types: write memory now uses const
[openocd/cederom.git] / src / jtag / zy1000 / zy1000.c
blob8c3766656aaa222075be9611d903856c97b4fd8d
1 /***************************************************************************
2 * Copyright (C) 2007-2010 by Øyvind Harboe *
3 * *
4 * This program is free software; you can redistribute it and/or modify *
5 * it under the terms of the GNU General Public License as published by *
6 * the Free Software Foundation; either version 2 of the License, or *
7 * (at your option) any later version. *
8 * *
9 * This program is distributed in the hope that it will be useful, *
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
12 * GNU General Public License for more details. *
13 * *
14 * You should have received a copy of the GNU General Public License *
15 * along with this program; if not, write to the *
16 * Free Software Foundation, Inc., *
17 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
18 ***************************************************************************/
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
22 * The zy1000 is a standalone debugger that has a web interface and
23 * requires no drivers on the developer host as all communication
24 * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25 * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26 * accelerate the JTAG commands, while offering *very* low latency
27 * between OpenOCD and the FPGA registers.
29 * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30 * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31 * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
33 * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34 * revb is using ARM7 + Xilinx.
36 * See Zylin web pages or contact Zylin for more information.
38 * The reason this code is in OpenOCD rather than OpenOCD linked with the
39 * ZY1000 code is that OpenOCD is the long road towards getting
40 * libopenocd into place. libopenocd will support both low performance,
41 * low latency systems(embedded) and high performance high latency
42 * systems(PCs).
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
48 #include <pthread.h>
50 #include <target/embeddedice.h>
51 #include <jtag/minidriver.h>
52 #include <jtag/interface.h>
53 #include <time.h>
54 #include <helper/time_support.h>
56 #include <netinet/tcp.h>
58 #if BUILD_ECOSBOARD
59 #include "zy1000_version.h"
61 #include <cyg/hal/hal_io.h> // low level i/o
62 #include <cyg/hal/hal_diag.h>
64 #ifdef CYGPKG_HAL_NIOS2
65 #include <cyg/hal/io.h>
66 #include <cyg/firmwareutil/firmwareutil.h>
67 #define ZYLIN_KHZ 60000
68 #else
69 #define ZYLIN_KHZ 64000
70 #endif
72 #define ZYLIN_VERSION GIT_ZY1000_VERSION
73 #define ZYLIN_DATE __DATE__
74 #define ZYLIN_TIME __TIME__
75 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
76 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
78 #else
79 /* Assume we're connecting to a revc w/60MHz clock. */
80 #define ZYLIN_KHZ 60000
81 #endif
84 /* The software needs to check if it's in RCLK mode or not */
85 static bool zy1000_rclk = false;
87 static int zy1000_khz(int khz, int *jtag_speed)
89 if (khz == 0)
91 *jtag_speed = 0;
93 else
95 int speed;
96 /* Round speed up to nearest divisor.
98 * E.g. 16000kHz
99 * (64000 + 15999) / 16000 = 4
100 * (4 + 1) / 2 = 2
101 * 2 * 2 = 4
103 * 64000 / 4 = 16000
105 * E.g. 15999
106 * (64000 + 15998) / 15999 = 5
107 * (5 + 1) / 2 = 3
108 * 3 * 2 = 6
110 * 64000 / 6 = 10666
113 speed = (ZYLIN_KHZ + (khz -1)) / khz;
114 speed = (speed + 1 ) / 2;
115 speed *= 2;
116 if (speed > 8190)
118 /* maximum dividend */
119 speed = 8190;
121 *jtag_speed = speed;
123 return ERROR_OK;
126 static int zy1000_speed_div(int speed, int *khz)
128 if (speed == 0)
130 *khz = 0;
132 else
134 *khz = ZYLIN_KHZ / speed;
137 return ERROR_OK;
140 static bool readPowerDropout(void)
142 uint32_t state;
143 // sample and clear power dropout
144 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
145 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
146 bool powerDropout;
147 powerDropout = (state & 0x80) != 0;
148 return powerDropout;
152 static bool readSRST(void)
154 uint32_t state;
155 // sample and clear SRST sensing
156 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
157 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
158 bool srstAsserted;
159 srstAsserted = (state & 0x40) != 0;
160 return srstAsserted;
163 static int zy1000_srst_asserted(int *srst_asserted)
165 *srst_asserted = readSRST();
166 return ERROR_OK;
169 static int zy1000_power_dropout(int *dropout)
171 *dropout = readPowerDropout();
172 return ERROR_OK;
175 /* Wait for SRST to assert or deassert */
176 static void waitSRST(bool asserted)
178 bool first = true;
179 long long start = 0;
180 long total = 0;
181 const char *mode = asserted ? "assert" : "deassert";
183 for (;;)
185 bool srstAsserted = readSRST();
186 if ( (asserted && srstAsserted) || (!asserted && !srstAsserted) )
188 if (total > 1)
190 LOG_USER("SRST took %dms to %s", (int)total, mode);
192 break;
195 if (first)
197 first = false;
198 start = timeval_ms();
201 total = timeval_ms() - start;
203 keep_alive();
205 if (total > 5000)
207 LOG_ERROR("SRST took too long to %s: %dms", mode, (int)total);
208 break;
214 void zy1000_reset(int trst, int srst)
216 LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
218 /* flush the JTAG FIFO. Not flushing the queue before messing with
219 * reset has such interesting bugs as causing hard to reproduce
220 * RCLK bugs as RCLK will stop responding when TRST is asserted
222 waitIdle();
224 if (!srst)
226 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
228 else
230 /* Danger!!! if clk != 0 when in
231 * idle in TAP_IDLE, reset halt on str912 will fail.
233 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
235 waitSRST(true);
238 if (!trst)
240 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
242 else
244 /* assert reset */
245 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
248 if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
250 /* we're now in the RESET state until trst is deasserted */
251 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
252 } else
254 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
255 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
258 /* wait for srst to float back up */
259 if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
260 (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
262 waitSRST(false);
266 int zy1000_speed(int speed)
268 /* flush JTAG master FIFO before setting speed */
269 waitIdle();
271 zy1000_rclk = false;
273 if (speed == 0)
275 /*0 means RCLK*/
276 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
277 zy1000_rclk = true;
278 LOG_DEBUG("jtag_speed using RCLK");
280 else
282 if (speed > 8190 || speed < 2)
284 LOG_USER("valid ZY1000 jtag_speed=[8190,2]. With divisor is %dkHz / even values between 8190-2, i.e. min %dHz, max %dMHz",
285 ZYLIN_KHZ, (ZYLIN_KHZ * 1000) / 8190, ZYLIN_KHZ / (2 * 1000));
286 return ERROR_INVALID_ARGUMENTS;
289 int khz;
290 speed &= ~1;
291 zy1000_speed_div(speed, &khz);
292 LOG_USER("jtag_speed %d => JTAG clk=%d kHz", speed, khz);
293 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
294 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed);
296 return ERROR_OK;
299 static bool savePower;
302 static void setPower(bool power)
304 savePower = power;
305 if (power)
307 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
308 } else
310 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
314 COMMAND_HANDLER(handle_power_command)
316 switch (CMD_ARGC)
318 case 1: {
319 bool enable;
320 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
321 setPower(enable);
322 // fall through
324 case 0:
325 LOG_INFO("Target power %s", savePower ? "on" : "off");
326 break;
327 default:
328 return ERROR_INVALID_ARGUMENTS;
331 return ERROR_OK;
334 #if !BUILD_ZY1000_MASTER
335 static char *tcp_server = "notspecified";
336 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
338 if (argc != 2)
339 return JIM_ERR;
341 tcp_server = strdup(Jim_GetString(argv[1], NULL));
343 return JIM_OK;
345 #endif
347 #if BUILD_ECOSBOARD
348 /* Give TELNET a way to find out what version this is */
349 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
351 if ((argc < 1) || (argc > 3))
352 return JIM_ERR;
353 const char *version_str = NULL;
355 if (argc == 1)
357 version_str = ZYLIN_OPENOCD_VERSION;
358 } else
360 const char *str = Jim_GetString(argv[1], NULL);
361 const char *str2 = NULL;
362 if (argc > 2)
363 str2 = Jim_GetString(argv[2], NULL);
364 if (strcmp("openocd", str) == 0)
366 version_str = ZYLIN_OPENOCD;
368 else if (strcmp("zy1000", str) == 0)
370 version_str = ZYLIN_VERSION;
372 else if (strcmp("date", str) == 0)
374 version_str = ZYLIN_DATE;
376 else if (strcmp("time", str) == 0)
378 version_str = ZYLIN_TIME;
380 else if (strcmp("pcb", str) == 0)
382 #ifdef CYGPKG_HAL_NIOS2
383 version_str="c";
384 #else
385 version_str="b";
386 #endif
388 #ifdef CYGPKG_HAL_NIOS2
389 else if (strcmp("fpga", str) == 0)
392 /* return a list of 32 bit integers to describe the expected
393 * and actual FPGA
395 static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
396 uint32_t id, timestamp;
397 HAL_READ_UINT32(SYSID_BASE, id);
398 HAL_READ_UINT32(SYSID_BASE+4, timestamp);
399 sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
400 version_str = fpga_id;
401 if ((argc>2) && (strcmp("time", str2) == 0))
403 time_t last_mod = timestamp;
404 char * t = ctime (&last_mod) ;
405 t[strlen(t)-1] = 0;
406 version_str = t;
409 #endif
411 else
413 return JIM_ERR;
417 Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
419 return JIM_OK;
421 #endif
423 #ifdef CYGPKG_HAL_NIOS2
426 struct info_forward
428 void *data;
429 struct cyg_upgrade_info *upgraded_file;
432 static void report_info(void *data, const char * format, va_list args)
434 char *s = alloc_vprintf(format, args);
435 LOG_USER_N("%s", s);
436 free(s);
439 struct cyg_upgrade_info firmware_info =
441 (uint8_t *)0x84000000,
442 "/ram/firmware.phi",
443 "Firmware",
444 0x0300000,
445 0x1f00000 -
446 0x0300000,
447 "ZylinNiosFirmware\n",
448 report_info,
451 // File written to /ram/firmware.phi before arriving at this fn
452 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
454 if (argc != 1)
455 return JIM_ERR;
457 if (!cyg_firmware_upgrade(NULL, firmware_info))
458 return JIM_ERR;
460 return JIM_OK;
462 #endif
464 static int
465 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
466 int argc,
467 Jim_Obj * const *argv)
469 if (argc != 1)
471 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
472 return JIM_ERR;
475 bool dropout = readPowerDropout();
477 Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
479 return JIM_OK;
484 int zy1000_quit(void)
487 return ERROR_OK;
492 int interface_jtag_execute_queue(void)
494 uint32_t empty;
496 waitIdle();
498 /* We must make sure to write data read back to memory location before we return
499 * from this fn
501 zy1000_flush_readqueue();
503 /* and handle any callbacks... */
504 zy1000_flush_callbackqueue();
506 if (zy1000_rclk)
508 /* Only check for errors when using RCLK to speed up
509 * jtag over TCP/IP
511 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
512 /* clear JTAG error register */
513 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
515 if ((empty&0x400) != 0)
517 LOG_WARNING("RCLK timeout");
518 /* the error is informative only as we don't want to break the firmware if there
519 * is a false positive.
521 // return ERROR_FAIL;
524 return ERROR_OK;
530 static void writeShiftValue(uint8_t *data, int bits);
532 // here we shuffle N bits out/in
533 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause_now, tap_state_t shiftState, tap_state_t end_state)
535 tap_state_t pause_state = shiftState;
536 for (int j = 0; j < num_bits; j += 32)
538 int k = num_bits - j;
539 if (k > 32)
541 k = 32;
542 /* we have more to shift out */
543 } else if (pause_now)
545 /* this was the last to shift out this time */
546 pause_state = end_state;
549 // we have (num_bits + 7)/8 bytes of bits to toggle out.
550 // bits are pushed out LSB to MSB
551 uint32_t value;
552 value = 0;
553 if (out_value != NULL)
555 for (int l = 0; l < k; l += 8)
557 value|=out_value[(j + l)/8]<<l;
560 /* mask away unused bits for easier debugging */
561 if (k < 32)
563 value&=~(((uint32_t)0xffffffff) << k);
564 } else
566 /* Shifting by >= 32 is not defined by the C standard
567 * and will in fact shift by &0x1f bits on nios */
570 shiftValueInner(shiftState, pause_state, k, value);
572 if (in_value != NULL)
574 writeShiftValue(in_value + (j/8), k);
579 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
581 for (int i = 0; i < num_fields; i++)
583 scanBits(fields[i].out_value,
584 fields[i].in_value,
585 fields[i].num_bits,
586 (i == num_fields-1),
587 shiftState,
588 end_state);
592 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
594 int scan_size = 0;
595 struct jtag_tap *tap, *nextTap;
596 tap_state_t pause_state = TAP_IRSHIFT;
598 for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
600 nextTap = jtag_tap_next_enabled(tap);
601 if (nextTap==NULL)
603 pause_state = state;
605 scan_size = tap->ir_length;
607 /* search the list */
608 if (tap == active)
610 scanFields(1, fields, TAP_IRSHIFT, pause_state);
611 /* update device information */
612 buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
614 tap->bypass = 0;
615 } else
617 /* if a device isn't listed, set it to BYPASS */
618 assert(scan_size <= 32);
619 shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
621 /* Optimization code will check what the cur_instr is set to, so
622 * we must set it to bypass value.
624 buf_set_ones(tap->cur_instr, tap->ir_length);
626 tap->bypass = 1;
630 return ERROR_OK;
637 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
639 scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
640 return ERROR_OK;
643 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
645 struct jtag_tap *tap, *nextTap;
646 tap_state_t pause_state = TAP_DRSHIFT;
647 for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
649 nextTap = jtag_tap_next_enabled(tap);
650 if (nextTap==NULL)
652 pause_state = state;
655 /* Find a range of fields to write to this tap */
656 if (tap == active)
658 assert(!tap->bypass);
660 scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
661 } else
663 /* Shift out a 0 for disabled tap's */
664 assert(tap->bypass);
665 shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
668 return ERROR_OK;
671 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
673 scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
674 return ERROR_OK;
677 int interface_jtag_add_tlr()
679 setCurrentState(TAP_RESET);
680 return ERROR_OK;
684 int interface_jtag_add_reset(int req_trst, int req_srst)
686 zy1000_reset(req_trst, req_srst);
687 return ERROR_OK;
690 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
692 /* num_cycles can be 0 */
693 setCurrentState(clockstate);
695 /* execute num_cycles, 32 at the time. */
696 int i;
697 for (i = 0; i < num_cycles; i += 32)
699 int num;
700 num = 32;
701 if (num_cycles-i < num)
703 num = num_cycles-i;
705 shiftValueInner(clockstate, clockstate, num, 0);
708 #if !TEST_MANUAL()
709 /* finish in end_state */
710 setCurrentState(state);
711 #else
712 tap_state_t t = TAP_IDLE;
713 /* test manual drive code on any target */
714 int tms;
715 uint8_t tms_scan = tap_get_tms_path(t, state);
716 int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
718 for (i = 0; i < tms_count; i++)
720 tms = (tms_scan >> i) & 1;
721 waitIdle();
722 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
724 waitIdle();
725 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
726 #endif
728 return ERROR_OK;
731 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
733 return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
736 int interface_jtag_add_clocks(int num_cycles)
738 return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
741 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
743 /*wait for the fifo to be empty*/
744 waitIdle();
746 for (unsigned i = 0; i < num_bits; i++)
748 int tms;
750 if (((seq[i/8] >> (i % 8)) & 1) == 0)
752 tms = 0;
754 else
756 tms = 1;
759 waitIdle();
760 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
763 waitIdle();
764 if (state != TAP_INVALID)
766 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
767 } else
769 /* this would be normal if we are switching to SWD mode */
771 return ERROR_OK;
774 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
776 int state_count;
777 int tms = 0;
779 state_count = 0;
781 tap_state_t cur_state = cmd_queue_cur_state;
783 uint8_t seq[16];
784 memset(seq, 0, sizeof(seq));
785 assert(num_states < (int)((sizeof(seq) * 8)));
787 while (num_states)
789 if (tap_state_transition(cur_state, false) == path[state_count])
791 tms = 0;
793 else if (tap_state_transition(cur_state, true) == path[state_count])
795 tms = 1;
797 else
799 LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
800 exit(-1);
803 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
805 cur_state = path[state_count];
806 state_count++;
807 num_states--;
810 return interface_add_tms_seq(state_count, seq, cur_state);
813 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
815 /* bypass bits before and after */
816 int pre_bits = 0;
817 int post_bits = 0;
819 bool found = false;
820 struct jtag_tap *cur_tap, *nextTap;
821 for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
823 nextTap = jtag_tap_next_enabled(cur_tap);
824 if (cur_tap == tap)
826 found = true;
827 } else
829 if (found)
831 post_bits++;
832 } else
834 pre_bits++;
838 *pre = pre_bits;
839 *post = post_bits;
843 static const int embeddedice_num_bits[] = {32, 6};
844 uint32_t values[2];
846 values[0] = value;
847 values[1] = (1 << 5) | reg_addr;
849 jtag_add_dr_out(tap,
851 embeddedice_num_bits,
852 values,
853 TAP_IDLE);
856 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, const uint8_t *buffer, int little, int count)
858 #if 0
859 int i;
860 for (i = 0; i < count; i++)
862 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
863 buffer += 4;
865 #else
866 int pre_bits;
867 int post_bits;
868 jtag_pre_post_bits(tap, &pre_bits, &post_bits);
870 if ((pre_bits > 32) || (post_bits + 6 > 32))
872 int i;
873 for (i = 0; i < count; i++)
875 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
876 buffer += 4;
878 } else
880 int i;
881 for (i = 0; i < count; i++)
883 /* Fewer pokes means we get to use the FIFO more efficiently */
884 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
885 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
886 /* Danger! here we need to exit into the TAP_IDLE state to make
887 * DCC pick up this value.
889 shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
890 buffer += 4;
893 #endif
898 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, const uint32_t * data, size_t count)
900 /* bypass bits before and after */
901 int pre_bits;
902 int post_bits;
903 jtag_pre_post_bits(tap, &pre_bits, &post_bits);
904 post_bits+=2;
906 if ((pre_bits > 32) || (post_bits > 32))
908 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap *, uint32_t, const uint32_t *, size_t);
909 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
910 } else
912 static const int bits[] = {32, 2};
913 uint32_t values[] = {0, 0};
915 /* FIX!!!!!! the target_write_memory() API started this nasty problem
916 * with unaligned uint32_t * pointers... */
917 const uint8_t *t = (const uint8_t *)data;
919 while (--count > 0)
921 #if 1
922 /* Danger! This code doesn't update cmd_queue_cur_state, so
923 * invoking jtag_add_pathmove() before jtag_add_dr_out() after
924 * this loop would fail!
926 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
928 uint32_t value;
929 value = *t++;
930 value |= (*t++<<8);
931 value |= (*t++<<16);
932 value |= (*t++<<24);
934 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
935 /* minimum 2 bits */
936 shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
938 /* copy & paste from arm11_dbgtap.c */
939 //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
940 /* KLUDGE! we have to flush the fifo or the Nios CPU locks up.
941 * This is probably a bug in the Avalon bus(cross clocking bridge?)
942 * or in the jtag registers module.
944 waitIdle();
945 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
946 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
947 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
948 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
949 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
950 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
951 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
952 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
953 /* we don't have to wait for the queue to empty here */
954 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
955 waitIdle();
956 #else
957 static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
959 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
962 values[0] = *t++;
963 values[0] |= (*t++<<8);
964 values[0] |= (*t++<<16);
965 values[0] |= (*t++<<24);
967 jtag_add_dr_out(tap,
969 bits,
970 values,
971 TAP_IDLE);
973 jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
974 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
975 #endif
978 values[0] = *t++;
979 values[0] |= (*t++<<8);
980 values[0] |= (*t++<<16);
981 values[0] |= (*t++<<24);
983 /* This will happen on the last iteration updating cmd_queue_cur_state
984 * so we don't have to track it during the common code path
986 jtag_add_dr_out(tap,
988 bits,
989 values,
990 TAP_IDLE);
992 return jtag_execute_queue();
997 static const struct command_registration zy1000_commands[] = {
999 .name = "power",
1000 .handler = handle_power_command,
1001 .mode = COMMAND_ANY,
1002 .help = "Turn power switch to target on/off. "
1003 "With no arguments, prints status.",
1004 .usage = "('on'|'off)",
1006 #if BUILD_ZY1000_MASTER
1007 #if BUILD_ECOSBOARD
1009 .name = "zy1000_version",
1010 .mode = COMMAND_ANY,
1011 .jim_handler = jim_zy1000_version,
1012 .help = "Print version info for zy1000.",
1013 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
1015 #endif
1016 #else
1018 .name = "zy1000_server",
1019 .mode = COMMAND_ANY,
1020 .jim_handler = jim_zy1000_server,
1021 .help = "Tcpip address for ZY1000 server.",
1022 .usage = "address",
1024 #endif
1026 .name = "powerstatus",
1027 .mode = COMMAND_ANY,
1028 .jim_handler = zylinjtag_Jim_Command_powerstatus,
1029 .help = "Returns power status of target",
1031 #ifdef CYGPKG_HAL_NIOS2
1033 .name = "updatezy1000firmware",
1034 .mode = COMMAND_ANY,
1035 .jim_handler = jim_zy1000_writefirmware,
1036 .help = "writes firmware to flash",
1037 /* .usage = "some_string", */
1039 #endif
1040 COMMAND_REGISTRATION_DONE
1044 #if !BUILD_ZY1000_MASTER
1046 static int tcp_ip = -1;
1048 /* Write large packets if we can */
1049 static size_t out_pos;
1050 static uint8_t out_buffer[16384];
1051 static size_t in_pos;
1052 static size_t in_write;
1053 static uint8_t in_buffer[16384];
1055 static bool flush_writes(void)
1057 bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
1058 out_pos = 0;
1059 return ok;
1062 static bool writeLong(uint32_t l)
1064 int i;
1065 for (i = 0; i < 4; i++)
1067 uint8_t c = (l >> (i*8))&0xff;
1068 out_buffer[out_pos++] = c;
1069 if (out_pos >= sizeof(out_buffer))
1071 if (!flush_writes())
1073 return false;
1077 return true;
1080 static bool readLong(uint32_t *out_data)
1082 uint32_t data = 0;
1083 int i;
1084 for (i = 0; i < 4; i++)
1086 uint8_t c;
1087 if (in_pos == in_write)
1089 /* If we have some data that we can send, send them before
1090 * we wait for more data
1092 if (out_pos > 0)
1094 if (!flush_writes())
1096 return false;
1100 /* read more */
1101 int t;
1102 t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1103 if (t < 1)
1105 return false;
1107 in_write = (size_t) t;
1108 in_pos = 0;
1110 c = in_buffer[in_pos++];
1112 data |= (c << (i*8));
1114 *out_data = data;
1115 return true;
1118 enum ZY1000_CMD
1120 ZY1000_CMD_POKE = 0x0,
1121 ZY1000_CMD_PEEK = 0x8,
1122 ZY1000_CMD_SLEEP = 0x1,
1123 ZY1000_CMD_WAITIDLE = 2
1126 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1127 #include <arpa/inet.h> /* for sockaddr_in and inet_addr() */
1129 /* We initialize this late since we need to know the server address
1130 * first.
1132 static void tcpip_open(void)
1134 if (tcp_ip >= 0)
1135 return;
1137 struct sockaddr_in echoServAddr; /* Echo server address */
1139 /* Create a reliable, stream socket using TCP */
1140 if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1142 fprintf(stderr, "Failed to connect to zy1000 server\n");
1143 exit(-1);
1146 /* Construct the server address structure */
1147 memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1148 echoServAddr.sin_family = AF_INET; /* Internet address family */
1149 echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1150 echoServAddr.sin_port = htons(7777); /* Server port */
1152 /* Establish the connection to the echo server */
1153 if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1155 fprintf(stderr, "Failed to connect to zy1000 server\n");
1156 exit(-1);
1159 int flag = 1;
1160 setsockopt(tcp_ip, /* socket affected */
1161 IPPROTO_TCP, /* set option at TCP level */
1162 TCP_NODELAY, /* name of option */
1163 (char *)&flag, /* the cast is historical cruft */
1164 sizeof(int)); /* length of option value */
1169 /* send a poke */
1170 void zy1000_tcpout(uint32_t address, uint32_t data)
1172 tcpip_open();
1173 if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1174 !writeLong(data))
1176 fprintf(stderr, "Could not write to zy1000 server\n");
1177 exit(-1);
1181 /* By sending the wait to the server, we avoid a readback
1182 * of status. Radically improves performance for this operation
1183 * with long ping times.
1185 void waitIdle(void)
1187 tcpip_open();
1188 if (!writeLong((ZY1000_CMD_WAITIDLE << 24)))
1190 fprintf(stderr, "Could not write to zy1000 server\n");
1191 exit(-1);
1195 uint32_t zy1000_tcpin(uint32_t address)
1197 tcpip_open();
1199 zy1000_flush_readqueue();
1201 uint32_t data;
1202 if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1203 !readLong(&data))
1205 fprintf(stderr, "Could not read from zy1000 server\n");
1206 exit(-1);
1208 return data;
1211 int interface_jtag_add_sleep(uint32_t us)
1213 tcpip_open();
1214 if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1215 !writeLong(us))
1217 fprintf(stderr, "Could not read from zy1000 server\n");
1218 exit(-1);
1220 return ERROR_OK;
1223 /* queue a readback */
1224 #define readqueue_size 16384
1225 static struct
1227 uint8_t *dest;
1228 int bits;
1229 } readqueue[readqueue_size];
1231 static int readqueue_pos = 0;
1233 /* flush the readqueue, this means reading any data that
1234 * we're expecting and store them into the final position
1236 void zy1000_flush_readqueue(void)
1238 if (readqueue_pos == 0)
1240 /* simply debugging by allowing easy breakpoints when there
1241 * is something to do. */
1242 return;
1244 int i;
1245 tcpip_open();
1246 for (i = 0; i < readqueue_pos; i++)
1248 uint32_t value;
1249 if (!readLong(&value))
1251 fprintf(stderr, "Could not read from zy1000 server\n");
1252 exit(-1);
1255 uint8_t *in_value = readqueue[i].dest;
1256 int k = readqueue[i].bits;
1258 // we're shifting in data to MSB, shift data to be aligned for returning the value
1259 value >>= 32-k;
1261 for (int l = 0; l < k; l += 8)
1263 in_value[l/8]=(value >> l)&0xff;
1266 readqueue_pos = 0;
1269 /* By queuing the callback's we avoid flushing the
1270 read queue until jtag_execute_queue(). This can
1271 reduce latency dramatically for cases where
1272 callbacks are used extensively.
1274 #define callbackqueue_size 128
1275 static struct callbackentry
1277 jtag_callback_t callback;
1278 jtag_callback_data_t data0;
1279 jtag_callback_data_t data1;
1280 jtag_callback_data_t data2;
1281 jtag_callback_data_t data3;
1282 } callbackqueue[callbackqueue_size];
1284 static int callbackqueue_pos = 0;
1286 void zy1000_jtag_add_callback4(jtag_callback_t callback, jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1288 if (callbackqueue_pos >= callbackqueue_size)
1290 zy1000_flush_callbackqueue();
1293 callbackqueue[callbackqueue_pos].callback = callback;
1294 callbackqueue[callbackqueue_pos].data0 = data0;
1295 callbackqueue[callbackqueue_pos].data1 = data1;
1296 callbackqueue[callbackqueue_pos].data2 = data2;
1297 callbackqueue[callbackqueue_pos].data3 = data3;
1298 callbackqueue_pos++;
1301 static int zy1000_jtag_convert_to_callback4(jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1303 ((jtag_callback1_t)data1)(data0);
1304 return ERROR_OK;
1307 void zy1000_jtag_add_callback(jtag_callback1_t callback, jtag_callback_data_t data0)
1309 zy1000_jtag_add_callback4(zy1000_jtag_convert_to_callback4, data0, (jtag_callback_data_t)callback, 0, 0);
1312 void zy1000_flush_callbackqueue(void)
1314 /* we have to flush the read queue so we have access to
1315 the data the callbacks will use
1317 zy1000_flush_readqueue();
1318 int i;
1319 for (i = 0; i < callbackqueue_pos; i++)
1321 struct callbackentry *entry = &callbackqueue[i];
1322 jtag_set_error(entry->callback(entry->data0, entry->data1, entry->data2, entry->data3));
1324 callbackqueue_pos = 0;
1327 static void writeShiftValue(uint8_t *data, int bits)
1329 waitIdle();
1331 if (!writeLong((ZY1000_CMD_PEEK << 24) | (ZY1000_JTAG_BASE + 0xc)))
1333 fprintf(stderr, "Could not read from zy1000 server\n");
1334 exit(-1);
1337 if (readqueue_pos >= readqueue_size)
1339 zy1000_flush_readqueue();
1342 readqueue[readqueue_pos].dest = data;
1343 readqueue[readqueue_pos].bits = bits;
1344 readqueue_pos++;
1347 #else
1349 static void writeShiftValue(uint8_t *data, int bits)
1351 uint32_t value;
1352 waitIdle();
1353 ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
1354 VERBOSE(LOG_INFO("getShiftValue %08x", value));
1356 // data in, LSB to MSB
1357 // we're shifting in data to MSB, shift data to be aligned for returning the value
1358 value >>= 32 - bits;
1360 for (int l = 0; l < bits; l += 8)
1362 data[l/8]=(value >> l)&0xff;
1366 #endif
1368 #if BUILD_ZY1000_MASTER
1370 #if BUILD_ECOSBOARD
1371 static char watchdog_stack[2048];
1372 static cyg_thread watchdog_thread_object;
1373 static cyg_handle_t watchdog_thread_handle;
1374 #endif
1376 #ifdef WATCHDOG_BASE
1377 /* If we connect to port 8888 we must send a char every 10s or the board resets itself */
1378 static void watchdog_server(cyg_addrword_t data)
1380 int so_reuseaddr_option = 1;
1382 int fd;
1383 if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1385 LOG_ERROR("error creating socket: %s", strerror(errno));
1386 exit(-1);
1389 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1390 sizeof(int));
1392 struct sockaddr_in sin;
1393 unsigned int address_size;
1394 address_size = sizeof(sin);
1395 memset(&sin, 0, sizeof(sin));
1396 sin.sin_family = AF_INET;
1397 sin.sin_addr.s_addr = INADDR_ANY;
1398 sin.sin_port = htons(8888);
1400 if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1402 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1403 exit(-1);
1406 if (listen(fd, 1) == -1)
1408 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1409 exit(-1);
1413 for (;;)
1415 int watchdog_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1417 /* Start watchdog, must be reset every 10 seconds. */
1418 HAL_WRITE_UINT32(WATCHDOG_BASE + 4, 4);
1420 if (watchdog_ip < 0)
1422 LOG_ERROR("couldn't open watchdog socket: %s", strerror(errno));
1423 exit(-1);
1426 int flag = 1;
1427 setsockopt(watchdog_ip, /* socket affected */
1428 IPPROTO_TCP, /* set option at TCP level */
1429 TCP_NODELAY, /* name of option */
1430 (char *)&flag, /* the cast is historical cruft */
1431 sizeof(int)); /* length of option value */
1434 char buf;
1435 for (;;)
1437 if (read(watchdog_ip, &buf, 1) == 1)
1439 /* Reset timer */
1440 HAL_WRITE_UINT32(WATCHDOG_BASE + 8, 0x1234);
1441 /* Echo so we can telnet in and see that resetting works */
1442 write(watchdog_ip, &buf, 1);
1443 } else
1445 /* Stop tickling the watchdog, the CPU will reset in < 10 seconds
1446 * now.
1448 return;
1453 /* Never reached */
1456 #endif
1458 #endif
1460 #if BUILD_ZY1000_MASTER
1461 int interface_jtag_add_sleep(uint32_t us)
1463 jtag_sleep(us);
1464 return ERROR_OK;
1466 #endif
1468 #if BUILD_ZY1000_MASTER && !BUILD_ECOSBOARD
1469 volatile void *zy1000_jtag_master;
1470 #include <sys/mman.h>
1471 #endif
1473 int zy1000_init(void)
1475 #if BUILD_ECOSBOARD
1476 LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1477 #elif BUILD_ZY1000_MASTER
1478 int fd;
1479 if((fd = open("/dev/mem", O_RDWR | O_SYNC)) == -1)
1481 LOG_ERROR("No access to /dev/mem");
1482 return ERROR_FAIL;
1484 #ifndef REGISTERS_BASE
1485 #define REGISTERS_BASE 0x9002000
1486 #define REGISTERS_SPAN 128
1487 #endif
1489 zy1000_jtag_master = mmap(0, REGISTERS_SPAN, PROT_READ | PROT_WRITE, MAP_SHARED, fd, REGISTERS_BASE);
1491 if(zy1000_jtag_master == (void *) -1)
1493 close(fd);
1494 LOG_ERROR("No access to /dev/mem");
1495 return ERROR_FAIL;
1497 #endif
1501 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1503 setPower(true); // on by default
1506 /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1507 zy1000_reset(0, 0);
1508 int jtag_speed_var;
1509 int retval = jtag_get_speed(&jtag_speed_var);
1510 if (retval != ERROR_OK)
1511 return retval;
1512 zy1000_speed(jtag_speed_var);
1514 #if BUILD_ZY1000_MASTER
1515 #if BUILD_ECOSBOARD
1516 #ifdef WATCHDOG_BASE
1517 cyg_thread_create(1, watchdog_server, (cyg_addrword_t) 0, "watchdog tcip/ip server",
1518 (void *) watchdog_stack, sizeof(watchdog_stack),
1519 &watchdog_thread_handle, &watchdog_thread_object);
1520 cyg_thread_resume(watchdog_thread_handle);
1521 #endif
1522 #endif
1523 #endif
1525 return ERROR_OK;
1530 struct jtag_interface zy1000_interface =
1532 .name = "ZY1000",
1533 .supported = DEBUG_CAP_TMS_SEQ,
1534 .execute_queue = NULL,
1535 .speed = zy1000_speed,
1536 .commands = zy1000_commands,
1537 .init = zy1000_init,
1538 .quit = zy1000_quit,
1539 .khz = zy1000_khz,
1540 .speed_div = zy1000_speed_div,
1541 .power_dropout = zy1000_power_dropout,
1542 .srst_asserted = zy1000_srst_asserted,