rtos: remove broken code for handling the deprecated qP packet
[openocd/andreasf.git] / src / target / cortex_a.c
blob2370d95c95787cf0e318f30f56d453186c5b7acf
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 Øyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * Copyright (C) ST-Ericsson SA 2011 *
18 * michel.jaouen@stericsson.com : smp minimum support *
19 * *
20 * This program is free software; you can redistribute it and/or modify *
21 * it under the terms of the GNU General Public License as published by *
22 * the Free Software Foundation; either version 2 of the License, or *
23 * (at your option) any later version. *
24 * *
25 * This program is distributed in the hope that it will be useful, *
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
28 * GNU General Public License for more details. *
29 * *
30 * You should have received a copy of the GNU General Public License *
31 * along with this program; if not, write to the *
32 * Free Software Foundation, Inc., *
33 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
34 * *
35 * Cortex-A8(tm) TRM, ARM DDI 0344H *
36 * Cortex-A9(tm) TRM, ARM DDI 0407F *
37 * *
38 ***************************************************************************/
39 #ifdef HAVE_CONFIG_H
40 #include "config.h"
41 #endif
43 #include "breakpoints.h"
44 #include "cortex_a.h"
45 #include "register.h"
46 #include "target_request.h"
47 #include "target_type.h"
48 #include "arm_opcodes.h"
49 #include <helper/time_support.h>
51 static int cortex_a8_poll(struct target *target);
52 static int cortex_a8_debug_entry(struct target *target);
53 static int cortex_a8_restore_context(struct target *target, bool bpwp);
54 static int cortex_a8_set_breakpoint(struct target *target,
55 struct breakpoint *breakpoint, uint8_t matchmode);
56 static int cortex_a8_set_context_breakpoint(struct target *target,
57 struct breakpoint *breakpoint, uint8_t matchmode);
58 static int cortex_a8_set_hybrid_breakpoint(struct target *target,
59 struct breakpoint *breakpoint);
60 static int cortex_a8_unset_breakpoint(struct target *target,
61 struct breakpoint *breakpoint);
62 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
63 uint32_t *value, int regnum);
64 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
65 uint32_t value, int regnum);
66 static int cortex_a8_mmu(struct target *target, int *enabled);
67 static int cortex_a8_virt2phys(struct target *target,
68 uint32_t virt, uint32_t *phys);
71 * FIXME do topology discovery using the ROM; don't
72 * assume this is an OMAP3. Also, allow for multiple ARMv7-A
73 * cores, with different AP numbering ... don't use a #define
74 * for these numbers, use per-core armv7a state.
76 #define swjdp_memoryap 0
77 #define swjdp_debugap 1
79 /* restore cp15_control_reg at resume */
80 static int cortex_a8_restore_cp15_control_reg(struct target* target)
82 int retval = ERROR_OK;
83 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
84 struct armv7a_common *armv7a = target_to_armv7a(target);
86 if (cortex_a8->cp15_control_reg !=cortex_a8->cp15_control_reg_curr)
88 cortex_a8->cp15_control_reg_curr = cortex_a8->cp15_control_reg;
89 //LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
90 retval = armv7a->armv4_5_common.mcr(target, 15,
91 0, 0, /* op1, op2 */
92 1, 0, /* CRn, CRm */
93 cortex_a8->cp15_control_reg);
95 return retval;
98 /* check address before cortex_a8_apb read write access with mmu on
99 * remove apb predictible data abort */
100 static int cortex_a8_check_address(struct target *target, uint32_t address)
102 struct armv7a_common *armv7a = target_to_armv7a(target);
103 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
104 uint32_t os_border = armv7a->armv7a_mmu.os_border;
105 if ((address < os_border) &&
106 (armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)){
107 LOG_ERROR("%x access in userspace and target in supervisor",address);
108 return ERROR_FAIL;
110 if ((address >= os_border) &&
111 ( cortex_a8->curr_mode != ARM_MODE_SVC)){
112 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
113 cortex_a8->curr_mode = ARM_MODE_SVC;
114 LOG_INFO("%x access in kernel space and target not in supervisor",
115 address);
116 return ERROR_OK;
118 if ((address < os_border) &&
119 (cortex_a8->curr_mode == ARM_MODE_SVC)){
120 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
121 cortex_a8->curr_mode = ARM_MODE_ANY;
123 return ERROR_OK;
125 /* modify cp15_control_reg in order to enable or disable mmu for :
126 * - virt2phys address conversion
127 * - read or write memory in phys or virt address */
128 static int cortex_a8_mmu_modify(struct target *target, int enable)
130 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
131 struct armv7a_common *armv7a = target_to_armv7a(target);
132 int retval = ERROR_OK;
133 if (enable)
135 /* if mmu enabled at target stop and mmu not enable */
136 if (!(cortex_a8->cp15_control_reg & 0x1U))
138 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
139 return ERROR_FAIL;
141 if (!(cortex_a8->cp15_control_reg_curr & 0x1U))
143 cortex_a8->cp15_control_reg_curr |= 0x1U;
144 retval = armv7a->armv4_5_common.mcr(target, 15,
145 0, 0, /* op1, op2 */
146 1, 0, /* CRn, CRm */
147 cortex_a8->cp15_control_reg_curr);
150 else
152 if (cortex_a8->cp15_control_reg_curr & 0x4U)
154 /* data cache is active */
155 cortex_a8->cp15_control_reg_curr &= ~0x4U;
156 /* flush data cache armv7 function to be called */
157 if (armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache)
158 armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache(target);
160 if ( (cortex_a8->cp15_control_reg_curr & 0x1U))
162 cortex_a8->cp15_control_reg_curr &= ~0x1U;
163 retval = armv7a->armv4_5_common.mcr(target, 15,
164 0, 0, /* op1, op2 */
165 1, 0, /* CRn, CRm */
166 cortex_a8->cp15_control_reg_curr);
169 return retval;
173 * Cortex-A8 Basic debug access, very low level assumes state is saved
175 static int cortex_a8_init_debug_access(struct target *target)
177 struct armv7a_common *armv7a = target_to_armv7a(target);
178 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
179 int retval;
180 uint32_t dummy;
182 LOG_DEBUG(" ");
184 /* Unlocking the debug registers for modification */
185 /* The debugport might be uninitialised so try twice */
186 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
187 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
188 if (retval != ERROR_OK)
190 /* try again */
191 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
192 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
193 if (retval == ERROR_OK)
195 LOG_USER("Locking debug access failed on first, but succeeded on second try.");
198 if (retval != ERROR_OK)
199 return retval;
200 /* Clear Sticky Power Down status Bit in PRSR to enable access to
201 the registers in the Core Power Domain */
202 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
203 armv7a->debug_base + CPUDBG_PRSR, &dummy);
204 if (retval != ERROR_OK)
205 return retval;
207 /* Enabling of instruction execution in debug mode is done in debug_entry code */
209 /* Resync breakpoint registers */
211 /* Since this is likely called from init or reset, update target state information*/
212 return cortex_a8_poll(target);
215 /* To reduce needless round-trips, pass in a pointer to the current
216 * DSCR value. Initialize it to zero if you just need to know the
217 * value on return from this function; or DSCR_INSTR_COMP if you
218 * happen to know that no instruction is pending.
220 static int cortex_a8_exec_opcode(struct target *target,
221 uint32_t opcode, uint32_t *dscr_p)
223 uint32_t dscr;
224 int retval;
225 struct armv7a_common *armv7a = target_to_armv7a(target);
226 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
228 dscr = dscr_p ? *dscr_p : 0;
230 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
232 /* Wait for InstrCompl bit to be set */
233 long long then = timeval_ms();
234 while ((dscr & DSCR_INSTR_COMP) == 0)
236 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
237 armv7a->debug_base + CPUDBG_DSCR, &dscr);
238 if (retval != ERROR_OK)
240 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
241 return retval;
243 if (timeval_ms() > then + 1000)
245 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
246 return ERROR_FAIL;
250 retval = mem_ap_sel_write_u32(swjdp, swjdp_debugap,
251 armv7a->debug_base + CPUDBG_ITR, opcode);
252 if (retval != ERROR_OK)
253 return retval;
255 then = timeval_ms();
258 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
259 armv7a->debug_base + CPUDBG_DSCR, &dscr);
260 if (retval != ERROR_OK)
262 LOG_ERROR("Could not read DSCR register");
263 return retval;
265 if (timeval_ms() > then + 1000)
267 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
268 return ERROR_FAIL;
271 while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
273 if (dscr_p)
274 *dscr_p = dscr;
276 return retval;
279 /**************************************************************************
280 Read core register with very few exec_opcode, fast but needs work_area.
281 This can cause problems with MMU active.
282 **************************************************************************/
283 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
284 uint32_t * regfile)
286 int retval = ERROR_OK;
287 struct armv7a_common *armv7a = target_to_armv7a(target);
288 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
290 retval = cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
291 if (retval != ERROR_OK)
292 return retval;
293 retval = cortex_a8_dap_write_coreregister_u32(target, address, 0);
294 if (retval != ERROR_OK)
295 return retval;
296 retval = cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
297 if (retval != ERROR_OK)
298 return retval;
300 retval = mem_ap_sel_read_buf_u32(swjdp, swjdp_memoryap,
301 (uint8_t *)(&regfile[1]), 4*15, address);
303 return retval;
306 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
307 uint32_t *value, int regnum)
309 int retval = ERROR_OK;
310 uint8_t reg = regnum&0xFF;
311 uint32_t dscr = 0;
312 struct armv7a_common *armv7a = target_to_armv7a(target);
313 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
315 if (reg > 17)
316 return retval;
318 if (reg < 15)
320 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
321 retval = cortex_a8_exec_opcode(target,
322 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
323 &dscr);
324 if (retval != ERROR_OK)
325 return retval;
327 else if (reg == 15)
329 /* "MOV r0, r15"; then move r0 to DCCTX */
330 retval = cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
331 if (retval != ERROR_OK)
332 return retval;
333 retval = cortex_a8_exec_opcode(target,
334 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
335 &dscr);
336 if (retval != ERROR_OK)
337 return retval;
339 else
341 /* "MRS r0, CPSR" or "MRS r0, SPSR"
342 * then move r0 to DCCTX
344 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
345 if (retval != ERROR_OK)
346 return retval;
347 retval = cortex_a8_exec_opcode(target,
348 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
349 &dscr);
350 if (retval != ERROR_OK)
351 return retval;
354 /* Wait for DTRRXfull then read DTRRTX */
355 long long then = timeval_ms();
356 while ((dscr & DSCR_DTR_TX_FULL) == 0)
358 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
359 armv7a->debug_base + CPUDBG_DSCR, &dscr);
360 if (retval != ERROR_OK)
361 return retval;
362 if (timeval_ms() > then + 1000)
364 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
365 return ERROR_FAIL;
369 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
370 armv7a->debug_base + CPUDBG_DTRTX, value);
371 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
373 return retval;
376 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
377 uint32_t value, int regnum)
379 int retval = ERROR_OK;
380 uint8_t Rd = regnum&0xFF;
381 uint32_t dscr;
382 struct armv7a_common *armv7a = target_to_armv7a(target);
383 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
385 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
387 /* Check that DCCRX is not full */
388 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
389 armv7a->debug_base + CPUDBG_DSCR, &dscr);
390 if (retval != ERROR_OK)
391 return retval;
392 if (dscr & DSCR_DTR_RX_FULL)
394 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
395 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode 0xEE100E15 */
396 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
397 &dscr);
398 if (retval != ERROR_OK)
399 return retval;
402 if (Rd > 17)
403 return retval;
405 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
406 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
407 retval = mem_ap_sel_write_u32(swjdp, swjdp_debugap,
408 armv7a->debug_base + CPUDBG_DTRRX, value);
409 if (retval != ERROR_OK)
410 return retval;
412 if (Rd < 15)
414 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
415 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
416 &dscr);
418 if (retval != ERROR_OK)
419 return retval;
421 else if (Rd == 15)
423 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
424 * then "mov r15, r0"
426 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
427 &dscr);
428 if (retval != ERROR_OK)
429 return retval;
430 retval = cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
431 if (retval != ERROR_OK)
432 return retval;
434 else
436 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
437 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
439 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
440 &dscr);
441 if (retval != ERROR_OK)
442 return retval;
443 retval = cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
444 &dscr);
445 if (retval != ERROR_OK)
446 return retval;
448 /* "Prefetch flush" after modifying execution status in CPSR */
449 if (Rd == 16)
451 retval = cortex_a8_exec_opcode(target,
452 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
453 &dscr);
454 if (retval != ERROR_OK)
455 return retval;
459 return retval;
462 /* Write to memory mapped registers directly with no cache or mmu handling */
463 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
465 int retval;
466 struct armv7a_common *armv7a = target_to_armv7a(target);
467 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
469 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap, address, value);
471 return retval;
475 * Cortex-A8 implementation of Debug Programmer's Model
477 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
478 * so there's no need to poll for it before executing an instruction.
480 * NOTE that in several of these cases the "stall" mode might be useful.
481 * It'd let us queue a few operations together... prepare/finish might
482 * be the places to enable/disable that mode.
485 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
487 return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
490 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
492 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
493 return mem_ap_sel_write_u32(a8->armv7a_common.armv4_5_common.dap,
494 swjdp_debugap,a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
497 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
498 uint32_t *dscr_p)
500 struct adiv5_dap *swjdp = a8->armv7a_common.armv4_5_common.dap;
501 uint32_t dscr = DSCR_INSTR_COMP;
502 int retval;
504 if (dscr_p)
505 dscr = *dscr_p;
507 /* Wait for DTRRXfull */
508 long long then = timeval_ms();
509 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
510 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
511 a8->armv7a_common.debug_base + CPUDBG_DSCR,
512 &dscr);
513 if (retval != ERROR_OK)
514 return retval;
515 if (timeval_ms() > then + 1000)
517 LOG_ERROR("Timeout waiting for read dcc");
518 return ERROR_FAIL;
522 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
523 a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
524 if (retval != ERROR_OK)
525 return retval;
526 //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
528 if (dscr_p)
529 *dscr_p = dscr;
531 return retval;
534 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
536 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
537 struct adiv5_dap *swjdp = a8->armv7a_common.armv4_5_common.dap;
538 uint32_t dscr;
539 int retval;
541 /* set up invariant: INSTR_COMP is set after ever DPM operation */
542 long long then = timeval_ms();
543 for (;;)
545 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
546 a8->armv7a_common.debug_base + CPUDBG_DSCR,
547 &dscr);
548 if (retval != ERROR_OK)
549 return retval;
550 if ((dscr & DSCR_INSTR_COMP) != 0)
551 break;
552 if (timeval_ms() > then + 1000)
554 LOG_ERROR("Timeout waiting for dpm prepare");
555 return ERROR_FAIL;
559 /* this "should never happen" ... */
560 if (dscr & DSCR_DTR_RX_FULL) {
561 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
562 /* Clear DCCRX */
563 retval = cortex_a8_exec_opcode(
564 a8->armv7a_common.armv4_5_common.target,
565 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
566 &dscr);
567 if (retval != ERROR_OK)
568 return retval;
571 return retval;
574 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
576 /* REVISIT what could be done here? */
577 return ERROR_OK;
580 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
581 uint32_t opcode, uint32_t data)
583 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
584 int retval;
585 uint32_t dscr = DSCR_INSTR_COMP;
587 retval = cortex_a8_write_dcc(a8, data);
588 if (retval != ERROR_OK)
589 return retval;
591 return cortex_a8_exec_opcode(
592 a8->armv7a_common.armv4_5_common.target,
593 opcode,
594 &dscr);
597 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
598 uint32_t opcode, uint32_t data)
600 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
601 uint32_t dscr = DSCR_INSTR_COMP;
602 int retval;
604 retval = cortex_a8_write_dcc(a8, data);
605 if (retval != ERROR_OK)
606 return retval;
608 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
609 retval = cortex_a8_exec_opcode(
610 a8->armv7a_common.armv4_5_common.target,
611 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
612 &dscr);
613 if (retval != ERROR_OK)
614 return retval;
616 /* then the opcode, taking data from R0 */
617 retval = cortex_a8_exec_opcode(
618 a8->armv7a_common.armv4_5_common.target,
619 opcode,
620 &dscr);
622 return retval;
625 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
627 struct target *target = dpm->arm->target;
628 uint32_t dscr = DSCR_INSTR_COMP;
630 /* "Prefetch flush" after modifying execution status in CPSR */
631 return cortex_a8_exec_opcode(target,
632 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
633 &dscr);
636 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
637 uint32_t opcode, uint32_t *data)
639 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
640 int retval;
641 uint32_t dscr = DSCR_INSTR_COMP;
643 /* the opcode, writing data to DCC */
644 retval = cortex_a8_exec_opcode(
645 a8->armv7a_common.armv4_5_common.target,
646 opcode,
647 &dscr);
648 if (retval != ERROR_OK)
649 return retval;
651 return cortex_a8_read_dcc(a8, data, &dscr);
655 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
656 uint32_t opcode, uint32_t *data)
658 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
659 uint32_t dscr = DSCR_INSTR_COMP;
660 int retval;
662 /* the opcode, writing data to R0 */
663 retval = cortex_a8_exec_opcode(
664 a8->armv7a_common.armv4_5_common.target,
665 opcode,
666 &dscr);
667 if (retval != ERROR_OK)
668 return retval;
670 /* write R0 to DCC */
671 retval = cortex_a8_exec_opcode(
672 a8->armv7a_common.armv4_5_common.target,
673 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
674 &dscr);
675 if (retval != ERROR_OK)
676 return retval;
678 return cortex_a8_read_dcc(a8, data, &dscr);
681 static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
682 uint32_t addr, uint32_t control)
684 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
685 uint32_t vr = a8->armv7a_common.debug_base;
686 uint32_t cr = a8->armv7a_common.debug_base;
687 int retval;
689 switch (index_t) {
690 case 0 ... 15: /* breakpoints */
691 vr += CPUDBG_BVR_BASE;
692 cr += CPUDBG_BCR_BASE;
693 break;
694 case 16 ... 31: /* watchpoints */
695 vr += CPUDBG_WVR_BASE;
696 cr += CPUDBG_WCR_BASE;
697 index_t -= 16;
698 break;
699 default:
700 return ERROR_FAIL;
702 vr += 4 * index_t;
703 cr += 4 * index_t;
705 LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
706 (unsigned) vr, (unsigned) cr);
708 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
709 vr, addr);
710 if (retval != ERROR_OK)
711 return retval;
712 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
713 cr, control);
714 return retval;
717 static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
719 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
720 uint32_t cr;
722 switch (index_t) {
723 case 0 ... 15:
724 cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
725 break;
726 case 16 ... 31:
727 cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
728 index_t -= 16;
729 break;
730 default:
731 return ERROR_FAIL;
733 cr += 4 * index_t;
735 LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
737 /* clear control register */
738 return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
741 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
743 struct arm_dpm *dpm = &a8->armv7a_common.dpm;
744 int retval;
746 dpm->arm = &a8->armv7a_common.armv4_5_common;
747 dpm->didr = didr;
749 dpm->prepare = cortex_a8_dpm_prepare;
750 dpm->finish = cortex_a8_dpm_finish;
752 dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
753 dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
754 dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
756 dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
757 dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
759 dpm->bpwp_enable = cortex_a8_bpwp_enable;
760 dpm->bpwp_disable = cortex_a8_bpwp_disable;
762 retval = arm_dpm_setup(dpm);
763 if (retval == ERROR_OK)
764 retval = arm_dpm_initialize(dpm);
766 return retval;
768 static struct target *get_cortex_a8(struct target *target, int32_t coreid)
770 struct target_list *head;
771 struct target *curr;
773 head = target->head;
774 while(head != (struct target_list*)NULL)
776 curr = head->target;
777 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
779 return curr;
781 head = head->next;
783 return target;
785 static int cortex_a8_halt(struct target *target);
787 static int cortex_a8_halt_smp(struct target *target)
789 int retval = 0;
790 struct target_list *head;
791 struct target *curr;
792 head = target->head;
793 while(head != (struct target_list*)NULL)
795 curr = head->target;
796 if ((curr != target) && (curr->state!= TARGET_HALTED))
798 retval += cortex_a8_halt(curr);
800 head = head->next;
802 return retval;
805 static int update_halt_gdb(struct target *target)
807 int retval = 0;
808 if (target->gdb_service->core[0]==-1)
810 target->gdb_service->target = target;
811 target->gdb_service->core[0] = target->coreid;
812 retval += cortex_a8_halt_smp(target);
814 return retval;
818 * Cortex-A8 Run control
821 static int cortex_a8_poll(struct target *target)
823 int retval = ERROR_OK;
824 uint32_t dscr;
825 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
826 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
827 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
828 enum target_state prev_target_state = target->state;
829 // toggle to another core is done by gdb as follow
830 // maint packet J core_id
831 // continue
832 // the next polling trigger an halt event sent to gdb
833 if ((target->state == TARGET_HALTED) && (target->smp) &&
834 (target->gdb_service) &&
835 (target->gdb_service->target==NULL) )
837 target->gdb_service->target =
838 get_cortex_a8(target, target->gdb_service->core[1]);
839 target_call_event_callbacks(target,
840 TARGET_EVENT_HALTED);
841 return retval;
843 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
844 armv7a->debug_base + CPUDBG_DSCR, &dscr);
845 if (retval != ERROR_OK)
847 return retval;
849 cortex_a8->cpudbg_dscr = dscr;
851 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED))
853 if (prev_target_state != TARGET_HALTED)
855 /* We have a halting debug event */
856 LOG_DEBUG("Target halted");
857 target->state = TARGET_HALTED;
858 if ((prev_target_state == TARGET_RUNNING)
859 || (prev_target_state == TARGET_RESET))
861 retval = cortex_a8_debug_entry(target);
862 if (retval != ERROR_OK)
863 return retval;
864 if (target->smp)
866 retval = update_halt_gdb(target);
867 if (retval != ERROR_OK)
868 return retval;
870 target_call_event_callbacks(target,
871 TARGET_EVENT_HALTED);
873 if (prev_target_state == TARGET_DEBUG_RUNNING)
875 LOG_DEBUG(" ");
877 retval = cortex_a8_debug_entry(target);
878 if (retval != ERROR_OK)
879 return retval;
880 if (target->smp)
882 retval = update_halt_gdb(target);
883 if (retval != ERROR_OK)
884 return retval;
887 target_call_event_callbacks(target,
888 TARGET_EVENT_DEBUG_HALTED);
892 else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
894 target->state = TARGET_RUNNING;
896 else
898 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
899 target->state = TARGET_UNKNOWN;
902 return retval;
905 static int cortex_a8_halt(struct target *target)
907 int retval = ERROR_OK;
908 uint32_t dscr;
909 struct armv7a_common *armv7a = target_to_armv7a(target);
910 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
913 * Tell the core to be halted by writing DRCR with 0x1
914 * and then wait for the core to be halted.
916 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
917 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
918 if (retval != ERROR_OK)
919 return retval;
922 * enter halting debug mode
924 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
925 armv7a->debug_base + CPUDBG_DSCR, &dscr);
926 if (retval != ERROR_OK)
927 return retval;
929 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
930 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
931 if (retval != ERROR_OK)
932 return retval;
934 long long then = timeval_ms();
935 for (;;)
937 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
938 armv7a->debug_base + CPUDBG_DSCR, &dscr);
939 if (retval != ERROR_OK)
940 return retval;
941 if ((dscr & DSCR_CORE_HALTED) != 0)
943 break;
945 if (timeval_ms() > then + 1000)
947 LOG_ERROR("Timeout waiting for halt");
948 return ERROR_FAIL;
952 target->debug_reason = DBG_REASON_DBGRQ;
954 return ERROR_OK;
957 static int cortex_a8_internal_restore(struct target *target, int current,
958 uint32_t *address, int handle_breakpoints, int debug_execution)
960 struct armv7a_common *armv7a = target_to_armv7a(target);
961 struct arm *armv4_5 = &armv7a->armv4_5_common;
962 int retval;
963 uint32_t resume_pc;
965 if (!debug_execution)
966 target_free_all_working_areas(target);
968 #if 0
969 if (debug_execution)
971 /* Disable interrupts */
972 /* We disable interrupts in the PRIMASK register instead of
973 * masking with C_MASKINTS,
974 * This is probably the same issue as Cortex-M3 Errata 377493:
975 * C_MASKINTS in parallel with disabled interrupts can cause
976 * local faults to not be taken. */
977 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
978 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
979 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
981 /* Make sure we are in Thumb mode */
982 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
983 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
984 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
985 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
987 #endif
989 /* current = 1: continue on current pc, otherwise continue at <address> */
990 resume_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
991 if (!current)
992 resume_pc = *address;
993 else
994 *address = resume_pc;
996 /* Make sure that the Armv7 gdb thumb fixups does not
997 * kill the return address
999 switch (armv4_5->core_state)
1001 case ARM_STATE_ARM:
1002 resume_pc &= 0xFFFFFFFC;
1003 break;
1004 case ARM_STATE_THUMB:
1005 case ARM_STATE_THUMB_EE:
1006 /* When the return address is loaded into PC
1007 * bit 0 must be 1 to stay in Thumb state
1009 resume_pc |= 0x1;
1010 break;
1011 case ARM_STATE_JAZELLE:
1012 LOG_ERROR("How do I resume into Jazelle state??");
1013 return ERROR_FAIL;
1015 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
1016 buf_set_u32(armv4_5->pc->value, 0, 32, resume_pc);
1017 armv4_5->pc->dirty = 1;
1018 armv4_5->pc->valid = 1;
1019 /* restore dpm_mode at system halt */
1020 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1021 /* called it now before restoring context because it uses cpu
1022 * register r0 for restoring cp15 control register */
1023 retval = cortex_a8_restore_cp15_control_reg(target);
1024 retval = cortex_a8_restore_context(target, handle_breakpoints);
1025 if (retval != ERROR_OK)
1026 return retval;
1027 target->debug_reason = DBG_REASON_NOTHALTED;
1028 target->state = TARGET_RUNNING;
1030 /* registers are now invalid */
1031 register_cache_invalidate(armv4_5->core_cache);
1033 #if 0
1034 /* the front-end may request us not to handle breakpoints */
1035 if (handle_breakpoints)
1037 /* Single step past breakpoint at current address */
1038 if ((breakpoint = breakpoint_find(target, resume_pc)))
1040 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1041 cortex_m3_unset_breakpoint(target, breakpoint);
1042 cortex_m3_single_step_core(target);
1043 cortex_m3_set_breakpoint(target, breakpoint);
1047 #endif
1048 return retval;
1051 static int cortex_a8_internal_restart(struct target *target)
1053 struct armv7a_common *armv7a = target_to_armv7a(target);
1054 struct arm *armv4_5 = &armv7a->armv4_5_common;
1055 struct adiv5_dap *swjdp = armv4_5->dap;
1056 int retval;
1057 uint32_t dscr;
1059 * Restart core and wait for it to be started. Clear ITRen and sticky
1060 * exception flags: see ARMv7 ARM, C5.9.
1062 * REVISIT: for single stepping, we probably want to
1063 * disable IRQs by default, with optional override...
1066 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1067 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1068 if (retval != ERROR_OK)
1069 return retval;
1071 if ((dscr & DSCR_INSTR_COMP) == 0)
1072 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1074 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
1075 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1076 if (retval != ERROR_OK)
1077 return retval;
1079 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
1080 armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1081 DRCR_CLEAR_EXCEPTIONS);
1082 if (retval != ERROR_OK)
1083 return retval;
1085 long long then = timeval_ms();
1086 for (;;)
1088 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1089 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1090 if (retval != ERROR_OK)
1091 return retval;
1092 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1093 break;
1094 if (timeval_ms() > then + 1000)
1096 LOG_ERROR("Timeout waiting for resume");
1097 return ERROR_FAIL;
1101 target->debug_reason = DBG_REASON_NOTHALTED;
1102 target->state = TARGET_RUNNING;
1104 /* registers are now invalid */
1105 register_cache_invalidate(armv4_5->core_cache);
1107 return ERROR_OK;
1110 static int cortex_a8_restore_smp(struct target *target,int handle_breakpoints)
1112 int retval = 0;
1113 struct target_list *head;
1114 struct target *curr;
1115 uint32_t address;
1116 head = target->head;
1117 while(head != (struct target_list*)NULL)
1119 curr = head->target;
1120 if ((curr != target) && (curr->state != TARGET_RUNNING))
1122 /* resume current address , not in step mode */
1123 retval += cortex_a8_internal_restore(curr, 1, &address,
1124 handle_breakpoints, 0);
1125 retval += cortex_a8_internal_restart(curr);
1127 head = head->next;
1130 return retval;
1133 static int cortex_a8_resume(struct target *target, int current,
1134 uint32_t address, int handle_breakpoints, int debug_execution)
1136 int retval = 0;
1137 /* dummy resume for smp toggle in order to reduce gdb impact */
1138 if ((target->smp) && (target->gdb_service->core[1]!=-1))
1140 /* simulate a start and halt of target */
1141 target->gdb_service->target = NULL;
1142 target->gdb_service->core[0] = target->gdb_service->core[1];
1143 /* fake resume at next poll we play the target core[1], see poll*/
1144 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1145 return 0;
1147 cortex_a8_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1148 if (target->smp)
1149 { target->gdb_service->core[0] = -1;
1150 retval += cortex_a8_restore_smp(target, handle_breakpoints);
1152 cortex_a8_internal_restart(target);
1154 if (!debug_execution)
1156 target->state = TARGET_RUNNING;
1157 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1158 LOG_DEBUG("target resumed at 0x%" PRIx32, address);
1160 else
1162 target->state = TARGET_DEBUG_RUNNING;
1163 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1164 LOG_DEBUG("target debug resumed at 0x%" PRIx32, address);
1167 return ERROR_OK;
1170 static int cortex_a8_debug_entry(struct target *target)
1172 int i;
1173 uint32_t regfile[16], cpsr, dscr;
1174 int retval = ERROR_OK;
1175 struct working_area *regfile_working_area = NULL;
1176 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1177 struct armv7a_common *armv7a = target_to_armv7a(target);
1178 struct arm *armv4_5 = &armv7a->armv4_5_common;
1179 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
1180 struct reg *reg;
1182 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
1184 /* REVISIT surely we should not re-read DSCR !! */
1185 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1186 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1187 if (retval != ERROR_OK)
1188 return retval;
1190 /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1191 * imprecise data aborts get discarded by issuing a Data
1192 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1195 /* Enable the ITR execution once we are in debug mode */
1196 dscr |= DSCR_ITR_EN;
1197 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
1198 armv7a->debug_base + CPUDBG_DSCR, dscr);
1199 if (retval != ERROR_OK)
1200 return retval;
1202 /* Examine debug reason */
1203 arm_dpm_report_dscr(&armv7a->dpm, cortex_a8->cpudbg_dscr);
1205 /* save address of instruction that triggered the watchpoint? */
1206 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1207 uint32_t wfar;
1209 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1210 armv7a->debug_base + CPUDBG_WFAR,
1211 &wfar);
1212 if (retval != ERROR_OK)
1213 return retval;
1214 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1217 /* REVISIT fast_reg_read is never set ... */
1219 /* Examine target state and mode */
1220 if (cortex_a8->fast_reg_read)
1221 target_alloc_working_area(target, 64, &regfile_working_area);
1223 /* First load register acessible through core debug port*/
1224 if (!regfile_working_area)
1226 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1228 else
1230 retval = cortex_a8_read_regs_through_mem(target,
1231 regfile_working_area->address, regfile);
1233 target_free_working_area(target, regfile_working_area);
1234 if (retval != ERROR_OK)
1236 return retval;
1239 /* read Current PSR */
1240 retval = cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
1241 /* store current cpsr */
1242 if (retval != ERROR_OK)
1243 return retval;
1245 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1247 arm_set_cpsr(armv4_5, cpsr);
1249 /* update cache */
1250 for (i = 0; i <= ARM_PC; i++)
1252 reg = arm_reg_current(armv4_5, i);
1254 buf_set_u32(reg->value, 0, 32, regfile[i]);
1255 reg->valid = 1;
1256 reg->dirty = 0;
1259 /* Fixup PC Resume Address */
1260 if (cpsr & (1 << 5))
1262 // T bit set for Thumb or ThumbEE state
1263 regfile[ARM_PC] -= 4;
1265 else
1267 // ARM state
1268 regfile[ARM_PC] -= 8;
1271 reg = armv4_5->pc;
1272 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1273 reg->dirty = reg->valid;
1276 #if 0
1277 /* TODO, Move this */
1278 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1279 cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1280 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1282 cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1283 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1285 cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1286 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1287 #endif
1289 /* Are we in an exception handler */
1290 // armv4_5->exception_number = 0;
1291 if (armv7a->post_debug_entry)
1293 retval = armv7a->post_debug_entry(target);
1294 if (retval != ERROR_OK)
1295 return retval;
1298 return retval;
1301 static int cortex_a8_post_debug_entry(struct target *target)
1303 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1304 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1305 int retval;
1307 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1308 retval = armv7a->armv4_5_common.mrc(target, 15,
1309 0, 0, /* op1, op2 */
1310 1, 0, /* CRn, CRm */
1311 &cortex_a8->cp15_control_reg);
1312 if (retval != ERROR_OK)
1313 return retval;
1314 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
1315 cortex_a8->cp15_control_reg_curr = cortex_a8->cp15_control_reg;
1317 if (armv7a->armv7a_mmu.armv7a_cache.ctype == -1)
1319 armv7a_identify_cache(target);
1322 armv7a->armv7a_mmu.mmu_enabled =
1323 (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
1324 armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1325 (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
1326 armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1327 (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
1328 cortex_a8->curr_mode = armv7a->armv4_5_common.core_mode;
1330 return ERROR_OK;
1333 static int cortex_a8_step(struct target *target, int current, uint32_t address,
1334 int handle_breakpoints)
1336 struct armv7a_common *armv7a = target_to_armv7a(target);
1337 struct arm *armv4_5 = &armv7a->armv4_5_common;
1338 struct breakpoint *breakpoint = NULL;
1339 struct breakpoint stepbreakpoint;
1340 struct reg *r;
1341 int retval;
1343 if (target->state != TARGET_HALTED)
1345 LOG_WARNING("target not halted");
1346 return ERROR_TARGET_NOT_HALTED;
1349 /* current = 1: continue on current pc, otherwise continue at <address> */
1350 r = armv4_5->pc;
1351 if (!current)
1353 buf_set_u32(r->value, 0, 32, address);
1355 else
1357 address = buf_get_u32(r->value, 0, 32);
1360 /* The front-end may request us not to handle breakpoints.
1361 * But since Cortex-A8 uses breakpoint for single step,
1362 * we MUST handle breakpoints.
1364 handle_breakpoints = 1;
1365 if (handle_breakpoints) {
1366 breakpoint = breakpoint_find(target, address);
1367 if (breakpoint)
1368 cortex_a8_unset_breakpoint(target, breakpoint);
1371 /* Setup single step breakpoint */
1372 stepbreakpoint.address = address;
1373 stepbreakpoint.length = (armv4_5->core_state == ARM_STATE_THUMB)
1374 ? 2 : 4;
1375 stepbreakpoint.type = BKPT_HARD;
1376 stepbreakpoint.set = 0;
1378 /* Break on IVA mismatch */
1379 cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
1381 target->debug_reason = DBG_REASON_SINGLESTEP;
1383 retval = cortex_a8_resume(target, 1, address, 0, 0);
1384 if (retval != ERROR_OK)
1385 return retval;
1387 long long then = timeval_ms();
1388 while (target->state != TARGET_HALTED)
1390 retval = cortex_a8_poll(target);
1391 if (retval != ERROR_OK)
1392 return retval;
1393 if (timeval_ms() > then + 1000)
1395 LOG_ERROR("timeout waiting for target halt");
1396 return ERROR_FAIL;
1400 cortex_a8_unset_breakpoint(target, &stepbreakpoint);
1402 target->debug_reason = DBG_REASON_BREAKPOINT;
1404 if (breakpoint)
1405 cortex_a8_set_breakpoint(target, breakpoint, 0);
1407 if (target->state != TARGET_HALTED)
1408 LOG_DEBUG("target stepped");
1410 return ERROR_OK;
1413 static int cortex_a8_restore_context(struct target *target, bool bpwp)
1415 struct armv7a_common *armv7a = target_to_armv7a(target);
1417 LOG_DEBUG(" ");
1419 if (armv7a->pre_restore_context)
1420 armv7a->pre_restore_context(target);
1422 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1427 * Cortex-A8 Breakpoint and watchpoint functions
1430 /* Setup hardware Breakpoint Register Pair */
1431 static int cortex_a8_set_breakpoint(struct target *target,
1432 struct breakpoint *breakpoint, uint8_t matchmode)
1434 int retval;
1435 int brp_i=0;
1436 uint32_t control;
1437 uint8_t byte_addr_select = 0x0F;
1438 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1439 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1440 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1442 if (breakpoint->set)
1444 LOG_WARNING("breakpoint already set");
1445 return ERROR_OK;
1448 if (breakpoint->type == BKPT_HARD)
1450 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1451 brp_i++ ;
1452 if (brp_i >= cortex_a8->brp_num)
1454 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1455 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1457 breakpoint->set = brp_i + 1;
1458 if (breakpoint->length == 2)
1460 byte_addr_select = (3 << (breakpoint->address & 0x02));
1462 control = ((matchmode & 0x7) << 20)
1463 | (byte_addr_select << 5)
1464 | (3 << 1) | 1;
1465 brp_list[brp_i].used = 1;
1466 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1467 brp_list[brp_i].control = control;
1468 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1469 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1470 brp_list[brp_i].value);
1471 if (retval != ERROR_OK)
1472 return retval;
1473 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1474 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1475 brp_list[brp_i].control);
1476 if (retval != ERROR_OK)
1477 return retval;
1478 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1479 brp_list[brp_i].control,
1480 brp_list[brp_i].value);
1482 else if (breakpoint->type == BKPT_SOFT)
1484 uint8_t code[4];
1485 if (breakpoint->length == 2)
1487 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1489 else
1491 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1493 retval = target->type->read_memory(target,
1494 breakpoint->address & 0xFFFFFFFE,
1495 breakpoint->length, 1,
1496 breakpoint->orig_instr);
1497 if (retval != ERROR_OK)
1498 return retval;
1499 retval = target->type->write_memory(target,
1500 breakpoint->address & 0xFFFFFFFE,
1501 breakpoint->length, 1, code);
1502 if (retval != ERROR_OK)
1503 return retval;
1504 breakpoint->set = 0x11; /* Any nice value but 0 */
1507 return ERROR_OK;
1510 static int cortex_a8_set_context_breakpoint(struct target *target,
1511 struct breakpoint *breakpoint, uint8_t matchmode)
1513 int retval = ERROR_FAIL;
1514 int brp_i=0;
1515 uint32_t control;
1516 uint8_t byte_addr_select = 0x0F;
1517 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1518 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1519 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1521 if (breakpoint->set)
1523 LOG_WARNING("breakpoint already set");
1524 return retval ;
1526 /*check available context BRPs*/
1527 while ((brp_list[brp_i].used || (brp_list[brp_i].type!=BRP_CONTEXT)) && (brp_i < cortex_a8->brp_num))
1528 brp_i++ ;
1530 if (brp_i >= cortex_a8->brp_num)
1532 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1533 return ERROR_FAIL;
1536 breakpoint->set = brp_i + 1;
1537 control = ((matchmode & 0x7) << 20)
1538 | (byte_addr_select << 5)
1539 | (3 << 1) | 1;
1540 brp_list[brp_i].used = 1;
1541 brp_list[brp_i].value = (breakpoint->asid);
1542 brp_list[brp_i].control = control;
1543 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1544 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1545 brp_list[brp_i].value);
1546 if(retval != ERROR_OK)
1547 return retval;
1548 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1549 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1550 brp_list[brp_i].control);
1551 if(retval != ERROR_OK)
1552 return retval;
1553 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1554 brp_list[brp_i].control,
1555 brp_list[brp_i].value);
1556 return ERROR_OK;
1560 static int cortex_a8_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1562 int retval = ERROR_FAIL;
1563 int brp_1=0; //holds the contextID pair
1564 int brp_2=0; // holds the IVA pair
1565 uint32_t control_CTX, control_IVA;
1566 uint8_t CTX_byte_addr_select = 0x0F;
1567 uint8_t IVA_byte_addr_select = 0x0F;
1568 uint8_t CTX_machmode = 0x03;
1569 uint8_t IVA_machmode = 0x01;
1570 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1571 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1572 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1576 if (breakpoint->set)
1578 LOG_WARNING("breakpoint already set");
1579 return retval ;
1581 /*check available context BRPs*/
1582 while ((brp_list[brp_1].used || (brp_list[brp_1].type!=BRP_CONTEXT)) && (brp_1 < cortex_a8->brp_num))
1583 brp_1++ ;
1585 printf("brp(CTX) found num: %d \n",brp_1);
1586 if (brp_1 >= cortex_a8->brp_num)
1588 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1589 return ERROR_FAIL;
1592 while ((brp_list[brp_2].used || (brp_list[brp_2].type!=BRP_NORMAL)) && (brp_2 < cortex_a8->brp_num))
1593 brp_2++ ;
1595 printf("brp(IVA) found num: %d \n",brp_2);
1596 if (brp_2 >= cortex_a8->brp_num)
1598 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1599 return ERROR_FAIL;
1602 breakpoint->set = brp_1 + 1;
1603 breakpoint->linked_BRP= brp_2;
1604 control_CTX = ((CTX_machmode & 0x7) << 20)
1605 | (brp_2 << 16)
1606 | (0 << 14)
1607 | (CTX_byte_addr_select << 5)
1608 | (3 << 1) | 1;
1609 brp_list[brp_1].used = 1;
1610 brp_list[brp_1].value = (breakpoint->asid);
1611 brp_list[brp_1].control = control_CTX;
1612 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1613 + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1614 brp_list[brp_1].value);
1615 if (retval != ERROR_OK)
1616 return retval;
1617 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1618 + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1619 brp_list[brp_1].control);
1620 if( retval != ERROR_OK )
1621 return retval;
1623 control_IVA = ((IVA_machmode & 0x7) << 20)
1624 | (brp_1 << 16)
1625 | (IVA_byte_addr_select << 5)
1626 | (3 << 1) | 1;
1627 brp_list[brp_2].used = 1;
1628 brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1629 brp_list[brp_2].control = control_IVA;
1630 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1631 + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1632 brp_list[brp_2].value);
1633 if (retval != ERROR_OK)
1634 return retval;
1635 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1636 + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1637 brp_list[brp_2].control);
1638 if (retval != ERROR_OK )
1639 return retval;
1641 return ERROR_OK;
1645 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1647 int retval;
1648 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1649 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1650 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1652 if (!breakpoint->set)
1654 LOG_WARNING("breakpoint not set");
1655 return ERROR_OK;
1658 if (breakpoint->type == BKPT_HARD)
1660 if ((breakpoint->address != 0) && (breakpoint->asid != 0))
1662 int brp_i = breakpoint->set - 1;
1663 int brp_j = breakpoint->linked_BRP;
1664 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1666 LOG_DEBUG("Invalid BRP number in breakpoint");
1667 return ERROR_OK;
1669 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1670 brp_list[brp_i].control, brp_list[brp_i].value);
1671 brp_list[brp_i].used = 0;
1672 brp_list[brp_i].value = 0;
1673 brp_list[brp_i].control = 0;
1674 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1675 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1676 brp_list[brp_i].control);
1677 if (retval != ERROR_OK)
1678 return retval;
1679 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1680 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1681 brp_list[brp_i].value);
1682 if (retval != ERROR_OK)
1683 return retval;
1684 if ((brp_j < 0) || (brp_j >= cortex_a8->brp_num))
1686 LOG_DEBUG("Invalid BRP number in breakpoint");
1687 return ERROR_OK;
1689 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1690 brp_list[brp_j].control, brp_list[brp_j].value);
1691 brp_list[brp_j].used = 0;
1692 brp_list[brp_j].value = 0;
1693 brp_list[brp_j].control = 0;
1694 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1695 + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1696 brp_list[brp_j].control);
1697 if (retval != ERROR_OK)
1698 return retval;
1699 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1700 + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1701 brp_list[brp_j].value);
1702 if (retval != ERROR_OK)
1703 return retval;
1704 breakpoint->linked_BRP = 0;
1705 breakpoint->set = 0;
1706 return ERROR_OK;
1709 else
1711 int brp_i = breakpoint->set - 1;
1712 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1714 LOG_DEBUG("Invalid BRP number in breakpoint");
1715 return ERROR_OK;
1717 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1718 brp_list[brp_i].control, brp_list[brp_i].value);
1719 brp_list[brp_i].used = 0;
1720 brp_list[brp_i].value = 0;
1721 brp_list[brp_i].control = 0;
1722 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1723 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1724 brp_list[brp_i].control);
1725 if (retval != ERROR_OK)
1726 return retval;
1727 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1728 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1729 brp_list[brp_i].value);
1730 if (retval != ERROR_OK)
1731 return retval;
1732 breakpoint->set = 0;
1733 return ERROR_OK;
1736 else
1738 /* restore original instruction (kept in target endianness) */
1739 if (breakpoint->length == 4)
1741 retval = target->type->write_memory(target,
1742 breakpoint->address & 0xFFFFFFFE,
1743 4, 1, breakpoint->orig_instr);
1744 if (retval != ERROR_OK)
1745 return retval;
1747 else
1749 retval = target->type->write_memory(target,
1750 breakpoint->address & 0xFFFFFFFE,
1751 2, 1, breakpoint->orig_instr);
1752 if (retval != ERROR_OK)
1753 return retval;
1756 breakpoint->set = 0;
1758 return ERROR_OK;
1761 static int cortex_a8_add_breakpoint(struct target *target,
1762 struct breakpoint *breakpoint)
1764 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1766 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1768 LOG_INFO("no hardware breakpoint available");
1769 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1772 if (breakpoint->type == BKPT_HARD)
1773 cortex_a8->brp_num_available--;
1775 return cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1778 static int cortex_a8_add_context_breakpoint(struct target *target,
1779 struct breakpoint *breakpoint)
1781 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1783 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1785 LOG_INFO("no hardware breakpoint available");
1786 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1789 if (breakpoint->type == BKPT_HARD)
1790 cortex_a8->brp_num_available--;
1792 return cortex_a8_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1795 static int cortex_a8_add_hybrid_breakpoint(struct target *target,
1796 struct breakpoint *breakpoint)
1798 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1800 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1802 LOG_INFO("no hardware breakpoint available");
1803 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1806 if (breakpoint->type == BKPT_HARD)
1807 cortex_a8->brp_num_available--;
1809 return cortex_a8_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1813 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1815 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1817 #if 0
1818 /* It is perfectly possible to remove breakpoints while the target is running */
1819 if (target->state != TARGET_HALTED)
1821 LOG_WARNING("target not halted");
1822 return ERROR_TARGET_NOT_HALTED;
1824 #endif
1826 if (breakpoint->set)
1828 cortex_a8_unset_breakpoint(target, breakpoint);
1829 if (breakpoint->type == BKPT_HARD)
1830 cortex_a8->brp_num_available++ ;
1834 return ERROR_OK;
1840 * Cortex-A8 Reset functions
1843 static int cortex_a8_assert_reset(struct target *target)
1845 struct armv7a_common *armv7a = target_to_armv7a(target);
1847 LOG_DEBUG(" ");
1849 /* FIXME when halt is requested, make it work somehow... */
1851 /* Issue some kind of warm reset. */
1852 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1853 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1854 } else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1855 /* REVISIT handle "pulls" cases, if there's
1856 * hardware that needs them to work.
1858 jtag_add_reset(0, 1);
1859 } else {
1860 LOG_ERROR("%s: how to reset?", target_name(target));
1861 return ERROR_FAIL;
1864 /* registers are now invalid */
1865 register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1867 target->state = TARGET_RESET;
1869 return ERROR_OK;
1872 static int cortex_a8_deassert_reset(struct target *target)
1874 int retval;
1876 LOG_DEBUG(" ");
1878 /* be certain SRST is off */
1879 jtag_add_reset(0, 0);
1881 retval = cortex_a8_poll(target);
1882 if (retval != ERROR_OK)
1883 return retval;
1885 if (target->reset_halt) {
1886 if (target->state != TARGET_HALTED) {
1887 LOG_WARNING("%s: ran after reset and before halt ...",
1888 target_name(target));
1889 if ((retval = target_halt(target)) != ERROR_OK)
1890 return retval;
1894 return ERROR_OK;
1898 static int cortex_a8_write_apb_ab_memory(struct target *target,
1899 uint32_t address, uint32_t size,
1900 uint32_t count, const uint8_t *buffer)
1903 /* write memory through APB-AP */
1905 int retval = ERROR_INVALID_ARGUMENTS;
1906 struct armv7a_common *armv7a = target_to_armv7a(target);
1907 struct arm *armv4_5 = &armv7a->armv4_5_common;
1908 int total_bytes = count * size;
1909 int start_byte, nbytes_to_write, i;
1910 struct reg *reg;
1911 union _data {
1912 uint8_t uc_a[4];
1913 uint32_t ui;
1914 } data;
1916 if (target->state != TARGET_HALTED)
1918 LOG_WARNING("target not halted");
1919 return ERROR_TARGET_NOT_HALTED;
1922 reg = arm_reg_current(armv4_5, 0);
1923 reg->dirty = 1;
1924 reg = arm_reg_current(armv4_5, 1);
1925 reg->dirty = 1;
1927 retval = cortex_a8_dap_write_coreregister_u32(target, address & 0xFFFFFFFC, 0);
1928 if (retval != ERROR_OK)
1929 return retval;
1931 start_byte = address & 0x3;
1933 while (total_bytes > 0) {
1935 nbytes_to_write = 4 - start_byte;
1936 if (total_bytes < nbytes_to_write)
1937 nbytes_to_write = total_bytes;
1939 if ( nbytes_to_write != 4 ) {
1941 /* execute instruction LDR r1, [r0] */
1942 retval = cortex_a8_exec_opcode(target, ARMV4_5_LDR(1, 0), NULL);
1943 if (retval != ERROR_OK)
1944 return retval;
1946 retval = cortex_a8_dap_read_coreregister_u32(target, &data.ui, 1);
1947 if (retval != ERROR_OK)
1948 return retval;
1951 for (i = 0; i < nbytes_to_write; ++i)
1952 data.uc_a[i + start_byte] = *buffer++;
1954 retval = cortex_a8_dap_write_coreregister_u32(target, data.ui, 1);
1955 if (retval != ERROR_OK)
1956 return retval;
1958 /* execute instruction STRW r1, [r0], 1 (0xe4801004) */
1959 retval = cortex_a8_exec_opcode(target, ARMV4_5_STRW_IP(1, 0) , NULL);
1960 if (retval != ERROR_OK)
1961 return retval;
1963 total_bytes -= nbytes_to_write;
1964 start_byte = 0;
1967 return retval;
1971 static int cortex_a8_read_apb_ab_memory(struct target *target,
1972 uint32_t address, uint32_t size,
1973 uint32_t count, uint8_t *buffer)
1976 /* read memory through APB-AP */
1978 int retval = ERROR_INVALID_ARGUMENTS;
1979 struct armv7a_common *armv7a = target_to_armv7a(target);
1980 struct arm *armv4_5 = &armv7a->armv4_5_common;
1981 int total_bytes = count * size;
1982 int start_byte, nbytes_to_read, i;
1983 struct reg *reg;
1984 union _data {
1985 uint8_t uc_a[4];
1986 uint32_t ui;
1987 } data;
1989 if (target->state != TARGET_HALTED)
1991 LOG_WARNING("target not halted");
1992 return ERROR_TARGET_NOT_HALTED;
1995 reg = arm_reg_current(armv4_5, 0);
1996 reg->dirty = 1;
1997 reg = arm_reg_current(armv4_5, 1);
1998 reg->dirty = 1;
2000 retval = cortex_a8_dap_write_coreregister_u32(target, address & 0xFFFFFFFC, 0);
2001 if (retval != ERROR_OK)
2002 return retval;
2004 start_byte = address & 0x3;
2006 while (total_bytes > 0) {
2008 /* execute instruction LDRW r1, [r0], 4 (0xe4901004) */
2009 retval = cortex_a8_exec_opcode(target, ARMV4_5_LDRW_IP(1, 0), NULL);
2010 if (retval != ERROR_OK)
2011 return retval;
2013 retval = cortex_a8_dap_read_coreregister_u32(target, &data.ui, 1);
2014 if (retval != ERROR_OK)
2015 return retval;
2017 nbytes_to_read = 4 - start_byte;
2018 if (total_bytes < nbytes_to_read)
2019 nbytes_to_read = total_bytes;
2021 for (i = 0; i < nbytes_to_read; ++i)
2022 *buffer++ = data.uc_a[i + start_byte];
2024 total_bytes -= nbytes_to_read;
2025 start_byte = 0;
2028 return retval;
2034 * Cortex-A8 Memory access
2036 * This is same Cortex M3 but we must also use the correct
2037 * ap number for every access.
2040 static int cortex_a8_read_phys_memory(struct target *target,
2041 uint32_t address, uint32_t size,
2042 uint32_t count, uint8_t *buffer)
2044 struct armv7a_common *armv7a = target_to_armv7a(target);
2045 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
2046 int retval = ERROR_INVALID_ARGUMENTS;
2047 uint8_t apsel = swjdp->apsel;
2048 LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d",
2049 address, size, count);
2051 if (count && buffer) {
2053 if ( apsel == swjdp_memoryap ) {
2055 /* read memory through AHB-AP */
2057 switch (size) {
2058 case 4:
2059 retval = mem_ap_sel_read_buf_u32(swjdp, swjdp_memoryap,
2060 buffer, 4 * count, address);
2061 break;
2062 case 2:
2063 retval = mem_ap_sel_read_buf_u16(swjdp, swjdp_memoryap,
2064 buffer, 2 * count, address);
2065 break;
2066 case 1:
2067 retval = mem_ap_sel_read_buf_u8(swjdp, swjdp_memoryap,
2068 buffer, count, address);
2069 break;
2071 } else {
2073 /* read memory through APB-AP */
2074 /* disable mmu */
2075 retval = cortex_a8_mmu_modify(target, 0);
2076 if (retval != ERROR_OK) return retval;
2077 retval = cortex_a8_read_apb_ab_memory(target, address, size, count, buffer);
2080 return retval;
2083 static int cortex_a8_read_memory(struct target *target, uint32_t address,
2084 uint32_t size, uint32_t count, uint8_t *buffer)
2086 int enabled = 0;
2087 uint32_t virt, phys;
2088 int retval;
2089 struct armv7a_common *armv7a = target_to_armv7a(target);
2090 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
2091 uint8_t apsel = swjdp->apsel;
2093 /* cortex_a8 handles unaligned memory access */
2094 LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address,
2095 size, count);
2096 if (apsel == swjdp_memoryap) {
2097 retval = cortex_a8_mmu(target, &enabled);
2098 if (retval != ERROR_OK)
2099 return retval;
2102 if(enabled)
2104 virt = address;
2105 retval = cortex_a8_virt2phys(target, virt, &phys);
2106 if (retval != ERROR_OK)
2107 return retval;
2109 LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x",
2110 virt, phys);
2111 address = phys;
2113 retval = cortex_a8_read_phys_memory(target, address, size, count, buffer);
2114 } else {
2115 retval = cortex_a8_check_address(target, address);
2116 if (retval != ERROR_OK) return retval;
2117 /* enable mmu */
2118 retval = cortex_a8_mmu_modify(target, 1);
2119 if (retval != ERROR_OK) return retval;
2120 retval = cortex_a8_read_apb_ab_memory(target, address, size, count, buffer);
2122 return retval;
2125 static int cortex_a8_write_phys_memory(struct target *target,
2126 uint32_t address, uint32_t size,
2127 uint32_t count, const uint8_t *buffer)
2129 struct armv7a_common *armv7a = target_to_armv7a(target);
2130 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
2131 int retval = ERROR_INVALID_ARGUMENTS;
2132 uint8_t apsel = swjdp->apsel;
2134 LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address,
2135 size, count);
2137 if (count && buffer) {
2139 if ( apsel == swjdp_memoryap ) {
2141 /* write memory through AHB-AP */
2143 switch (size) {
2144 case 4:
2145 retval = mem_ap_sel_write_buf_u32(swjdp, swjdp_memoryap,
2146 buffer, 4 * count, address);
2147 break;
2148 case 2:
2149 retval = mem_ap_sel_write_buf_u16(swjdp, swjdp_memoryap,
2150 buffer, 2 * count, address);
2151 break;
2152 case 1:
2153 retval = mem_ap_sel_write_buf_u8(swjdp, swjdp_memoryap,
2154 buffer, count, address);
2155 break;
2158 } else {
2160 /* write memory through APB-AP */
2161 retval = cortex_a8_mmu_modify(target, 0);
2162 if (retval != ERROR_OK)
2163 return retval;
2164 return cortex_a8_write_apb_ab_memory(target, address, size, count, buffer);
2169 /* REVISIT this op is generic ARMv7-A/R stuff */
2170 if (retval == ERROR_OK && target->state == TARGET_HALTED)
2172 struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
2174 retval = dpm->prepare(dpm);
2175 if (retval != ERROR_OK)
2176 return retval;
2178 /* The Cache handling will NOT work with MMU active, the
2179 * wrong addresses will be invalidated!
2181 * For both ICache and DCache, walk all cache lines in the
2182 * address range. Cortex-A8 has fixed 64 byte line length.
2184 * REVISIT per ARMv7, these may trigger watchpoints ...
2187 /* invalidate I-Cache */
2188 if (armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled)
2190 /* ICIMVAU - Invalidate Cache single entry
2191 * with MVA to PoU
2192 * MCR p15, 0, r0, c7, c5, 1
2194 for (uint32_t cacheline = address;
2195 cacheline < address + size * count;
2196 cacheline += 64) {
2197 retval = dpm->instr_write_data_r0(dpm,
2198 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
2199 cacheline);
2200 if (retval != ERROR_OK)
2201 return retval;
2205 /* invalidate D-Cache */
2206 if (armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled)
2208 /* DCIMVAC - Invalidate data Cache line
2209 * with MVA to PoC
2210 * MCR p15, 0, r0, c7, c6, 1
2212 for (uint32_t cacheline = address;
2213 cacheline < address + size * count;
2214 cacheline += 64) {
2215 retval = dpm->instr_write_data_r0(dpm,
2216 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
2217 cacheline);
2218 if (retval != ERROR_OK)
2219 return retval;
2223 /* (void) */ dpm->finish(dpm);
2226 return retval;
2229 static int cortex_a8_write_memory(struct target *target, uint32_t address,
2230 uint32_t size, uint32_t count, const uint8_t *buffer)
2232 int enabled = 0;
2233 uint32_t virt, phys;
2234 int retval;
2235 struct armv7a_common *armv7a = target_to_armv7a(target);
2236 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
2237 uint8_t apsel = swjdp->apsel;
2238 /* cortex_a8 handles unaligned memory access */
2239 LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address,
2240 size, count);
2241 if (apsel == swjdp_memoryap) {
2243 LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size, count);
2244 retval = cortex_a8_mmu(target, &enabled);
2245 if (retval != ERROR_OK)
2246 return retval;
2248 if(enabled)
2250 virt = address;
2251 retval = cortex_a8_virt2phys(target, virt, &phys);
2252 if (retval != ERROR_OK)
2253 return retval;
2254 LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt, phys);
2255 address = phys;
2258 retval = cortex_a8_write_phys_memory(target, address, size,
2259 count, buffer);
2261 else {
2262 retval = cortex_a8_check_address(target, address);
2263 if (retval != ERROR_OK) return retval;
2264 /* enable mmu */
2265 retval = cortex_a8_mmu_modify(target, 1);
2266 if (retval != ERROR_OK) return retval;
2267 retval = cortex_a8_write_apb_ab_memory(target, address, size, count, buffer);
2269 return retval;
2272 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
2273 uint32_t count, const uint8_t *buffer)
2275 return cortex_a8_write_memory(target, address, 4, count, buffer);
2279 static int cortex_a8_handle_target_request(void *priv)
2281 struct target *target = priv;
2282 struct armv7a_common *armv7a = target_to_armv7a(target);
2283 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
2284 int retval;
2286 if (!target_was_examined(target))
2287 return ERROR_OK;
2288 if (!target->dbg_msg_enabled)
2289 return ERROR_OK;
2291 if (target->state == TARGET_RUNNING)
2293 uint32_t request;
2294 uint32_t dscr;
2295 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2296 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2298 /* check if we have data */
2299 while ((dscr & DSCR_DTR_TX_FULL) && (retval==ERROR_OK))
2301 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2302 armv7a->debug_base+ CPUDBG_DTRTX, &request);
2303 if (retval == ERROR_OK)
2305 target_request(target, request);
2306 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2307 armv7a->debug_base+ CPUDBG_DSCR, &dscr);
2312 return ERROR_OK;
2316 * Cortex-A8 target information and configuration
2319 static int cortex_a8_examine_first(struct target *target)
2321 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
2322 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2323 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
2324 int i;
2325 int retval = ERROR_OK;
2326 uint32_t didr, ctypr, ttypr, cpuid;
2328 /* We do one extra read to ensure DAP is configured,
2329 * we call ahbap_debugport_init(swjdp) instead
2331 retval = ahbap_debugport_init(swjdp);
2332 if (retval != ERROR_OK)
2333 return retval;
2335 if (!target->dbgbase_set)
2337 uint32_t dbgbase;
2338 /* Get ROM Table base */
2339 uint32_t apid;
2340 retval = dap_get_debugbase(swjdp, 1, &dbgbase, &apid);
2341 if (retval != ERROR_OK)
2342 return retval;
2343 /* Lookup 0x15 -- Processor DAP */
2344 retval = dap_lookup_cs_component(swjdp, 1, dbgbase, 0x15,
2345 &armv7a->debug_base);
2346 if (retval != ERROR_OK)
2347 return retval;
2349 else
2351 armv7a->debug_base = target->dbgbase;
2354 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2355 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2356 if (retval != ERROR_OK)
2357 return retval;
2359 if ((retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2360 armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
2362 LOG_DEBUG("Examine %s failed", "CPUID");
2363 return retval;
2366 if ((retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2367 armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
2369 LOG_DEBUG("Examine %s failed", "CTYPR");
2370 return retval;
2373 if ((retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2374 armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
2376 LOG_DEBUG("Examine %s failed", "TTYPR");
2377 return retval;
2380 if ((retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2381 armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
2383 LOG_DEBUG("Examine %s failed", "DIDR");
2384 return retval;
2387 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2388 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
2389 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
2390 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2392 armv7a->armv4_5_common.core_type = ARM_MODE_MON;
2393 retval = cortex_a8_dpm_setup(cortex_a8, didr);
2394 if (retval != ERROR_OK)
2395 return retval;
2397 /* Setup Breakpoint Register Pairs */
2398 cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
2399 cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
2400 cortex_a8->brp_num_available = cortex_a8->brp_num;
2401 cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
2402 // cortex_a8->brb_enabled = ????;
2403 for (i = 0; i < cortex_a8->brp_num; i++)
2405 cortex_a8->brp_list[i].used = 0;
2406 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
2407 cortex_a8->brp_list[i].type = BRP_NORMAL;
2408 else
2409 cortex_a8->brp_list[i].type = BRP_CONTEXT;
2410 cortex_a8->brp_list[i].value = 0;
2411 cortex_a8->brp_list[i].control = 0;
2412 cortex_a8->brp_list[i].BRPn = i;
2415 LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
2417 target_set_examined(target);
2418 return ERROR_OK;
2421 static int cortex_a8_examine(struct target *target)
2423 int retval = ERROR_OK;
2425 /* don't re-probe hardware after each reset */
2426 if (!target_was_examined(target))
2427 retval = cortex_a8_examine_first(target);
2429 /* Configure core debug access */
2430 if (retval == ERROR_OK)
2431 retval = cortex_a8_init_debug_access(target);
2433 return retval;
2437 * Cortex-A8 target creation and initialization
2440 static int cortex_a8_init_target(struct command_context *cmd_ctx,
2441 struct target *target)
2443 /* examine_first() does a bunch of this */
2444 return ERROR_OK;
2447 static int cortex_a8_init_arch_info(struct target *target,
2448 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
2450 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2451 struct adiv5_dap *dap = &armv7a->dap;
2453 armv7a->armv4_5_common.dap = dap;
2455 /* Setup struct cortex_a8_common */
2456 cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
2457 /* tap has no dap initialized */
2458 if (!tap->dap)
2460 armv7a->armv4_5_common.dap = dap;
2461 /* Setup struct cortex_a8_common */
2463 /* prepare JTAG information for the new target */
2464 cortex_a8->jtag_info.tap = tap;
2465 cortex_a8->jtag_info.scann_size = 4;
2467 /* Leave (only) generic DAP stuff for debugport_init() */
2468 dap->jtag_info = &cortex_a8->jtag_info;
2470 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
2471 dap->tar_autoincr_block = (1 << 10);
2472 dap->memaccess_tck = 80;
2473 tap->dap = dap;
2475 else
2476 armv7a->armv4_5_common.dap = tap->dap;
2478 cortex_a8->fast_reg_read = 0;
2480 /* register arch-specific functions */
2481 armv7a->examine_debug_reason = NULL;
2483 armv7a->post_debug_entry = cortex_a8_post_debug_entry;
2485 armv7a->pre_restore_context = NULL;
2487 armv7a->armv7a_mmu.read_physical_memory = cortex_a8_read_phys_memory;
2490 // arm7_9->handle_target_request = cortex_a8_handle_target_request;
2492 /* REVISIT v7a setup should be in a v7a-specific routine */
2493 armv7a_init_arch_info(target, armv7a);
2494 target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
2496 return ERROR_OK;
2499 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
2501 struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
2503 return cortex_a8_init_arch_info(target, cortex_a8, target->tap);
2508 static int cortex_a8_mmu(struct target *target, int *enabled)
2510 if (target->state != TARGET_HALTED) {
2511 LOG_ERROR("%s: target not halted", __func__);
2512 return ERROR_TARGET_INVALID;
2515 *enabled = target_to_cortex_a8(target)->armv7a_common.armv7a_mmu.mmu_enabled;
2516 return ERROR_OK;
2519 static int cortex_a8_virt2phys(struct target *target,
2520 uint32_t virt, uint32_t *phys)
2522 int retval = ERROR_FAIL;
2523 struct armv7a_common *armv7a = target_to_armv7a(target);
2524 struct adiv5_dap *swjdp = armv7a->armv4_5_common.dap;
2525 uint8_t apsel = swjdp->apsel;
2526 if (apsel == swjdp_memoryap)
2528 uint32_t ret;
2529 retval = armv7a_mmu_translate_va(target,
2530 virt, &ret);
2531 if (retval != ERROR_OK)
2532 goto done;
2533 *phys = ret;
2535 else
2536 { /* use this method if swjdp_memoryap not selected */
2537 /* mmu must be enable in order to get a correct translation */
2538 retval = cortex_a8_mmu_modify(target, 1);
2539 if (retval != ERROR_OK) goto done;
2540 retval = armv7a_mmu_translate_va_pa(target, virt, phys, 1);
2542 done:
2543 return retval;
2546 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
2548 struct target *target = get_current_target(CMD_CTX);
2549 struct armv7a_common *armv7a = target_to_armv7a(target);
2551 return armv7a_handle_cache_info_command(CMD_CTX,
2552 &armv7a->armv7a_mmu.armv7a_cache);
2556 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
2558 struct target *target = get_current_target(CMD_CTX);
2559 if (!target_was_examined(target))
2561 LOG_ERROR("target not examined yet");
2562 return ERROR_FAIL;
2565 return cortex_a8_init_debug_access(target);
2567 COMMAND_HANDLER(cortex_a8_handle_smp_off_command)
2569 struct target *target = get_current_target(CMD_CTX);
2570 /* check target is an smp target */
2571 struct target_list *head;
2572 struct target *curr;
2573 head = target->head;
2574 target->smp = 0;
2575 if (head != (struct target_list*)NULL)
2577 while (head != (struct target_list*)NULL)
2579 curr = head->target;
2580 curr->smp = 0;
2581 head = head->next;
2583 /* fixes the target display to the debugger */
2584 target->gdb_service->target = target;
2586 return ERROR_OK;
2589 COMMAND_HANDLER(cortex_a8_handle_smp_on_command)
2591 struct target *target = get_current_target(CMD_CTX);
2592 struct target_list *head;
2593 struct target *curr;
2594 head = target->head;
2595 if (head != (struct target_list*)NULL)
2596 { target->smp=1;
2597 while (head != (struct target_list*)NULL)
2599 curr = head->target;
2600 curr->smp = 1;
2601 head = head->next;
2604 return ERROR_OK;
2607 COMMAND_HANDLER(cortex_a8_handle_smp_gdb_command)
2609 struct target *target = get_current_target(CMD_CTX);
2610 int retval = ERROR_OK;
2611 struct target_list *head;
2612 head = target->head;
2613 if (head != (struct target_list*)NULL)
2615 if (CMD_ARGC == 1)
2617 int coreid = 0;
2618 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2619 if (ERROR_OK != retval)
2620 return retval;
2621 target->gdb_service->core[1]=coreid;
2624 command_print(CMD_CTX, "gdb coreid %d -> %d", target->gdb_service->core[0]
2625 , target->gdb_service->core[1]);
2627 return ERROR_OK;
2630 static const struct command_registration cortex_a8_exec_command_handlers[] = {
2632 .name = "cache_info",
2633 .handler = cortex_a8_handle_cache_info_command,
2634 .mode = COMMAND_EXEC,
2635 .help = "display information about target caches",
2638 .name = "dbginit",
2639 .handler = cortex_a8_handle_dbginit_command,
2640 .mode = COMMAND_EXEC,
2641 .help = "Initialize core debug",
2643 { .name ="smp_off",
2644 .handler = cortex_a8_handle_smp_off_command,
2645 .mode = COMMAND_EXEC,
2646 .help = "Stop smp handling",
2649 .name ="smp_on",
2650 .handler = cortex_a8_handle_smp_on_command,
2651 .mode = COMMAND_EXEC,
2652 .help = "Restart smp handling",
2655 .name ="smp_gdb",
2656 .handler = cortex_a8_handle_smp_gdb_command,
2657 .mode = COMMAND_EXEC,
2658 .help = "display/fix current core played to gdb",
2662 COMMAND_REGISTRATION_DONE
2664 static const struct command_registration cortex_a8_command_handlers[] = {
2666 .chain = arm_command_handlers,
2669 .chain = armv7a_command_handlers,
2672 .name = "cortex_a8",
2673 .mode = COMMAND_ANY,
2674 .help = "Cortex-A8 command group",
2675 .chain = cortex_a8_exec_command_handlers,
2677 COMMAND_REGISTRATION_DONE
2680 struct target_type cortexa8_target = {
2681 .name = "cortex_a8",
2683 .poll = cortex_a8_poll,
2684 .arch_state = armv7a_arch_state,
2686 .target_request_data = NULL,
2688 .halt = cortex_a8_halt,
2689 .resume = cortex_a8_resume,
2690 .step = cortex_a8_step,
2692 .assert_reset = cortex_a8_assert_reset,
2693 .deassert_reset = cortex_a8_deassert_reset,
2694 .soft_reset_halt = NULL,
2696 /* REVISIT allow exporting VFP3 registers ... */
2697 .get_gdb_reg_list = arm_get_gdb_reg_list,
2699 .read_memory = cortex_a8_read_memory,
2700 .write_memory = cortex_a8_write_memory,
2701 .bulk_write_memory = cortex_a8_bulk_write_memory,
2703 .checksum_memory = arm_checksum_memory,
2704 .blank_check_memory = arm_blank_check_memory,
2706 .run_algorithm = armv4_5_run_algorithm,
2708 .add_breakpoint = cortex_a8_add_breakpoint,
2709 .add_context_breakpoint = cortex_a8_add_context_breakpoint,
2710 .add_hybrid_breakpoint = cortex_a8_add_hybrid_breakpoint,
2711 .remove_breakpoint = cortex_a8_remove_breakpoint,
2712 .add_watchpoint = NULL,
2713 .remove_watchpoint = NULL,
2715 .commands = cortex_a8_command_handlers,
2716 .target_create = cortex_a8_target_create,
2717 .init_target = cortex_a8_init_target,
2718 .examine = cortex_a8_examine,
2720 .read_phys_memory = cortex_a8_read_phys_memory,
2721 .write_phys_memory = cortex_a8_write_phys_memory,
2722 .mmu = cortex_a8_mmu,
2723 .virt2phys = cortex_a8_virt2phys,