aarch64: fix debug entry from EL0
[openocd.git] / src / target / armv8.c
blobe8c700af35d8da9ca166a34f77f5597ae5fffd02
1 /***************************************************************************
2 * Copyright (C) 2015 by David Ung *
3 * *
4 * This program is free software; you can redistribute it and/or modify *
5 * it under the terms of the GNU General Public License as published by *
6 * the Free Software Foundation; either version 2 of the License, or *
7 * (at your option) any later version. *
8 * *
9 * This program is distributed in the hope that it will be useful, *
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
12 * GNU General Public License for more details. *
13 * *
14 * You should have received a copy of the GNU General Public License *
15 * along with this program; if not, write to the *
16 * Free Software Foundation, Inc., *
17 ***************************************************************************/
19 #ifdef HAVE_CONFIG_H
20 #include "config.h"
21 #endif
23 #include <helper/replacements.h>
25 #include "armv8.h"
26 #include "arm_disassembler.h"
28 #include "register.h"
29 #include <helper/binarybuffer.h>
30 #include <helper/command.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <unistd.h>
36 #include "armv8_opcodes.h"
37 #include "target.h"
38 #include "target_type.h"
40 static const char * const armv8_state_strings[] = {
41 "AArch32", "Thumb", "Jazelle", "ThumbEE", "AArch64",
44 static const struct {
45 const char *name;
46 unsigned psr;
47 } armv8_mode_data[] = {
49 .name = "USR",
50 .psr = ARM_MODE_USR,
53 .name = "FIQ",
54 .psr = ARM_MODE_FIQ,
57 .name = "IRQ",
58 .psr = ARM_MODE_IRQ,
61 .name = "SVC",
62 .psr = ARM_MODE_SVC,
65 .name = "MON",
66 .psr = ARM_MODE_MON,
69 .name = "ABT",
70 .psr = ARM_MODE_ABT,
73 .name = "EL0T",
74 .psr = ARMV8_64_EL0T,
77 .name = "EL1T",
78 .psr = ARMV8_64_EL1T,
81 .name = "EL1H",
82 .psr = ARMV8_64_EL1H,
85 .name = "EL2T",
86 .psr = ARMV8_64_EL2T,
89 .name = "EL2H",
90 .psr = ARMV8_64_EL2H,
93 .name = "EL3T",
94 .psr = ARMV8_64_EL3T,
97 .name = "EL3H",
98 .psr = ARMV8_64_EL3H,
102 /** Map PSR mode bits to the name of an ARM processor operating mode. */
103 const char *armv8_mode_name(unsigned psr_mode)
105 for (unsigned i = 0; i < ARRAY_SIZE(armv8_mode_data); i++) {
106 if (armv8_mode_data[i].psr == psr_mode)
107 return armv8_mode_data[i].name;
109 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
110 return "UNRECOGNIZED";
113 static int armv8_read_reg(struct armv8_common *armv8, int regnum, uint64_t *regval)
115 struct arm_dpm *dpm = &armv8->dpm;
116 int retval;
117 uint32_t value;
118 uint64_t value_64;
120 switch (regnum) {
121 case 0 ... 30:
122 retval = dpm->instr_read_data_dcc_64(dpm,
123 ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, regnum), &value_64);
124 break;
125 case ARMV8_SP:
126 retval = dpm->instr_read_data_r0_64(dpm,
127 ARMV8_MOVFSP_64(0), &value_64);
128 break;
129 case ARMV8_PC:
130 retval = dpm->instr_read_data_r0_64(dpm,
131 ARMV8_MRS_DLR(0), &value_64);
132 break;
133 case ARMV8_xPSR:
134 retval = dpm->instr_read_data_r0(dpm,
135 ARMV8_MRS_DSPSR(0), &value);
136 value_64 = value;
137 break;
138 case ARMV8_FPSR:
139 retval = dpm->instr_read_data_r0(dpm,
140 ARMV8_MRS_FPSR(0), &value);
141 value_64 = value;
142 break;
143 case ARMV8_FPCR:
144 retval = dpm->instr_read_data_r0(dpm,
145 ARMV8_MRS_FPCR(0), &value);
146 value_64 = value;
147 break;
148 case ARMV8_ELR_EL1:
149 retval = dpm->instr_read_data_r0_64(dpm,
150 ARMV8_MRS(SYSTEM_ELR_EL1, 0), &value_64);
151 break;
152 case ARMV8_ELR_EL2:
153 retval = dpm->instr_read_data_r0_64(dpm,
154 ARMV8_MRS(SYSTEM_ELR_EL2, 0), &value_64);
155 break;
156 case ARMV8_ELR_EL3:
157 retval = dpm->instr_read_data_r0_64(dpm,
158 ARMV8_MRS(SYSTEM_ELR_EL3, 0), &value_64);
159 break;
160 case ARMV8_ESR_EL1:
161 retval = dpm->instr_read_data_r0(dpm,
162 ARMV8_MRS(SYSTEM_ESR_EL1, 0), &value);
163 value_64 = value;
164 break;
165 case ARMV8_ESR_EL2:
166 retval = dpm->instr_read_data_r0(dpm,
167 ARMV8_MRS(SYSTEM_ESR_EL2, 0), &value);
168 value_64 = value;
169 break;
170 case ARMV8_ESR_EL3:
171 retval = dpm->instr_read_data_r0(dpm,
172 ARMV8_MRS(SYSTEM_ESR_EL3, 0), &value);
173 value_64 = value;
174 break;
175 case ARMV8_SPSR_EL1:
176 retval = dpm->instr_read_data_r0(dpm,
177 ARMV8_MRS(SYSTEM_SPSR_EL1, 0), &value);
178 value_64 = value;
179 break;
180 case ARMV8_SPSR_EL2:
181 retval = dpm->instr_read_data_r0(dpm,
182 ARMV8_MRS(SYSTEM_SPSR_EL2, 0), &value);
183 value_64 = value;
184 break;
185 case ARMV8_SPSR_EL3:
186 retval = dpm->instr_read_data_r0(dpm,
187 ARMV8_MRS(SYSTEM_SPSR_EL3, 0), &value);
188 value_64 = value;
189 break;
190 default:
191 retval = ERROR_FAIL;
192 break;
195 if (retval == ERROR_OK && regval != NULL)
196 *regval = value_64;
197 else
198 retval = ERROR_FAIL;
200 return retval;
203 static int armv8_read_reg_simdfp_aarch64(struct armv8_common *armv8, int regnum, uint64_t *lvalue, uint64_t *hvalue)
205 int retval = ERROR_FAIL;
206 struct arm_dpm *dpm = &armv8->dpm;
208 switch (regnum) {
209 case ARMV8_V0 ... ARMV8_V31:
210 retval = dpm->instr_read_data_r0_64(dpm,
211 ARMV8_MOV_GPR_VFP(0, (regnum - ARMV8_V0), 1), hvalue);
212 if (retval != ERROR_OK)
213 return retval;
214 retval = dpm->instr_read_data_r0_64(dpm,
215 ARMV8_MOV_GPR_VFP(0, (regnum - ARMV8_V0), 0), lvalue);
216 break;
218 default:
219 retval = ERROR_FAIL;
220 break;
223 return retval;
226 static int armv8_write_reg(struct armv8_common *armv8, int regnum, uint64_t value_64)
228 struct arm_dpm *dpm = &armv8->dpm;
229 int retval;
230 uint32_t value;
232 switch (regnum) {
233 case 0 ... 30:
234 retval = dpm->instr_write_data_dcc_64(dpm,
235 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, regnum),
236 value_64);
237 break;
238 case ARMV8_SP:
239 retval = dpm->instr_write_data_r0_64(dpm,
240 ARMV8_MOVTSP_64(0),
241 value_64);
242 break;
243 case ARMV8_PC:
244 retval = dpm->instr_write_data_r0_64(dpm,
245 ARMV8_MSR_DLR(0),
246 value_64);
247 break;
248 case ARMV8_xPSR:
249 value = value_64;
250 retval = dpm->instr_write_data_r0(dpm,
251 ARMV8_MSR_DSPSR(0),
252 value);
253 break;
254 case ARMV8_FPSR:
255 value = value_64;
256 retval = dpm->instr_write_data_r0(dpm,
257 ARMV8_MSR_FPSR(0),
258 value);
259 break;
260 case ARMV8_FPCR:
261 value = value_64;
262 retval = dpm->instr_write_data_r0(dpm,
263 ARMV8_MSR_FPCR(0),
264 value);
265 break;
266 /* registers clobbered by taking exception in debug state */
267 case ARMV8_ELR_EL1:
268 retval = dpm->instr_write_data_r0_64(dpm,
269 ARMV8_MSR_GP(SYSTEM_ELR_EL1, 0), value_64);
270 break;
271 case ARMV8_ELR_EL2:
272 retval = dpm->instr_write_data_r0_64(dpm,
273 ARMV8_MSR_GP(SYSTEM_ELR_EL2, 0), value_64);
274 break;
275 case ARMV8_ELR_EL3:
276 retval = dpm->instr_write_data_r0_64(dpm,
277 ARMV8_MSR_GP(SYSTEM_ELR_EL3, 0), value_64);
278 break;
279 case ARMV8_ESR_EL1:
280 value = value_64;
281 retval = dpm->instr_write_data_r0(dpm,
282 ARMV8_MSR_GP(SYSTEM_ESR_EL1, 0), value);
283 break;
284 case ARMV8_ESR_EL2:
285 value = value_64;
286 retval = dpm->instr_write_data_r0(dpm,
287 ARMV8_MSR_GP(SYSTEM_ESR_EL2, 0), value);
288 break;
289 case ARMV8_ESR_EL3:
290 value = value_64;
291 retval = dpm->instr_write_data_r0(dpm,
292 ARMV8_MSR_GP(SYSTEM_ESR_EL3, 0), value);
293 break;
294 case ARMV8_SPSR_EL1:
295 value = value_64;
296 retval = dpm->instr_write_data_r0(dpm,
297 ARMV8_MSR_GP(SYSTEM_SPSR_EL1, 0), value);
298 break;
299 case ARMV8_SPSR_EL2:
300 value = value_64;
301 retval = dpm->instr_write_data_r0(dpm,
302 ARMV8_MSR_GP(SYSTEM_SPSR_EL2, 0), value);
303 break;
304 case ARMV8_SPSR_EL3:
305 value = value_64;
306 retval = dpm->instr_write_data_r0(dpm,
307 ARMV8_MSR_GP(SYSTEM_SPSR_EL3, 0), value);
308 break;
309 default:
310 retval = ERROR_FAIL;
311 break;
314 return retval;
317 static int armv8_write_reg_simdfp_aarch64(struct armv8_common *armv8, int regnum, uint64_t lvalue, uint64_t hvalue)
319 int retval = ERROR_FAIL;
320 struct arm_dpm *dpm = &armv8->dpm;
322 switch (regnum) {
323 case ARMV8_V0 ... ARMV8_V31:
324 retval = dpm->instr_write_data_r0_64(dpm,
325 ARMV8_MOV_VFP_GPR((regnum - ARMV8_V0), 0, 1), hvalue);
326 if (retval != ERROR_OK)
327 return retval;
328 retval = dpm->instr_write_data_r0_64(dpm,
329 ARMV8_MOV_VFP_GPR((regnum - ARMV8_V0), 0, 0), lvalue);
330 break;
332 default:
333 retval = ERROR_FAIL;
334 break;
337 return retval;
340 static int armv8_read_reg32(struct armv8_common *armv8, int regnum, uint64_t *regval)
342 struct arm_dpm *dpm = &armv8->dpm;
343 uint32_t value = 0;
344 int retval;
346 switch (regnum) {
347 case ARMV8_R0 ... ARMV8_R14:
348 /* return via DCC: "MCR p14, 0, Rnum, c0, c5, 0" */
349 retval = dpm->instr_read_data_dcc(dpm,
350 ARMV4_5_MCR(14, 0, regnum, 0, 5, 0),
351 &value);
352 break;
353 case ARMV8_SP:
354 retval = dpm->instr_read_data_dcc(dpm,
355 ARMV4_5_MCR(14, 0, 13, 0, 5, 0),
356 &value);
357 break;
358 case ARMV8_PC:
359 retval = dpm->instr_read_data_r0(dpm,
360 ARMV8_MRC_DLR(0),
361 &value);
362 break;
363 case ARMV8_xPSR:
364 retval = dpm->instr_read_data_r0(dpm,
365 ARMV8_MRC_DSPSR(0),
366 &value);
367 break;
368 case ARMV8_ELR_EL1: /* mapped to LR_svc */
369 retval = dpm->instr_read_data_dcc(dpm,
370 ARMV4_5_MCR(14, 0, 14, 0, 5, 0),
371 &value);
372 break;
373 case ARMV8_ELR_EL2: /* mapped to ELR_hyp */
374 retval = dpm->instr_read_data_r0(dpm,
375 ARMV8_MRS_T1(0, 14, 0, 1),
376 &value);
377 break;
378 case ARMV8_ELR_EL3: /* mapped to LR_mon */
379 retval = dpm->instr_read_data_dcc(dpm,
380 ARMV4_5_MCR(14, 0, 14, 0, 5, 0),
381 &value);
382 break;
383 case ARMV8_ESR_EL1: /* mapped to DFSR */
384 retval = dpm->instr_read_data_r0(dpm,
385 ARMV4_5_MRC(15, 0, 0, 5, 0, 0),
386 &value);
387 break;
388 case ARMV8_ESR_EL2: /* mapped to HSR */
389 retval = dpm->instr_read_data_r0(dpm,
390 ARMV4_5_MRC(15, 4, 0, 5, 2, 0),
391 &value);
392 break;
393 case ARMV8_ESR_EL3: /* FIXME: no equivalent in aarch32? */
394 retval = ERROR_FAIL;
395 break;
396 case ARMV8_SPSR_EL1: /* mapped to SPSR_svc */
397 retval = dpm->instr_read_data_r0(dpm,
398 ARMV8_MRS_xPSR_T1(1, 0),
399 &value);
400 break;
401 case ARMV8_SPSR_EL2: /* mapped to SPSR_hyp */
402 retval = dpm->instr_read_data_r0(dpm,
403 ARMV8_MRS_xPSR_T1(1, 0),
404 &value);
405 break;
406 case ARMV8_SPSR_EL3: /* mapped to SPSR_mon */
407 retval = dpm->instr_read_data_r0(dpm,
408 ARMV8_MRS_xPSR_T1(1, 0),
409 &value);
410 break;
411 case ARMV8_FPSR:
412 /* "VMRS r0, FPSCR"; then return via DCC */
413 retval = dpm->instr_read_data_r0(dpm,
414 ARMV4_5_VMRS(0), &value);
415 break;
416 default:
417 retval = ERROR_FAIL;
418 break;
421 if (retval == ERROR_OK && regval != NULL)
422 *regval = value;
424 return retval;
427 static int armv8_read_reg_simdfp_aarch32(struct armv8_common *armv8, int regnum, uint64_t *lvalue, uint64_t *hvalue)
429 int retval = ERROR_FAIL;
430 struct arm_dpm *dpm = &armv8->dpm;
431 struct reg *reg_r1 = dpm->arm->core_cache->reg_list + ARMV8_R1;
432 uint32_t value_r0 = 0, value_r1 = 0;
433 unsigned num = (regnum - ARMV8_V0) << 1;
435 switch (regnum) {
436 case ARMV8_V0 ... ARMV8_V15:
437 /* we are going to write R1, mark it dirty */
438 reg_r1->dirty = true;
439 /* move from double word register to r0:r1: "vmov r0, r1, vm"
440 * then read r0 via dcc
442 retval = dpm->instr_read_data_r0(dpm,
443 ARMV4_5_VMOV(1, 1, 0, (num >> 4), (num & 0xf)),
444 &value_r0);
445 /* read r1 via dcc */
446 retval = dpm->instr_read_data_dcc(dpm,
447 ARMV4_5_MCR(14, 0, 1, 0, 5, 0),
448 &value_r1);
449 if (retval == ERROR_OK) {
450 *lvalue = value_r1;
451 *lvalue = ((*lvalue) << 32) | value_r0;
452 } else
453 return retval;
455 num++;
456 /* repeat above steps for high 64 bits of V register */
457 retval = dpm->instr_read_data_r0(dpm,
458 ARMV4_5_VMOV(1, 1, 0, (num >> 4), (num & 0xf)),
459 &value_r0);
460 retval = dpm->instr_read_data_dcc(dpm,
461 ARMV4_5_MCR(14, 0, 1, 0, 5, 0),
462 &value_r1);
463 if (retval == ERROR_OK) {
464 *hvalue = value_r1;
465 *hvalue = ((*hvalue) << 32) | value_r0;
466 } else
467 return retval;
468 break;
469 default:
470 retval = ERROR_FAIL;
471 break;
474 return retval;
477 static int armv8_write_reg32(struct armv8_common *armv8, int regnum, uint64_t value)
479 struct arm_dpm *dpm = &armv8->dpm;
480 int retval;
482 switch (regnum) {
483 case ARMV8_R0 ... ARMV8_R14:
484 /* load register from DCC: "MRC p14, 0, Rnum, c0, c5, 0" */
485 retval = dpm->instr_write_data_dcc(dpm,
486 ARMV4_5_MRC(14, 0, regnum, 0, 5, 0), value);
487 break;
488 case ARMV8_SP:
489 retval = dpm->instr_write_data_dcc(dpm,
490 ARMV4_5_MRC(14, 0, 13, 0, 5, 0), value);
491 break;
492 case ARMV8_PC:/* PC
493 * read r0 from DCC; then "MOV pc, r0" */
494 retval = dpm->instr_write_data_r0(dpm,
495 ARMV8_MCR_DLR(0), value);
496 break;
497 case ARMV8_xPSR: /* CPSR */
498 /* read r0 from DCC, then "MCR r0, DSPSR" */
499 retval = dpm->instr_write_data_r0(dpm,
500 ARMV8_MCR_DSPSR(0), value);
501 break;
502 case ARMV8_ELR_EL1: /* mapped to LR_svc */
503 retval = dpm->instr_write_data_dcc(dpm,
504 ARMV4_5_MRC(14, 0, 14, 0, 5, 0),
505 value);
506 break;
507 case ARMV8_ELR_EL2: /* mapped to ELR_hyp */
508 retval = dpm->instr_write_data_r0(dpm,
509 ARMV8_MSR_GP_T1(0, 14, 0, 1),
510 value);
511 break;
512 case ARMV8_ELR_EL3: /* mapped to LR_mon */
513 retval = dpm->instr_write_data_dcc(dpm,
514 ARMV4_5_MRC(14, 0, 14, 0, 5, 0),
515 value);
516 break;
517 case ARMV8_ESR_EL1: /* mapped to DFSR */
518 retval = dpm->instr_write_data_r0(dpm,
519 ARMV4_5_MCR(15, 0, 0, 5, 0, 0),
520 value);
521 break;
522 case ARMV8_ESR_EL2: /* mapped to HSR */
523 retval = dpm->instr_write_data_r0(dpm,
524 ARMV4_5_MCR(15, 4, 0, 5, 2, 0),
525 value);
526 break;
527 case ARMV8_ESR_EL3: /* FIXME: no equivalent in aarch32? */
528 retval = ERROR_FAIL;
529 break;
530 case ARMV8_SPSR_EL1: /* mapped to SPSR_svc */
531 retval = dpm->instr_write_data_r0(dpm,
532 ARMV8_MSR_GP_xPSR_T1(1, 0, 15),
533 value);
534 break;
535 case ARMV8_SPSR_EL2: /* mapped to SPSR_hyp */
536 retval = dpm->instr_write_data_r0(dpm,
537 ARMV8_MSR_GP_xPSR_T1(1, 0, 15),
538 value);
539 break;
540 case ARMV8_SPSR_EL3: /* mapped to SPSR_mon */
541 retval = dpm->instr_write_data_r0(dpm,
542 ARMV8_MSR_GP_xPSR_T1(1, 0, 15),
543 value);
544 break;
545 case ARMV8_FPSR:
546 /* move to r0 from DCC, then "VMSR FPSCR, r0" */
547 retval = dpm->instr_write_data_r0(dpm,
548 ARMV4_5_VMSR(0), value);
549 break;
550 default:
551 retval = ERROR_FAIL;
552 break;
555 return retval;
559 static int armv8_write_reg_simdfp_aarch32(struct armv8_common *armv8, int regnum, uint64_t lvalue, uint64_t hvalue)
561 int retval = ERROR_FAIL;
562 struct arm_dpm *dpm = &armv8->dpm;
563 struct reg *reg_r1 = dpm->arm->core_cache->reg_list + ARMV8_R1;
564 uint32_t value_r0 = 0, value_r1 = 0;
565 unsigned num = (regnum - ARMV8_V0) << 1;
567 switch (regnum) {
568 case ARMV8_V0 ... ARMV8_V15:
569 /* we are going to write R1, mark it dirty */
570 reg_r1->dirty = true;
571 value_r1 = lvalue >> 32;
572 value_r0 = lvalue & 0xFFFFFFFF;
573 /* write value_r1 to r1 via dcc */
574 retval = dpm->instr_write_data_dcc(dpm,
575 ARMV4_5_MRC(14, 0, 1, 0, 5, 0),
576 value_r1);
577 /* write value_r0 to r0 via dcc then,
578 * move to double word register from r0:r1: "vmov vm, r0, r1"
580 retval = dpm->instr_write_data_r0(dpm,
581 ARMV4_5_VMOV(0, 1, 0, (num >> 4), (num & 0xf)),
582 value_r0);
584 num++;
585 /* repeat above steps for high 64 bits of V register */
586 value_r1 = hvalue >> 32;
587 value_r0 = hvalue & 0xFFFFFFFF;
588 retval = dpm->instr_write_data_dcc(dpm,
589 ARMV4_5_MRC(14, 0, 1, 0, 5, 0),
590 value_r1);
591 retval = dpm->instr_write_data_r0(dpm,
592 ARMV4_5_VMOV(0, 1, 0, (num >> 4), (num & 0xf)),
593 value_r0);
594 break;
595 default:
596 retval = ERROR_FAIL;
597 break;
600 return retval;
603 void armv8_select_reg_access(struct armv8_common *armv8, bool is_aarch64)
605 if (is_aarch64) {
606 armv8->read_reg_u64 = armv8_read_reg;
607 armv8->write_reg_u64 = armv8_write_reg;
608 armv8->read_reg_u128 = armv8_read_reg_simdfp_aarch64;
609 armv8->write_reg_u128 = armv8_write_reg_simdfp_aarch64;
611 } else {
612 armv8->read_reg_u64 = armv8_read_reg32;
613 armv8->write_reg_u64 = armv8_write_reg32;
614 armv8->read_reg_u128 = armv8_read_reg_simdfp_aarch32;
615 armv8->write_reg_u128 = armv8_write_reg_simdfp_aarch32;
619 /* retrieve core id cluster id */
620 int armv8_read_mpidr(struct armv8_common *armv8)
622 int retval = ERROR_FAIL;
623 struct arm *arm = &armv8->arm;
624 struct arm_dpm *dpm = armv8->arm.dpm;
625 uint32_t mpidr;
627 retval = dpm->prepare(dpm);
628 if (retval != ERROR_OK)
629 goto done;
631 /* check if we're in an unprivileged mode */
632 if (armv8_curel_from_core_mode(arm->core_mode) < SYSTEM_CUREL_EL1) {
633 retval = armv8_dpm_modeswitch(dpm, ARMV8_64_EL1H);
634 if (retval != ERROR_OK)
635 return retval;
638 retval = dpm->instr_read_data_r0(dpm, armv8_opcode(armv8, READ_REG_MPIDR), &mpidr);
639 if (retval != ERROR_OK)
640 goto done;
641 if (mpidr & 1<<31) {
642 armv8->multi_processor_system = (mpidr >> 30) & 1;
643 armv8->cluster_id = (mpidr >> 8) & 0xf;
644 armv8->cpu_id = mpidr & 0x3;
645 LOG_INFO("%s cluster %x core %x %s", target_name(armv8->arm.target),
646 armv8->cluster_id,
647 armv8->cpu_id,
648 armv8->multi_processor_system == 0 ? "multi core" : "single core");
649 } else
650 LOG_ERROR("mpidr not in multiprocessor format");
652 done:
653 armv8_dpm_modeswitch(dpm, ARM_MODE_ANY);
654 dpm->finish(dpm);
655 return retval;
659 * Configures host-side ARM records to reflect the specified CPSR.
660 * Later, code can use arm_reg_current() to map register numbers
661 * according to how they are exposed by this mode.
663 void armv8_set_cpsr(struct arm *arm, uint32_t cpsr)
665 uint32_t mode = cpsr & 0x1F;
667 /* NOTE: this may be called very early, before the register
668 * cache is set up. We can't defend against many errors, in
669 * particular against CPSRs that aren't valid *here* ...
671 if (arm->cpsr) {
672 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
673 arm->cpsr->valid = 1;
674 arm->cpsr->dirty = 0;
677 /* Older ARMs won't have the J bit */
678 enum arm_state state = 0xFF;
680 if ((cpsr & 0x10) != 0) {
681 /* Aarch32 state */
682 if (cpsr & (1 << 5)) { /* T */
683 if (cpsr & (1 << 24)) { /* J */
684 LOG_WARNING("ThumbEE -- incomplete support");
685 state = ARM_STATE_THUMB_EE;
686 } else
687 state = ARM_STATE_THUMB;
688 } else {
689 if (cpsr & (1 << 24)) { /* J */
690 LOG_ERROR("Jazelle state handling is BROKEN!");
691 state = ARM_STATE_JAZELLE;
692 } else
693 state = ARM_STATE_ARM;
695 } else {
696 /* Aarch64 state */
697 state = ARM_STATE_AARCH64;
700 arm->core_state = state;
701 arm->core_mode = mode;
703 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
704 armv8_mode_name(arm->core_mode),
705 armv8_state_strings[arm->core_state]);
708 static void armv8_show_fault_registers32(struct armv8_common *armv8)
710 uint32_t dfsr, ifsr, dfar, ifar;
711 struct arm_dpm *dpm = armv8->arm.dpm;
712 int retval;
714 retval = dpm->prepare(dpm);
715 if (retval != ERROR_OK)
716 return;
718 /* ARMV4_5_MRC(cpnum, op1, r0, CRn, CRm, op2) */
720 /* c5/c0 - {data, instruction} fault status registers */
721 retval = dpm->instr_read_data_r0(dpm,
722 ARMV4_5_MRC(15, 0, 0, 5, 0, 0),
723 &dfsr);
724 if (retval != ERROR_OK)
725 goto done;
727 retval = dpm->instr_read_data_r0(dpm,
728 ARMV4_5_MRC(15, 0, 0, 5, 0, 1),
729 &ifsr);
730 if (retval != ERROR_OK)
731 goto done;
733 /* c6/c0 - {data, instruction} fault address registers */
734 retval = dpm->instr_read_data_r0(dpm,
735 ARMV4_5_MRC(15, 0, 0, 6, 0, 0),
736 &dfar);
737 if (retval != ERROR_OK)
738 goto done;
740 retval = dpm->instr_read_data_r0(dpm,
741 ARMV4_5_MRC(15, 0, 0, 6, 0, 2),
742 &ifar);
743 if (retval != ERROR_OK)
744 goto done;
746 LOG_USER("Data fault registers DFSR: %8.8" PRIx32
747 ", DFAR: %8.8" PRIx32, dfsr, dfar);
748 LOG_USER("Instruction fault registers IFSR: %8.8" PRIx32
749 ", IFAR: %8.8" PRIx32, ifsr, ifar);
751 done:
752 /* (void) */ dpm->finish(dpm);
755 static __attribute__((unused)) void armv8_show_fault_registers(struct target *target)
757 struct armv8_common *armv8 = target_to_armv8(target);
759 if (armv8->arm.core_state != ARM_STATE_AARCH64)
760 armv8_show_fault_registers32(armv8);
763 static uint8_t armv8_pa_size(uint32_t ps)
765 uint8_t ret = 0;
766 switch (ps) {
767 case 0:
768 ret = 32;
769 break;
770 case 1:
771 ret = 36;
772 break;
773 case 2:
774 ret = 40;
775 break;
776 case 3:
777 ret = 42;
778 break;
779 case 4:
780 ret = 44;
781 break;
782 case 5:
783 ret = 48;
784 break;
785 default:
786 LOG_INFO("Unknow physicall address size");
787 break;
789 return ret;
792 static __attribute__((unused)) int armv8_read_ttbcr32(struct target *target)
794 struct armv8_common *armv8 = target_to_armv8(target);
795 struct arm_dpm *dpm = armv8->arm.dpm;
796 uint32_t ttbcr, ttbcr_n;
797 int retval = dpm->prepare(dpm);
798 if (retval != ERROR_OK)
799 goto done;
800 /* MRC p15,0,<Rt>,c2,c0,2 ; Read CP15 Translation Table Base Control Register*/
801 retval = dpm->instr_read_data_r0(dpm,
802 ARMV4_5_MRC(15, 0, 0, 2, 0, 2),
803 &ttbcr);
804 if (retval != ERROR_OK)
805 goto done;
807 LOG_DEBUG("ttbcr %" PRIx32, ttbcr);
809 ttbcr_n = ttbcr & 0x7;
810 armv8->armv8_mmu.ttbcr = ttbcr;
813 * ARM Architecture Reference Manual (ARMv7-A and ARMv7-Redition),
814 * document # ARM DDI 0406C
816 armv8->armv8_mmu.ttbr_range[0] = 0xffffffff >> ttbcr_n;
817 armv8->armv8_mmu.ttbr_range[1] = 0xffffffff;
818 armv8->armv8_mmu.ttbr_mask[0] = 0xffffffff << (14 - ttbcr_n);
819 armv8->armv8_mmu.ttbr_mask[1] = 0xffffffff << 14;
821 LOG_DEBUG("ttbr1 %s, ttbr0_mask %" PRIx32 " ttbr1_mask %" PRIx32,
822 (ttbcr_n != 0) ? "used" : "not used",
823 armv8->armv8_mmu.ttbr_mask[0],
824 armv8->armv8_mmu.ttbr_mask[1]);
826 done:
827 dpm->finish(dpm);
828 return retval;
831 static __attribute__((unused)) int armv8_read_ttbcr(struct target *target)
833 struct armv8_common *armv8 = target_to_armv8(target);
834 struct arm_dpm *dpm = armv8->arm.dpm;
835 struct arm *arm = &armv8->arm;
836 uint32_t ttbcr;
837 uint64_t ttbcr_64;
839 int retval = dpm->prepare(dpm);
840 if (retval != ERROR_OK)
841 goto done;
843 /* claaer ttrr1_used and ttbr0_mask */
844 memset(&armv8->armv8_mmu.ttbr1_used, 0, sizeof(armv8->armv8_mmu.ttbr1_used));
845 memset(&armv8->armv8_mmu.ttbr0_mask, 0, sizeof(armv8->armv8_mmu.ttbr0_mask));
847 switch (armv8_curel_from_core_mode(arm->core_mode)) {
848 case SYSTEM_CUREL_EL3:
849 retval = dpm->instr_read_data_r0(dpm,
850 ARMV8_MRS(SYSTEM_TCR_EL3, 0),
851 &ttbcr);
852 retval += dpm->instr_read_data_r0_64(dpm,
853 ARMV8_MRS(SYSTEM_TTBR0_EL3, 0),
854 &armv8->ttbr_base);
855 if (retval != ERROR_OK)
856 goto done;
857 armv8->va_size = 64 - (ttbcr & 0x3F);
858 armv8->pa_size = armv8_pa_size((ttbcr >> 16) & 7);
859 armv8->page_size = (ttbcr >> 14) & 3;
860 break;
861 case SYSTEM_CUREL_EL2:
862 retval = dpm->instr_read_data_r0(dpm,
863 ARMV8_MRS(SYSTEM_TCR_EL2, 0),
864 &ttbcr);
865 retval += dpm->instr_read_data_r0_64(dpm,
866 ARMV8_MRS(SYSTEM_TTBR0_EL2, 0),
867 &armv8->ttbr_base);
868 if (retval != ERROR_OK)
869 goto done;
870 armv8->va_size = 64 - (ttbcr & 0x3F);
871 armv8->pa_size = armv8_pa_size((ttbcr >> 16) & 7);
872 armv8->page_size = (ttbcr >> 14) & 3;
873 break;
874 case SYSTEM_CUREL_EL0:
875 armv8_dpm_modeswitch(dpm, ARMV8_64_EL1H);
876 /* fall through */
877 case SYSTEM_CUREL_EL1:
878 retval = dpm->instr_read_data_r0_64(dpm,
879 ARMV8_MRS(SYSTEM_TCR_EL1, 0),
880 &ttbcr_64);
881 armv8->va_size = 64 - (ttbcr_64 & 0x3F);
882 armv8->pa_size = armv8_pa_size((ttbcr_64 >> 32) & 7);
883 armv8->page_size = (ttbcr_64 >> 14) & 3;
884 armv8->armv8_mmu.ttbr1_used = (((ttbcr_64 >> 16) & 0x3F) != 0) ? 1 : 0;
885 armv8->armv8_mmu.ttbr0_mask = 0x0000FFFFFFFFFFFF;
886 retval += dpm->instr_read_data_r0_64(dpm,
887 ARMV8_MRS(SYSTEM_TTBR0_EL1 | (armv8->armv8_mmu.ttbr1_used), 0),
888 &armv8->ttbr_base);
889 if (retval != ERROR_OK)
890 goto done;
891 break;
892 default:
893 LOG_ERROR("unknow core state");
894 retval = ERROR_FAIL;
895 break;
897 if (retval != ERROR_OK)
898 goto done;
900 if (armv8->armv8_mmu.ttbr1_used == 1)
901 LOG_INFO("TTBR0 access above %" PRIx64, (uint64_t)(armv8->armv8_mmu.ttbr0_mask));
903 done:
904 armv8_dpm_modeswitch(dpm, ARM_MODE_ANY);
905 dpm->finish(dpm);
906 return retval;
909 /* method adapted to cortex A : reused arm v4 v5 method*/
910 int armv8_mmu_translate_va(struct target *target, target_addr_t va, target_addr_t *val)
912 return ERROR_OK;
915 /* V8 method VA TO PA */
916 int armv8_mmu_translate_va_pa(struct target *target, target_addr_t va,
917 target_addr_t *val, int meminfo)
919 struct armv8_common *armv8 = target_to_armv8(target);
920 struct arm *arm = target_to_arm(target);
921 struct arm_dpm *dpm = &armv8->dpm;
922 enum arm_mode target_mode = ARM_MODE_ANY;
923 uint32_t retval;
924 uint32_t instr = 0;
925 uint64_t par;
927 static const char * const shared_name[] = {
928 "Non-", "UNDEFINED ", "Outer ", "Inner "
931 static const char * const secure_name[] = {
932 "Secure", "Not Secure"
935 retval = dpm->prepare(dpm);
936 if (retval != ERROR_OK)
937 return retval;
939 switch (armv8_curel_from_core_mode(arm->core_mode)) {
940 case SYSTEM_CUREL_EL0:
941 instr = ARMV8_SYS(SYSTEM_ATS12E0R, 0);
942 /* can only execute instruction at EL2 */
943 target_mode = ARMV8_64_EL2H;
944 break;
945 case SYSTEM_CUREL_EL1:
946 instr = ARMV8_SYS(SYSTEM_ATS12E1R, 0);
947 /* can only execute instruction at EL2 */
948 target_mode = ARMV8_64_EL2H;
949 break;
950 case SYSTEM_CUREL_EL2:
951 instr = ARMV8_SYS(SYSTEM_ATS1E2R, 0);
952 break;
953 case SYSTEM_CUREL_EL3:
954 instr = ARMV8_SYS(SYSTEM_ATS1E3R, 0);
955 break;
957 default:
958 break;
961 if (target_mode != ARM_MODE_ANY)
962 armv8_dpm_modeswitch(dpm, target_mode);
964 /* write VA to R0 and execute translation instruction */
965 retval = dpm->instr_write_data_r0_64(dpm, instr, (uint64_t)va);
966 /* read result from PAR_EL1 */
967 if (retval == ERROR_OK)
968 retval = dpm->instr_read_data_r0_64(dpm, ARMV8_MRS(SYSTEM_PAR_EL1, 0), &par);
970 /* switch back to saved PE mode */
971 if (target_mode != ARM_MODE_ANY)
972 armv8_dpm_modeswitch(dpm, ARM_MODE_ANY);
974 dpm->finish(dpm);
976 if (retval != ERROR_OK)
977 return retval;
979 if (par & 1) {
980 LOG_ERROR("Address translation failed at stage %i, FST=%x, PTW=%i",
981 ((int)(par >> 9) & 1)+1, (int)(par >> 1) & 0x3f, (int)(par >> 8) & 1);
983 *val = 0;
984 retval = ERROR_FAIL;
985 } else {
986 *val = (par & 0xFFFFFFFFF000UL) | (va & 0xFFF);
987 if (meminfo) {
988 int SH = (par >> 7) & 3;
989 int NS = (par >> 9) & 1;
990 int ATTR = (par >> 56) & 0xFF;
992 char *memtype = (ATTR & 0xF0) == 0 ? "Device Memory" : "Normal Memory";
994 LOG_USER("%sshareable, %s",
995 shared_name[SH], secure_name[NS]);
996 LOG_USER("%s", memtype);
1000 return retval;
1003 int armv8_handle_cache_info_command(struct command_context *cmd_ctx,
1004 struct armv8_cache_common *armv8_cache)
1006 if (armv8_cache->info == -1) {
1007 command_print(cmd_ctx, "cache not yet identified");
1008 return ERROR_OK;
1011 if (armv8_cache->display_cache_info)
1012 armv8_cache->display_cache_info(cmd_ctx, armv8_cache);
1013 return ERROR_OK;
1016 int armv8_init_arch_info(struct target *target, struct armv8_common *armv8)
1018 struct arm *arm = &armv8->arm;
1019 arm->arch_info = armv8;
1020 target->arch_info = &armv8->arm;
1021 /* target is useful in all function arm v4 5 compatible */
1022 armv8->arm.target = target;
1023 armv8->arm.common_magic = ARM_COMMON_MAGIC;
1024 armv8->common_magic = ARMV8_COMMON_MAGIC;
1026 armv8->armv8_mmu.armv8_cache.l2_cache = NULL;
1027 armv8->armv8_mmu.armv8_cache.info = -1;
1028 armv8->armv8_mmu.armv8_cache.flush_all_data_cache = NULL;
1029 armv8->armv8_mmu.armv8_cache.display_cache_info = NULL;
1030 return ERROR_OK;
1033 int armv8_aarch64_state(struct target *target)
1035 struct arm *arm = target_to_arm(target);
1037 if (arm->common_magic != ARM_COMMON_MAGIC) {
1038 LOG_ERROR("BUG: called for a non-ARM target");
1039 return ERROR_FAIL;
1042 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
1043 "cpsr: 0x%8.8" PRIx32 " pc: 0x%" PRIx64 "%s",
1044 armv8_state_strings[arm->core_state],
1045 debug_reason_name(target),
1046 armv8_mode_name(arm->core_mode),
1047 buf_get_u32(arm->cpsr->value, 0, 32),
1048 buf_get_u64(arm->pc->value, 0, 64),
1049 arm->is_semihosting ? ", semihosting" : "");
1051 return ERROR_OK;
1054 int armv8_arch_state(struct target *target)
1056 static const char * const state[] = {
1057 "disabled", "enabled"
1060 struct armv8_common *armv8 = target_to_armv8(target);
1061 struct arm *arm = &armv8->arm;
1063 if (armv8->common_magic != ARMV8_COMMON_MAGIC) {
1064 LOG_ERROR("BUG: called for a non-Armv8 target");
1065 return ERROR_COMMAND_SYNTAX_ERROR;
1068 if (arm->core_state == ARM_STATE_AARCH64)
1069 armv8_aarch64_state(target);
1070 else
1071 arm_arch_state(target);
1073 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
1074 state[armv8->armv8_mmu.mmu_enabled],
1075 state[armv8->armv8_mmu.armv8_cache.d_u_cache_enabled],
1076 state[armv8->armv8_mmu.armv8_cache.i_cache_enabled]);
1078 if (arm->core_mode == ARM_MODE_ABT)
1079 armv8_show_fault_registers(target);
1081 if (target->debug_reason == DBG_REASON_WATCHPOINT)
1082 LOG_USER("Watchpoint triggered at PC %#08x",
1083 (unsigned) armv8->dpm.wp_pc);
1085 return ERROR_OK;
1088 static struct reg_data_type aarch64_vector_base_types[] = {
1089 {REG_TYPE_IEEE_DOUBLE, "ieee_double", 0, {NULL} },
1090 {REG_TYPE_UINT64, "uint64", 0, {NULL} },
1091 {REG_TYPE_INT64, "int64", 0, {NULL} },
1092 {REG_TYPE_IEEE_SINGLE, "ieee_single", 0, {NULL} },
1093 {REG_TYPE_UINT32, "uint32", 0, {NULL} },
1094 {REG_TYPE_INT32, "int32", 0, {NULL} },
1095 {REG_TYPE_UINT16, "uint16", 0, {NULL} },
1096 {REG_TYPE_INT16, "int16", 0, {NULL} },
1097 {REG_TYPE_UINT8, "uint8", 0, {NULL} },
1098 {REG_TYPE_INT8, "int8", 0, {NULL} },
1099 {REG_TYPE_UINT128, "uint128", 0, {NULL} },
1100 {REG_TYPE_INT128, "int128", 0, {NULL} }
1103 static struct reg_data_type_vector aarch64_vector_types[] = {
1104 {aarch64_vector_base_types + 0, 2},
1105 {aarch64_vector_base_types + 1, 2},
1106 {aarch64_vector_base_types + 2, 2},
1107 {aarch64_vector_base_types + 3, 4},
1108 {aarch64_vector_base_types + 4, 4},
1109 {aarch64_vector_base_types + 5, 4},
1110 {aarch64_vector_base_types + 6, 8},
1111 {aarch64_vector_base_types + 7, 8},
1112 {aarch64_vector_base_types + 8, 16},
1113 {aarch64_vector_base_types + 9, 16},
1114 {aarch64_vector_base_types + 10, 01},
1115 {aarch64_vector_base_types + 11, 01},
1118 static struct reg_data_type aarch64_fpu_vector[] = {
1119 {REG_TYPE_ARCH_DEFINED, "v2d", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 0} },
1120 {REG_TYPE_ARCH_DEFINED, "v2u", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 1} },
1121 {REG_TYPE_ARCH_DEFINED, "v2i", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 2} },
1122 {REG_TYPE_ARCH_DEFINED, "v4f", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 3} },
1123 {REG_TYPE_ARCH_DEFINED, "v4u", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 4} },
1124 {REG_TYPE_ARCH_DEFINED, "v4i", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 5} },
1125 {REG_TYPE_ARCH_DEFINED, "v8u", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 6} },
1126 {REG_TYPE_ARCH_DEFINED, "v8i", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 7} },
1127 {REG_TYPE_ARCH_DEFINED, "v16u", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 8} },
1128 {REG_TYPE_ARCH_DEFINED, "v16i", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 9} },
1129 {REG_TYPE_ARCH_DEFINED, "v1u", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 10} },
1130 {REG_TYPE_ARCH_DEFINED, "v1i", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 11} },
1133 static struct reg_data_type_union_field aarch64_union_fields_vnd[] = {
1134 {"f", aarch64_fpu_vector + 0, aarch64_union_fields_vnd + 1},
1135 {"u", aarch64_fpu_vector + 1, aarch64_union_fields_vnd + 2},
1136 {"s", aarch64_fpu_vector + 2, NULL},
1139 static struct reg_data_type_union_field aarch64_union_fields_vns[] = {
1140 {"f", aarch64_fpu_vector + 3, aarch64_union_fields_vns + 1},
1141 {"u", aarch64_fpu_vector + 4, aarch64_union_fields_vns + 2},
1142 {"s", aarch64_fpu_vector + 5, NULL},
1145 static struct reg_data_type_union_field aarch64_union_fields_vnh[] = {
1146 {"u", aarch64_fpu_vector + 6, aarch64_union_fields_vnh + 1},
1147 {"s", aarch64_fpu_vector + 7, NULL},
1150 static struct reg_data_type_union_field aarch64_union_fields_vnb[] = {
1151 {"u", aarch64_fpu_vector + 8, aarch64_union_fields_vnb + 1},
1152 {"s", aarch64_fpu_vector + 9, NULL},
1155 static struct reg_data_type_union_field aarch64_union_fields_vnq[] = {
1156 {"u", aarch64_fpu_vector + 10, aarch64_union_fields_vnq + 1},
1157 {"s", aarch64_fpu_vector + 11, NULL},
1160 static struct reg_data_type_union aarch64_union_types[] = {
1161 {aarch64_union_fields_vnd},
1162 {aarch64_union_fields_vns},
1163 {aarch64_union_fields_vnh},
1164 {aarch64_union_fields_vnb},
1165 {aarch64_union_fields_vnq},
1168 static struct reg_data_type aarch64_fpu_union[] = {
1169 {REG_TYPE_ARCH_DEFINED, "vnd", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 0} },
1170 {REG_TYPE_ARCH_DEFINED, "vns", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 1} },
1171 {REG_TYPE_ARCH_DEFINED, "vnh", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 2} },
1172 {REG_TYPE_ARCH_DEFINED, "vnb", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 3} },
1173 {REG_TYPE_ARCH_DEFINED, "vnq", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 4} },
1176 static struct reg_data_type_union_field aarch64v_union_fields[] = {
1177 {"d", aarch64_fpu_union + 0, aarch64v_union_fields + 1},
1178 {"s", aarch64_fpu_union + 1, aarch64v_union_fields + 2},
1179 {"h", aarch64_fpu_union + 2, aarch64v_union_fields + 3},
1180 {"b", aarch64_fpu_union + 3, aarch64v_union_fields + 4},
1181 {"q", aarch64_fpu_union + 4, NULL},
1184 static struct reg_data_type_union aarch64v_union[] = {
1185 {aarch64v_union_fields}
1188 static struct reg_data_type aarch64v[] = {
1189 {REG_TYPE_ARCH_DEFINED, "aarch64v", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64v_union} },
1192 static const struct {
1193 unsigned id;
1194 const char *name;
1195 unsigned bits;
1196 enum arm_mode mode;
1197 enum reg_type type;
1198 const char *group;
1199 const char *feature;
1200 struct reg_data_type *data_type;
1201 } armv8_regs[] = {
1202 { ARMV8_R0, "x0", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1203 { ARMV8_R1, "x1", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1204 { ARMV8_R2, "x2", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1205 { ARMV8_R3, "x3", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1206 { ARMV8_R4, "x4", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1207 { ARMV8_R5, "x5", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1208 { ARMV8_R6, "x6", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1209 { ARMV8_R7, "x7", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1210 { ARMV8_R8, "x8", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1211 { ARMV8_R9, "x9", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1212 { ARMV8_R10, "x10", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1213 { ARMV8_R11, "x11", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1214 { ARMV8_R12, "x12", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1215 { ARMV8_R13, "x13", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1216 { ARMV8_R14, "x14", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1217 { ARMV8_R15, "x15", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1218 { ARMV8_R16, "x16", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1219 { ARMV8_R17, "x17", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1220 { ARMV8_R18, "x18", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1221 { ARMV8_R19, "x19", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1222 { ARMV8_R20, "x20", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1223 { ARMV8_R21, "x21", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1224 { ARMV8_R22, "x22", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1225 { ARMV8_R23, "x23", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1226 { ARMV8_R24, "x24", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1227 { ARMV8_R25, "x25", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1228 { ARMV8_R26, "x26", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1229 { ARMV8_R27, "x27", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1230 { ARMV8_R28, "x28", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1231 { ARMV8_R29, "x29", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1232 { ARMV8_R30, "x30", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1234 { ARMV8_SP, "sp", 64, ARM_MODE_ANY, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.aarch64.core", NULL},
1235 { ARMV8_PC, "pc", 64, ARM_MODE_ANY, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.aarch64.core", NULL},
1237 { ARMV8_xPSR, "CPSR", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.aarch64.core", NULL},
1239 { ARMV8_V0, "v0", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1240 { ARMV8_V1, "v1", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1241 { ARMV8_V2, "v2", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1242 { ARMV8_V3, "v3", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1243 { ARMV8_V4, "v4", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1244 { ARMV8_V5, "v5", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1245 { ARMV8_V6, "v6", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1246 { ARMV8_V7, "v7", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1247 { ARMV8_V8, "v8", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1248 { ARMV8_V9, "v9", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1249 { ARMV8_V10, "v10", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1250 { ARMV8_V11, "v11", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1251 { ARMV8_V12, "v12", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1252 { ARMV8_V13, "v13", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1253 { ARMV8_V14, "v14", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1254 { ARMV8_V15, "v15", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1255 { ARMV8_V16, "v16", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1256 { ARMV8_V17, "v17", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1257 { ARMV8_V18, "v18", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1258 { ARMV8_V19, "v19", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1259 { ARMV8_V20, "v20", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1260 { ARMV8_V21, "v21", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1261 { ARMV8_V22, "v22", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1262 { ARMV8_V23, "v23", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1263 { ARMV8_V24, "v24", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1264 { ARMV8_V25, "v25", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1265 { ARMV8_V26, "v26", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1266 { ARMV8_V27, "v27", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1267 { ARMV8_V28, "v28", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1268 { ARMV8_V29, "v29", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1269 { ARMV8_V30, "v30", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1270 { ARMV8_V31, "v31", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1271 { ARMV8_FPSR, "fpsr", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "simdfp", "org.gnu.gdb.aarch64.fpu", NULL},
1272 { ARMV8_FPCR, "fpcr", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "simdfp", "org.gnu.gdb.aarch64.fpu", NULL},
1274 { ARMV8_ELR_EL1, "ELR_EL1", 64, ARMV8_64_EL1H, REG_TYPE_CODE_PTR, "banked", "net.sourceforge.openocd.banked",
1275 NULL},
1276 { ARMV8_ESR_EL1, "ESR_EL1", 32, ARMV8_64_EL1H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
1277 NULL},
1278 { ARMV8_SPSR_EL1, "SPSR_EL1", 32, ARMV8_64_EL1H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
1279 NULL},
1281 { ARMV8_ELR_EL2, "ELR_EL2", 64, ARMV8_64_EL2H, REG_TYPE_CODE_PTR, "banked", "net.sourceforge.openocd.banked",
1282 NULL},
1283 { ARMV8_ESR_EL2, "ESR_EL2", 32, ARMV8_64_EL2H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
1284 NULL},
1285 { ARMV8_SPSR_EL2, "SPSR_EL2", 32, ARMV8_64_EL2H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
1286 NULL},
1288 { ARMV8_ELR_EL3, "ELR_EL3", 64, ARMV8_64_EL3H, REG_TYPE_CODE_PTR, "banked", "net.sourceforge.openocd.banked",
1289 NULL},
1290 { ARMV8_ESR_EL3, "ESR_EL3", 32, ARMV8_64_EL3H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
1291 NULL},
1292 { ARMV8_SPSR_EL3, "SPSR_EL3", 32, ARMV8_64_EL3H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
1293 NULL},
1296 static const struct {
1297 unsigned id;
1298 unsigned mapping;
1299 const char *name;
1300 unsigned bits;
1301 enum arm_mode mode;
1302 enum reg_type type;
1303 const char *group;
1304 const char *feature;
1305 } armv8_regs32[] = {
1306 { ARMV8_R0, 0, "r0", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1307 { ARMV8_R1, 0, "r1", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1308 { ARMV8_R2, 0, "r2", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1309 { ARMV8_R3, 0, "r3", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1310 { ARMV8_R4, 0, "r4", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1311 { ARMV8_R5, 0, "r5", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1312 { ARMV8_R6, 0, "r6", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1313 { ARMV8_R7, 0, "r7", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1314 { ARMV8_R8, 0, "r8", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1315 { ARMV8_R9, 0, "r9", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1316 { ARMV8_R10, 0, "r10", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1317 { ARMV8_R11, 0, "r11", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1318 { ARMV8_R12, 0, "r12", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1319 { ARMV8_R13, 0, "sp", 32, ARM_MODE_ANY, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.core" },
1320 { ARMV8_R14, 0, "lr", 32, ARM_MODE_ANY, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.core" },
1321 { ARMV8_PC, 0, "pc", 32, ARM_MODE_ANY, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.core" },
1322 { ARMV8_xPSR, 0, "cpsr", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1323 { ARMV8_V0, 0, "d0", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1324 { ARMV8_V0, 8, "d1", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1325 { ARMV8_V1, 0, "d2", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1326 { ARMV8_V1, 8, "d3", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1327 { ARMV8_V2, 0, "d4", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1328 { ARMV8_V2, 8, "d5", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1329 { ARMV8_V3, 0, "d6", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1330 { ARMV8_V3, 8, "d7", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1331 { ARMV8_V4, 0, "d8", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1332 { ARMV8_V4, 8, "d9", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1333 { ARMV8_V5, 0, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1334 { ARMV8_V5, 8, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1335 { ARMV8_V6, 0, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1336 { ARMV8_V6, 8, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1337 { ARMV8_V7, 0, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1338 { ARMV8_V7, 8, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1339 { ARMV8_V8, 0, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1340 { ARMV8_V8, 8, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1341 { ARMV8_V9, 0, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1342 { ARMV8_V9, 8, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1343 { ARMV8_V10, 0, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1344 { ARMV8_V10, 8, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1345 { ARMV8_V11, 0, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1346 { ARMV8_V11, 8, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1347 { ARMV8_V12, 0, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1348 { ARMV8_V12, 8, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1349 { ARMV8_V13, 0, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1350 { ARMV8_V13, 8, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1351 { ARMV8_V14, 0, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1352 { ARMV8_V14, 8, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1353 { ARMV8_V15, 0, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1354 { ARMV8_V15, 8, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1355 { ARMV8_FPSR, 0, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "float", "org.gnu.gdb.arm.vfp"},
1358 #define ARMV8_NUM_REGS ARRAY_SIZE(armv8_regs)
1359 #define ARMV8_NUM_REGS32 ARRAY_SIZE(armv8_regs32)
1361 static int armv8_get_core_reg(struct reg *reg)
1363 struct arm_reg *armv8_reg = reg->arch_info;
1364 struct target *target = armv8_reg->target;
1365 struct arm *arm = target_to_arm(target);
1367 if (target->state != TARGET_HALTED)
1368 return ERROR_TARGET_NOT_HALTED;
1370 return arm->read_core_reg(target, reg, armv8_reg->num, arm->core_mode);
1373 static int armv8_set_core_reg(struct reg *reg, uint8_t *buf)
1375 struct arm_reg *armv8_reg = reg->arch_info;
1376 struct target *target = armv8_reg->target;
1377 struct arm *arm = target_to_arm(target);
1378 uint64_t value = buf_get_u64(buf, 0, reg->size);
1380 if (target->state != TARGET_HALTED)
1381 return ERROR_TARGET_NOT_HALTED;
1383 if (reg->size <= 64) {
1384 if (reg == arm->cpsr)
1385 armv8_set_cpsr(arm, (uint32_t)value);
1386 else {
1387 buf_set_u64(reg->value, 0, reg->size, value);
1388 reg->valid = 1;
1390 } else if (reg->size <= 128) {
1391 uint64_t hvalue = buf_get_u64(buf + 8, 0, reg->size - 64);
1393 buf_set_u64(reg->value, 0, 64, value);
1394 buf_set_u64(reg->value + 8, 0, reg->size - 64, hvalue);
1395 reg->valid = 1;
1398 reg->dirty = 1;
1400 return ERROR_OK;
1403 static const struct reg_arch_type armv8_reg_type = {
1404 .get = armv8_get_core_reg,
1405 .set = armv8_set_core_reg,
1408 static int armv8_get_core_reg32(struct reg *reg)
1410 struct arm_reg *armv8_reg = reg->arch_info;
1411 struct target *target = armv8_reg->target;
1412 struct arm *arm = target_to_arm(target);
1413 struct reg_cache *cache = arm->core_cache;
1414 struct reg *reg64;
1415 int retval;
1417 /* get the corresponding Aarch64 register */
1418 reg64 = cache->reg_list + armv8_reg->num;
1419 if (reg64->valid) {
1420 reg->valid = true;
1421 return ERROR_OK;
1424 retval = arm->read_core_reg(target, reg64, armv8_reg->num, arm->core_mode);
1425 if (retval == ERROR_OK)
1426 reg->valid = reg64->valid;
1428 return retval;
1431 static int armv8_set_core_reg32(struct reg *reg, uint8_t *buf)
1433 struct arm_reg *armv8_reg = reg->arch_info;
1434 struct target *target = armv8_reg->target;
1435 struct arm *arm = target_to_arm(target);
1436 struct reg_cache *cache = arm->core_cache;
1437 struct reg *reg64 = cache->reg_list + armv8_reg->num;
1438 uint32_t value = buf_get_u32(buf, 0, 32);
1440 if (reg64 == arm->cpsr) {
1441 armv8_set_cpsr(arm, value);
1442 } else {
1443 if (reg->size <= 32)
1444 buf_set_u32(reg->value, 0, 32, value);
1445 else if (reg->size <= 64) {
1446 uint64_t value64 = buf_get_u64(buf, 0, 64);
1447 buf_set_u64(reg->value, 0, 64, value64);
1449 reg->valid = 1;
1450 reg64->valid = 1;
1453 reg64->dirty = 1;
1455 return ERROR_OK;
1458 static const struct reg_arch_type armv8_reg32_type = {
1459 .get = armv8_get_core_reg32,
1460 .set = armv8_set_core_reg32,
1463 /** Builds cache of architecturally defined registers. */
1464 struct reg_cache *armv8_build_reg_cache(struct target *target)
1466 struct armv8_common *armv8 = target_to_armv8(target);
1467 struct arm *arm = &armv8->arm;
1468 int num_regs = ARMV8_NUM_REGS;
1469 int num_regs32 = ARMV8_NUM_REGS32;
1470 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
1471 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
1472 struct reg_cache *cache32 = malloc(sizeof(struct reg_cache));
1473 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
1474 struct reg *reg_list32 = calloc(num_regs32, sizeof(struct reg));
1475 struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
1476 struct reg_feature *feature;
1477 int i;
1479 /* Build the process context cache */
1480 cache->name = "Aarch64 registers";
1481 cache->next = cache32;
1482 cache->reg_list = reg_list;
1483 cache->num_regs = num_regs;
1485 for (i = 0; i < num_regs; i++) {
1486 arch_info[i].num = armv8_regs[i].id;
1487 arch_info[i].mode = armv8_regs[i].mode;
1488 arch_info[i].target = target;
1489 arch_info[i].arm = arm;
1491 reg_list[i].name = armv8_regs[i].name;
1492 reg_list[i].size = armv8_regs[i].bits;
1493 reg_list[i].value = &arch_info[i].value[0];
1494 reg_list[i].type = &armv8_reg_type;
1495 reg_list[i].arch_info = &arch_info[i];
1497 reg_list[i].group = armv8_regs[i].group;
1498 reg_list[i].number = i;
1499 reg_list[i].exist = true;
1500 reg_list[i].caller_save = true; /* gdb defaults to true */
1502 feature = calloc(1, sizeof(struct reg_feature));
1503 if (feature) {
1504 feature->name = armv8_regs[i].feature;
1505 reg_list[i].feature = feature;
1506 } else
1507 LOG_ERROR("unable to allocate feature list");
1509 if (armv8_regs[i].data_type == NULL) {
1510 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
1511 if (reg_list[i].reg_data_type)
1512 reg_list[i].reg_data_type->type = armv8_regs[i].type;
1513 else
1514 LOG_ERROR("unable to allocate reg type list");
1515 } else
1516 reg_list[i].reg_data_type = armv8_regs[i].data_type;
1520 arm->cpsr = reg_list + ARMV8_xPSR;
1521 arm->pc = reg_list + ARMV8_PC;
1522 arm->core_cache = cache;
1524 /* shadow cache for ARM mode registers */
1525 cache32->name = "Aarch32 registers";
1526 cache32->next = NULL;
1527 cache32->reg_list = reg_list32;
1528 cache32->num_regs = num_regs32;
1530 for (i = 0; i < num_regs32; i++) {
1531 reg_list32[i].name = armv8_regs32[i].name;
1532 reg_list32[i].size = armv8_regs32[i].bits;
1533 reg_list32[i].value = &arch_info[armv8_regs32[i].id].value[armv8_regs32[i].mapping];
1534 reg_list32[i].type = &armv8_reg32_type;
1535 reg_list32[i].arch_info = &arch_info[armv8_regs32[i].id];
1536 reg_list32[i].group = armv8_regs32[i].group;
1537 reg_list32[i].number = i;
1538 reg_list32[i].exist = true;
1539 reg_list32[i].caller_save = true;
1541 feature = calloc(1, sizeof(struct reg_feature));
1542 if (feature) {
1543 feature->name = armv8_regs32[i].feature;
1544 reg_list32[i].feature = feature;
1545 } else
1546 LOG_ERROR("unable to allocate feature list");
1548 reg_list32[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
1549 if (reg_list32[i].reg_data_type)
1550 reg_list32[i].reg_data_type->type = armv8_regs32[i].type;
1551 else
1552 LOG_ERROR("unable to allocate reg type list");
1555 (*cache_p) = cache;
1556 return cache;
1559 struct reg *armv8_reg_current(struct arm *arm, unsigned regnum)
1561 struct reg *r;
1563 if (regnum > (ARMV8_LAST_REG - 1))
1564 return NULL;
1566 r = arm->core_cache->reg_list + regnum;
1567 return r;
1570 const struct command_registration armv8_command_handlers[] = {
1572 .chain = dap_command_handlers,
1574 COMMAND_REGISTRATION_DONE
1578 int armv8_get_gdb_reg_list(struct target *target,
1579 struct reg **reg_list[], int *reg_list_size,
1580 enum target_register_class reg_class)
1582 struct arm *arm = target_to_arm(target);
1583 int i;
1585 if (arm->core_state == ARM_STATE_AARCH64) {
1587 LOG_DEBUG("Creating Aarch64 register list for target %s", target_name(target));
1589 switch (reg_class) {
1590 case REG_CLASS_GENERAL:
1591 *reg_list_size = ARMV8_V0;
1592 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1594 for (i = 0; i < *reg_list_size; i++)
1595 (*reg_list)[i] = armv8_reg_current(arm, i);
1596 return ERROR_OK;
1598 case REG_CLASS_ALL:
1599 *reg_list_size = ARMV8_LAST_REG;
1600 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1602 for (i = 0; i < *reg_list_size; i++)
1603 (*reg_list)[i] = armv8_reg_current(arm, i);
1605 return ERROR_OK;
1607 default:
1608 LOG_ERROR("not a valid register class type in query.");
1609 return ERROR_FAIL;
1611 } else {
1612 struct reg_cache *cache32 = arm->core_cache->next;
1614 LOG_DEBUG("Creating Aarch32 register list for target %s", target_name(target));
1616 switch (reg_class) {
1617 case REG_CLASS_GENERAL:
1618 *reg_list_size = ARMV8_R14 + 3;
1619 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1621 for (i = 0; i < *reg_list_size; i++)
1622 (*reg_list)[i] = cache32->reg_list + i;
1624 return ERROR_OK;
1625 case REG_CLASS_ALL:
1626 *reg_list_size = cache32->num_regs;
1627 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1629 for (i = 0; i < *reg_list_size; i++)
1630 (*reg_list)[i] = cache32->reg_list + i;
1632 return ERROR_OK;
1633 default:
1634 LOG_ERROR("not a valid register class type in query.");
1635 return ERROR_FAIL;
1640 int armv8_set_dbgreg_bits(struct armv8_common *armv8, unsigned int reg, unsigned long mask, unsigned long value)
1642 uint32_t tmp;
1644 /* Read register */
1645 int retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1646 armv8->debug_base + reg, &tmp);
1647 if (ERROR_OK != retval)
1648 return retval;
1650 /* clear bitfield */
1651 tmp &= ~mask;
1652 /* put new value */
1653 tmp |= value & mask;
1655 /* write new value */
1656 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1657 armv8->debug_base + reg, tmp);
1658 return retval;