) != ERROR_OK
)
669 arm7_9
->wp_available
++;
675 * Restarts the target by sending a RESTART instruction and moving the JTAG
676 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
677 * asserted by the processor.
679 * @param target Pointer to target to issue commands to
680 * @return Error status if there is a timeout or a problem while executing the
683 int arm7_9_execute_sys_speed(struct target
*target
)
686 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
687 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
688 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
690 /* set RESTART instruction */
691 if (arm7_9
->need_bypass_before_restart
) {
692 arm7_9
->need_bypass_before_restart
= 0;
693 retval
= arm_jtag_set_instr(jtag_info
, 0xf, NULL
, TAP_IDLE
);
694 if (retval
!= ERROR_OK
)
697 retval
= arm_jtag_set_instr(jtag_info
, 0x4, NULL
, TAP_IDLE
);
698 if (retval
!= ERROR_OK
)
701 long long then
= timeval_ms();
703 while (!(timeout
= ((timeval_ms()-then
) > 1000)))
705 /* read debug status register */
706 embeddedice_read_reg(dbg_stat
);
707 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
709 if ((buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
710 && (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_SYSCOMP
, 1)))
712 if (debug_level
>= 3)
722 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32
"", buf_get_u32(dbg_stat
->value
, 0, dbg_stat
->size
));
723 return ERROR_TARGET_TIMEOUT
;
730 * Restarts the target by sending a RESTART instruction and moving the JTAG
731 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
732 * waiting until they are.
734 * @param target Pointer to the target to issue commands to
735 * @return Always ERROR_OK
737 static int arm7_9_execute_fast_sys_speed(struct target
*target
)
740 static uint8_t check_value
[4], check_mask
[4];
742 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
743 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
744 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
747 /* set RESTART instruction */
748 if (arm7_9
->need_bypass_before_restart
) {
749 arm7_9
->need_bypass_before_restart
= 0;
750 retval
= arm_jtag_set_instr(jtag_info
, 0xf, NULL
, TAP_IDLE
);
751 if (retval
!= ERROR_OK
)
754 retval
= arm_jtag_set_instr(jtag_info
, 0x4, NULL
, TAP_IDLE
);
755 if (retval
!= ERROR_OK
)
760 /* check for DBGACK and SYSCOMP set (others don't care) */
762 /* NB! These are constants that must be available until after next jtag_execute() and
763 * we evaluate the values upon first execution in lieu of setting up these constants
764 * during early setup.
766 buf_set_u32(check_value
, 0, 32, 0x9);
767 buf_set_u32(check_mask
, 0, 32, 0x9);
771 /* read debug status register */
772 embeddedice_read_reg_w_check(dbg_stat
, check_value
, check_mask
);
778 * Get some data from the ARM7/9 target.
780 * @param target Pointer to the ARM7/9 target to read data from
781 * @param size The number of 32bit words to be read
782 * @param buffer Pointer to the buffer that will hold the data
783 * @return The result of receiving data from the Embedded ICE unit
785 int arm7_9_target_request_data(struct target
*target
, uint32_t size
, uint8_t *buffer
)
787 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
788 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
790 int retval
= ERROR_OK
;
793 data
= malloc(size
* (sizeof(uint32_t)));
795 retval
= embeddedice_receive(jtag_info
, data
, size
);
797 /* return the 32-bit ints in the 8-bit array */
798 for (i
= 0; i
< size
; i
++)
800 h_u32_to_le(buffer
+ (i
* 4), data
[i
]);
809 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
810 * target is running and the DCC control register has the W bit high, this will
811 * execute the request on the target.
813 * @param priv Void pointer expected to be a struct target pointer
814 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
815 * from the Embedded ICE unit
817 static int arm7_9_handle_target_request(void *priv
)
819 int retval
= ERROR_OK
;
820 struct target
*target
= priv
;
821 if (!target_was_examined(target
))
823 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
824 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
825 struct reg
*dcc_control
= &arm7_9
->eice_cache
->reg_list
[EICE_COMMS_CTRL
];
827 if (!target
->dbg_msg_enabled
)
830 if (target
->state
== TARGET_RUNNING
)
832 /* read DCC control register */
833 embeddedice_read_reg(dcc_control
);
834 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
840 if (buf_get_u32(dcc_control
->value
, 1, 1) == 1)
844 if ((retval
= embeddedice_receive(jtag_info
, &request
, 1)) != ERROR_OK
)
848 if ((retval
= target_request(target
, request
)) != ERROR_OK
)
859 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
860 * is manipulated to the right halted state based on its current state. This is
864 * <tr><th > State</th><th > Action</th></tr>
865 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
866 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
867 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
868 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
871 * If the target does not end up in the halted state, a warning is produced. If
872 * DBGACK is cleared, then the target is expected to either be running or
875 * @param target Pointer to the ARM7/9 target to poll
876 * @return ERROR_OK or an error status if a command fails
878 int arm7_9_poll(struct target
*target
)
881 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
882 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
884 /* read debug status register */
885 embeddedice_read_reg(dbg_stat
);
886 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
891 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
893 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
894 if (target
->state
== TARGET_UNKNOWN
)
896 /* Starting OpenOCD with target in debug-halt */
897 target
->state
= TARGET_RUNNING
;
898 LOG_DEBUG("DBGACK already set during server startup.");
900 if ((target
->state
== TARGET_RUNNING
) || (target
->state
== TARGET_RESET
))
902 target
->state
= TARGET_HALTED
;
904 if ((retval
= arm7_9_debug_entry(target
)) != ERROR_OK
)
907 if (arm_semihosting(target
, &retval
) != 0)
910 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
915 if (target
->state
== TARGET_DEBUG_RUNNING
)
917 target
->state
= TARGET_HALTED
;
918 if ((retval
= arm7_9_debug_entry(target
)) != ERROR_OK
)
921 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_HALTED
)) != ERROR_OK
)
926 if (target
->state
!= TARGET_HALTED
)
928 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target
->state
);
933 if (target
->state
!= TARGET_DEBUG_RUNNING
)
934 target
->state
= TARGET_RUNNING
;
941 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
942 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
943 * affected) completely stop the JTAG clock while the core is held in reset
944 * (SRST). It isn't possible to program the halt condition once reset is
945 * asserted, hence a hook that allows the target to set up its reset-halt
946 * condition is setup prior to asserting reset.
948 * @param target Pointer to an ARM7/9 target to assert reset on
949 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
951 int arm7_9_assert_reset(struct target
*target
)
953 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
954 enum reset_types jtag_reset_config
= jtag_get_reset_config();
955 bool use_event
= false;
957 LOG_DEBUG("target->state: %s",
958 target_state_name(target
));
960 if (target_has_event_action(target
, TARGET_EVENT_RESET_ASSERT
))
962 else if (!(jtag_reset_config
& RESET_HAS_SRST
)) {
963 LOG_ERROR("%s: how to reset?", target_name(target
));
967 /* At this point trst has been asserted/deasserted once. We would
968 * like to program EmbeddedICE while SRST is asserted, instead of
969 * depending on SRST to leave that module alone. However, many CPUs
970 * gate the JTAG clock while SRST is asserted; or JTAG may need
971 * clock stability guarantees (adaptive clocking might help).
973 * So we assume JTAG access during SRST is off the menu unless it's
974 * been specifically enabled.
976 bool srst_asserted
= false;
979 && !(jtag_reset_config
& RESET_SRST_PULLS_TRST
)
980 && (jtag_reset_config
& RESET_SRST_NO_GATING
))
982 jtag_add_reset(0, 1);
983 srst_asserted
= true;
986 if (target
->reset_halt
)
989 * For targets that don't support communication while SRST is
990 * asserted, we need to set up the reset vector catch first.
992 * When we use TRST+SRST and that's equivalent to a power-up
993 * reset, these settings may well be reset anyway; so setting
994 * them here won't matter.
996 if (arm7_9
->has_vector_catch
)
998 /* program vector catch register to catch reset */
999 embeddedice_write_reg(&arm7_9
->eice_cache
1000 ->reg_list
[EICE_VEC_CATCH
], 0x1);
1002 /* extra runtest added as issues were found with
1003 * certain ARM9 cores (maybe more) - AT91SAM9260
1006 jtag_add_runtest(1, TAP_IDLE
);
1010 /* program watchpoint unit to match on reset vector
1013 embeddedice_write_reg(&arm7_9
->eice_cache
1014 ->reg_list
[EICE_W0_ADDR_VALUE
], 0x0);
1015 embeddedice_write_reg(&arm7_9
->eice_cache
1016 ->reg_list
[EICE_W0_ADDR_MASK
], 0x3);
1017 embeddedice_write_reg(&arm7_9
->eice_cache
1018 ->reg_list
[EICE_W0_DATA_MASK
],
1020 embeddedice_write_reg(&arm7_9
->eice_cache
1021 ->reg_list
[EICE_W0_CONTROL_VALUE
],
1022 EICE_W_CTRL_ENABLE
);
1023 embeddedice_write_reg(&arm7_9
->eice_cache
1024 ->reg_list
[EICE_W0_CONTROL_MASK
],
1025 ~EICE_W_CTRL_nOPC
& 0xff);
1030 target_handle_event(target
, TARGET_EVENT_RESET_ASSERT
);
1032 /* If we use SRST ... we'd like to issue just SRST, but the
1033 * board or chip may be set up so we have to assert TRST as
1034 * well. On some chips that combination is equivalent to a
1035 * power-up reset, and generally clobbers EICE state.
1037 if (jtag_reset_config
& RESET_SRST_PULLS_TRST
)
1038 jtag_add_reset(1, 1);
1039 else if (!srst_asserted
)
1040 jtag_add_reset(0, 1);
1041 jtag_add_sleep(50000);
1044 target
->state
= TARGET_RESET
;
1045 register_cache_invalidate(arm7_9
->armv4_5_common
.core_cache
);
1047 /* REVISIT why isn't standard debug entry logic sufficient?? */
1048 if (target
->reset_halt
1049 && (!(jtag_reset_config
& RESET_SRST_PULLS_TRST
)
1052 /* debug entry was prepared above */
1053 target
->debug_reason
= DBG_REASON_DBGRQ
;
1060 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1061 * and the target is being reset into a halt, a warning will be triggered
1062 * because it is not possible to reset into a halted mode in this case. The
1063 * target is halted using the target's functions.
1065 * @param target Pointer to the target to have the reset deasserted
1066 * @return ERROR_OK or an error from polling or halting the target
1068 int arm7_9_deassert_reset(struct target
*target
)
1070 int retval
= ERROR_OK
;
1071 LOG_DEBUG("target->state: %s",
1072 target_state_name(target
));
1074 /* deassert reset lines */
1075 jtag_add_reset(0, 0);
1077 /* In case polling is disabled, we need to examine the
1078 * target and poll here for this target to work correctly.
1080 * Otherwise, e.g. halt will fail afterwards with bogus
1081 * error messages as halt will believe that reset is
1084 if ((retval
= target_examine_one(target
)) != ERROR_OK
)
1087 if ((retval
= target_poll(target
)) != ERROR_OK
)
1092 enum reset_types jtag_reset_config
= jtag_get_reset_config();
1093 if (target
->reset_halt
&& (jtag_reset_config
& RESET_SRST_PULLS_TRST
) != 0)
1095 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1096 if ((retval
= target_halt(target
)) != ERROR_OK
)
1105 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1106 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1107 * vector catch was used, it is restored. Otherwise, the control value is
1108 * restored and the watchpoint unit is restored if it was in use.
1110 * @param target Pointer to the ARM7/9 target to have halt cleared
1111 * @return Always ERROR_OK
1113 static int arm7_9_clear_halt(struct target
*target
)
1115 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1116 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1118 /* we used DBGRQ only if we didn't come out of reset */
1119 if (!arm7_9
->debug_entry_from_reset
&& arm7_9
->use_dbgrq
)
1121 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1123 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1124 embeddedice_store_reg(dbg_ctrl
);
1128 if (arm7_9
->debug_entry_from_reset
&& arm7_9
->has_vector_catch
)
1130 /* if we came out of reset, and vector catch is supported, we used
1131 * vector catch to enter debug state
1132 * restore the register in that case
1134 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
]);
1138 /* restore registers if watchpoint unit 0 was in use
1140 if (arm7_9
->wp0_used
)
1142 if (arm7_9
->debug_entry_from_reset
)
1144 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
]);
1146 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
1147 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
1148 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
1150 /* control value always has to be restored, as it was either disabled,
1151 * or enabled with possibly different bits
1153 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
1161 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1162 * and then there is a wait until the processor shows the halt. This wait can
1163 * timeout and results in an error being returned. The software reset involves
1164 * clearing the halt, updating the debug control register, changing to ARM mode,
1165 * reset of the program counter, and reset of all of the registers.
1167 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1168 * @return Error status if any of the commands fail, otherwise ERROR_OK
1170 int arm7_9_soft_reset_halt(struct target
*target
)
1172 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1173 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1174 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1175 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1179 /* FIX!!! replace some of this code with tcl commands
1181 * halt # the halt command is synchronous
1182 * armv4_5 core_state arm
1186 if ((retval
= target_halt(target
)) != ERROR_OK
)
1189 long long then
= timeval_ms();
1191 while (!(timeout
= ((timeval_ms()-then
) > 1000)))
1193 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1) != 0)
1195 embeddedice_read_reg(dbg_stat
);
1196 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1198 if (debug_level
>= 3)
1208 LOG_ERROR("Failed to halt CPU after 1 sec");
1209 return ERROR_TARGET_TIMEOUT
;
1211 target
->state
= TARGET_HALTED
;
1213 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1214 * ensure that DBGRQ is cleared
1216 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1217 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1218 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1219 embeddedice_store_reg(dbg_ctrl
);
1221 if ((retval
= arm7_9_clear_halt(target
)) != ERROR_OK
)
1226 /* if the target is in Thumb state, change to ARM state */
1227 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1))
1229 uint32_t r0_thumb
, pc_thumb
;
1230 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1231 /* Entered debug from Thumb mode */
1232 armv4_5
->core_state
= ARM_STATE_THUMB
;
1233 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1236 /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1238 /* all register content is now invalid */
1239 register_cache_invalidate(armv4_5
->core_cache
);
1241 /* SVC, ARM state, IRQ and FIQ disabled */
1244 cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 32);
1247 arm_set_cpsr(armv4_5
, cpsr
);
1248 armv4_5
->cpsr
->dirty
= 1;
1250 /* start fetching from 0x0 */
1251 buf_set_u32(armv4_5
->pc
->value
, 0, 32, 0x0);
1252 armv4_5
->pc
->dirty
= 1;
1253 armv4_5
->pc
->valid
= 1;
1255 /* reset registers */
1256 for (i
= 0; i
<= 14; i
++)
1258 struct reg
*r
= arm_reg_current(armv4_5
, i
);
1260 buf_set_u32(r
->value
, 0, 32, 0xffffffff);
1265 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
1274 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1275 * line or by programming a watchpoint to trigger on any address. It is
1276 * considered a bug to call this function while the target is in the
1277 * TARGET_RESET state.
1279 * @param target Pointer to the ARM7/9 target to be halted
1280 * @return Always ERROR_OK
1282 int arm7_9_halt(struct target
*target
)
1284 if (target
->state
== TARGET_RESET
)
1286 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1290 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1291 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1293 LOG_DEBUG("target->state: %s",
1294 target_state_name(target
));
1296 if (target
->state
== TARGET_HALTED
)
1298 LOG_DEBUG("target was already halted");
1302 if (target
->state
== TARGET_UNKNOWN
)
1304 LOG_WARNING("target was in unknown state when halt was requested");
1307 if (arm7_9
->use_dbgrq
)
1309 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1311 if (arm7_9
->set_special_dbgrq
) {
1312 arm7_9
->set_special_dbgrq(target
);
1314 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 1);
1315 embeddedice_store_reg(dbg_ctrl
);
1320 /* program watchpoint unit to match on any address
1322 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1323 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1324 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1325 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1328 target
->debug_reason
= DBG_REASON_DBGRQ
;
1334 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1335 * ARM. The JTAG queue is then executed and the reason for debug entry is
1336 * examined. Once done, the target is verified to be halted and the processor
1337 * is forced into ARM mode. The core registers are saved for the current core
1338 * mode and the program counter (register 15) is updated as needed. The core
1339 * registers and CPSR and SPSR are saved for restoration later.
1341 * @param target Pointer to target that is entering debug mode
1342 * @return Error code if anything fails, otherwise ERROR_OK
1344 static int arm7_9_debug_entry(struct target
*target
)
1347 uint32_t context
[16];
1348 uint32_t* context_p
[16];
1349 uint32_t r0_thumb
, pc_thumb
;
1350 uint32_t cpsr
, cpsr_mask
= 0;
1352 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1353 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1354 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1355 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1357 #ifdef _DEBUG_ARM7_9_
1361 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1362 * ensure that DBGRQ is cleared
1364 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1365 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1366 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1367 embeddedice_store_reg(dbg_ctrl
);
1369 if ((retval
= arm7_9_clear_halt(target
)) != ERROR_OK
)
1374 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1379 if ((retval
= arm7_9
->examine_debug_reason(target
)) != ERROR_OK
)
1383 if (target
->state
!= TARGET_HALTED
)
1385 LOG_WARNING("target not halted");
1386 return ERROR_TARGET_NOT_HALTED
;
1389 /* if the target is in Thumb state, change to ARM state */
1390 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1))
1392 LOG_DEBUG("target entered debug from Thumb state");
1393 /* Entered debug from Thumb mode */
1394 armv4_5
->core_state
= ARM_STATE_THUMB
;
1396 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1397 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1398 ", pc_thumb: 0x%8.8" PRIx32
, r0_thumb
, pc_thumb
);
1399 } else if (buf_get_u32(dbg_stat
->value
, 5, 1)) {
1400 /* \todo Get some vaguely correct handling of Jazelle, if
1401 * anyone ever uses it and full info becomes available.
1402 * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1403 * B.7.3 for the reverse. That'd be the bare minimum...
1405 LOG_DEBUG("target entered debug from Jazelle state");
1406 armv4_5
->core_state
= ARM_STATE_JAZELLE
;
1407 cpsr_mask
= 1 << 24;
1408 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1410 LOG_DEBUG("target entered debug from ARM state");
1411 /* Entered debug from ARM mode */
1412 armv4_5
->core_state
= ARM_STATE_ARM
;
1415 for (i
= 0; i
< 16; i
++)
1416 context_p
[i
] = &context
[i
];
1417 /* save core registers (r0 - r15 of current core mode) */
1418 arm7_9
->read_core_regs(target
, 0xffff, context_p
);
1420 arm7_9
->read_xpsr(target
, &cpsr
, 0);
1422 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1425 /* Sync our CPSR copy with J or T bits EICE reported, but
1426 * which we then erased by putting the core into ARM mode.
1428 arm_set_cpsr(armv4_5
, cpsr
| cpsr_mask
);
1430 if (!is_arm_mode(armv4_5
->core_mode
))
1432 target
->state
= TARGET_UNKNOWN
;
1433 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1434 return ERROR_TARGET_FAILURE
;
1437 LOG_DEBUG("target entered debug state in %s mode",
1438 arm_mode_name(armv4_5
->core_mode
));
1440 if (armv4_5
->core_state
== ARM_STATE_THUMB
)
1442 LOG_DEBUG("thumb state, applying fixups");
1443 context
[0] = r0_thumb
;
1444 context
[15] = pc_thumb
;
1445 } else if (armv4_5
->core_state
== ARM_STATE_ARM
)
1447 /* adjust value stored by STM */
1448 context
[15] -= 3 * 4;
1451 if ((target
->debug_reason
!= DBG_REASON_DBGRQ
) || (!arm7_9
->use_dbgrq
))
1452 context
[15] -= 3 * ((armv4_5
->core_state
== ARM_STATE_ARM
) ? 4 : 2);
1454 context
[15] -= arm7_9
->dbgreq_adjust_pc
* ((armv4_5
->core_state
== ARM_STATE_ARM
) ? 4 : 2);
1456 for (i
= 0; i
<= 15; i
++)
1458 struct reg
*r
= arm_reg_current(armv4_5
, i
);
1460 LOG_DEBUG("r%i: 0x%8.8" PRIx32
"", i
, context
[i
]);
1462 buf_set_u32(r
->value
, 0, 32, context
[i
]);
1463 /* r0 and r15 (pc) have to be restored later */
1464 r
->dirty
= (i
== 0) || (i
== 15);
1468 LOG_DEBUG("entered debug state at PC 0x%" PRIx32
"", context
[15]);
1470 /* exceptions other than USR & SYS have a saved program status register */
1471 if (armv4_5
->spsr
) {
1473 arm7_9
->read_xpsr(target
, &spsr
, 1);
1474 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1478 buf_set_u32(armv4_5
->spsr
->value
, 0, 32, spsr
);
1479 armv4_5
->spsr
->dirty
= 0;
1480 armv4_5
->spsr
->valid
= 1;
1483 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1486 if (arm7_9
->post_debug_entry
)
1488 retval
= arm7_9
->post_debug_entry(target
);
1489 if (retval
!= ERROR_OK
)
1497 * Validate the full context for an ARM7/9 target in all processor modes. If
1498 * there are any invalid registers for the target, they will all be read. This
1501 * @param target Pointer to the ARM7/9 target to capture the full context from
1502 * @return Error if the target is not halted, has an invalid core mode, or if
1503 * the JTAG queue fails to execute
1505 static int arm7_9_full_context(struct target
*target
)
1509 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1510 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1514 if (target
->state
!= TARGET_HALTED
)
1516 LOG_WARNING("target not halted");
1517 return ERROR_TARGET_NOT_HALTED
;
1520 if (!is_arm_mode(armv4_5
->core_mode
))
1522 LOG_ERROR("not a valid arm core mode - communication failure?");
1526 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1527 * SYS shares registers with User, so we don't touch SYS
1529 for (i
= 0; i
< 6; i
++)
1532 uint32_t* reg_p
[16];
1536 /* check if there are invalid registers in the current mode
1538 for (j
= 0; j
<= 16; j
++)
1540 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1548 /* change processor mode (and mask T bit) */
1549 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
1551 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1553 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1555 for (j
= 0; j
< 15; j
++)
1557 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1559 reg_p
[j
] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).value
;
1561 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
= 1;
1562 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).dirty
= 0;
1566 /* if only the PSR is invalid, mask is all zeroes */
1568 arm7_9
->read_core_regs(target
, mask
, reg_p
);
1570 /* check if the PSR has to be read */
1571 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).valid
== 0)
1573 arm7_9
->read_xpsr(target
, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).value
, 1);
1574 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).valid
= 1;
1575 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).dirty
= 0;
1580 /* restore processor mode (mask T bit) */
1581 arm7_9
->write_xpsr_im8(target
,
1582 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & ~0x20,
1585 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1593 * Restore the processor context on an ARM7/9 target. The full processor
1594 * context is analyzed to see if any of the registers are dirty on this end, but
1595 * have a valid new value. If this is the case, the processor is changed to the
1596 * appropriate mode and the new register values are written out to the
1597 * processor. If there happens to be a dirty register with an invalid value, an
1598 * error will be logged.
1600 * @param target Pointer to the ARM7/9 target to have its context restored
1601 * @return Error status if the target is not halted or the core mode in the
1602 * armv4_5 struct is invalid.
1604 static int arm7_9_restore_context(struct target
*target
)
1606 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1607 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1609 struct arm_reg
*reg_arch_info
;
1610 enum arm_mode current_mode
= armv4_5
->core_mode
;
1617 if (target
->state
!= TARGET_HALTED
)
1619 LOG_WARNING("target not halted");
1620 return ERROR_TARGET_NOT_HALTED
;
1623 if (arm7_9
->pre_restore_context
)
1624 arm7_9
->pre_restore_context(target
);
1626 if (!is_arm_mode(armv4_5
->core_mode
))
1628 LOG_ERROR("not a valid arm core mode - communication failure?");
1632 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1633 * SYS shares registers with User, so we don't touch SYS
1635 for (i
= 0; i
< 6; i
++)
1637 LOG_DEBUG("examining %s mode",
1638 arm_mode_name(armv4_5
->core_mode
));
1641 /* check if there are dirty registers in the current mode
1643 for (j
= 0; j
<= 16; j
++)
1645 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
);
1646 reg_arch_info
= reg
->arch_info
;
1647 if (reg
->dirty
== 1)
1649 if (reg
->valid
== 1)
1652 LOG_DEBUG("examining dirty reg: %s", reg
->name
);
1653 if ((reg_arch_info
->mode
!= ARM_MODE_ANY
)
1654 && (reg_arch_info
->mode
!= current_mode
)
1655 && !((reg_arch_info
->mode
== ARM_MODE_USR
) && (armv4_5
->core_mode
== ARM_MODE_SYS
))
1656 && !((reg_arch_info
->mode
== ARM_MODE_SYS
) && (armv4_5
->core_mode
== ARM_MODE_USR
)))
1659 LOG_DEBUG("require mode change");
1664 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg
->name
);
1671 uint32_t mask
= 0x0;
1679 /* change processor mode (mask T bit) */
1680 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
,
1682 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1684 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1685 current_mode
= armv4_5_number_to_mode(i
);
1688 for (j
= 0; j
<= 14; j
++)
1690 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
);
1691 reg_arch_info
= reg
->arch_info
;
1694 if (reg
->dirty
== 1)
1696 regs
[j
] = buf_get_u32(reg
->value
, 0, 32);
1701 LOG_DEBUG("writing register %i mode %s "
1702 "with value 0x%8.8" PRIx32
, j
,
1703 arm_mode_name(armv4_5
->core_mode
),
1710 arm7_9
->write_core_regs(target
, mask
, regs
);
1713 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16);
1714 reg_arch_info
= reg
->arch_info
;
1715 if ((reg
->dirty
) && (reg_arch_info
->mode
!= ARM_MODE_ANY
))
1717 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32
"", i
, buf_get_u32(reg
->value
, 0, 32));
1718 arm7_9
->write_xpsr(target
, buf_get_u32(reg
->value
, 0, 32), 1);
1723 if (!armv4_5
->cpsr
->dirty
&& (armv4_5
->core_mode
!= current_mode
))
1725 /* restore processor mode (mask T bit) */
1728 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & 0xE0;
1729 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1731 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr
));
1732 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1734 else if (armv4_5
->cpsr
->dirty
)
1736 /* CPSR has been changed, full restore necessary (mask T bit) */
1737 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32
,
1738 buf_get_u32(armv4_5
->cpsr
->value
, 0, 32));
1739 arm7_9
->write_xpsr(target
,
1740 buf_get_u32(armv4_5
->cpsr
->value
, 0, 32)
1742 armv4_5
->cpsr
->dirty
= 0;
1743 armv4_5
->cpsr
->valid
= 1;
1747 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32
,
1748 buf_get_u32(armv4_5
->pc
->value
, 0, 32));
1749 arm7_9
->write_pc(target
, buf_get_u32(armv4_5
->pc
->value
, 0, 32));
1750 armv4_5
->pc
->dirty
= 0;
1756 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1757 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1760 * @param target Pointer to the ARM7/9 target to be restarted
1761 * @return Result of executing the JTAG queue
1763 static int arm7_9_restart_core(struct target
*target
)
1765 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1766 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
1769 /* set RESTART instruction */
1770 if (arm7_9
->need_bypass_before_restart
) {
1771 arm7_9
->need_bypass_before_restart
= 0;
1773 retval
= arm_jtag_set_instr(jtag_info
, 0xf, NULL
, TAP_IDLE
);
1774 if (retval
!= ERROR_OK
)
1777 retval
= arm_jtag_set_instr(jtag_info
, 0x4, NULL
, TAP_IDLE
);
1778 if (retval
!= ERROR_OK
)
1781 jtag_add_runtest(1, TAP_IDLE
);
1782 return jtag_execute_queue();
1786 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1787 * iterated through and are set on the target if they aren't already set.
1789 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1791 static void arm7_9_enable_watchpoints(struct target
*target
)
1793 struct watchpoint
*watchpoint
= target
->watchpoints
;
1797 if (watchpoint
->set
== 0)
1798 arm7_9_set_watchpoint(target
, watchpoint
);
1799 watchpoint
= watchpoint
->next
;
1804 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1805 * iterated through and are set on the target.
1807 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1809 static void arm7_9_enable_breakpoints(struct target
*target
)
1811 struct breakpoint
*breakpoint
= target
->breakpoints
;
1813 /* set any pending breakpoints */
1816 arm7_9_set_breakpoint(target
, breakpoint
);
1817 breakpoint
= breakpoint
->next
;
1821 int arm7_9_resume(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
, int debug_execution
)
1823 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1824 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1825 struct breakpoint
*breakpoint
= target
->breakpoints
;
1826 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1827 int err
, retval
= ERROR_OK
;
1831 if (target
->state
!= TARGET_HALTED
)
1833 LOG_WARNING("target not halted");
1834 return ERROR_TARGET_NOT_HALTED
;
1837 if (!debug_execution
)
1839 target_free_all_working_areas(target
);
1842 /* current = 1: continue on current pc, otherwise continue at <address> */
1844 buf_set_u32(armv4_5
->pc
->value
, 0, 32, address
);
1846 uint32_t current_pc
;
1847 current_pc
= buf_get_u32(armv4_5
->pc
->value
, 0, 32);
1849 /* the front-end may request us not to handle breakpoints */
1850 if (handle_breakpoints
)
1852 breakpoint
= breakpoint_find(target
,
1853 buf_get_u32(armv4_5
->pc
->value
, 0, 32));
1854 if (breakpoint
!= NULL
)
1856 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32
" (id: %d)", breakpoint
->address
, breakpoint
->unique_id
);
1857 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1862 /* calculate PC of next instruction */
1864 if ((retval
= arm_simulate_step(target
, &next_pc
)) != ERROR_OK
)
1866 uint32_t current_opcode
;
1867 target_read_u32(target
, current_pc
, ¤t_opcode
);
1868 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"", current_opcode
);
1872 LOG_DEBUG("enable single-step");
1873 arm7_9
->enable_single_step(target
, next_pc
);
1875 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
1877 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
1882 if (armv4_5
->core_state
== ARM_STATE_ARM
)
1883 arm7_9
->branch_resume(target
);
1884 else if (armv4_5
->core_state
== ARM_STATE_THUMB
)
1886 arm7_9
->branch_resume_thumb(target
);
1890 LOG_ERROR("unhandled core state");
1894 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1895 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1896 err
= arm7_9_execute_sys_speed(target
);
1898 LOG_DEBUG("disable single-step");
1899 arm7_9
->disable_single_step(target
);
1901 if (err
!= ERROR_OK
)
1903 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1907 target
->state
= TARGET_UNKNOWN
;
1911 retval
= arm7_9_debug_entry(target
);
1912 if (retval
!= ERROR_OK
)
1914 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32
,
1915 buf_get_u32(armv4_5
->pc
->value
, 0, 32));
1917 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32
"", breakpoint
->address
);
1918 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1925 /* enable any pending breakpoints and watchpoints */
1926 arm7_9_enable_breakpoints(target
);
1927 arm7_9_enable_watchpoints(target
);
1929 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
1934 if (armv4_5
->core_state
== ARM_STATE_ARM
)
1936 arm7_9
->branch_resume(target
);
1938 else if (armv4_5
->core_state
== ARM_STATE_THUMB
)
1940 arm7_9
->branch_resume_thumb(target
);
1944 LOG_ERROR("unhandled core state");
1948 /* deassert DBGACK and INTDIS */
1949 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1950 /* INTDIS only when we really resume, not during debug execution */
1951 if (!debug_execution
)
1952 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 0);
1953 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1955 if ((retval
= arm7_9_restart_core(target
)) != ERROR_OK
)
1960 target
->debug_reason
= DBG_REASON_NOTHALTED
;
1962 if (!debug_execution
)
1964 /* registers are now invalid */
1965 register_cache_invalidate(armv4_5
->core_cache
);
1966 target
->state
= TARGET_RUNNING
;
1967 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
)) != ERROR_OK
)
1974 target
->state
= TARGET_DEBUG_RUNNING
;
1975 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_RESUMED
)) != ERROR_OK
)
1981 LOG_DEBUG("target resumed");
1986 void arm7_9_enable_eice_step(struct target
*target
, uint32_t next_pc
)
1988 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1989 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1990 uint32_t current_pc
;
1991 current_pc
= buf_get_u32(armv4_5
->pc
->value
, 0, 32);
1993 if (next_pc
!= current_pc
)
1995 /* setup an inverse breakpoint on the current PC
1996 * - comparator 1 matches the current address
1997 * - rangeout from comparator 1 is connected to comparator 0 rangein
1998 * - comparator 0 matches any address, as long as rangein is low */
1999 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
2000 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
2001 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
2002 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~(EICE_W_CTRL_RANGE
| EICE_W_CTRL_nOPC
) & 0xff);
2003 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], current_pc
);
2004 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
2005 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
2006 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
2007 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
2011 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
2012 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
2013 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
2014 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff);
2015 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], next_pc
);
2016 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
2017 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
2018 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
2019 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
2023 void arm7_9_disable_eice_step(struct target
*target
)
2025 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2027 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
2028 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
2029 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
2030 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
2031 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
]);
2032 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
]);
2033 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
]);
2034 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
]);
2035 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
]);
2038 int arm7_9_step(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
)
2040 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2041 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2042 struct breakpoint
*breakpoint
= NULL
;
2045 if (target
->state
!= TARGET_HALTED
)
2047 LOG_WARNING("target not halted");
2048 return ERROR_TARGET_NOT_HALTED
;
2051 /* current = 1: continue on current pc, otherwise continue at <address> */
2053 buf_set_u32(armv4_5
->pc
->value
, 0, 32, address
);
2055 uint32_t current_pc
= buf_get_u32(armv4_5
->pc
->value
, 0, 32);
2057 /* the front-end may request us not to handle breakpoints */
2058 if (handle_breakpoints
)
2059 breakpoint
= breakpoint_find(target
, current_pc
);
2060 if (breakpoint
!= NULL
) {
2061 retval
= arm7_9_unset_breakpoint(target
, breakpoint
);
2062 if (retval
!= ERROR_OK
)
2066 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
2068 /* calculate PC of next instruction */
2070 if ((retval
= arm_simulate_step(target
, &next_pc
)) != ERROR_OK
)
2072 uint32_t current_opcode
;
2073 target_read_u32(target
, current_pc
, ¤t_opcode
);
2074 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"", current_opcode
);
2078 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
2083 arm7_9
->enable_single_step(target
, next_pc
);
2085 if (armv4_5
->core_state
== ARM_STATE_ARM
)
2087 arm7_9
->branch_resume(target
);
2089 else if (armv4_5
->core_state
== ARM_STATE_THUMB
)
2091 arm7_9
->branch_resume_thumb(target
);
2095 LOG_ERROR("unhandled core state");
2099 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
)) != ERROR_OK
)
2104 err
= arm7_9_execute_sys_speed(target
);
2105 arm7_9
->disable_single_step(target
);
2107 /* registers are now invalid */
2108 register_cache_invalidate(armv4_5
->core_cache
);
2110 if (err
!= ERROR_OK
)
2112 target
->state
= TARGET_UNKNOWN
;
2114 retval
= arm7_9_debug_entry(target
);
2115 if (retval
!= ERROR_OK
)
2117 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
2121 LOG_DEBUG("target stepped");
2125 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
2133 static int arm7_9_read_core_reg(struct target
*target
, struct reg
*r
,
2134 int num
, enum arm_mode mode
)
2136 uint32_t* reg_p
[16];
2139 struct arm_reg
*areg
= r
->arch_info
;
2140 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2141 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2143 if (!is_arm_mode(armv4_5
->core_mode
))
2145 if ((num
< 0) || (num
> 16))
2146 return ERROR_INVALID_ARGUMENTS
;
2148 if ((mode
!= ARM_MODE_ANY
)
2149 && (mode
!= armv4_5
->core_mode
)
2150 && (areg
->mode
!= ARM_MODE_ANY
))
2154 /* change processor mode (mask T bit) */
2155 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & 0xE0;
2158 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2161 if ((num
>= 0) && (num
<= 15))
2163 /* read a normal core register */
2164 reg_p
[num
] = &value
;
2166 arm7_9
->read_core_regs(target
, 1 << num
, reg_p
);
2170 /* read a program status register
2171 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2173 arm7_9
->read_xpsr(target
, &value
, areg
->mode
!= ARM_MODE_ANY
);
2176 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2183 buf_set_u32(r
->value
, 0, 32, value
);
2185 if ((mode
!= ARM_MODE_ANY
)
2186 && (mode
!= armv4_5
->core_mode
)
2187 && (areg
->mode
!= ARM_MODE_ANY
)) {
2188 /* restore processor mode (mask T bit) */
2189 arm7_9
->write_xpsr_im8(target
,
2190 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2197 static int arm7_9_write_core_reg(struct target
*target
, struct reg
*r
,
2198 int num
, enum arm_mode mode
, uint32_t value
)
2201 struct arm_reg
*areg
= r
->arch_info
;
2202 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2203 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2205 if (!is_arm_mode(armv4_5
->core_mode
))
2207 if ((num
< 0) || (num
> 16))
2208 return ERROR_INVALID_ARGUMENTS
;
2210 if ((mode
!= ARM_MODE_ANY
)
2211 && (mode
!= armv4_5
->core_mode
)
2212 && (areg
->mode
!= ARM_MODE_ANY
)) {
2215 /* change processor mode (mask T bit) */
2216 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & 0xE0;
2219 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2222 if ((num
>= 0) && (num
<= 15))
2224 /* write a normal core register */
2227 arm7_9
->write_core_regs(target
, 1 << num
, reg
);
2231 /* write a program status register
2232 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2234 int spsr
= (areg
->mode
!= ARM_MODE_ANY
);
2236 /* if we're writing the CPSR, mask the T bit */
2240 arm7_9
->write_xpsr(target
, value
, spsr
);
2246 if ((mode
!= ARM_MODE_ANY
)
2247 && (mode
!= armv4_5
->core_mode
)
2248 && (areg
->mode
!= ARM_MODE_ANY
)) {
2249 /* restore processor mode (mask T bit) */
2250 arm7_9
->write_xpsr_im8(target
,
2251 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2255 return jtag_execute_queue();
2258 int arm7_9_read_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
2260 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2261 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2263 uint32_t num_accesses
= 0;
2264 int thisrun_accesses
;
2270 LOG_DEBUG("address: 0x%8.8" PRIx32
", size: 0x%8.8" PRIx32
", count: 0x%8.8" PRIx32
"", address
, size
, count
);
2272 if (target
->state
!= TARGET_HALTED
)
2274 LOG_WARNING("target not halted");
2275 return ERROR_TARGET_NOT_HALTED
;
2278 /* sanitize arguments */
2279 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2280 return ERROR_INVALID_ARGUMENTS
;
2282 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2283 return ERROR_TARGET_UNALIGNED_ACCESS
;
2285 /* load the base register with the address of the first word */
2287 arm7_9
->write_core_regs(target
, 0x1, reg
);
2294 while (num_accesses
< count
)
2297 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2298 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2300 if (last_reg
<= thisrun_accesses
)
2301 last_reg
= thisrun_accesses
;
2303 arm7_9
->load_word_regs(target
, reg_list
);
2305 /* fast memory reads are only safe when the target is running
2306 * from a sufficiently high clock (32 kHz is usually too slow)
2308 if (arm7_9
->fast_memory_access
)
2309 retval
= arm7_9_execute_fast_sys_speed(target
);
2311 retval
= arm7_9_execute_sys_speed(target
);
2312 if (retval
!= ERROR_OK
)
2315 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 4);
2317 /* advance buffer, count number of accesses */
2318 buffer
+= thisrun_accesses
* 4;
2319 num_accesses
+= thisrun_accesses
;
2321 if ((j
++%1024) == 0)
2328 while (num_accesses
< count
)
2331 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2332 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2334 for (i
= 1; i
<= thisrun_accesses
; i
++)
2338 arm7_9
->load_hword_reg(target
, i
);
2339 /* fast memory reads are only safe when the target is running
2340 * from a sufficiently high clock (32 kHz is usually too slow)
2342 if (arm7_9
->fast_memory_access
)
2343 retval
= arm7_9_execute_fast_sys_speed(target
);
2345 retval
= arm7_9_execute_sys_speed(target
);
2346 if (retval
!= ERROR_OK
)
2353 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 2);
2355 /* advance buffer, count number of accesses */
2356 buffer
+= thisrun_accesses
* 2;
2357 num_accesses
+= thisrun_accesses
;
2359 if ((j
++%1024) == 0)
2366 while (num_accesses
< count
)
2369 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2370 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2372 for (i
= 1; i
<= thisrun_accesses
; i
++)
2376 arm7_9
->load_byte_reg(target
, i
);
2377 /* fast memory reads are only safe when the target is running
2378 * from a sufficiently high clock (32 kHz is usually too slow)
2380 if (arm7_9
->fast_memory_access
)
2381 retval
= arm7_9_execute_fast_sys_speed(target
);
2383 retval
= arm7_9_execute_sys_speed(target
);
2384 if (retval
!= ERROR_OK
)
2390 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 1);
2392 /* advance buffer, count number of accesses */
2393 buffer
+= thisrun_accesses
* 1;
2394 num_accesses
+= thisrun_accesses
;
2396 if ((j
++%1024) == 0)
2404 if (!is_arm_mode(armv4_5
->core_mode
))
2407 for (i
= 0; i
<= last_reg
; i
++) {
2408 struct reg
*r
= arm_reg_current(armv4_5
, i
);
2410 r
->dirty
= r
->valid
;
2413 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2414 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2416 LOG_ERROR("JTAG error while reading cpsr");
2417 return ERROR_TARGET_DATA_ABORT
;
2420 if (((cpsr
& 0x1f) == ARM_MODE_ABT
) && (armv4_5
->core_mode
!= ARM_MODE_ABT
))
2422 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")", address
, size
, count
);
2424 arm7_9
->write_xpsr_im8(target
,
2425 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2428 return ERROR_TARGET_DATA_ABORT
;
2434 int arm7_9_write_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
2436 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2437 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2438 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
2441 uint32_t num_accesses
= 0;
2442 int thisrun_accesses
;
2448 #ifdef _DEBUG_ARM7_9_
2449 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address
, size
, count
);
2452 if (target
->state
!= TARGET_HALTED
)
2454 LOG_WARNING("target not halted");
2455 return ERROR_TARGET_NOT_HALTED
;
2458 /* sanitize arguments */
2459 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2460 return ERROR_INVALID_ARGUMENTS
;
2462 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2463 return ERROR_TARGET_UNALIGNED_ACCESS
;
2465 /* load the base register with the address of the first word */
2467 arm7_9
->write_core_regs(target
, 0x1, reg
);
2469 /* Clear DBGACK, to make sure memory fetches work as expected */
2470 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
2471 embeddedice_store_reg(dbg_ctrl
);
2476 while (num_accesses
< count
)
2479 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2480 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2482 for (i
= 1; i
<= thisrun_accesses
; i
++)
2486 reg
[i
] = target_buffer_get_u32(target
, buffer
);
2490 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2492 arm7_9
->store_word_regs(target
, reg_list
);
2494 /* fast memory writes are only safe when the target is running
2495 * from a sufficiently high clock (32 kHz is usually too slow)
2497 if (arm7_9
->fast_memory_access
)
2498 retval
= arm7_9_execute_fast_sys_speed(target
);
2501 retval
= arm7_9_execute_sys_speed(target
);
2504 * if memory writes are made when the clock is running slow
2505 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2506 * processor operations after a "reset halt" or "reset init",
2507 * need to immediately stroke the keep alive or will end up with
2508 * gdb "keep alive not sent error message" problem.
2514 if (retval
!= ERROR_OK
)
2519 num_accesses
+= thisrun_accesses
;
2523 while (num_accesses
< count
)
2526 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2527 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2529 for (i
= 1; i
<= thisrun_accesses
; i
++)
2533 reg
[i
] = target_buffer_get_u16(target
, buffer
) & 0xffff;
2537 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2539 for (i
= 1; i
<= thisrun_accesses
; i
++)
2541 arm7_9
->store_hword_reg(target
, i
);
2543 /* fast memory writes are only safe when the target is running
2544 * from a sufficiently high clock (32 kHz is usually too slow)
2546 if (arm7_9
->fast_memory_access
)
2547 retval
= arm7_9_execute_fast_sys_speed(target
);
2550 retval
= arm7_9_execute_sys_speed(target
);
2553 * if memory writes are made when the clock is running slow
2554 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2555 * processor operations after a "reset halt" or "reset init",
2556 * need to immediately stroke the keep alive or will end up with
2557 * gdb "keep alive not sent error message" problem.
2563 if (retval
!= ERROR_OK
)
2569 num_accesses
+= thisrun_accesses
;
2573 while (num_accesses
< count
)
2576 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2577 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2579 for (i
= 1; i
<= thisrun_accesses
; i
++)
2583 reg
[i
] = *buffer
++ & 0xff;
2586 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2588 for (i
= 1; i
<= thisrun_accesses
; i
++)
2590 arm7_9
->store_byte_reg(target
, i
);
2591 /* fast memory writes are only safe when the target is running
2592 * from a sufficiently high clock (32 kHz is usually too slow)
2594 if (arm7_9
->fast_memory_access
)
2595 retval
= arm7_9_execute_fast_sys_speed(target
);
2598 retval
= arm7_9_execute_sys_speed(target
);
2601 * if memory writes are made when the clock is running slow
2602 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2603 * processor operations after a "reset halt" or "reset init",
2604 * need to immediately stroke the keep alive or will end up with
2605 * gdb "keep alive not sent error message" problem.
2611 if (retval
!= ERROR_OK
)
2618 num_accesses
+= thisrun_accesses
;
2624 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
2625 embeddedice_store_reg(dbg_ctrl
);
2627 if (!is_arm_mode(armv4_5
->core_mode
))
2630 for (i
= 0; i
<= last_reg
; i
++) {
2631 struct reg
*r
= arm_reg_current(armv4_5
, i
);
2633 r
->dirty
= r
->valid
;
2636 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2637 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2639 LOG_ERROR("JTAG error while reading cpsr");
2640 return ERROR_TARGET_DATA_ABORT
;
2643 if (((cpsr
& 0x1f) == ARM_MODE_ABT
) && (armv4_5
->core_mode
!= ARM_MODE_ABT
))
2645 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")", address
, size
, count
);
2647 arm7_9
->write_xpsr_im8(target
,
2648 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2651 return ERROR_TARGET_DATA_ABORT
;
2657 static int dcc_count
;
2658 static const uint8_t *dcc_buffer
;
2660 static int arm7_9_dcc_completion(struct target
*target
, uint32_t exit_point
, int timeout_ms
, void *arch_info
)
2662 int retval
= ERROR_OK
;
2663 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2665 if ((retval
= target_wait_state(target
, TARGET_DEBUG_RUNNING
, 500)) != ERROR_OK
)
2668 int little
= target
->endianness
== TARGET_LITTLE_ENDIAN
;
2669 int count
= dcc_count
;
2670 const uint8_t *buffer
= dcc_buffer
;
2673 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2674 * core function repeated. */
2675 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2678 struct embeddedice_reg
*ice_reg
= arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
].arch_info
;
2679 uint8_t reg_addr
= ice_reg
->addr
& 0x1f;
2680 struct jtag_tap
*tap
;
2681 tap
= ice_reg
->jtag_info
->tap
;
2683 embeddedice_write_dcc(tap
, reg_addr
, buffer
, little
, count
-2);
2684 buffer
+= (count
-2)*4;
2686 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2690 for (i
= 0; i
< count
; i
++)
2692 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2697 if ((retval
= target_halt(target
))!= ERROR_OK
)
2701 return target_wait_state(target
, TARGET_HALTED
, 500);
2704 static const uint32_t dcc_code
[] =
2706 /* r0 == input, points to memory buffer
2710 /* spin until DCC control (c0) reports data arrived */
2711 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2712 0xe3110001, /* tst r1, #1 */
2713 0x0afffffc, /* bne w */
2715 /* read word from DCC (c1), write to memory */
2716 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2717 0xe4801004, /* str r1, [r0], #4 */
2720 0xeafffff9 /* b w */
2723 int arm7_9_bulk_write_memory(struct target
*target
, uint32_t address
, uint32_t count
, const uint8_t *buffer
)
2726 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2729 if (!arm7_9
->dcc_downloads
)
2730 return target_write_memory(target
, address
, 4, count
, buffer
);
2732 /* regrab previously allocated working_area, or allocate a new one */
2733 if (!arm7_9
->dcc_working_area
)
2735 uint8_t dcc_code_buf
[6 * 4];
2737 /* make sure we have a working area */
2738 if (target_alloc_working_area(target
, 24, &arm7_9
->dcc_working_area
) != ERROR_OK
)
2740 LOG_INFO("no working area available, falling back to memory writes");
2741 return target_write_memory(target
, address
, 4, count
, buffer
);
2744 /* copy target instructions to target endianness */
2745 for (i
= 0; i
< 6; i
++)
2747 target_buffer_set_u32(target
, dcc_code_buf
+ i
*4, dcc_code
[i
]);
2750 /* write DCC code to working area */
2751 if ((retval
= target_write_memory(target
, arm7_9
->dcc_working_area
->address
, 4, 6, dcc_code_buf
)) != ERROR_OK
)
2757 struct arm_algorithm armv4_5_info
;
2758 struct reg_param reg_params
[1];
2760 armv4_5_info
.common_magic
= ARM_COMMON_MAGIC
;
2761 armv4_5_info
.core_mode
= ARM_MODE_SVC
;
2762 armv4_5_info
.core_state
= ARM_STATE_ARM
;
2764 init_reg_param(®_params
[0], "r0", 32, PARAM_IN_OUT
);
2766 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
2769 dcc_buffer
= buffer
;
2770 retval
= armv4_5_run_algorithm_inner(target
, 0, NULL
, 1, reg_params
,
2771 arm7_9
->dcc_working_area
->address
,
2772 arm7_9
->dcc_working_area
->address
+ 6*4,
2773 20*1000, &armv4_5_info
, arm7_9_dcc_completion
);
2775 if (retval
== ERROR_OK
)
2777 uint32_t endaddress
= buf_get_u32(reg_params
[0].value
, 0, 32);
2778 if (endaddress
!= (address
+ count
*4))
2780 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32
" got 0x%0" PRIx32
"", (address
+ count
*4), endaddress
);
2781 retval
= ERROR_FAIL
;
2785 destroy_reg_param(®_params
[0]);
2791 * Perform per-target setup that requires JTAG access.
2793 int arm7_9_examine(struct target
*target
)
2795 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2798 if (!target_was_examined(target
)) {
2799 struct reg_cache
*t
, **cache_p
;
2801 t
= embeddedice_build_reg_cache(target
, arm7_9
);
2805 cache_p
= register_get_last_cache_p(&target
->reg_cache
);
2807 arm7_9
->eice_cache
= (*cache_p
);
2809 if (arm7_9
->armv4_5_common
.etm
)
2810 (*cache_p
)->next
= etm_build_reg_cache(target
,
2812 arm7_9
->armv4_5_common
.etm
);
2814 target_set_examined(target
);
2817 retval
= embeddedice_setup(target
);
2818 if (retval
== ERROR_OK
)
2819 retval
= arm7_9_setup(target
);
2820 if (retval
== ERROR_OK
&& arm7_9
->armv4_5_common
.etm
)
2821 retval
= etm_setup(target
);
2826 int arm7_9_check_reset(struct target
*target
)
2828 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2830 if (get_target_reset_nag() && !arm7_9
->dcc_downloads
)
2832 LOG_WARNING("NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2835 if (get_target_reset_nag() && (target
->working_area_size
== 0))
2837 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2840 if (get_target_reset_nag() && !arm7_9
->fast_memory_access
)
2842 LOG_WARNING("NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2848 COMMAND_HANDLER(handle_arm7_9_dbgrq_command
)
2850 struct target
*target
= get_current_target(CMD_CTX
);
2851 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2853 if (!is_arm7_9(arm7_9
))
2855 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2856 return ERROR_TARGET_INVALID
;
2860 COMMAND_PARSE_ENABLE(CMD_ARGV
[0],arm7_9
->use_dbgrq
);
2862 command_print(CMD_CTX
, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9
->use_dbgrq
) ? "enabled" : "disabled");
2867 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command
)
2869 struct target
*target
= get_current_target(CMD_CTX
);
2870 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2872 if (!is_arm7_9(arm7_9
))
2874 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2875 return ERROR_TARGET_INVALID
;
2879 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->fast_memory_access
);
2881 command_print(CMD_CTX
, "fast memory access is %s", (arm7_9
->fast_memory_access
) ? "enabled" : "disabled");
2886 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command
)
2888 struct target
*target
= get_current_target(CMD_CTX
);
2889 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2891 if (!is_arm7_9(arm7_9
))
2893 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2894 return ERROR_TARGET_INVALID
;
2898 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->dcc_downloads
);
2900 command_print(CMD_CTX
, "dcc downloads are %s", (arm7_9
->dcc_downloads
) ? "enabled" : "disabled");
2905 static int arm7_9_setup_semihosting(struct target
*target
, int enable
)
2907 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2909 if (!is_arm7_9(arm7_9
))
2911 LOG_USER("current target isn't an ARM7/ARM9 target");
2912 return ERROR_TARGET_INVALID
;
2915 if (arm7_9
->has_vector_catch
) {
2916 struct reg
*vector_catch
= &arm7_9
->eice_cache
2917 ->reg_list
[EICE_VEC_CATCH
];
2919 if (!vector_catch
->valid
)
2920 embeddedice_read_reg(vector_catch
);
2921 buf_set_u32(vector_catch
->value
, 2, 1, enable
);
2922 embeddedice_store_reg(vector_catch
);
2924 /* TODO: allow optional high vectors and/or BKPT_HARD */
2926 breakpoint_add(target
, 8, 4, BKPT_SOFT
);
2928 breakpoint_remove(target
, 8);
2934 int arm7_9_init_arch_info(struct target
*target
, struct arm7_9_common
*arm7_9
)
2936 int retval
= ERROR_OK
;
2937 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2939 arm7_9
->common_magic
= ARM7_9_COMMON_MAGIC
;
2941 if ((retval
= arm_jtag_setup_connection(&arm7_9
->jtag_info
)) != ERROR_OK
)
2944 /* caller must have allocated via calloc(), so everything's zeroed */
2946 arm7_9
->wp_available_max
= 2;
2948 arm7_9
->fast_memory_access
= false;
2949 arm7_9
->dcc_downloads
= false;
2951 armv4_5
->arch_info
= arm7_9
;
2952 armv4_5
->read_core_reg
= arm7_9_read_core_reg
;
2953 armv4_5
->write_core_reg
= arm7_9_write_core_reg
;
2954 armv4_5
->full_context
= arm7_9_full_context
;
2955 armv4_5
->setup_semihosting
= arm7_9_setup_semihosting
;
2957 retval
= arm_init_arch_info(target
, armv4_5
);
2958 if (retval
!= ERROR_OK
)
2961 return target_register_timer_callback(arm7_9_handle_target_request
,
2965 static const struct command_registration arm7_9_any_command_handlers
[] = {
2968 .handler
= handle_arm7_9_dbgrq_command
,
2969 .mode
= COMMAND_ANY
,
2970 .usage
= "['enable'|'disable']",
2971 .help
= "use EmbeddedICE dbgrq instead of breakpoint "
2972 "for target halt requests",
2975 "fast_memory_access",
2976 .handler
= handle_arm7_9_fast_memory_access_command
,
2977 .mode
= COMMAND_ANY
,
2978 .usage
= "['enable'|'disable']",
2979 .help
= "use fast memory accesses instead of slower "
2980 "but potentially safer accesses",
2984 .handler
= handle_arm7_9_dcc_downloads_command
,
2985 .mode
= COMMAND_ANY
,
2986 .usage
= "['enable'|'disable']",
2987 .help
= "use DCC downloads for larger memory writes",
2989 COMMAND_REGISTRATION_DONE
2991 const struct command_registration arm7_9_command_handlers
[] = {
2993 .chain
= arm_command_handlers
,
2996 .chain
= etm_command_handlers
,
3000 .mode
= COMMAND_ANY
,
3001 .help
= "arm7/9 specific commands",
3002 .chain
= arm7_9_any_command_handlers
,
3004 COMMAND_REGISTRATION_DONE