1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * Copyright (C) 2008 by Hongtao Zheng *
14 * Copyright (C) 2009 by David Brownell *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
30 ***************************************************************************/
35 #include "breakpoints.h"
36 #include "embeddedice.h"
37 #include "target_request.h"
39 #include <helper/time_support.h>
40 #include "arm_simulator.h"
41 #include "arm_semihosting.h"
42 #include "algorithm.h"
49 * Hold common code supporting the ARM7 and ARM9 core generations.
51 * While the ARM core implementations evolved substantially during these
52 * two generations, they look quite similar from the JTAG perspective.
53 * Both have similar debug facilities, based on the same two scan chains
54 * providing access to the core and to an EmbeddedICE module. Both can
55 * support similar ETM and ETB modules, for tracing. And both expose
56 * what could be viewed as "ARM Classic", with multiple processor modes,
57 * shadowed registers, and support for the Thumb instruction set.
59 * Processor differences include things like presence or absence of MMU
60 * and cache, pipeline sizes, use of a modified Harvard Architecure
61 * (with separate instruction and data busses from the CPU), support
62 * for cpu clock gating during idle, and more.
65 static int arm7_9_debug_entry(struct target
*target
);
68 * Clear watchpoints for an ARM7/9 target.
70 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71 * @return JTAG error status after executing queue
73 static int arm7_9_clear_watchpoints(struct arm7_9_common
*arm7_9
)
76 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
77 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
78 arm7_9
->sw_breakpoint_count
= 0;
79 arm7_9
->sw_breakpoints_added
= 0;
81 arm7_9
->wp1_used
= arm7_9
->wp1_used_default
;
82 arm7_9
->wp_available
= arm7_9
->wp_available_max
;
84 return jtag_execute_queue();
88 * Assign a watchpoint to one of the two available hardware comparators in an
89 * ARM7 or ARM9 target.
91 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
94 static void arm7_9_assign_wp(struct arm7_9_common
*arm7_9
, struct breakpoint
*breakpoint
)
96 if (!arm7_9
->wp0_used
)
100 arm7_9
->wp_available
--;
102 else if (!arm7_9
->wp1_used
)
104 arm7_9
->wp1_used
= 1;
106 arm7_9
->wp_available
--;
110 LOG_ERROR("BUG: no hardware comparator available");
112 LOG_DEBUG("BPID: %d (0x%08" PRIx32
") using hw wp: %d",
113 breakpoint
->unique_id
,
119 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
121 * @param arm7_9 Pointer to common struct for ARM7/9 targets
122 * @return Error codes if there is a problem finding a watchpoint or the result
123 * of executing the JTAG queue
125 static int arm7_9_set_software_breakpoints(struct arm7_9_common
*arm7_9
)
127 if (arm7_9
->sw_breakpoints_added
)
131 if (arm7_9
->wp_available
< 1)
133 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
134 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
136 arm7_9
->wp_available
--;
138 /* pick a breakpoint unit */
139 if (!arm7_9
->wp0_used
)
141 arm7_9
->sw_breakpoints_added
= 1;
142 arm7_9
->wp0_used
= 3;
143 } else if (!arm7_9
->wp1_used
)
145 arm7_9
->sw_breakpoints_added
= 2;
146 arm7_9
->wp1_used
= 3;
150 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
154 if (arm7_9
->sw_breakpoints_added
== 1)
156 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], arm7_9
->arm_bkpt
);
157 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0x0);
158 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffffu
);
159 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
160 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
162 else if (arm7_9
->sw_breakpoints_added
== 2)
164 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], arm7_9
->arm_bkpt
);
165 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0x0);
166 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0xffffffffu
);
167 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
168 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
172 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
175 LOG_DEBUG("SW BP using hw wp: %d",
176 arm7_9
->sw_breakpoints_added
);
178 return jtag_execute_queue();
182 * Setup the common pieces for an ARM7/9 target after reset or on startup.
184 * @param target Pointer to an ARM7/9 target to setup
185 * @return Result of clearing the watchpoints on the target
187 static int arm7_9_setup(struct target
*target
)
189 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
191 return arm7_9_clear_watchpoints(arm7_9
);
195 * Set either a hardware or software breakpoint on an ARM7/9 target. The
196 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
197 * might have erased the values in Embedded ICE.
199 * @param target Pointer to the target device to set the breakpoints on
200 * @param breakpoint Pointer to the breakpoint to be set
201 * @return For hardware breakpoints, this is the result of executing the JTAG
202 * queue. For software breakpoints, this will be the status of the
203 * required memory reads and writes
205 static int arm7_9_set_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
207 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
208 int retval
= ERROR_OK
;
210 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32
", Type: %d" ,
211 breakpoint
->unique_id
,
215 if (target
->state
!= TARGET_HALTED
)
217 LOG_WARNING("target not halted");
218 return ERROR_TARGET_NOT_HALTED
;
221 if (breakpoint
->type
== BKPT_HARD
)
223 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
224 uint32_t mask
= (breakpoint
->length
== 4) ? 0x3u
: 0x1u
;
226 /* reassign a hw breakpoint */
227 if (breakpoint
->set
== 0)
229 arm7_9_assign_wp(arm7_9
, breakpoint
);
232 if (breakpoint
->set
== 1)
234 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], breakpoint
->address
);
235 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
236 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffffu
);
237 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
238 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
240 else if (breakpoint
->set
== 2)
242 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], breakpoint
->address
);
243 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
244 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffffu
);
245 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
246 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
250 LOG_ERROR("BUG: no hardware comparator available");
254 retval
= jtag_execute_queue();
256 else if (breakpoint
->type
== BKPT_SOFT
)
258 /* did we already set this breakpoint? */
262 if (breakpoint
->length
== 4)
264 uint32_t verify
= 0xffffffff;
265 /* keep the original instruction in target endianness */
266 if ((retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
270 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
271 if ((retval
= target_write_u32(target
, breakpoint
->address
, arm7_9
->arm_bkpt
)) != ERROR_OK
)
276 if ((retval
= target_read_u32(target
, breakpoint
->address
, &verify
)) != ERROR_OK
)
280 if (verify
!= arm7_9
->arm_bkpt
)
282 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32
" - check that memory is read/writable", breakpoint
->address
);
288 uint16_t verify
= 0xffff;
289 /* keep the original instruction in target endianness */
290 if ((retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
294 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
295 if ((retval
= target_write_u16(target
, breakpoint
->address
, arm7_9
->thumb_bkpt
)) != ERROR_OK
)
300 if ((retval
= target_read_u16(target
, breakpoint
->address
, &verify
)) != ERROR_OK
)
304 if (verify
!= arm7_9
->thumb_bkpt
)
306 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32
" - check that memory is read/writable", breakpoint
->address
);
311 if ((retval
= arm7_9_set_software_breakpoints(arm7_9
)) != ERROR_OK
)
314 arm7_9
->sw_breakpoint_count
++;
323 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
324 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
325 * will be updated. Otherwise, the software breakpoint will be restored to its
326 * original instruction if it hasn't already been modified.
328 * @param target Pointer to ARM7/9 target to unset the breakpoint from
329 * @param breakpoint Pointer to breakpoint to be unset
330 * @return For hardware breakpoints, this is the result of executing the JTAG
331 * queue. For software breakpoints, this will be the status of the
332 * required memory reads and writes
334 static int arm7_9_unset_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
336 int retval
= ERROR_OK
;
337 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
339 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32
,
340 breakpoint
->unique_id
,
341 breakpoint
->address
);
343 if (!breakpoint
->set
)
345 LOG_WARNING("breakpoint not set");
349 if (breakpoint
->type
== BKPT_HARD
)
351 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
352 breakpoint
->unique_id
,
354 if (breakpoint
->set
== 1)
356 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
357 arm7_9
->wp0_used
= 0;
358 arm7_9
->wp_available
++;
360 else if (breakpoint
->set
== 2)
362 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
363 arm7_9
->wp1_used
= 0;
364 arm7_9
->wp_available
++;
366 retval
= jtag_execute_queue();
371 /* restore original instruction (kept in target endianness) */
372 if (breakpoint
->length
== 4)
374 uint32_t current_instr
;
375 /* check that user program as not modified breakpoint instruction */
376 if ((retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, (uint8_t*)¤t_instr
)) != ERROR_OK
)
380 current_instr
= target_buffer_get_u32(target
, (uint8_t *)¤t_instr
);
381 if (current_instr
== arm7_9
->arm_bkpt
)
382 if ((retval
= target_write_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
389 uint16_t current_instr
;
390 /* check that user program as not modified breakpoint instruction */
391 if ((retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, (uint8_t*)¤t_instr
)) != ERROR_OK
)
395 current_instr
= target_buffer_get_u16(target
, (uint8_t *)¤t_instr
);
396 if (current_instr
== arm7_9
->thumb_bkpt
)
397 if ((retval
= target_write_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
403 if (--arm7_9
->sw_breakpoint_count
==0)
405 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
406 if (arm7_9
->sw_breakpoints_added
== 1)
408 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0);
410 else if (arm7_9
->sw_breakpoints_added
== 2)
412 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0);
423 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
424 * dangling breakpoints and that the desired breakpoint can be added.
426 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
427 * @param breakpoint Pointer to the breakpoint to be added
428 * @return An error status if there is a problem adding the breakpoint or the
429 * result of setting the breakpoint
431 int arm7_9_add_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
433 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
435 if (arm7_9
->breakpoint_count
== 0)
437 /* make sure we don't have any dangling breakpoints. This is vital upon
438 * GDB connect/disconnect
440 arm7_9_clear_watchpoints(arm7_9
);
443 if ((breakpoint
->type
== BKPT_HARD
) && (arm7_9
->wp_available
< 1))
445 LOG_INFO("no watchpoint unit available for hardware breakpoint");
446 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
449 if ((breakpoint
->length
!= 2) && (breakpoint
->length
!= 4))
451 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
452 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
455 if (breakpoint
->type
== BKPT_HARD
)
457 arm7_9_assign_wp(arm7_9
, breakpoint
);
460 arm7_9
->breakpoint_count
++;
462 return arm7_9_set_breakpoint(target
, breakpoint
);
466 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
467 * dangling breakpoints and updates available watchpoints if it is a hardware
470 * @param target Pointer to the target to have a breakpoint removed
471 * @param breakpoint Pointer to the breakpoint to be removed
472 * @return Error status if there was a problem unsetting the breakpoint or the
473 * watchpoints could not be cleared
475 int arm7_9_remove_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
477 int retval
= ERROR_OK
;
478 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
480 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
485 if (breakpoint
->type
== BKPT_HARD
)
486 arm7_9
->wp_available
++;
488 arm7_9
->breakpoint_count
--;
489 if (arm7_9
->breakpoint_count
== 0)
491 /* make sure we don't have any dangling breakpoints */
492 if ((retval
= arm7_9_clear_watchpoints(arm7_9
)) != ERROR_OK
)
502 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
503 * considered a bug to call this function when there are no available watchpoint
506 * @param target Pointer to an ARM7/9 target to set a watchpoint on
507 * @param watchpoint Pointer to the watchpoint to be set
508 * @return Error status if watchpoint set fails or the result of executing the
511 static int arm7_9_set_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
513 int retval
= ERROR_OK
;
514 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
518 mask
= watchpoint
->length
- 1;
520 if (target
->state
!= TARGET_HALTED
)
522 LOG_WARNING("target not halted");
523 return ERROR_TARGET_NOT_HALTED
;
526 if (watchpoint
->rw
== WPT_ACCESS
)
531 if (!arm7_9
->wp0_used
)
533 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], watchpoint
->address
);
534 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
535 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], watchpoint
->mask
);
536 if (watchpoint
->mask
!= 0xffffffffu
)
537 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], watchpoint
->value
);
538 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
539 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
541 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
546 arm7_9
->wp0_used
= 2;
548 else if (!arm7_9
->wp1_used
)
550 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], watchpoint
->address
);
551 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
552 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], watchpoint
->mask
);
553 if (watchpoint
->mask
!= 0xffffffffu
)
554 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], watchpoint
->value
);
555 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
556 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
558 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
563 arm7_9
->wp1_used
= 2;
567 LOG_ERROR("BUG: no hardware comparator available");
575 * Unset an existing watchpoint and clear the used watchpoint unit.
577 * @param target Pointer to the target to have the watchpoint removed
578 * @param watchpoint Pointer to the watchpoint to be removed
579 * @return Error status while trying to unset the watchpoint or the result of
580 * executing the JTAG queue
582 static int arm7_9_unset_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
584 int retval
= ERROR_OK
;
585 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
587 if (target
->state
!= TARGET_HALTED
)
589 LOG_WARNING("target not halted");
590 return ERROR_TARGET_NOT_HALTED
;
593 if (!watchpoint
->set
)
595 LOG_WARNING("breakpoint not set");
599 if (watchpoint
->set
== 1)
601 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
602 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
606 arm7_9
->wp0_used
= 0;
608 else if (watchpoint
->set
== 2)
610 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
611 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
615 arm7_9
->wp1_used
= 0;
623 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
624 * available, an error response is returned.
626 * @param target Pointer to the ARM7/9 target to add a watchpoint to
627 * @param watchpoint Pointer to the watchpoint to be added
628 * @return Error status while trying to add the watchpoint
630 int arm7_9_add_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
632 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
634 if (arm7_9
->wp_available
< 1)
636 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
639 if ((watchpoint
->length
!= 1) && (watchpoint
->length
!= 2) && (watchpoint
->length
!= 4))
641 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
644 arm7_9
->wp_available
--;
650 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
651 * the used watchpoint unit will be reopened.
653 * @param target Pointer to the target to remove a watchpoint from
654 * @param watchpoint Pointer to the watchpoint to be removed
655 * @return Result of trying to unset the watchpoint
657 int arm7_9_remove_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
659 int retval
= ERROR_OK
;
660 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
664 if ((retval
= arm7_9_unset_watchpoint(target
, watchpoint
)) != ERROR_OK
)
670 arm7_9
->wp_available
++;
676 * Restarts the target by sending a RESTART instruction and moving the JTAG
677 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
678 * asserted by the processor.
680 * @param target Pointer to target to issue commands to
681 * @return Error status if there is a timeout or a problem while executing the
684 int arm7_9_execute_sys_speed(struct target
*target
)
687 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
688 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
689 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
691 /* set RESTART instruction */
692 if (arm7_9
->need_bypass_before_restart
) {
693 arm7_9
->need_bypass_before_restart
= 0;
694 retval
= arm_jtag_set_instr(jtag_info
, 0xf, NULL
, TAP_IDLE
);
695 if (retval
!= ERROR_OK
)
698 retval
= arm_jtag_set_instr(jtag_info
, 0x4, NULL
, TAP_IDLE
);
699 if (retval
!= ERROR_OK
)
702 long long then
= timeval_ms();
704 while (!(timeout
= ((timeval_ms()-then
) > 1000)))
706 /* read debug status register */
707 embeddedice_read_reg(dbg_stat
);
708 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
710 if ((buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
711 && (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_SYSCOMP
, 1)))
713 if (debug_level
>= 3)
723 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32
"", buf_get_u32(dbg_stat
->value
, 0, dbg_stat
->size
));
724 return ERROR_TARGET_TIMEOUT
;
731 * Restarts the target by sending a RESTART instruction and moving the JTAG
732 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
733 * waiting until they are.
735 * @param target Pointer to the target to issue commands to
736 * @return Always ERROR_OK
738 static int arm7_9_execute_fast_sys_speed(struct target
*target
)
741 static uint8_t check_value
[4], check_mask
[4];
743 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
744 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
745 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
748 /* set RESTART instruction */
749 if (arm7_9
->need_bypass_before_restart
) {
750 arm7_9
->need_bypass_before_restart
= 0;
751 retval
= arm_jtag_set_instr(jtag_info
, 0xf, NULL
, TAP_IDLE
);
752 if (retval
!= ERROR_OK
)
755 retval
= arm_jtag_set_instr(jtag_info
, 0x4, NULL
, TAP_IDLE
);
756 if (retval
!= ERROR_OK
)
761 /* check for DBGACK and SYSCOMP set (others don't care) */
763 /* NB! These are constants that must be available until after next jtag_execute() and
764 * we evaluate the values upon first execution in lieu of setting up these constants
765 * during early setup.
767 buf_set_u32(check_value
, 0, 32, 0x9);
768 buf_set_u32(check_mask
, 0, 32, 0x9);
772 /* read debug status register */
773 embeddedice_read_reg_w_check(dbg_stat
, check_value
, check_mask
);
779 * Get some data from the ARM7/9 target.
781 * @param target Pointer to the ARM7/9 target to read data from
782 * @param size The number of 32bit words to be read
783 * @param buffer Pointer to the buffer that will hold the data
784 * @return The result of receiving data from the Embedded ICE unit
786 int arm7_9_target_request_data(struct target
*target
, uint32_t size
, uint8_t *buffer
)
788 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
789 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
791 int retval
= ERROR_OK
;
794 data
= malloc(size
* (sizeof(uint32_t)));
796 retval
= embeddedice_receive(jtag_info
, data
, size
);
798 /* return the 32-bit ints in the 8-bit array */
799 for (i
= 0; i
< size
; i
++)
801 h_u32_to_le(buffer
+ (i
* 4), data
[i
]);
810 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
811 * target is running and the DCC control register has the W bit high, this will
812 * execute the request on the target.
814 * @param priv Void pointer expected to be a struct target pointer
815 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
816 * from the Embedded ICE unit
818 static int arm7_9_handle_target_request(void *priv
)
820 int retval
= ERROR_OK
;
821 struct target
*target
= priv
;
822 if (!target_was_examined(target
))
824 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
825 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
826 struct reg
*dcc_control
= &arm7_9
->eice_cache
->reg_list
[EICE_COMMS_CTRL
];
828 if (!target
->dbg_msg_enabled
)
831 if (target
->state
== TARGET_RUNNING
)
833 /* read DCC control register */
834 embeddedice_read_reg(dcc_control
);
835 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
841 if (buf_get_u32(dcc_control
->value
, 1, 1) == 1)
845 if ((retval
= embeddedice_receive(jtag_info
, &request
, 1)) != ERROR_OK
)
849 if ((retval
= target_request(target
, request
)) != ERROR_OK
)
860 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
861 * is manipulated to the right halted state based on its current state. This is
865 * <tr><th > State</th><th > Action</th></tr>
866 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
867 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
868 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
869 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
872 * If the target does not end up in the halted state, a warning is produced. If
873 * DBGACK is cleared, then the target is expected to either be running or
876 * @param target Pointer to the ARM7/9 target to poll
877 * @return ERROR_OK or an error status if a command fails
879 int arm7_9_poll(struct target
*target
)
882 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
883 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
885 /* read debug status register */
886 embeddedice_read_reg(dbg_stat
);
887 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
892 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
894 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
895 if (target
->state
== TARGET_UNKNOWN
)
897 /* Starting OpenOCD with target in debug-halt */
898 target
->state
= TARGET_RUNNING
;
899 LOG_DEBUG("DBGACK already set during server startup.");
901 if ((target
->state
== TARGET_RUNNING
) || (target
->state
== TARGET_RESET
))
903 target
->state
= TARGET_HALTED
;
905 if ((retval
= arm7_9_debug_entry(target
)) != ERROR_OK
)
908 if (arm_semihosting(target
, &retval
) != 0)
911 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
916 if (target
->state
== TARGET_DEBUG_RUNNING
)
918 target
->state
= TARGET_HALTED
;
919 if ((retval
= arm7_9_debug_entry(target
)) != ERROR_OK
)
922 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_HALTED
)) != ERROR_OK
)
927 if (target
->state
!= TARGET_HALTED
)
929 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target
->state
);
934 if (target
->state
!= TARGET_DEBUG_RUNNING
)
935 target
->state
= TARGET_RUNNING
;
942 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
943 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
944 * affected) completely stop the JTAG clock while the core is held in reset
945 * (SRST). It isn't possible to program the halt condition once reset is
946 * asserted, hence a hook that allows the target to set up its reset-halt
947 * condition is setup prior to asserting reset.
949 * @param target Pointer to an ARM7/9 target to assert reset on
950 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
952 int arm7_9_assert_reset(struct target
*target
)
954 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
955 enum reset_types jtag_reset_config
= jtag_get_reset_config();
956 bool use_event
= false;
958 LOG_DEBUG("target->state: %s",
959 target_state_name(target
));
961 if (target_has_event_action(target
, TARGET_EVENT_RESET_ASSERT
))
963 else if (!(jtag_reset_config
& RESET_HAS_SRST
)) {
964 LOG_ERROR("%s: how to reset?", target_name(target
));
968 /* At this point trst has been asserted/deasserted once. We would
969 * like to program EmbeddedICE while SRST is asserted, instead of
970 * depending on SRST to leave that module alone. However, many CPUs
971 * gate the JTAG clock while SRST is asserted; or JTAG may need
972 * clock stability guarantees (adaptive clocking might help).
974 * So we assume JTAG access during SRST is off the menu unless it's
975 * been specifically enabled.
977 bool srst_asserted
= false;
980 && !(jtag_reset_config
& RESET_SRST_PULLS_TRST
)
981 && (jtag_reset_config
& RESET_SRST_NO_GATING
))
983 jtag_add_reset(0, 1);
984 srst_asserted
= true;
987 if (target
->reset_halt
)
990 * For targets that don't support communication while SRST is
991 * asserted, we need to set up the reset vector catch first.
993 * When we use TRST+SRST and that's equivalent to a power-up
994 * reset, these settings may well be reset anyway; so setting
995 * them here won't matter.
997 if (arm7_9
->has_vector_catch
)
999 /* program vector catch register to catch reset */
1000 embeddedice_write_reg(&arm7_9
->eice_cache
1001 ->reg_list
[EICE_VEC_CATCH
], 0x1);
1003 /* extra runtest added as issues were found with
1004 * certain ARM9 cores (maybe more) - AT91SAM9260
1007 jtag_add_runtest(1, TAP_IDLE
);
1011 /* program watchpoint unit to match on reset vector
1014 embeddedice_write_reg(&arm7_9
->eice_cache
1015 ->reg_list
[EICE_W0_ADDR_VALUE
], 0x0);
1016 embeddedice_write_reg(&arm7_9
->eice_cache
1017 ->reg_list
[EICE_W0_ADDR_MASK
], 0x3);
1018 embeddedice_write_reg(&arm7_9
->eice_cache
1019 ->reg_list
[EICE_W0_DATA_MASK
],
1021 embeddedice_write_reg(&arm7_9
->eice_cache
1022 ->reg_list
[EICE_W0_CONTROL_VALUE
],
1023 EICE_W_CTRL_ENABLE
);
1024 embeddedice_write_reg(&arm7_9
->eice_cache
1025 ->reg_list
[EICE_W0_CONTROL_MASK
],
1026 ~EICE_W_CTRL_nOPC
& 0xff);
1031 target_handle_event(target
, TARGET_EVENT_RESET_ASSERT
);
1033 /* If we use SRST ... we'd like to issue just SRST, but the
1034 * board or chip may be set up so we have to assert TRST as
1035 * well. On some chips that combination is equivalent to a
1036 * power-up reset, and generally clobbers EICE state.
1038 if (jtag_reset_config
& RESET_SRST_PULLS_TRST
)
1039 jtag_add_reset(1, 1);
1040 else if (!srst_asserted
)
1041 jtag_add_reset(0, 1);
1042 jtag_add_sleep(50000);
1045 target
->state
= TARGET_RESET
;
1046 register_cache_invalidate(arm7_9
->arm
.core_cache
);
1048 /* REVISIT why isn't standard debug entry logic sufficient?? */
1049 if (target
->reset_halt
1050 && (!(jtag_reset_config
& RESET_SRST_PULLS_TRST
)
1053 /* debug entry was prepared above */
1054 target
->debug_reason
= DBG_REASON_DBGRQ
;
1061 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1062 * and the target is being reset into a halt, a warning will be triggered
1063 * because it is not possible to reset into a halted mode in this case. The
1064 * target is halted using the target's functions.
1066 * @param target Pointer to the target to have the reset deasserted
1067 * @return ERROR_OK or an error from polling or halting the target
1069 int arm7_9_deassert_reset(struct target
*target
)
1071 int retval
= ERROR_OK
;
1072 LOG_DEBUG("target->state: %s",
1073 target_state_name(target
));
1075 /* deassert reset lines */
1076 jtag_add_reset(0, 0);
1078 /* In case polling is disabled, we need to examine the
1079 * target and poll here for this target to work correctly.
1081 * Otherwise, e.g. halt will fail afterwards with bogus
1082 * error messages as halt will believe that reset is
1085 if ((retval
= target_examine_one(target
)) != ERROR_OK
)
1088 if ((retval
= target_poll(target
)) != ERROR_OK
)
1093 enum reset_types jtag_reset_config
= jtag_get_reset_config();
1094 if (target
->reset_halt
&& (jtag_reset_config
& RESET_SRST_PULLS_TRST
) != 0)
1096 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1097 if ((retval
= target_halt(target
)) != ERROR_OK
)
1106 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1107 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1108 * vector catch was used, it is restored. Otherwise, the control value is
1109 * restored and the watchpoint unit is restored if it was in use.
1111 * @param target Pointer to the ARM7/9 target to have halt cleared
1112 * @return Always ERROR_OK
1114 static int arm7_9_clear_halt(struct target
*target
)
1116 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1117 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1119 /* we used DBGRQ only if we didn't come out of reset */
1120 if (!arm7_9
->debug_entry_from_reset
&& arm7_9
->use_dbgrq
)
1122 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1124 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1125 embeddedice_store_reg(dbg_ctrl
);
1129 if (arm7_9
->debug_entry_from_reset
&& arm7_9
->has_vector_catch
)
1131 /* if we came out of reset, and vector catch is supported, we used
1132 * vector catch to enter debug state
1133 * restore the register in that case
1135 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
]);
1139 /* restore registers if watchpoint unit 0 was in use
1141 if (arm7_9
->wp0_used
)
1143 if (arm7_9
->debug_entry_from_reset
)
1145 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
]);
1147 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
1148 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
1149 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
1151 /* control value always has to be restored, as it was either disabled,
1152 * or enabled with possibly different bits
1154 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
1162 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1163 * and then there is a wait until the processor shows the halt. This wait can
1164 * timeout and results in an error being returned. The software reset involves
1165 * clearing the halt, updating the debug control register, changing to ARM mode,
1166 * reset of the program counter, and reset of all of the registers.
1168 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1169 * @return Error status if any of the commands fail, otherwise ERROR_OK
1171 int arm7_9_soft_reset_halt(struct target
*target
)
1173 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1174 struct arm
*arm
= &arm7_9
->arm
;
1175 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1176 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1180 /* FIX!!! replace some of this code with tcl commands
1182 * halt # the halt command is synchronous
1183 * armv4_5 core_state arm
1187 if ((retval
= target_halt(target
)) != ERROR_OK
)
1190 long long then
= timeval_ms();
1192 while (!(timeout
= ((timeval_ms()-then
) > 1000)))
1194 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1) != 0)
1196 embeddedice_read_reg(dbg_stat
);
1197 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1199 if (debug_level
>= 3)
1209 LOG_ERROR("Failed to halt CPU after 1 sec");
1210 return ERROR_TARGET_TIMEOUT
;
1212 target
->state
= TARGET_HALTED
;
1214 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1215 * ensure that DBGRQ is cleared
1217 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1218 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1219 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1220 embeddedice_store_reg(dbg_ctrl
);
1222 if ((retval
= arm7_9_clear_halt(target
)) != ERROR_OK
)
1227 /* if the target is in Thumb state, change to ARM state */
1228 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1))
1230 uint32_t r0_thumb
, pc_thumb
;
1231 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1232 /* Entered debug from Thumb mode */
1233 arm
->core_state
= ARM_STATE_THUMB
;
1234 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1237 /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1239 /* all register content is now invalid */
1240 register_cache_invalidate(arm
->core_cache
);
1242 /* SVC, ARM state, IRQ and FIQ disabled */
1245 cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 32);
1248 arm_set_cpsr(arm
, cpsr
);
1249 arm
->cpsr
->dirty
= 1;
1251 /* start fetching from 0x0 */
1252 buf_set_u32(arm
->pc
->value
, 0, 32, 0x0);
1256 /* reset registers */
1257 for (i
= 0; i
<= 14; i
++)
1259 struct reg
*r
= arm_reg_current(arm
, i
);
1261 buf_set_u32(r
->value
, 0, 32, 0xffffffff);
1266 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
1275 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1276 * line or by programming a watchpoint to trigger on any address. It is
1277 * considered a bug to call this function while the target is in the
1278 * TARGET_RESET state.
1280 * @param target Pointer to the ARM7/9 target to be halted
1281 * @return Always ERROR_OK
1283 int arm7_9_halt(struct target
*target
)
1285 if (target
->state
== TARGET_RESET
)
1287 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1291 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1292 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1294 LOG_DEBUG("target->state: %s",
1295 target_state_name(target
));
1297 if (target
->state
== TARGET_HALTED
)
1299 LOG_DEBUG("target was already halted");
1303 if (target
->state
== TARGET_UNKNOWN
)
1305 LOG_WARNING("target was in unknown state when halt was requested");
1308 if (arm7_9
->use_dbgrq
)
1310 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1312 if (arm7_9
->set_special_dbgrq
) {
1313 arm7_9
->set_special_dbgrq(target
);
1315 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 1);
1316 embeddedice_store_reg(dbg_ctrl
);
1321 /* program watchpoint unit to match on any address
1323 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1324 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1325 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1326 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1329 target
->debug_reason
= DBG_REASON_DBGRQ
;
1335 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1336 * ARM. The JTAG queue is then executed and the reason for debug entry is
1337 * examined. Once done, the target is verified to be halted and the processor
1338 * is forced into ARM mode. The core registers are saved for the current core
1339 * mode and the program counter (register 15) is updated as needed. The core
1340 * registers and CPSR and SPSR are saved for restoration later.
1342 * @param target Pointer to target that is entering debug mode
1343 * @return Error code if anything fails, otherwise ERROR_OK
1345 static int arm7_9_debug_entry(struct target
*target
)
1348 uint32_t context
[16];
1349 uint32_t* context_p
[16];
1350 uint32_t r0_thumb
, pc_thumb
;
1351 uint32_t cpsr
, cpsr_mask
= 0;
1353 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1354 struct arm
*arm
= &arm7_9
->arm
;
1355 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1356 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1358 #ifdef _DEBUG_ARM7_9_
1362 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1363 * ensure that DBGRQ is cleared
1365 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1366 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1367 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1368 embeddedice_store_reg(dbg_ctrl
);
1370 if ((retval
= arm7_9_clear_halt(target
)) != ERROR_OK
)
1375 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1380 if ((retval
= arm7_9
->examine_debug_reason(target
)) != ERROR_OK
)
1384 if (target
->state
!= TARGET_HALTED
)
1386 LOG_WARNING("target not halted");
1387 return ERROR_TARGET_NOT_HALTED
;
1390 /* if the target is in Thumb state, change to ARM state */
1391 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1))
1393 LOG_DEBUG("target entered debug from Thumb state");
1394 /* Entered debug from Thumb mode */
1395 arm
->core_state
= ARM_STATE_THUMB
;
1397 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1398 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1399 ", pc_thumb: 0x%8.8" PRIx32
, r0_thumb
, pc_thumb
);
1400 } else if (buf_get_u32(dbg_stat
->value
, 5, 1)) {
1401 /* \todo Get some vaguely correct handling of Jazelle, if
1402 * anyone ever uses it and full info becomes available.
1403 * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1404 * B.7.3 for the reverse. That'd be the bare minimum...
1406 LOG_DEBUG("target entered debug from Jazelle state");
1407 arm
->core_state
= ARM_STATE_JAZELLE
;
1408 cpsr_mask
= 1 << 24;
1409 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1411 LOG_DEBUG("target entered debug from ARM state");
1412 /* Entered debug from ARM mode */
1413 arm
->core_state
= ARM_STATE_ARM
;
1416 for (i
= 0; i
< 16; i
++)
1417 context_p
[i
] = &context
[i
];
1418 /* save core registers (r0 - r15 of current core mode) */
1419 arm7_9
->read_core_regs(target
, 0xffff, context_p
);
1421 arm7_9
->read_xpsr(target
, &cpsr
, 0);
1423 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1426 /* Sync our CPSR copy with J or T bits EICE reported, but
1427 * which we then erased by putting the core into ARM mode.
1429 arm_set_cpsr(arm
, cpsr
| cpsr_mask
);
1431 if (!is_arm_mode(arm
->core_mode
))
1433 target
->state
= TARGET_UNKNOWN
;
1434 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1435 return ERROR_TARGET_FAILURE
;
1438 LOG_DEBUG("target entered debug state in %s mode",
1439 arm_mode_name(arm
->core_mode
));
1441 if (arm
->core_state
== ARM_STATE_THUMB
)
1443 LOG_DEBUG("thumb state, applying fixups");
1444 context
[0] = r0_thumb
;
1445 context
[15] = pc_thumb
;
1446 } else if (arm
->core_state
== ARM_STATE_ARM
)
1448 /* adjust value stored by STM */
1449 context
[15] -= 3 * 4;
1452 if ((target
->debug_reason
!= DBG_REASON_DBGRQ
) || (!arm7_9
->use_dbgrq
))
1453 context
[15] -= 3 * ((arm
->core_state
== ARM_STATE_ARM
) ? 4 : 2);
1455 context
[15] -= arm7_9
->dbgreq_adjust_pc
* ((arm
->core_state
== ARM_STATE_ARM
) ? 4 : 2);
1457 for (i
= 0; i
<= 15; i
++)
1459 struct reg
*r
= arm_reg_current(arm
, i
);
1461 LOG_DEBUG("r%i: 0x%8.8" PRIx32
"", i
, context
[i
]);
1463 buf_set_u32(r
->value
, 0, 32, context
[i
]);
1464 /* r0 and r15 (pc) have to be restored later */
1465 r
->dirty
= (i
== 0) || (i
== 15);
1469 LOG_DEBUG("entered debug state at PC 0x%" PRIx32
"", context
[15]);
1471 /* exceptions other than USR & SYS have a saved program status register */
1474 arm7_9
->read_xpsr(target
, &spsr
, 1);
1475 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1479 buf_set_u32(arm
->spsr
->value
, 0, 32, spsr
);
1480 arm
->spsr
->dirty
= 0;
1481 arm
->spsr
->valid
= 1;
1484 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1487 if (arm7_9
->post_debug_entry
)
1489 retval
= arm7_9
->post_debug_entry(target
);
1490 if (retval
!= ERROR_OK
)
1498 * Validate the full context for an ARM7/9 target in all processor modes. If
1499 * there are any invalid registers for the target, they will all be read. This
1502 * @param target Pointer to the ARM7/9 target to capture the full context from
1503 * @return Error if the target is not halted, has an invalid core mode, or if
1504 * the JTAG queue fails to execute
1506 static int arm7_9_full_context(struct target
*target
)
1510 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1511 struct arm
*arm
= &arm7_9
->arm
;
1515 if (target
->state
!= TARGET_HALTED
)
1517 LOG_WARNING("target not halted");
1518 return ERROR_TARGET_NOT_HALTED
;
1521 if (!is_arm_mode(arm
->core_mode
))
1523 LOG_ERROR("not a valid arm core mode - communication failure?");
1527 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1528 * SYS shares registers with User, so we don't touch SYS
1530 for (i
= 0; i
< 6; i
++)
1533 uint32_t* reg_p
[16];
1537 /* check if there are invalid registers in the current mode
1539 for (j
= 0; j
<= 16; j
++)
1541 if (ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1549 /* change processor mode (and mask T bit) */
1550 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 8)
1552 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1554 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1556 for (j
= 0; j
< 15; j
++)
1558 if (ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1560 reg_p
[j
] = (uint32_t *)ARMV4_5_CORE_REG_MODE(arm
->core_cache
,
1561 armv4_5_number_to_mode(i
), j
).value
;
1563 ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
= 1;
1564 ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
), j
).dirty
= 0;
1568 /* if only the PSR is invalid, mask is all zeroes */
1570 arm7_9
->read_core_regs(target
, mask
, reg_p
);
1572 /* check if the PSR has to be read */
1573 if (ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
), 16).valid
== 0)
1575 arm7_9
->read_xpsr(target
, (uint32_t *)ARMV4_5_CORE_REG_MODE(arm
->core_cache
,
1576 armv4_5_number_to_mode(i
), 16).value
, 1);
1577 ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
), 16).valid
= 1;
1578 ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
), 16).dirty
= 0;
1583 /* restore processor mode (mask T bit) */
1584 arm7_9
->write_xpsr_im8(target
,
1585 buf_get_u32(arm
->cpsr
->value
, 0, 8) & ~0x20,
1588 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1596 * Restore the processor context on an ARM7/9 target. The full processor
1597 * context is analyzed to see if any of the registers are dirty on this end, but
1598 * have a valid new value. If this is the case, the processor is changed to the
1599 * appropriate mode and the new register values are written out to the
1600 * processor. If there happens to be a dirty register with an invalid value, an
1601 * error will be logged.
1603 * @param target Pointer to the ARM7/9 target to have its context restored
1604 * @return Error status if the target is not halted or the core mode in the
1605 * armv4_5 struct is invalid.
1607 static int arm7_9_restore_context(struct target
*target
)
1609 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1610 struct arm
*arm
= &arm7_9
->arm
;
1612 enum arm_mode current_mode
= arm
->core_mode
;
1619 if (target
->state
!= TARGET_HALTED
)
1621 LOG_WARNING("target not halted");
1622 return ERROR_TARGET_NOT_HALTED
;
1625 if (arm7_9
->pre_restore_context
)
1626 arm7_9
->pre_restore_context(target
);
1628 if (!is_arm_mode(arm
->core_mode
))
1630 LOG_ERROR("not a valid arm core mode - communication failure?");
1634 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1635 * SYS shares registers with User, so we don't touch SYS
1637 for (i
= 0; i
< 6; i
++)
1639 LOG_DEBUG("examining %s mode",
1640 arm_mode_name(arm
->core_mode
));
1643 /* check if there are dirty registers in the current mode
1645 for (j
= 0; j
<= 16; j
++)
1647 reg
= &ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
), j
);
1648 if (reg
->dirty
== 1)
1650 if (reg
->valid
== 1)
1653 LOG_DEBUG("examining dirty reg: %s", reg
->name
);
1654 struct arm_reg
*reg_arch_info
;
1655 reg_arch_info
= reg
->arch_info
;
1656 if ((reg_arch_info
->mode
!= ARM_MODE_ANY
)
1657 && (reg_arch_info
->mode
!= current_mode
)
1658 && !((reg_arch_info
->mode
== ARM_MODE_USR
)
1659 && (arm
->core_mode
== ARM_MODE_SYS
))
1660 && !((reg_arch_info
->mode
== ARM_MODE_SYS
)
1661 && (arm
->core_mode
== ARM_MODE_USR
)))
1664 LOG_DEBUG("require mode change");
1669 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg
->name
);
1676 uint32_t mask
= 0x0;
1684 /* change processor mode (mask T bit) */
1685 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
,
1687 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1689 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1690 current_mode
= armv4_5_number_to_mode(i
);
1693 for (j
= 0; j
<= 14; j
++)
1695 reg
= &ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
), j
);
1697 if (reg
->dirty
== 1)
1699 regs
[j
] = buf_get_u32(reg
->value
, 0, 32);
1704 LOG_DEBUG("writing register %i mode %s "
1705 "with value 0x%8.8" PRIx32
, j
,
1706 arm_mode_name(arm
->core_mode
),
1713 arm7_9
->write_core_regs(target
, mask
, regs
);
1716 reg
= &ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
), 16);
1717 struct arm_reg
*reg_arch_info
;
1718 reg_arch_info
= reg
->arch_info
;
1719 if ((reg
->dirty
) && (reg_arch_info
->mode
!= ARM_MODE_ANY
))
1721 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32
"", i
, buf_get_u32(reg
->value
, 0, 32));
1722 arm7_9
->write_xpsr(target
, buf_get_u32(reg
->value
, 0, 32), 1);
1727 if (!arm
->cpsr
->dirty
&& (arm
->core_mode
!= current_mode
)) {
1728 /* restore processor mode (mask T bit) */
1731 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 8) & 0xE0;
1732 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1734 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr
));
1735 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1737 } else if (arm
->cpsr
->dirty
) {
1738 /* CPSR has been changed, full restore necessary (mask T bit) */
1739 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32
,
1740 buf_get_u32(arm
->cpsr
->value
, 0, 32));
1741 arm7_9
->write_xpsr(target
,
1742 buf_get_u32(arm
->cpsr
->value
, 0, 32)
1744 arm
->cpsr
->dirty
= 0;
1745 arm
->cpsr
->valid
= 1;
1749 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32
,
1750 buf_get_u32(arm
->pc
->value
, 0, 32));
1751 arm7_9
->write_pc(target
, buf_get_u32(arm
->pc
->value
, 0, 32));
1758 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1759 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1762 * @param target Pointer to the ARM7/9 target to be restarted
1763 * @return Result of executing the JTAG queue
1765 static int arm7_9_restart_core(struct target
*target
)
1767 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1768 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
1771 /* set RESTART instruction */
1772 if (arm7_9
->need_bypass_before_restart
) {
1773 arm7_9
->need_bypass_before_restart
= 0;
1775 retval
= arm_jtag_set_instr(jtag_info
, 0xf, NULL
, TAP_IDLE
);
1776 if (retval
!= ERROR_OK
)
1779 retval
= arm_jtag_set_instr(jtag_info
, 0x4, NULL
, TAP_IDLE
);
1780 if (retval
!= ERROR_OK
)
1783 jtag_add_runtest(1, TAP_IDLE
);
1784 return jtag_execute_queue();
1788 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1789 * iterated through and are set on the target if they aren't already set.
1791 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1793 static void arm7_9_enable_watchpoints(struct target
*target
)
1795 struct watchpoint
*watchpoint
= target
->watchpoints
;
1799 if (watchpoint
->set
== 0)
1800 arm7_9_set_watchpoint(target
, watchpoint
);
1801 watchpoint
= watchpoint
->next
;
1806 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1807 * iterated through and are set on the target.
1809 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1811 static void arm7_9_enable_breakpoints(struct target
*target
)
1813 struct breakpoint
*breakpoint
= target
->breakpoints
;
1815 /* set any pending breakpoints */
1818 arm7_9_set_breakpoint(target
, breakpoint
);
1819 breakpoint
= breakpoint
->next
;
1823 int arm7_9_resume(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
, int debug_execution
)
1825 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1826 struct arm
*arm
= &arm7_9
->arm
;
1827 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1828 int err
, retval
= ERROR_OK
;
1832 if (target
->state
!= TARGET_HALTED
)
1834 LOG_WARNING("target not halted");
1835 return ERROR_TARGET_NOT_HALTED
;
1838 if (!debug_execution
)
1840 target_free_all_working_areas(target
);
1843 /* current = 1: continue on current pc, otherwise continue at <address> */
1845 buf_set_u32(arm
->pc
->value
, 0, 32, address
);
1847 uint32_t current_pc
;
1848 current_pc
= buf_get_u32(arm
->pc
->value
, 0, 32);
1850 /* the front-end may request us not to handle breakpoints */
1851 if (handle_breakpoints
)
1853 struct breakpoint
*breakpoint
;
1854 breakpoint
= breakpoint_find(target
,
1855 buf_get_u32(arm
->pc
->value
, 0, 32));
1856 if (breakpoint
!= NULL
)
1858 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32
" (id: %d)", breakpoint
->address
, breakpoint
->unique_id
);
1859 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1864 /* calculate PC of next instruction */
1866 if ((retval
= arm_simulate_step(target
, &next_pc
)) != ERROR_OK
)
1868 uint32_t current_opcode
;
1869 target_read_u32(target
, current_pc
, ¤t_opcode
);
1870 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"", current_opcode
);
1874 LOG_DEBUG("enable single-step");
1875 arm7_9
->enable_single_step(target
, next_pc
);
1877 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
1879 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
1882 if (arm
->core_state
== ARM_STATE_ARM
)
1883 arm7_9
->branch_resume(target
);
1884 else if (arm
->core_state
== ARM_STATE_THUMB
)
1885 arm7_9
->branch_resume_thumb(target
);
1887 LOG_ERROR("unhandled core state");
1891 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1892 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1893 err
= arm7_9_execute_sys_speed(target
);
1895 LOG_DEBUG("disable single-step");
1896 arm7_9
->disable_single_step(target
);
1898 if (err
!= ERROR_OK
)
1900 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1904 target
->state
= TARGET_UNKNOWN
;
1908 retval
= arm7_9_debug_entry(target
);
1909 if (retval
!= ERROR_OK
)
1911 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32
,
1912 buf_get_u32(arm
->pc
->value
, 0, 32));
1914 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32
"", breakpoint
->address
);
1915 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1922 /* enable any pending breakpoints and watchpoints */
1923 arm7_9_enable_breakpoints(target
);
1924 arm7_9_enable_watchpoints(target
);
1926 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
1929 if (arm
->core_state
== ARM_STATE_ARM
)
1930 arm7_9
->branch_resume(target
);
1931 else if (arm
->core_state
== ARM_STATE_THUMB
)
1932 arm7_9
->branch_resume_thumb(target
);
1934 LOG_ERROR("unhandled core state");
1938 /* deassert DBGACK and INTDIS */
1939 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1940 /* INTDIS only when we really resume, not during debug execution */
1941 if (!debug_execution
)
1942 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 0);
1943 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1945 if ((retval
= arm7_9_restart_core(target
)) != ERROR_OK
)
1950 target
->debug_reason
= DBG_REASON_NOTHALTED
;
1952 if (!debug_execution
)
1954 /* registers are now invalid */
1955 register_cache_invalidate(arm
->core_cache
);
1956 target
->state
= TARGET_RUNNING
;
1957 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
)) != ERROR_OK
)
1964 target
->state
= TARGET_DEBUG_RUNNING
;
1965 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_RESUMED
)) != ERROR_OK
)
1971 LOG_DEBUG("target resumed");
1976 void arm7_9_enable_eice_step(struct target
*target
, uint32_t next_pc
)
1978 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1979 struct arm
*arm
= &arm7_9
->arm
;
1980 uint32_t current_pc
;
1981 current_pc
= buf_get_u32(arm
->pc
->value
, 0, 32);
1983 if (next_pc
!= current_pc
)
1985 /* setup an inverse breakpoint on the current PC
1986 * - comparator 1 matches the current address
1987 * - rangeout from comparator 1 is connected to comparator 0 rangein
1988 * - comparator 0 matches any address, as long as rangein is low */
1989 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1990 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1991 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1992 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~(EICE_W_CTRL_RANGE
| EICE_W_CTRL_nOPC
) & 0xff);
1993 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], current_pc
);
1994 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1995 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1996 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
1997 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
2001 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
2002 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
2003 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
2004 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff);
2005 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], next_pc
);
2006 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
2007 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
2008 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
2009 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
2013 void arm7_9_disable_eice_step(struct target
*target
)
2015 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2017 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
2018 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
2019 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
2020 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
2021 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
]);
2022 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
]);
2023 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
]);
2024 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
]);
2025 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
]);
2028 int arm7_9_step(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
)
2030 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2031 struct arm
*arm
= &arm7_9
->arm
;
2032 struct breakpoint
*breakpoint
= NULL
;
2035 if (target
->state
!= TARGET_HALTED
)
2037 LOG_WARNING("target not halted");
2038 return ERROR_TARGET_NOT_HALTED
;
2041 /* current = 1: continue on current pc, otherwise continue at <address> */
2043 buf_set_u32(arm
->pc
->value
, 0, 32, address
);
2045 uint32_t current_pc
= buf_get_u32(arm
->pc
->value
, 0, 32);
2047 /* the front-end may request us not to handle breakpoints */
2048 if (handle_breakpoints
)
2049 breakpoint
= breakpoint_find(target
, current_pc
);
2050 if (breakpoint
!= NULL
) {
2051 retval
= arm7_9_unset_breakpoint(target
, breakpoint
);
2052 if (retval
!= ERROR_OK
)
2056 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
2058 /* calculate PC of next instruction */
2060 if ((retval
= arm_simulate_step(target
, &next_pc
)) != ERROR_OK
)
2062 uint32_t current_opcode
;
2063 target_read_u32(target
, current_pc
, ¤t_opcode
);
2064 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"", current_opcode
);
2068 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
2071 arm7_9
->enable_single_step(target
, next_pc
);
2073 if (arm
->core_state
== ARM_STATE_ARM
)
2074 arm7_9
->branch_resume(target
);
2075 else if (arm
->core_state
== ARM_STATE_THUMB
)
2076 arm7_9
->branch_resume_thumb(target
);
2078 LOG_ERROR("unhandled core state");
2082 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
)) != ERROR_OK
)
2087 err
= arm7_9_execute_sys_speed(target
);
2088 arm7_9
->disable_single_step(target
);
2090 /* registers are now invalid */
2091 register_cache_invalidate(arm
->core_cache
);
2093 if (err
!= ERROR_OK
)
2095 target
->state
= TARGET_UNKNOWN
;
2097 retval
= arm7_9_debug_entry(target
);
2098 if (retval
!= ERROR_OK
)
2100 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
2104 LOG_DEBUG("target stepped");
2108 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
2116 static int arm7_9_read_core_reg(struct target
*target
, struct reg
*r
,
2117 int num
, enum arm_mode mode
)
2119 uint32_t* reg_p
[16];
2121 struct arm_reg
*areg
= r
->arch_info
;
2122 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2123 struct arm
*arm
= &arm7_9
->arm
;
2125 if (!is_arm_mode(arm
->core_mode
))
2127 if ((num
< 0) || (num
> 16))
2128 return ERROR_COMMAND_SYNTAX_ERROR
;
2130 if ((mode
!= ARM_MODE_ANY
)
2131 && (mode
!= arm
->core_mode
)
2132 && (areg
->mode
!= ARM_MODE_ANY
))
2136 /* change processor mode (mask T bit) */
2137 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 8) & 0xE0;
2140 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2144 if ((num
>= 0) && (num
<= 15))
2146 /* read a normal core register */
2147 reg_p
[num
] = &value
;
2149 arm7_9
->read_core_regs(target
, 1 << num
, reg_p
);
2153 /* read a program status register
2154 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2156 arm7_9
->read_xpsr(target
, &value
, areg
->mode
!= ARM_MODE_ANY
);
2159 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2166 buf_set_u32(r
->value
, 0, 32, value
);
2168 if ((mode
!= ARM_MODE_ANY
)
2169 && (mode
!= arm
->core_mode
)
2170 && (areg
->mode
!= ARM_MODE_ANY
)) {
2171 /* restore processor mode (mask T bit) */
2172 arm7_9
->write_xpsr_im8(target
,
2173 buf_get_u32(arm
->cpsr
->value
, 0, 8)
2180 static int arm7_9_write_core_reg(struct target
*target
, struct reg
*r
,
2181 int num
, enum arm_mode mode
, uint32_t value
)
2184 struct arm_reg
*areg
= r
->arch_info
;
2185 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2186 struct arm
*arm
= &arm7_9
->arm
;
2188 if (!is_arm_mode(arm
->core_mode
))
2190 if ((num
< 0) || (num
> 16))
2191 return ERROR_COMMAND_SYNTAX_ERROR
;
2193 if ((mode
!= ARM_MODE_ANY
)
2194 && (mode
!= arm
->core_mode
)
2195 && (areg
->mode
!= ARM_MODE_ANY
)) {
2198 /* change processor mode (mask T bit) */
2199 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 8) & 0xE0;
2202 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2205 if ((num
>= 0) && (num
<= 15))
2207 /* write a normal core register */
2210 arm7_9
->write_core_regs(target
, 1 << num
, reg
);
2214 /* write a program status register
2215 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2217 int spsr
= (areg
->mode
!= ARM_MODE_ANY
);
2219 /* if we're writing the CPSR, mask the T bit */
2223 arm7_9
->write_xpsr(target
, value
, spsr
);
2229 if ((mode
!= ARM_MODE_ANY
)
2230 && (mode
!= arm
->core_mode
)
2231 && (areg
->mode
!= ARM_MODE_ANY
)) {
2232 /* restore processor mode (mask T bit) */
2233 arm7_9
->write_xpsr_im8(target
,
2234 buf_get_u32(arm
->cpsr
->value
, 0, 8)
2238 return jtag_execute_queue();
2241 int arm7_9_read_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
2243 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2244 struct arm
*arm
= &arm7_9
->arm
;
2246 uint32_t num_accesses
= 0;
2247 int thisrun_accesses
;
2253 LOG_DEBUG("address: 0x%8.8" PRIx32
", size: 0x%8.8" PRIx32
", count: 0x%8.8" PRIx32
"", address
, size
, count
);
2255 if (target
->state
!= TARGET_HALTED
)
2257 LOG_WARNING("target not halted");
2258 return ERROR_TARGET_NOT_HALTED
;
2261 /* sanitize arguments */
2262 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2263 return ERROR_COMMAND_SYNTAX_ERROR
;
2265 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2266 return ERROR_TARGET_UNALIGNED_ACCESS
;
2268 /* load the base register with the address of the first word */
2270 arm7_9
->write_core_regs(target
, 0x1, reg
);
2277 while (num_accesses
< count
)
2280 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2281 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2283 if (last_reg
<= thisrun_accesses
)
2284 last_reg
= thisrun_accesses
;
2286 arm7_9
->load_word_regs(target
, reg_list
);
2288 /* fast memory reads are only safe when the target is running
2289 * from a sufficiently high clock (32 kHz is usually too slow)
2291 if (arm7_9
->fast_memory_access
)
2292 retval
= arm7_9_execute_fast_sys_speed(target
);
2294 retval
= arm7_9_execute_sys_speed(target
);
2295 if (retval
!= ERROR_OK
)
2298 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 4);
2300 /* advance buffer, count number of accesses */
2301 buffer
+= thisrun_accesses
* 4;
2302 num_accesses
+= thisrun_accesses
;
2304 if ((j
++%1024) == 0)
2311 while (num_accesses
< count
)
2314 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2315 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2317 for (i
= 1; i
<= thisrun_accesses
; i
++)
2321 arm7_9
->load_hword_reg(target
, i
);
2322 /* fast memory reads are only safe when the target is running
2323 * from a sufficiently high clock (32 kHz is usually too slow)
2325 if (arm7_9
->fast_memory_access
)
2326 retval
= arm7_9_execute_fast_sys_speed(target
);
2328 retval
= arm7_9_execute_sys_speed(target
);
2329 if (retval
!= ERROR_OK
)
2336 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 2);
2338 /* advance buffer, count number of accesses */
2339 buffer
+= thisrun_accesses
* 2;
2340 num_accesses
+= thisrun_accesses
;
2342 if ((j
++%1024) == 0)
2349 while (num_accesses
< count
)
2352 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2353 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2355 for (i
= 1; i
<= thisrun_accesses
; i
++)
2359 arm7_9
->load_byte_reg(target
, i
);
2360 /* fast memory reads are only safe when the target is running
2361 * from a sufficiently high clock (32 kHz is usually too slow)
2363 if (arm7_9
->fast_memory_access
)
2364 retval
= arm7_9_execute_fast_sys_speed(target
);
2366 retval
= arm7_9_execute_sys_speed(target
);
2367 if (retval
!= ERROR_OK
)
2373 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 1);
2375 /* advance buffer, count number of accesses */
2376 buffer
+= thisrun_accesses
* 1;
2377 num_accesses
+= thisrun_accesses
;
2379 if ((j
++%1024) == 0)
2387 if (!is_arm_mode(arm
->core_mode
))
2390 for (i
= 0; i
<= last_reg
; i
++) {
2391 struct reg
*r
= arm_reg_current(arm
, i
);
2393 r
->dirty
= r
->valid
;
2396 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2397 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2399 LOG_ERROR("JTAG error while reading cpsr");
2400 return ERROR_TARGET_DATA_ABORT
;
2403 if (((cpsr
& 0x1f) == ARM_MODE_ABT
) && (arm
->core_mode
!= ARM_MODE_ABT
))
2405 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")", address
, size
, count
);
2407 arm7_9
->write_xpsr_im8(target
,
2408 buf_get_u32(arm
->cpsr
->value
, 0, 8)
2411 return ERROR_TARGET_DATA_ABORT
;
2417 int arm7_9_write_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
2419 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2420 struct arm
*arm
= &arm7_9
->arm
;
2421 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
2424 uint32_t num_accesses
= 0;
2425 int thisrun_accesses
;
2431 #ifdef _DEBUG_ARM7_9_
2432 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address
, size
, count
);
2435 if (target
->state
!= TARGET_HALTED
)
2437 LOG_WARNING("target not halted");
2438 return ERROR_TARGET_NOT_HALTED
;
2441 /* sanitize arguments */
2442 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2443 return ERROR_COMMAND_SYNTAX_ERROR
;
2445 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2446 return ERROR_TARGET_UNALIGNED_ACCESS
;
2448 /* load the base register with the address of the first word */
2450 arm7_9
->write_core_regs(target
, 0x1, reg
);
2452 /* Clear DBGACK, to make sure memory fetches work as expected */
2453 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
2454 embeddedice_store_reg(dbg_ctrl
);
2459 while (num_accesses
< count
)
2462 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2463 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2465 for (i
= 1; i
<= thisrun_accesses
; i
++)
2469 reg
[i
] = target_buffer_get_u32(target
, buffer
);
2473 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2475 arm7_9
->store_word_regs(target
, reg_list
);
2477 /* fast memory writes are only safe when the target is running
2478 * from a sufficiently high clock (32 kHz is usually too slow)
2480 if (arm7_9
->fast_memory_access
)
2481 retval
= arm7_9_execute_fast_sys_speed(target
);
2484 retval
= arm7_9_execute_sys_speed(target
);
2487 * if memory writes are made when the clock is running slow
2488 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2489 * processor operations after a "reset halt" or "reset init",
2490 * need to immediately stroke the keep alive or will end up with
2491 * gdb "keep alive not sent error message" problem.
2497 if (retval
!= ERROR_OK
)
2502 num_accesses
+= thisrun_accesses
;
2506 while (num_accesses
< count
)
2509 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2510 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2512 for (i
= 1; i
<= thisrun_accesses
; i
++)
2516 reg
[i
] = target_buffer_get_u16(target
, buffer
) & 0xffff;
2520 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2522 for (i
= 1; i
<= thisrun_accesses
; i
++)
2524 arm7_9
->store_hword_reg(target
, i
);
2526 /* fast memory writes are only safe when the target is running
2527 * from a sufficiently high clock (32 kHz is usually too slow)
2529 if (arm7_9
->fast_memory_access
)
2530 retval
= arm7_9_execute_fast_sys_speed(target
);
2533 retval
= arm7_9_execute_sys_speed(target
);
2536 * if memory writes are made when the clock is running slow
2537 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2538 * processor operations after a "reset halt" or "reset init",
2539 * need to immediately stroke the keep alive or will end up with
2540 * gdb "keep alive not sent error message" problem.
2546 if (retval
!= ERROR_OK
)
2552 num_accesses
+= thisrun_accesses
;
2556 while (num_accesses
< count
)
2559 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2560 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2562 for (i
= 1; i
<= thisrun_accesses
; i
++)
2566 reg
[i
] = *buffer
++ & 0xff;
2569 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2571 for (i
= 1; i
<= thisrun_accesses
; i
++)
2573 arm7_9
->store_byte_reg(target
, i
);
2574 /* fast memory writes are only safe when the target is running
2575 * from a sufficiently high clock (32 kHz is usually too slow)
2577 if (arm7_9
->fast_memory_access
)
2578 retval
= arm7_9_execute_fast_sys_speed(target
);
2581 retval
= arm7_9_execute_sys_speed(target
);
2584 * if memory writes are made when the clock is running slow
2585 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2586 * processor operations after a "reset halt" or "reset init",
2587 * need to immediately stroke the keep alive or will end up with
2588 * gdb "keep alive not sent error message" problem.
2594 if (retval
!= ERROR_OK
)
2601 num_accesses
+= thisrun_accesses
;
2607 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
2608 embeddedice_store_reg(dbg_ctrl
);
2610 if (!is_arm_mode(arm
->core_mode
))
2613 for (i
= 0; i
<= last_reg
; i
++) {
2614 struct reg
*r
= arm_reg_current(arm
, i
);
2616 r
->dirty
= r
->valid
;
2619 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2620 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2622 LOG_ERROR("JTAG error while reading cpsr");
2623 return ERROR_TARGET_DATA_ABORT
;
2626 if (((cpsr
& 0x1f) == ARM_MODE_ABT
) && (arm
->core_mode
!= ARM_MODE_ABT
))
2628 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")", address
, size
, count
);
2630 arm7_9
->write_xpsr_im8(target
,
2631 buf_get_u32(arm
->cpsr
->value
, 0, 8)
2634 return ERROR_TARGET_DATA_ABORT
;
2640 static int dcc_count
;
2641 static const uint8_t *dcc_buffer
;
2643 static int arm7_9_dcc_completion(struct target
*target
, uint32_t exit_point
, int timeout_ms
, void *arch_info
)
2645 int retval
= ERROR_OK
;
2646 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2648 if ((retval
= target_wait_state(target
, TARGET_DEBUG_RUNNING
, 500)) != ERROR_OK
)
2651 int little
= target
->endianness
== TARGET_LITTLE_ENDIAN
;
2652 int count
= dcc_count
;
2653 const uint8_t *buffer
= dcc_buffer
;
2656 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2657 * core function repeated. */
2658 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2661 struct embeddedice_reg
*ice_reg
= arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
].arch_info
;
2662 uint8_t reg_addr
= ice_reg
->addr
& 0x1f;
2663 struct jtag_tap
*tap
;
2664 tap
= ice_reg
->jtag_info
->tap
;
2666 embeddedice_write_dcc(tap
, reg_addr
, buffer
, little
, count
-2);
2667 buffer
+= (count
-2)*4;
2669 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2673 for (i
= 0; i
< count
; i
++)
2675 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2680 if ((retval
= target_halt(target
))!= ERROR_OK
)
2684 return target_wait_state(target
, TARGET_HALTED
, 500);
2687 static const uint32_t dcc_code
[] =
2689 /* r0 == input, points to memory buffer
2693 /* spin until DCC control (c0) reports data arrived */
2694 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2695 0xe3110001, /* tst r1, #1 */
2696 0x0afffffc, /* bne w */
2698 /* read word from DCC (c1), write to memory */
2699 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2700 0xe4801004, /* str r1, [r0], #4 */
2703 0xeafffff9 /* b w */
2706 int arm7_9_bulk_write_memory(struct target
*target
, uint32_t address
, uint32_t count
, const uint8_t *buffer
)
2709 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2712 if (!arm7_9
->dcc_downloads
)
2713 return target_write_memory(target
, address
, 4, count
, buffer
);
2715 /* regrab previously allocated working_area, or allocate a new one */
2716 if (!arm7_9
->dcc_working_area
)
2718 uint8_t dcc_code_buf
[6 * 4];
2720 /* make sure we have a working area */
2721 if (target_alloc_working_area(target
, 24, &arm7_9
->dcc_working_area
) != ERROR_OK
)
2723 LOG_INFO("no working area available, falling back to memory writes");
2724 return target_write_memory(target
, address
, 4, count
, buffer
);
2727 /* copy target instructions to target endianness */
2728 for (i
= 0; i
< 6; i
++)
2730 target_buffer_set_u32(target
, dcc_code_buf
+ i
*4, dcc_code
[i
]);
2733 /* write DCC code to working area */
2734 if ((retval
= target_write_memory(target
, arm7_9
->dcc_working_area
->address
, 4, 6, dcc_code_buf
)) != ERROR_OK
)
2740 struct arm_algorithm armv4_5_info
;
2741 struct reg_param reg_params
[1];
2743 armv4_5_info
.common_magic
= ARM_COMMON_MAGIC
;
2744 armv4_5_info
.core_mode
= ARM_MODE_SVC
;
2745 armv4_5_info
.core_state
= ARM_STATE_ARM
;
2747 init_reg_param(®_params
[0], "r0", 32, PARAM_IN_OUT
);
2749 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
2752 dcc_buffer
= buffer
;
2753 retval
= armv4_5_run_algorithm_inner(target
, 0, NULL
, 1, reg_params
,
2754 arm7_9
->dcc_working_area
->address
,
2755 arm7_9
->dcc_working_area
->address
+ 6*4,
2756 20*1000, &armv4_5_info
, arm7_9_dcc_completion
);
2758 if (retval
== ERROR_OK
)
2760 uint32_t endaddress
= buf_get_u32(reg_params
[0].value
, 0, 32);
2761 if (endaddress
!= (address
+ count
*4))
2763 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32
" got 0x%0" PRIx32
"", (address
+ count
*4), endaddress
);
2764 retval
= ERROR_FAIL
;
2768 destroy_reg_param(®_params
[0]);
2774 * Perform per-target setup that requires JTAG access.
2776 int arm7_9_examine(struct target
*target
)
2778 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2781 if (!target_was_examined(target
)) {
2782 struct reg_cache
*t
, **cache_p
;
2784 t
= embeddedice_build_reg_cache(target
, arm7_9
);
2788 cache_p
= register_get_last_cache_p(&target
->reg_cache
);
2790 arm7_9
->eice_cache
= (*cache_p
);
2792 if (arm7_9
->arm
.etm
)
2793 (*cache_p
)->next
= etm_build_reg_cache(target
,
2797 target_set_examined(target
);
2800 retval
= embeddedice_setup(target
);
2801 if (retval
== ERROR_OK
)
2802 retval
= arm7_9_setup(target
);
2803 if (retval
== ERROR_OK
&& arm7_9
->arm
.etm
)
2804 retval
= etm_setup(target
);
2809 int arm7_9_check_reset(struct target
*target
)
2811 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2813 if (get_target_reset_nag() && !arm7_9
->dcc_downloads
)
2815 LOG_WARNING("NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2818 if (get_target_reset_nag() && (target
->working_area_size
== 0))
2820 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2823 if (get_target_reset_nag() && !arm7_9
->fast_memory_access
)
2825 LOG_WARNING("NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2831 COMMAND_HANDLER(handle_arm7_9_dbgrq_command
)
2833 struct target
*target
= get_current_target(CMD_CTX
);
2834 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2836 if (!is_arm7_9(arm7_9
))
2838 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2839 return ERROR_TARGET_INVALID
;
2843 COMMAND_PARSE_ENABLE(CMD_ARGV
[0],arm7_9
->use_dbgrq
);
2845 command_print(CMD_CTX
, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9
->use_dbgrq
) ? "enabled" : "disabled");
2850 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command
)
2852 struct target
*target
= get_current_target(CMD_CTX
);
2853 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2855 if (!is_arm7_9(arm7_9
))
2857 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2858 return ERROR_TARGET_INVALID
;
2862 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->fast_memory_access
);
2864 command_print(CMD_CTX
, "fast memory access is %s", (arm7_9
->fast_memory_access
) ? "enabled" : "disabled");
2869 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command
)
2871 struct target
*target
= get_current_target(CMD_CTX
);
2872 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2874 if (!is_arm7_9(arm7_9
))
2876 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2877 return ERROR_TARGET_INVALID
;
2881 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->dcc_downloads
);
2883 command_print(CMD_CTX
, "dcc downloads are %s", (arm7_9
->dcc_downloads
) ? "enabled" : "disabled");
2888 static int arm7_9_setup_semihosting(struct target
*target
, int enable
)
2890 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2892 if (!is_arm7_9(arm7_9
))
2894 LOG_USER("current target isn't an ARM7/ARM9 target");
2895 return ERROR_TARGET_INVALID
;
2898 if (arm7_9
->has_vector_catch
) {
2899 struct reg
*vector_catch
= &arm7_9
->eice_cache
2900 ->reg_list
[EICE_VEC_CATCH
];
2902 if (!vector_catch
->valid
)
2903 embeddedice_read_reg(vector_catch
);
2904 buf_set_u32(vector_catch
->value
, 2, 1, enable
);
2905 embeddedice_store_reg(vector_catch
);
2907 /* TODO: allow optional high vectors and/or BKPT_HARD */
2909 breakpoint_add(target
, 8, 4, BKPT_SOFT
);
2911 breakpoint_remove(target
, 8);
2917 int arm7_9_init_arch_info(struct target
*target
, struct arm7_9_common
*arm7_9
)
2919 int retval
= ERROR_OK
;
2920 struct arm
*arm
= &arm7_9
->arm
;
2922 arm7_9
->common_magic
= ARM7_9_COMMON_MAGIC
;
2924 if ((retval
= arm_jtag_setup_connection(&arm7_9
->jtag_info
)) != ERROR_OK
)
2927 /* caller must have allocated via calloc(), so everything's zeroed */
2929 arm7_9
->wp_available_max
= 2;
2931 arm7_9
->fast_memory_access
= false;
2932 arm7_9
->dcc_downloads
= false;
2934 arm
->arch_info
= arm7_9
;
2935 arm
->read_core_reg
= arm7_9_read_core_reg
;
2936 arm
->write_core_reg
= arm7_9_write_core_reg
;
2937 arm
->full_context
= arm7_9_full_context
;
2938 arm
->setup_semihosting
= arm7_9_setup_semihosting
;
2940 retval
= arm_init_arch_info(target
, arm
);
2941 if (retval
!= ERROR_OK
)
2944 return target_register_timer_callback(arm7_9_handle_target_request
,
2948 static const struct command_registration arm7_9_any_command_handlers
[] = {
2951 .handler
= handle_arm7_9_dbgrq_command
,
2952 .mode
= COMMAND_ANY
,
2953 .usage
= "['enable'|'disable']",
2954 .help
= "use EmbeddedICE dbgrq instead of breakpoint "
2955 "for target halt requests",
2958 "fast_memory_access",
2959 .handler
= handle_arm7_9_fast_memory_access_command
,
2960 .mode
= COMMAND_ANY
,
2961 .usage
= "['enable'|'disable']",
2962 .help
= "use fast memory accesses instead of slower "
2963 "but potentially safer accesses",
2967 .handler
= handle_arm7_9_dcc_downloads_command
,
2968 .mode
= COMMAND_ANY
,
2969 .usage
= "['enable'|'disable']",
2970 .help
= "use DCC downloads for larger memory writes",
2972 COMMAND_REGISTRATION_DONE
2974 const struct command_registration arm7_9_command_handlers
[] = {
2976 .chain
= arm_command_handlers
,
2979 .chain
= etm_command_handlers
,
2983 .mode
= COMMAND_ANY
,
2984 .help
= "arm7/9 specific commands",
2986 .chain
= arm7_9_any_command_handlers
,
2988 COMMAND_REGISTRATION_DONE