target, arm_adi_v5: catch two allocation errors
[openocd.git] / src / target / target.c
blob52307dbf443700d75b2b6017b441a7fd2c74b593
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
61 static int target_read_buffer_default(struct target *target, target_addr_t address,
62 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, target_addr_t address,
64 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type aarch64_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type ls1_sap_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
110 static struct target_type *target_types[] = {
111 &arm7tdmi_target,
112 &arm9tdmi_target,
113 &arm920t_target,
114 &arm720t_target,
115 &arm966e_target,
116 &arm946e_target,
117 &arm926ejs_target,
118 &fa526_target,
119 &feroceon_target,
120 &dragonite_target,
121 &xscale_target,
122 &cortexm_target,
123 &cortexa_target,
124 &cortexr4_target,
125 &arm11_target,
126 &ls1_sap_target,
127 &mips_m4k_target,
128 &avr_target,
129 &dsp563xx_target,
130 &dsp5680xx_target,
131 &testee_target,
132 &avr32_ap7k_target,
133 &hla_target,
134 &nds32_v2_target,
135 &nds32_v3_target,
136 &nds32_v3m_target,
137 &or1k_target,
138 &quark_x10xx_target,
139 &quark_d20xx_target,
140 &stm8_target,
141 #if BUILD_TARGET64
142 &aarch64_target,
143 #endif
144 NULL,
147 struct target *all_targets;
148 static struct target_event_callback *target_event_callbacks;
149 static struct target_timer_callback *target_timer_callbacks;
150 LIST_HEAD(target_reset_callback_list);
151 LIST_HEAD(target_trace_callback_list);
152 static const int polling_interval = 100;
154 static const Jim_Nvp nvp_assert[] = {
155 { .name = "assert", NVP_ASSERT },
156 { .name = "deassert", NVP_DEASSERT },
157 { .name = "T", NVP_ASSERT },
158 { .name = "F", NVP_DEASSERT },
159 { .name = "t", NVP_ASSERT },
160 { .name = "f", NVP_DEASSERT },
161 { .name = NULL, .value = -1 }
164 static const Jim_Nvp nvp_error_target[] = {
165 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
166 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
167 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
168 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
169 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
170 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
171 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
172 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
173 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
174 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
175 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
176 { .value = -1, .name = NULL }
179 static const char *target_strerror_safe(int err)
181 const Jim_Nvp *n;
183 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
184 if (n->name == NULL)
185 return "unknown";
186 else
187 return n->name;
190 static const Jim_Nvp nvp_target_event[] = {
192 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
193 { .value = TARGET_EVENT_HALTED, .name = "halted" },
194 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
195 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
198 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
199 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
201 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
202 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
203 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
204 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
205 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
206 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
207 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
208 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
210 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
211 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
213 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
214 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
216 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
217 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
219 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
220 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
222 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
223 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
225 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
227 { .name = NULL, .value = -1 }
230 static const Jim_Nvp nvp_target_state[] = {
231 { .name = "unknown", .value = TARGET_UNKNOWN },
232 { .name = "running", .value = TARGET_RUNNING },
233 { .name = "halted", .value = TARGET_HALTED },
234 { .name = "reset", .value = TARGET_RESET },
235 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
236 { .name = NULL, .value = -1 },
239 static const Jim_Nvp nvp_target_debug_reason[] = {
240 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
241 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
242 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
243 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
244 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
245 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
246 { .name = "program-exit" , .value = DBG_REASON_EXIT },
247 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
248 { .name = NULL, .value = -1 },
251 static const Jim_Nvp nvp_target_endian[] = {
252 { .name = "big", .value = TARGET_BIG_ENDIAN },
253 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
254 { .name = "be", .value = TARGET_BIG_ENDIAN },
255 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
256 { .name = NULL, .value = -1 },
259 static const Jim_Nvp nvp_reset_modes[] = {
260 { .name = "unknown", .value = RESET_UNKNOWN },
261 { .name = "run" , .value = RESET_RUN },
262 { .name = "halt" , .value = RESET_HALT },
263 { .name = "init" , .value = RESET_INIT },
264 { .name = NULL , .value = -1 },
267 const char *debug_reason_name(struct target *t)
269 const char *cp;
271 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
272 t->debug_reason)->name;
273 if (!cp) {
274 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
275 cp = "(*BUG*unknown*BUG*)";
277 return cp;
280 const char *target_state_name(struct target *t)
282 const char *cp;
283 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
284 if (!cp) {
285 LOG_ERROR("Invalid target state: %d", (int)(t->state));
286 cp = "(*BUG*unknown*BUG*)";
289 if (!target_was_examined(t) && t->defer_examine)
290 cp = "examine deferred";
292 return cp;
295 const char *target_event_name(enum target_event event)
297 const char *cp;
298 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
299 if (!cp) {
300 LOG_ERROR("Invalid target event: %d", (int)(event));
301 cp = "(*BUG*unknown*BUG*)";
303 return cp;
306 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
308 const char *cp;
309 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
310 if (!cp) {
311 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
312 cp = "(*BUG*unknown*BUG*)";
314 return cp;
317 /* determine the number of the new target */
318 static int new_target_number(void)
320 struct target *t;
321 int x;
323 /* number is 0 based */
324 x = -1;
325 t = all_targets;
326 while (t) {
327 if (x < t->target_number)
328 x = t->target_number;
329 t = t->next;
331 return x + 1;
334 /* read a uint64_t from a buffer in target memory endianness */
335 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
337 if (target->endianness == TARGET_LITTLE_ENDIAN)
338 return le_to_h_u64(buffer);
339 else
340 return be_to_h_u64(buffer);
343 /* read a uint32_t from a buffer in target memory endianness */
344 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
346 if (target->endianness == TARGET_LITTLE_ENDIAN)
347 return le_to_h_u32(buffer);
348 else
349 return be_to_h_u32(buffer);
352 /* read a uint24_t from a buffer in target memory endianness */
353 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
355 if (target->endianness == TARGET_LITTLE_ENDIAN)
356 return le_to_h_u24(buffer);
357 else
358 return be_to_h_u24(buffer);
361 /* read a uint16_t from a buffer in target memory endianness */
362 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
364 if (target->endianness == TARGET_LITTLE_ENDIAN)
365 return le_to_h_u16(buffer);
366 else
367 return be_to_h_u16(buffer);
370 /* read a uint8_t from a buffer in target memory endianness */
371 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
373 return *buffer & 0x0ff;
376 /* write a uint64_t to a buffer in target memory endianness */
377 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
379 if (target->endianness == TARGET_LITTLE_ENDIAN)
380 h_u64_to_le(buffer, value);
381 else
382 h_u64_to_be(buffer, value);
385 /* write a uint32_t to a buffer in target memory endianness */
386 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
388 if (target->endianness == TARGET_LITTLE_ENDIAN)
389 h_u32_to_le(buffer, value);
390 else
391 h_u32_to_be(buffer, value);
394 /* write a uint24_t to a buffer in target memory endianness */
395 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
397 if (target->endianness == TARGET_LITTLE_ENDIAN)
398 h_u24_to_le(buffer, value);
399 else
400 h_u24_to_be(buffer, value);
403 /* write a uint16_t to a buffer in target memory endianness */
404 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
406 if (target->endianness == TARGET_LITTLE_ENDIAN)
407 h_u16_to_le(buffer, value);
408 else
409 h_u16_to_be(buffer, value);
412 /* write a uint8_t to a buffer in target memory endianness */
413 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
415 *buffer = value;
418 /* write a uint64_t array to a buffer in target memory endianness */
419 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
421 uint32_t i;
422 for (i = 0; i < count; i++)
423 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
426 /* write a uint32_t array to a buffer in target memory endianness */
427 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
429 uint32_t i;
430 for (i = 0; i < count; i++)
431 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
434 /* write a uint16_t array to a buffer in target memory endianness */
435 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
437 uint32_t i;
438 for (i = 0; i < count; i++)
439 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
442 /* write a uint64_t array to a buffer in target memory endianness */
443 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
445 uint32_t i;
446 for (i = 0; i < count; i++)
447 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
450 /* write a uint32_t array to a buffer in target memory endianness */
451 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
453 uint32_t i;
454 for (i = 0; i < count; i++)
455 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
458 /* write a uint16_t array to a buffer in target memory endianness */
459 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
461 uint32_t i;
462 for (i = 0; i < count; i++)
463 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
466 /* return a pointer to a configured target; id is name or number */
467 struct target *get_target(const char *id)
469 struct target *target;
471 /* try as tcltarget name */
472 for (target = all_targets; target; target = target->next) {
473 if (target_name(target) == NULL)
474 continue;
475 if (strcmp(id, target_name(target)) == 0)
476 return target;
479 /* It's OK to remove this fallback sometime after August 2010 or so */
481 /* no match, try as number */
482 unsigned num;
483 if (parse_uint(id, &num) != ERROR_OK)
484 return NULL;
486 for (target = all_targets; target; target = target->next) {
487 if (target->target_number == (int)num) {
488 LOG_WARNING("use '%s' as target identifier, not '%u'",
489 target_name(target), num);
490 return target;
494 return NULL;
497 /* returns a pointer to the n-th configured target */
498 struct target *get_target_by_num(int num)
500 struct target *target = all_targets;
502 while (target) {
503 if (target->target_number == num)
504 return target;
505 target = target->next;
508 return NULL;
511 struct target *get_current_target(struct command_context *cmd_ctx)
513 struct target *target = get_target_by_num(cmd_ctx->current_target);
515 if (target == NULL) {
516 LOG_ERROR("BUG: current_target out of bounds");
517 exit(-1);
520 return target;
523 int target_poll(struct target *target)
525 int retval;
527 /* We can't poll until after examine */
528 if (!target_was_examined(target)) {
529 /* Fail silently lest we pollute the log */
530 return ERROR_FAIL;
533 retval = target->type->poll(target);
534 if (retval != ERROR_OK)
535 return retval;
537 if (target->halt_issued) {
538 if (target->state == TARGET_HALTED)
539 target->halt_issued = false;
540 else {
541 int64_t t = timeval_ms() - target->halt_issued_time;
542 if (t > DEFAULT_HALT_TIMEOUT) {
543 target->halt_issued = false;
544 LOG_INFO("Halt timed out, wake up GDB.");
545 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
550 return ERROR_OK;
553 int target_halt(struct target *target)
555 int retval;
556 /* We can't poll until after examine */
557 if (!target_was_examined(target)) {
558 LOG_ERROR("Target not examined yet");
559 return ERROR_FAIL;
562 retval = target->type->halt(target);
563 if (retval != ERROR_OK)
564 return retval;
566 target->halt_issued = true;
567 target->halt_issued_time = timeval_ms();
569 return ERROR_OK;
573 * Make the target (re)start executing using its saved execution
574 * context (possibly with some modifications).
576 * @param target Which target should start executing.
577 * @param current True to use the target's saved program counter instead
578 * of the address parameter
579 * @param address Optionally used as the program counter.
580 * @param handle_breakpoints True iff breakpoints at the resumption PC
581 * should be skipped. (For example, maybe execution was stopped by
582 * such a breakpoint, in which case it would be counterprodutive to
583 * let it re-trigger.
584 * @param debug_execution False if all working areas allocated by OpenOCD
585 * should be released and/or restored to their original contents.
586 * (This would for example be true to run some downloaded "helper"
587 * algorithm code, which resides in one such working buffer and uses
588 * another for data storage.)
590 * @todo Resolve the ambiguity about what the "debug_execution" flag
591 * signifies. For example, Target implementations don't agree on how
592 * it relates to invalidation of the register cache, or to whether
593 * breakpoints and watchpoints should be enabled. (It would seem wrong
594 * to enable breakpoints when running downloaded "helper" algorithms
595 * (debug_execution true), since the breakpoints would be set to match
596 * target firmware being debugged, not the helper algorithm.... and
597 * enabling them could cause such helpers to malfunction (for example,
598 * by overwriting data with a breakpoint instruction. On the other
599 * hand the infrastructure for running such helpers might use this
600 * procedure but rely on hardware breakpoint to detect termination.)
602 int target_resume(struct target *target, int current, target_addr_t address,
603 int handle_breakpoints, int debug_execution)
605 int retval;
607 /* We can't poll until after examine */
608 if (!target_was_examined(target)) {
609 LOG_ERROR("Target not examined yet");
610 return ERROR_FAIL;
613 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
615 /* note that resume *must* be asynchronous. The CPU can halt before
616 * we poll. The CPU can even halt at the current PC as a result of
617 * a software breakpoint being inserted by (a bug?) the application.
619 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
620 if (retval != ERROR_OK)
621 return retval;
623 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
625 return retval;
628 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
630 char buf[100];
631 int retval;
632 Jim_Nvp *n;
633 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
634 if (n->name == NULL) {
635 LOG_ERROR("invalid reset mode");
636 return ERROR_FAIL;
639 struct target *target;
640 for (target = all_targets; target; target = target->next)
641 target_call_reset_callbacks(target, reset_mode);
643 /* disable polling during reset to make reset event scripts
644 * more predictable, i.e. dr/irscan & pathmove in events will
645 * not have JTAG operations injected into the middle of a sequence.
647 bool save_poll = jtag_poll_get_enabled();
649 jtag_poll_set_enabled(false);
651 sprintf(buf, "ocd_process_reset %s", n->name);
652 retval = Jim_Eval(cmd_ctx->interp, buf);
654 jtag_poll_set_enabled(save_poll);
656 if (retval != JIM_OK) {
657 Jim_MakeErrorMessage(cmd_ctx->interp);
658 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
659 return ERROR_FAIL;
662 /* We want any events to be processed before the prompt */
663 retval = target_call_timer_callbacks_now();
665 for (target = all_targets; target; target = target->next) {
666 target->type->check_reset(target);
667 target->running_alg = false;
670 return retval;
673 static int identity_virt2phys(struct target *target,
674 target_addr_t virtual, target_addr_t *physical)
676 *physical = virtual;
677 return ERROR_OK;
680 static int no_mmu(struct target *target, int *enabled)
682 *enabled = 0;
683 return ERROR_OK;
686 static int default_examine(struct target *target)
688 target_set_examined(target);
689 return ERROR_OK;
692 /* no check by default */
693 static int default_check_reset(struct target *target)
695 return ERROR_OK;
698 int target_examine_one(struct target *target)
700 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
702 int retval = target->type->examine(target);
703 if (retval != ERROR_OK)
704 return retval;
706 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
708 return ERROR_OK;
711 static int jtag_enable_callback(enum jtag_event event, void *priv)
713 struct target *target = priv;
715 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
716 return ERROR_OK;
718 jtag_unregister_event_callback(jtag_enable_callback, target);
720 return target_examine_one(target);
723 /* Targets that correctly implement init + examine, i.e.
724 * no communication with target during init:
726 * XScale
728 int target_examine(void)
730 int retval = ERROR_OK;
731 struct target *target;
733 for (target = all_targets; target; target = target->next) {
734 /* defer examination, but don't skip it */
735 if (!target->tap->enabled) {
736 jtag_register_event_callback(jtag_enable_callback,
737 target);
738 continue;
741 if (target->defer_examine)
742 continue;
744 retval = target_examine_one(target);
745 if (retval != ERROR_OK)
746 return retval;
748 return retval;
751 const char *target_type_name(struct target *target)
753 return target->type->name;
756 static int target_soft_reset_halt(struct target *target)
758 if (!target_was_examined(target)) {
759 LOG_ERROR("Target not examined yet");
760 return ERROR_FAIL;
762 if (!target->type->soft_reset_halt) {
763 LOG_ERROR("Target %s does not support soft_reset_halt",
764 target_name(target));
765 return ERROR_FAIL;
767 return target->type->soft_reset_halt(target);
771 * Downloads a target-specific native code algorithm to the target,
772 * and executes it. * Note that some targets may need to set up, enable,
773 * and tear down a breakpoint (hard or * soft) to detect algorithm
774 * termination, while others may support lower overhead schemes where
775 * soft breakpoints embedded in the algorithm automatically terminate the
776 * algorithm.
778 * @param target used to run the algorithm
779 * @param arch_info target-specific description of the algorithm.
781 int target_run_algorithm(struct target *target,
782 int num_mem_params, struct mem_param *mem_params,
783 int num_reg_params, struct reg_param *reg_param,
784 uint32_t entry_point, uint32_t exit_point,
785 int timeout_ms, void *arch_info)
787 int retval = ERROR_FAIL;
789 if (!target_was_examined(target)) {
790 LOG_ERROR("Target not examined yet");
791 goto done;
793 if (!target->type->run_algorithm) {
794 LOG_ERROR("Target type '%s' does not support %s",
795 target_type_name(target), __func__);
796 goto done;
799 target->running_alg = true;
800 retval = target->type->run_algorithm(target,
801 num_mem_params, mem_params,
802 num_reg_params, reg_param,
803 entry_point, exit_point, timeout_ms, arch_info);
804 target->running_alg = false;
806 done:
807 return retval;
811 * Downloads a target-specific native code algorithm to the target,
812 * executes and leaves it running.
814 * @param target used to run the algorithm
815 * @param arch_info target-specific description of the algorithm.
817 int target_start_algorithm(struct target *target,
818 int num_mem_params, struct mem_param *mem_params,
819 int num_reg_params, struct reg_param *reg_params,
820 uint32_t entry_point, uint32_t exit_point,
821 void *arch_info)
823 int retval = ERROR_FAIL;
825 if (!target_was_examined(target)) {
826 LOG_ERROR("Target not examined yet");
827 goto done;
829 if (!target->type->start_algorithm) {
830 LOG_ERROR("Target type '%s' does not support %s",
831 target_type_name(target), __func__);
832 goto done;
834 if (target->running_alg) {
835 LOG_ERROR("Target is already running an algorithm");
836 goto done;
839 target->running_alg = true;
840 retval = target->type->start_algorithm(target,
841 num_mem_params, mem_params,
842 num_reg_params, reg_params,
843 entry_point, exit_point, arch_info);
845 done:
846 return retval;
850 * Waits for an algorithm started with target_start_algorithm() to complete.
852 * @param target used to run the algorithm
853 * @param arch_info target-specific description of the algorithm.
855 int target_wait_algorithm(struct target *target,
856 int num_mem_params, struct mem_param *mem_params,
857 int num_reg_params, struct reg_param *reg_params,
858 uint32_t exit_point, int timeout_ms,
859 void *arch_info)
861 int retval = ERROR_FAIL;
863 if (!target->type->wait_algorithm) {
864 LOG_ERROR("Target type '%s' does not support %s",
865 target_type_name(target), __func__);
866 goto done;
868 if (!target->running_alg) {
869 LOG_ERROR("Target is not running an algorithm");
870 goto done;
873 retval = target->type->wait_algorithm(target,
874 num_mem_params, mem_params,
875 num_reg_params, reg_params,
876 exit_point, timeout_ms, arch_info);
877 if (retval != ERROR_TARGET_TIMEOUT)
878 target->running_alg = false;
880 done:
881 return retval;
885 * Executes a target-specific native code algorithm in the target.
886 * It differs from target_run_algorithm in that the algorithm is asynchronous.
887 * Because of this it requires an compliant algorithm:
888 * see contrib/loaders/flash/stm32f1x.S for example.
890 * @param target used to run the algorithm
893 int target_run_flash_async_algorithm(struct target *target,
894 const uint8_t *buffer, uint32_t count, int block_size,
895 int num_mem_params, struct mem_param *mem_params,
896 int num_reg_params, struct reg_param *reg_params,
897 uint32_t buffer_start, uint32_t buffer_size,
898 uint32_t entry_point, uint32_t exit_point, void *arch_info)
900 int retval;
901 int timeout = 0;
903 const uint8_t *buffer_orig = buffer;
905 /* Set up working area. First word is write pointer, second word is read pointer,
906 * rest is fifo data area. */
907 uint32_t wp_addr = buffer_start;
908 uint32_t rp_addr = buffer_start + 4;
909 uint32_t fifo_start_addr = buffer_start + 8;
910 uint32_t fifo_end_addr = buffer_start + buffer_size;
912 uint32_t wp = fifo_start_addr;
913 uint32_t rp = fifo_start_addr;
915 /* validate block_size is 2^n */
916 assert(!block_size || !(block_size & (block_size - 1)));
918 retval = target_write_u32(target, wp_addr, wp);
919 if (retval != ERROR_OK)
920 return retval;
921 retval = target_write_u32(target, rp_addr, rp);
922 if (retval != ERROR_OK)
923 return retval;
925 /* Start up algorithm on target and let it idle while writing the first chunk */
926 retval = target_start_algorithm(target, num_mem_params, mem_params,
927 num_reg_params, reg_params,
928 entry_point,
929 exit_point,
930 arch_info);
932 if (retval != ERROR_OK) {
933 LOG_ERROR("error starting target flash write algorithm");
934 return retval;
937 while (count > 0) {
939 retval = target_read_u32(target, rp_addr, &rp);
940 if (retval != ERROR_OK) {
941 LOG_ERROR("failed to get read pointer");
942 break;
945 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
946 (size_t) (buffer - buffer_orig), count, wp, rp);
948 if (rp == 0) {
949 LOG_ERROR("flash write algorithm aborted by target");
950 retval = ERROR_FLASH_OPERATION_FAILED;
951 break;
954 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
955 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
956 break;
959 /* Count the number of bytes available in the fifo without
960 * crossing the wrap around. Make sure to not fill it completely,
961 * because that would make wp == rp and that's the empty condition. */
962 uint32_t thisrun_bytes;
963 if (rp > wp)
964 thisrun_bytes = rp - wp - block_size;
965 else if (rp > fifo_start_addr)
966 thisrun_bytes = fifo_end_addr - wp;
967 else
968 thisrun_bytes = fifo_end_addr - wp - block_size;
970 if (thisrun_bytes == 0) {
971 /* Throttle polling a bit if transfer is (much) faster than flash
972 * programming. The exact delay shouldn't matter as long as it's
973 * less than buffer size / flash speed. This is very unlikely to
974 * run when using high latency connections such as USB. */
975 alive_sleep(10);
977 /* to stop an infinite loop on some targets check and increment a timeout
978 * this issue was observed on a stellaris using the new ICDI interface */
979 if (timeout++ >= 500) {
980 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
981 return ERROR_FLASH_OPERATION_FAILED;
983 continue;
986 /* reset our timeout */
987 timeout = 0;
989 /* Limit to the amount of data we actually want to write */
990 if (thisrun_bytes > count * block_size)
991 thisrun_bytes = count * block_size;
993 /* Write data to fifo */
994 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
995 if (retval != ERROR_OK)
996 break;
998 /* Update counters and wrap write pointer */
999 buffer += thisrun_bytes;
1000 count -= thisrun_bytes / block_size;
1001 wp += thisrun_bytes;
1002 if (wp >= fifo_end_addr)
1003 wp = fifo_start_addr;
1005 /* Store updated write pointer to target */
1006 retval = target_write_u32(target, wp_addr, wp);
1007 if (retval != ERROR_OK)
1008 break;
1011 if (retval != ERROR_OK) {
1012 /* abort flash write algorithm on target */
1013 target_write_u32(target, wp_addr, 0);
1016 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1017 num_reg_params, reg_params,
1018 exit_point,
1019 10000,
1020 arch_info);
1022 if (retval2 != ERROR_OK) {
1023 LOG_ERROR("error waiting for target flash write algorithm");
1024 retval = retval2;
1027 if (retval == ERROR_OK) {
1028 /* check if algorithm set rp = 0 after fifo writer loop finished */
1029 retval = target_read_u32(target, rp_addr, &rp);
1030 if (retval == ERROR_OK && rp == 0) {
1031 LOG_ERROR("flash write algorithm aborted by target");
1032 retval = ERROR_FLASH_OPERATION_FAILED;
1036 return retval;
1039 int target_read_memory(struct target *target,
1040 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1042 if (!target_was_examined(target)) {
1043 LOG_ERROR("Target not examined yet");
1044 return ERROR_FAIL;
1046 if (!target->type->read_memory) {
1047 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1048 return ERROR_FAIL;
1050 return target->type->read_memory(target, address, size, count, buffer);
1053 int target_read_phys_memory(struct target *target,
1054 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1056 if (!target_was_examined(target)) {
1057 LOG_ERROR("Target not examined yet");
1058 return ERROR_FAIL;
1060 if (!target->type->read_phys_memory) {
1061 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1062 return ERROR_FAIL;
1064 return target->type->read_phys_memory(target, address, size, count, buffer);
1067 int target_write_memory(struct target *target,
1068 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1070 if (!target_was_examined(target)) {
1071 LOG_ERROR("Target not examined yet");
1072 return ERROR_FAIL;
1074 if (!target->type->write_memory) {
1075 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1076 return ERROR_FAIL;
1078 return target->type->write_memory(target, address, size, count, buffer);
1081 int target_write_phys_memory(struct target *target,
1082 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1084 if (!target_was_examined(target)) {
1085 LOG_ERROR("Target not examined yet");
1086 return ERROR_FAIL;
1088 if (!target->type->write_phys_memory) {
1089 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1090 return ERROR_FAIL;
1092 return target->type->write_phys_memory(target, address, size, count, buffer);
1095 int target_add_breakpoint(struct target *target,
1096 struct breakpoint *breakpoint)
1098 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1099 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1100 return ERROR_TARGET_NOT_HALTED;
1102 return target->type->add_breakpoint(target, breakpoint);
1105 int target_add_context_breakpoint(struct target *target,
1106 struct breakpoint *breakpoint)
1108 if (target->state != TARGET_HALTED) {
1109 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1110 return ERROR_TARGET_NOT_HALTED;
1112 return target->type->add_context_breakpoint(target, breakpoint);
1115 int target_add_hybrid_breakpoint(struct target *target,
1116 struct breakpoint *breakpoint)
1118 if (target->state != TARGET_HALTED) {
1119 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1120 return ERROR_TARGET_NOT_HALTED;
1122 return target->type->add_hybrid_breakpoint(target, breakpoint);
1125 int target_remove_breakpoint(struct target *target,
1126 struct breakpoint *breakpoint)
1128 return target->type->remove_breakpoint(target, breakpoint);
1131 int target_add_watchpoint(struct target *target,
1132 struct watchpoint *watchpoint)
1134 if (target->state != TARGET_HALTED) {
1135 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1136 return ERROR_TARGET_NOT_HALTED;
1138 return target->type->add_watchpoint(target, watchpoint);
1140 int target_remove_watchpoint(struct target *target,
1141 struct watchpoint *watchpoint)
1143 return target->type->remove_watchpoint(target, watchpoint);
1145 int target_hit_watchpoint(struct target *target,
1146 struct watchpoint **hit_watchpoint)
1148 if (target->state != TARGET_HALTED) {
1149 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1150 return ERROR_TARGET_NOT_HALTED;
1153 if (target->type->hit_watchpoint == NULL) {
1154 /* For backward compatible, if hit_watchpoint is not implemented,
1155 * return ERROR_FAIL such that gdb_server will not take the nonsense
1156 * information. */
1157 return ERROR_FAIL;
1160 return target->type->hit_watchpoint(target, hit_watchpoint);
1163 int target_get_gdb_reg_list(struct target *target,
1164 struct reg **reg_list[], int *reg_list_size,
1165 enum target_register_class reg_class)
1167 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1169 int target_step(struct target *target,
1170 int current, target_addr_t address, int handle_breakpoints)
1172 return target->type->step(target, current, address, handle_breakpoints);
1175 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1177 if (target->state != TARGET_HALTED) {
1178 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1179 return ERROR_TARGET_NOT_HALTED;
1181 return target->type->get_gdb_fileio_info(target, fileio_info);
1184 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1186 if (target->state != TARGET_HALTED) {
1187 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1188 return ERROR_TARGET_NOT_HALTED;
1190 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1193 int target_profiling(struct target *target, uint32_t *samples,
1194 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1196 if (target->state != TARGET_HALTED) {
1197 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1198 return ERROR_TARGET_NOT_HALTED;
1200 return target->type->profiling(target, samples, max_num_samples,
1201 num_samples, seconds);
1205 * Reset the @c examined flag for the given target.
1206 * Pure paranoia -- targets are zeroed on allocation.
1208 static void target_reset_examined(struct target *target)
1210 target->examined = false;
1213 static int handle_target(void *priv);
1215 static int target_init_one(struct command_context *cmd_ctx,
1216 struct target *target)
1218 target_reset_examined(target);
1220 struct target_type *type = target->type;
1221 if (type->examine == NULL)
1222 type->examine = default_examine;
1224 if (type->check_reset == NULL)
1225 type->check_reset = default_check_reset;
1227 assert(type->init_target != NULL);
1229 int retval = type->init_target(cmd_ctx, target);
1230 if (ERROR_OK != retval) {
1231 LOG_ERROR("target '%s' init failed", target_name(target));
1232 return retval;
1235 /* Sanity-check MMU support ... stub in what we must, to help
1236 * implement it in stages, but warn if we need to do so.
1238 if (type->mmu) {
1239 if (type->virt2phys == NULL) {
1240 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1241 type->virt2phys = identity_virt2phys;
1243 } else {
1244 /* Make sure no-MMU targets all behave the same: make no
1245 * distinction between physical and virtual addresses, and
1246 * ensure that virt2phys() is always an identity mapping.
1248 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1249 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1251 type->mmu = no_mmu;
1252 type->write_phys_memory = type->write_memory;
1253 type->read_phys_memory = type->read_memory;
1254 type->virt2phys = identity_virt2phys;
1257 if (target->type->read_buffer == NULL)
1258 target->type->read_buffer = target_read_buffer_default;
1260 if (target->type->write_buffer == NULL)
1261 target->type->write_buffer = target_write_buffer_default;
1263 if (target->type->get_gdb_fileio_info == NULL)
1264 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1266 if (target->type->gdb_fileio_end == NULL)
1267 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1269 if (target->type->profiling == NULL)
1270 target->type->profiling = target_profiling_default;
1272 return ERROR_OK;
1275 static int target_init(struct command_context *cmd_ctx)
1277 struct target *target;
1278 int retval;
1280 for (target = all_targets; target; target = target->next) {
1281 retval = target_init_one(cmd_ctx, target);
1282 if (ERROR_OK != retval)
1283 return retval;
1286 if (!all_targets)
1287 return ERROR_OK;
1289 retval = target_register_user_commands(cmd_ctx);
1290 if (ERROR_OK != retval)
1291 return retval;
1293 retval = target_register_timer_callback(&handle_target,
1294 polling_interval, 1, cmd_ctx->interp);
1295 if (ERROR_OK != retval)
1296 return retval;
1298 return ERROR_OK;
1301 COMMAND_HANDLER(handle_target_init_command)
1303 int retval;
1305 if (CMD_ARGC != 0)
1306 return ERROR_COMMAND_SYNTAX_ERROR;
1308 static bool target_initialized;
1309 if (target_initialized) {
1310 LOG_INFO("'target init' has already been called");
1311 return ERROR_OK;
1313 target_initialized = true;
1315 retval = command_run_line(CMD_CTX, "init_targets");
1316 if (ERROR_OK != retval)
1317 return retval;
1319 retval = command_run_line(CMD_CTX, "init_target_events");
1320 if (ERROR_OK != retval)
1321 return retval;
1323 retval = command_run_line(CMD_CTX, "init_board");
1324 if (ERROR_OK != retval)
1325 return retval;
1327 LOG_DEBUG("Initializing targets...");
1328 return target_init(CMD_CTX);
1331 int target_register_event_callback(int (*callback)(struct target *target,
1332 enum target_event event, void *priv), void *priv)
1334 struct target_event_callback **callbacks_p = &target_event_callbacks;
1336 if (callback == NULL)
1337 return ERROR_COMMAND_SYNTAX_ERROR;
1339 if (*callbacks_p) {
1340 while ((*callbacks_p)->next)
1341 callbacks_p = &((*callbacks_p)->next);
1342 callbacks_p = &((*callbacks_p)->next);
1345 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1346 (*callbacks_p)->callback = callback;
1347 (*callbacks_p)->priv = priv;
1348 (*callbacks_p)->next = NULL;
1350 return ERROR_OK;
1353 int target_register_reset_callback(int (*callback)(struct target *target,
1354 enum target_reset_mode reset_mode, void *priv), void *priv)
1356 struct target_reset_callback *entry;
1358 if (callback == NULL)
1359 return ERROR_COMMAND_SYNTAX_ERROR;
1361 entry = malloc(sizeof(struct target_reset_callback));
1362 if (entry == NULL) {
1363 LOG_ERROR("error allocating buffer for reset callback entry");
1364 return ERROR_COMMAND_SYNTAX_ERROR;
1367 entry->callback = callback;
1368 entry->priv = priv;
1369 list_add(&entry->list, &target_reset_callback_list);
1372 return ERROR_OK;
1375 int target_register_trace_callback(int (*callback)(struct target *target,
1376 size_t len, uint8_t *data, void *priv), void *priv)
1378 struct target_trace_callback *entry;
1380 if (callback == NULL)
1381 return ERROR_COMMAND_SYNTAX_ERROR;
1383 entry = malloc(sizeof(struct target_trace_callback));
1384 if (entry == NULL) {
1385 LOG_ERROR("error allocating buffer for trace callback entry");
1386 return ERROR_COMMAND_SYNTAX_ERROR;
1389 entry->callback = callback;
1390 entry->priv = priv;
1391 list_add(&entry->list, &target_trace_callback_list);
1394 return ERROR_OK;
1397 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1399 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1400 struct timeval now;
1402 if (callback == NULL)
1403 return ERROR_COMMAND_SYNTAX_ERROR;
1405 if (*callbacks_p) {
1406 while ((*callbacks_p)->next)
1407 callbacks_p = &((*callbacks_p)->next);
1408 callbacks_p = &((*callbacks_p)->next);
1411 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1412 (*callbacks_p)->callback = callback;
1413 (*callbacks_p)->periodic = periodic;
1414 (*callbacks_p)->time_ms = time_ms;
1415 (*callbacks_p)->removed = false;
1417 gettimeofday(&now, NULL);
1418 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1419 time_ms -= (time_ms % 1000);
1420 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1421 if ((*callbacks_p)->when.tv_usec > 1000000) {
1422 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1423 (*callbacks_p)->when.tv_sec += 1;
1426 (*callbacks_p)->priv = priv;
1427 (*callbacks_p)->next = NULL;
1429 return ERROR_OK;
1432 int target_unregister_event_callback(int (*callback)(struct target *target,
1433 enum target_event event, void *priv), void *priv)
1435 struct target_event_callback **p = &target_event_callbacks;
1436 struct target_event_callback *c = target_event_callbacks;
1438 if (callback == NULL)
1439 return ERROR_COMMAND_SYNTAX_ERROR;
1441 while (c) {
1442 struct target_event_callback *next = c->next;
1443 if ((c->callback == callback) && (c->priv == priv)) {
1444 *p = next;
1445 free(c);
1446 return ERROR_OK;
1447 } else
1448 p = &(c->next);
1449 c = next;
1452 return ERROR_OK;
1455 int target_unregister_reset_callback(int (*callback)(struct target *target,
1456 enum target_reset_mode reset_mode, void *priv), void *priv)
1458 struct target_reset_callback *entry;
1460 if (callback == NULL)
1461 return ERROR_COMMAND_SYNTAX_ERROR;
1463 list_for_each_entry(entry, &target_reset_callback_list, list) {
1464 if (entry->callback == callback && entry->priv == priv) {
1465 list_del(&entry->list);
1466 free(entry);
1467 break;
1471 return ERROR_OK;
1474 int target_unregister_trace_callback(int (*callback)(struct target *target,
1475 size_t len, uint8_t *data, void *priv), void *priv)
1477 struct target_trace_callback *entry;
1479 if (callback == NULL)
1480 return ERROR_COMMAND_SYNTAX_ERROR;
1482 list_for_each_entry(entry, &target_trace_callback_list, list) {
1483 if (entry->callback == callback && entry->priv == priv) {
1484 list_del(&entry->list);
1485 free(entry);
1486 break;
1490 return ERROR_OK;
1493 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1495 if (callback == NULL)
1496 return ERROR_COMMAND_SYNTAX_ERROR;
1498 for (struct target_timer_callback *c = target_timer_callbacks;
1499 c; c = c->next) {
1500 if ((c->callback == callback) && (c->priv == priv)) {
1501 c->removed = true;
1502 return ERROR_OK;
1506 return ERROR_FAIL;
1509 int target_call_event_callbacks(struct target *target, enum target_event event)
1511 struct target_event_callback *callback = target_event_callbacks;
1512 struct target_event_callback *next_callback;
1514 if (event == TARGET_EVENT_HALTED) {
1515 /* execute early halted first */
1516 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1519 LOG_DEBUG("target event %i (%s)", event,
1520 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1522 target_handle_event(target, event);
1524 while (callback) {
1525 next_callback = callback->next;
1526 callback->callback(target, event, callback->priv);
1527 callback = next_callback;
1530 return ERROR_OK;
1533 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1535 struct target_reset_callback *callback;
1537 LOG_DEBUG("target reset %i (%s)", reset_mode,
1538 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1540 list_for_each_entry(callback, &target_reset_callback_list, list)
1541 callback->callback(target, reset_mode, callback->priv);
1543 return ERROR_OK;
1546 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1548 struct target_trace_callback *callback;
1550 list_for_each_entry(callback, &target_trace_callback_list, list)
1551 callback->callback(target, len, data, callback->priv);
1553 return ERROR_OK;
1556 static int target_timer_callback_periodic_restart(
1557 struct target_timer_callback *cb, struct timeval *now)
1559 int time_ms = cb->time_ms;
1560 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1561 time_ms -= (time_ms % 1000);
1562 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1563 if (cb->when.tv_usec > 1000000) {
1564 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1565 cb->when.tv_sec += 1;
1567 return ERROR_OK;
1570 static int target_call_timer_callback(struct target_timer_callback *cb,
1571 struct timeval *now)
1573 cb->callback(cb->priv);
1575 if (cb->periodic)
1576 return target_timer_callback_periodic_restart(cb, now);
1578 return target_unregister_timer_callback(cb->callback, cb->priv);
1581 static int target_call_timer_callbacks_check_time(int checktime)
1583 static bool callback_processing;
1585 /* Do not allow nesting */
1586 if (callback_processing)
1587 return ERROR_OK;
1589 callback_processing = true;
1591 keep_alive();
1593 struct timeval now;
1594 gettimeofday(&now, NULL);
1596 /* Store an address of the place containing a pointer to the
1597 * next item; initially, that's a standalone "root of the
1598 * list" variable. */
1599 struct target_timer_callback **callback = &target_timer_callbacks;
1600 while (*callback) {
1601 if ((*callback)->removed) {
1602 struct target_timer_callback *p = *callback;
1603 *callback = (*callback)->next;
1604 free(p);
1605 continue;
1608 bool call_it = (*callback)->callback &&
1609 ((!checktime && (*callback)->periodic) ||
1610 now.tv_sec > (*callback)->when.tv_sec ||
1611 (now.tv_sec == (*callback)->when.tv_sec &&
1612 now.tv_usec >= (*callback)->when.tv_usec));
1614 if (call_it)
1615 target_call_timer_callback(*callback, &now);
1617 callback = &(*callback)->next;
1620 callback_processing = false;
1621 return ERROR_OK;
1624 int target_call_timer_callbacks(void)
1626 return target_call_timer_callbacks_check_time(1);
1629 /* invoke periodic callbacks immediately */
1630 int target_call_timer_callbacks_now(void)
1632 return target_call_timer_callbacks_check_time(0);
1635 /* Prints the working area layout for debug purposes */
1636 static void print_wa_layout(struct target *target)
1638 struct working_area *c = target->working_areas;
1640 while (c) {
1641 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1642 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1643 c->address, c->address + c->size - 1, c->size);
1644 c = c->next;
1648 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1649 static void target_split_working_area(struct working_area *area, uint32_t size)
1651 assert(area->free); /* Shouldn't split an allocated area */
1652 assert(size <= area->size); /* Caller should guarantee this */
1654 /* Split only if not already the right size */
1655 if (size < area->size) {
1656 struct working_area *new_wa = malloc(sizeof(*new_wa));
1658 if (new_wa == NULL)
1659 return;
1661 new_wa->next = area->next;
1662 new_wa->size = area->size - size;
1663 new_wa->address = area->address + size;
1664 new_wa->backup = NULL;
1665 new_wa->user = NULL;
1666 new_wa->free = true;
1668 area->next = new_wa;
1669 area->size = size;
1671 /* If backup memory was allocated to this area, it has the wrong size
1672 * now so free it and it will be reallocated if/when needed */
1673 if (area->backup) {
1674 free(area->backup);
1675 area->backup = NULL;
1680 /* Merge all adjacent free areas into one */
1681 static void target_merge_working_areas(struct target *target)
1683 struct working_area *c = target->working_areas;
1685 while (c && c->next) {
1686 assert(c->next->address == c->address + c->size); /* This is an invariant */
1688 /* Find two adjacent free areas */
1689 if (c->free && c->next->free) {
1690 /* Merge the last into the first */
1691 c->size += c->next->size;
1693 /* Remove the last */
1694 struct working_area *to_be_freed = c->next;
1695 c->next = c->next->next;
1696 if (to_be_freed->backup)
1697 free(to_be_freed->backup);
1698 free(to_be_freed);
1700 /* If backup memory was allocated to the remaining area, it's has
1701 * the wrong size now */
1702 if (c->backup) {
1703 free(c->backup);
1704 c->backup = NULL;
1706 } else {
1707 c = c->next;
1712 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1714 /* Reevaluate working area address based on MMU state*/
1715 if (target->working_areas == NULL) {
1716 int retval;
1717 int enabled;
1719 retval = target->type->mmu(target, &enabled);
1720 if (retval != ERROR_OK)
1721 return retval;
1723 if (!enabled) {
1724 if (target->working_area_phys_spec) {
1725 LOG_DEBUG("MMU disabled, using physical "
1726 "address for working memory " TARGET_ADDR_FMT,
1727 target->working_area_phys);
1728 target->working_area = target->working_area_phys;
1729 } else {
1730 LOG_ERROR("No working memory available. "
1731 "Specify -work-area-phys to target.");
1732 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1734 } else {
1735 if (target->working_area_virt_spec) {
1736 LOG_DEBUG("MMU enabled, using virtual "
1737 "address for working memory " TARGET_ADDR_FMT,
1738 target->working_area_virt);
1739 target->working_area = target->working_area_virt;
1740 } else {
1741 LOG_ERROR("No working memory available. "
1742 "Specify -work-area-virt to target.");
1743 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1747 /* Set up initial working area on first call */
1748 struct working_area *new_wa = malloc(sizeof(*new_wa));
1749 if (new_wa) {
1750 new_wa->next = NULL;
1751 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1752 new_wa->address = target->working_area;
1753 new_wa->backup = NULL;
1754 new_wa->user = NULL;
1755 new_wa->free = true;
1758 target->working_areas = new_wa;
1761 /* only allocate multiples of 4 byte */
1762 if (size % 4)
1763 size = (size + 3) & (~3UL);
1765 struct working_area *c = target->working_areas;
1767 /* Find the first large enough working area */
1768 while (c) {
1769 if (c->free && c->size >= size)
1770 break;
1771 c = c->next;
1774 if (c == NULL)
1775 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1777 /* Split the working area into the requested size */
1778 target_split_working_area(c, size);
1780 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1781 size, c->address);
1783 if (target->backup_working_area) {
1784 if (c->backup == NULL) {
1785 c->backup = malloc(c->size);
1786 if (c->backup == NULL)
1787 return ERROR_FAIL;
1790 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1791 if (retval != ERROR_OK)
1792 return retval;
1795 /* mark as used, and return the new (reused) area */
1796 c->free = false;
1797 *area = c;
1799 /* user pointer */
1800 c->user = area;
1802 print_wa_layout(target);
1804 return ERROR_OK;
1807 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1809 int retval;
1811 retval = target_alloc_working_area_try(target, size, area);
1812 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1813 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1814 return retval;
1818 static int target_restore_working_area(struct target *target, struct working_area *area)
1820 int retval = ERROR_OK;
1822 if (target->backup_working_area && area->backup != NULL) {
1823 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1824 if (retval != ERROR_OK)
1825 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1826 area->size, area->address);
1829 return retval;
1832 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1833 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1835 int retval = ERROR_OK;
1837 if (area->free)
1838 return retval;
1840 if (restore) {
1841 retval = target_restore_working_area(target, area);
1842 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1843 if (retval != ERROR_OK)
1844 return retval;
1847 area->free = true;
1849 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1850 area->size, area->address);
1852 /* mark user pointer invalid */
1853 /* TODO: Is this really safe? It points to some previous caller's memory.
1854 * How could we know that the area pointer is still in that place and not
1855 * some other vital data? What's the purpose of this, anyway? */
1856 *area->user = NULL;
1857 area->user = NULL;
1859 target_merge_working_areas(target);
1861 print_wa_layout(target);
1863 return retval;
1866 int target_free_working_area(struct target *target, struct working_area *area)
1868 return target_free_working_area_restore(target, area, 1);
1871 static void target_destroy(struct target *target)
1873 if (target->type->deinit_target)
1874 target->type->deinit_target(target);
1876 free(target->type);
1877 free(target->trace_info);
1878 free(target->cmd_name);
1879 free(target);
1882 void target_quit(void)
1884 struct target_event_callback *pe = target_event_callbacks;
1885 while (pe) {
1886 struct target_event_callback *t = pe->next;
1887 free(pe);
1888 pe = t;
1890 target_event_callbacks = NULL;
1892 struct target_timer_callback *pt = target_timer_callbacks;
1893 while (pt) {
1894 struct target_timer_callback *t = pt->next;
1895 free(pt);
1896 pt = t;
1898 target_timer_callbacks = NULL;
1900 for (struct target *target = all_targets; target;) {
1901 struct target *tmp;
1903 tmp = target->next;
1904 target_destroy(target);
1905 target = tmp;
1908 all_targets = NULL;
1911 /* free resources and restore memory, if restoring memory fails,
1912 * free up resources anyway
1914 static void target_free_all_working_areas_restore(struct target *target, int restore)
1916 struct working_area *c = target->working_areas;
1918 LOG_DEBUG("freeing all working areas");
1920 /* Loop through all areas, restoring the allocated ones and marking them as free */
1921 while (c) {
1922 if (!c->free) {
1923 if (restore)
1924 target_restore_working_area(target, c);
1925 c->free = true;
1926 *c->user = NULL; /* Same as above */
1927 c->user = NULL;
1929 c = c->next;
1932 /* Run a merge pass to combine all areas into one */
1933 target_merge_working_areas(target);
1935 print_wa_layout(target);
1938 void target_free_all_working_areas(struct target *target)
1940 target_free_all_working_areas_restore(target, 1);
1943 /* Find the largest number of bytes that can be allocated */
1944 uint32_t target_get_working_area_avail(struct target *target)
1946 struct working_area *c = target->working_areas;
1947 uint32_t max_size = 0;
1949 if (c == NULL)
1950 return target->working_area_size;
1952 while (c) {
1953 if (c->free && max_size < c->size)
1954 max_size = c->size;
1956 c = c->next;
1959 return max_size;
1962 int target_arch_state(struct target *target)
1964 int retval;
1965 if (target == NULL) {
1966 LOG_WARNING("No target has been configured");
1967 return ERROR_OK;
1970 if (target->state != TARGET_HALTED)
1971 return ERROR_OK;
1973 retval = target->type->arch_state(target);
1974 return retval;
1977 static int target_get_gdb_fileio_info_default(struct target *target,
1978 struct gdb_fileio_info *fileio_info)
1980 /* If target does not support semi-hosting function, target
1981 has no need to provide .get_gdb_fileio_info callback.
1982 It just return ERROR_FAIL and gdb_server will return "Txx"
1983 as target halted every time. */
1984 return ERROR_FAIL;
1987 static int target_gdb_fileio_end_default(struct target *target,
1988 int retcode, int fileio_errno, bool ctrl_c)
1990 return ERROR_OK;
1993 static int target_profiling_default(struct target *target, uint32_t *samples,
1994 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1996 struct timeval timeout, now;
1998 gettimeofday(&timeout, NULL);
1999 timeval_add_time(&timeout, seconds, 0);
2001 LOG_INFO("Starting profiling. Halting and resuming the"
2002 " target as often as we can...");
2004 uint32_t sample_count = 0;
2005 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2006 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2008 int retval = ERROR_OK;
2009 for (;;) {
2010 target_poll(target);
2011 if (target->state == TARGET_HALTED) {
2012 uint32_t t = buf_get_u32(reg->value, 0, 32);
2013 samples[sample_count++] = t;
2014 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2015 retval = target_resume(target, 1, 0, 0, 0);
2016 target_poll(target);
2017 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2018 } else if (target->state == TARGET_RUNNING) {
2019 /* We want to quickly sample the PC. */
2020 retval = target_halt(target);
2021 } else {
2022 LOG_INFO("Target not halted or running");
2023 retval = ERROR_OK;
2024 break;
2027 if (retval != ERROR_OK)
2028 break;
2030 gettimeofday(&now, NULL);
2031 if ((sample_count >= max_num_samples) ||
2032 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2033 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2034 break;
2038 *num_samples = sample_count;
2039 return retval;
2042 /* Single aligned words are guaranteed to use 16 or 32 bit access
2043 * mode respectively, otherwise data is handled as quickly as
2044 * possible
2046 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2048 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2049 size, address);
2051 if (!target_was_examined(target)) {
2052 LOG_ERROR("Target not examined yet");
2053 return ERROR_FAIL;
2056 if (size == 0)
2057 return ERROR_OK;
2059 if ((address + size - 1) < address) {
2060 /* GDB can request this when e.g. PC is 0xfffffffc */
2061 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2062 address,
2063 size);
2064 return ERROR_FAIL;
2067 return target->type->write_buffer(target, address, size, buffer);
2070 static int target_write_buffer_default(struct target *target,
2071 target_addr_t address, uint32_t count, const uint8_t *buffer)
2073 uint32_t size;
2075 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2076 * will have something to do with the size we leave to it. */
2077 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2078 if (address & size) {
2079 int retval = target_write_memory(target, address, size, 1, buffer);
2080 if (retval != ERROR_OK)
2081 return retval;
2082 address += size;
2083 count -= size;
2084 buffer += size;
2088 /* Write the data with as large access size as possible. */
2089 for (; size > 0; size /= 2) {
2090 uint32_t aligned = count - count % size;
2091 if (aligned > 0) {
2092 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2093 if (retval != ERROR_OK)
2094 return retval;
2095 address += aligned;
2096 count -= aligned;
2097 buffer += aligned;
2101 return ERROR_OK;
2104 /* Single aligned words are guaranteed to use 16 or 32 bit access
2105 * mode respectively, otherwise data is handled as quickly as
2106 * possible
2108 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2110 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2111 size, address);
2113 if (!target_was_examined(target)) {
2114 LOG_ERROR("Target not examined yet");
2115 return ERROR_FAIL;
2118 if (size == 0)
2119 return ERROR_OK;
2121 if ((address + size - 1) < address) {
2122 /* GDB can request this when e.g. PC is 0xfffffffc */
2123 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2124 address,
2125 size);
2126 return ERROR_FAIL;
2129 return target->type->read_buffer(target, address, size, buffer);
2132 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2134 uint32_t size;
2136 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2137 * will have something to do with the size we leave to it. */
2138 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2139 if (address & size) {
2140 int retval = target_read_memory(target, address, size, 1, buffer);
2141 if (retval != ERROR_OK)
2142 return retval;
2143 address += size;
2144 count -= size;
2145 buffer += size;
2149 /* Read the data with as large access size as possible. */
2150 for (; size > 0; size /= 2) {
2151 uint32_t aligned = count - count % size;
2152 if (aligned > 0) {
2153 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2154 if (retval != ERROR_OK)
2155 return retval;
2156 address += aligned;
2157 count -= aligned;
2158 buffer += aligned;
2162 return ERROR_OK;
2165 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2167 uint8_t *buffer;
2168 int retval;
2169 uint32_t i;
2170 uint32_t checksum = 0;
2171 if (!target_was_examined(target)) {
2172 LOG_ERROR("Target not examined yet");
2173 return ERROR_FAIL;
2176 retval = target->type->checksum_memory(target, address, size, &checksum);
2177 if (retval != ERROR_OK) {
2178 buffer = malloc(size);
2179 if (buffer == NULL) {
2180 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2181 return ERROR_COMMAND_SYNTAX_ERROR;
2183 retval = target_read_buffer(target, address, size, buffer);
2184 if (retval != ERROR_OK) {
2185 free(buffer);
2186 return retval;
2189 /* convert to target endianness */
2190 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2191 uint32_t target_data;
2192 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2193 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2196 retval = image_calculate_checksum(buffer, size, &checksum);
2197 free(buffer);
2200 *crc = checksum;
2202 return retval;
2205 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2206 uint8_t erased_value)
2208 int retval;
2209 if (!target_was_examined(target)) {
2210 LOG_ERROR("Target not examined yet");
2211 return ERROR_FAIL;
2214 if (target->type->blank_check_memory == 0)
2215 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2217 retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2219 return retval;
2222 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2224 uint8_t value_buf[8];
2225 if (!target_was_examined(target)) {
2226 LOG_ERROR("Target not examined yet");
2227 return ERROR_FAIL;
2230 int retval = target_read_memory(target, address, 8, 1, value_buf);
2232 if (retval == ERROR_OK) {
2233 *value = target_buffer_get_u64(target, value_buf);
2234 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2235 address,
2236 *value);
2237 } else {
2238 *value = 0x0;
2239 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2240 address);
2243 return retval;
2246 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2248 uint8_t value_buf[4];
2249 if (!target_was_examined(target)) {
2250 LOG_ERROR("Target not examined yet");
2251 return ERROR_FAIL;
2254 int retval = target_read_memory(target, address, 4, 1, value_buf);
2256 if (retval == ERROR_OK) {
2257 *value = target_buffer_get_u32(target, value_buf);
2258 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2259 address,
2260 *value);
2261 } else {
2262 *value = 0x0;
2263 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2264 address);
2267 return retval;
2270 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2272 uint8_t value_buf[2];
2273 if (!target_was_examined(target)) {
2274 LOG_ERROR("Target not examined yet");
2275 return ERROR_FAIL;
2278 int retval = target_read_memory(target, address, 2, 1, value_buf);
2280 if (retval == ERROR_OK) {
2281 *value = target_buffer_get_u16(target, value_buf);
2282 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2283 address,
2284 *value);
2285 } else {
2286 *value = 0x0;
2287 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2288 address);
2291 return retval;
2294 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2296 if (!target_was_examined(target)) {
2297 LOG_ERROR("Target not examined yet");
2298 return ERROR_FAIL;
2301 int retval = target_read_memory(target, address, 1, 1, value);
2303 if (retval == ERROR_OK) {
2304 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2305 address,
2306 *value);
2307 } else {
2308 *value = 0x0;
2309 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2310 address);
2313 return retval;
2316 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2318 int retval;
2319 uint8_t value_buf[8];
2320 if (!target_was_examined(target)) {
2321 LOG_ERROR("Target not examined yet");
2322 return ERROR_FAIL;
2325 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2326 address,
2327 value);
2329 target_buffer_set_u64(target, value_buf, value);
2330 retval = target_write_memory(target, address, 8, 1, value_buf);
2331 if (retval != ERROR_OK)
2332 LOG_DEBUG("failed: %i", retval);
2334 return retval;
2337 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2339 int retval;
2340 uint8_t value_buf[4];
2341 if (!target_was_examined(target)) {
2342 LOG_ERROR("Target not examined yet");
2343 return ERROR_FAIL;
2346 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2347 address,
2348 value);
2350 target_buffer_set_u32(target, value_buf, value);
2351 retval = target_write_memory(target, address, 4, 1, value_buf);
2352 if (retval != ERROR_OK)
2353 LOG_DEBUG("failed: %i", retval);
2355 return retval;
2358 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2360 int retval;
2361 uint8_t value_buf[2];
2362 if (!target_was_examined(target)) {
2363 LOG_ERROR("Target not examined yet");
2364 return ERROR_FAIL;
2367 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2368 address,
2369 value);
2371 target_buffer_set_u16(target, value_buf, value);
2372 retval = target_write_memory(target, address, 2, 1, value_buf);
2373 if (retval != ERROR_OK)
2374 LOG_DEBUG("failed: %i", retval);
2376 return retval;
2379 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2381 int retval;
2382 if (!target_was_examined(target)) {
2383 LOG_ERROR("Target not examined yet");
2384 return ERROR_FAIL;
2387 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2388 address, value);
2390 retval = target_write_memory(target, address, 1, 1, &value);
2391 if (retval != ERROR_OK)
2392 LOG_DEBUG("failed: %i", retval);
2394 return retval;
2397 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2399 int retval;
2400 uint8_t value_buf[8];
2401 if (!target_was_examined(target)) {
2402 LOG_ERROR("Target not examined yet");
2403 return ERROR_FAIL;
2406 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2407 address,
2408 value);
2410 target_buffer_set_u64(target, value_buf, value);
2411 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2412 if (retval != ERROR_OK)
2413 LOG_DEBUG("failed: %i", retval);
2415 return retval;
2418 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2420 int retval;
2421 uint8_t value_buf[4];
2422 if (!target_was_examined(target)) {
2423 LOG_ERROR("Target not examined yet");
2424 return ERROR_FAIL;
2427 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2428 address,
2429 value);
2431 target_buffer_set_u32(target, value_buf, value);
2432 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2433 if (retval != ERROR_OK)
2434 LOG_DEBUG("failed: %i", retval);
2436 return retval;
2439 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2441 int retval;
2442 uint8_t value_buf[2];
2443 if (!target_was_examined(target)) {
2444 LOG_ERROR("Target not examined yet");
2445 return ERROR_FAIL;
2448 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2449 address,
2450 value);
2452 target_buffer_set_u16(target, value_buf, value);
2453 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2454 if (retval != ERROR_OK)
2455 LOG_DEBUG("failed: %i", retval);
2457 return retval;
2460 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2462 int retval;
2463 if (!target_was_examined(target)) {
2464 LOG_ERROR("Target not examined yet");
2465 return ERROR_FAIL;
2468 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2469 address, value);
2471 retval = target_write_phys_memory(target, address, 1, 1, &value);
2472 if (retval != ERROR_OK)
2473 LOG_DEBUG("failed: %i", retval);
2475 return retval;
2478 static int find_target(struct command_context *cmd_ctx, const char *name)
2480 struct target *target = get_target(name);
2481 if (target == NULL) {
2482 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2483 return ERROR_FAIL;
2485 if (!target->tap->enabled) {
2486 LOG_USER("Target: TAP %s is disabled, "
2487 "can't be the current target\n",
2488 target->tap->dotted_name);
2489 return ERROR_FAIL;
2492 cmd_ctx->current_target = target->target_number;
2493 return ERROR_OK;
2497 COMMAND_HANDLER(handle_targets_command)
2499 int retval = ERROR_OK;
2500 if (CMD_ARGC == 1) {
2501 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2502 if (retval == ERROR_OK) {
2503 /* we're done! */
2504 return retval;
2508 struct target *target = all_targets;
2509 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2510 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2511 while (target) {
2512 const char *state;
2513 char marker = ' ';
2515 if (target->tap->enabled)
2516 state = target_state_name(target);
2517 else
2518 state = "tap-disabled";
2520 if (CMD_CTX->current_target == target->target_number)
2521 marker = '*';
2523 /* keep columns lined up to match the headers above */
2524 command_print(CMD_CTX,
2525 "%2d%c %-18s %-10s %-6s %-18s %s",
2526 target->target_number,
2527 marker,
2528 target_name(target),
2529 target_type_name(target),
2530 Jim_Nvp_value2name_simple(nvp_target_endian,
2531 target->endianness)->name,
2532 target->tap->dotted_name,
2533 state);
2534 target = target->next;
2537 return retval;
2540 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2542 static int powerDropout;
2543 static int srstAsserted;
2545 static int runPowerRestore;
2546 static int runPowerDropout;
2547 static int runSrstAsserted;
2548 static int runSrstDeasserted;
2550 static int sense_handler(void)
2552 static int prevSrstAsserted;
2553 static int prevPowerdropout;
2555 int retval = jtag_power_dropout(&powerDropout);
2556 if (retval != ERROR_OK)
2557 return retval;
2559 int powerRestored;
2560 powerRestored = prevPowerdropout && !powerDropout;
2561 if (powerRestored)
2562 runPowerRestore = 1;
2564 int64_t current = timeval_ms();
2565 static int64_t lastPower;
2566 bool waitMore = lastPower + 2000 > current;
2567 if (powerDropout && !waitMore) {
2568 runPowerDropout = 1;
2569 lastPower = current;
2572 retval = jtag_srst_asserted(&srstAsserted);
2573 if (retval != ERROR_OK)
2574 return retval;
2576 int srstDeasserted;
2577 srstDeasserted = prevSrstAsserted && !srstAsserted;
2579 static int64_t lastSrst;
2580 waitMore = lastSrst + 2000 > current;
2581 if (srstDeasserted && !waitMore) {
2582 runSrstDeasserted = 1;
2583 lastSrst = current;
2586 if (!prevSrstAsserted && srstAsserted)
2587 runSrstAsserted = 1;
2589 prevSrstAsserted = srstAsserted;
2590 prevPowerdropout = powerDropout;
2592 if (srstDeasserted || powerRestored) {
2593 /* Other than logging the event we can't do anything here.
2594 * Issuing a reset is a particularly bad idea as we might
2595 * be inside a reset already.
2599 return ERROR_OK;
2602 /* process target state changes */
2603 static int handle_target(void *priv)
2605 Jim_Interp *interp = (Jim_Interp *)priv;
2606 int retval = ERROR_OK;
2608 if (!is_jtag_poll_safe()) {
2609 /* polling is disabled currently */
2610 return ERROR_OK;
2613 /* we do not want to recurse here... */
2614 static int recursive;
2615 if (!recursive) {
2616 recursive = 1;
2617 sense_handler();
2618 /* danger! running these procedures can trigger srst assertions and power dropouts.
2619 * We need to avoid an infinite loop/recursion here and we do that by
2620 * clearing the flags after running these events.
2622 int did_something = 0;
2623 if (runSrstAsserted) {
2624 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2625 Jim_Eval(interp, "srst_asserted");
2626 did_something = 1;
2628 if (runSrstDeasserted) {
2629 Jim_Eval(interp, "srst_deasserted");
2630 did_something = 1;
2632 if (runPowerDropout) {
2633 LOG_INFO("Power dropout detected, running power_dropout proc.");
2634 Jim_Eval(interp, "power_dropout");
2635 did_something = 1;
2637 if (runPowerRestore) {
2638 Jim_Eval(interp, "power_restore");
2639 did_something = 1;
2642 if (did_something) {
2643 /* clear detect flags */
2644 sense_handler();
2647 /* clear action flags */
2649 runSrstAsserted = 0;
2650 runSrstDeasserted = 0;
2651 runPowerRestore = 0;
2652 runPowerDropout = 0;
2654 recursive = 0;
2657 /* Poll targets for state changes unless that's globally disabled.
2658 * Skip targets that are currently disabled.
2660 for (struct target *target = all_targets;
2661 is_jtag_poll_safe() && target;
2662 target = target->next) {
2664 if (!target_was_examined(target))
2665 continue;
2667 if (!target->tap->enabled)
2668 continue;
2670 if (target->backoff.times > target->backoff.count) {
2671 /* do not poll this time as we failed previously */
2672 target->backoff.count++;
2673 continue;
2675 target->backoff.count = 0;
2677 /* only poll target if we've got power and srst isn't asserted */
2678 if (!powerDropout && !srstAsserted) {
2679 /* polling may fail silently until the target has been examined */
2680 retval = target_poll(target);
2681 if (retval != ERROR_OK) {
2682 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2683 if (target->backoff.times * polling_interval < 5000) {
2684 target->backoff.times *= 2;
2685 target->backoff.times++;
2688 /* Tell GDB to halt the debugger. This allows the user to
2689 * run monitor commands to handle the situation.
2691 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2693 if (target->backoff.times > 0) {
2694 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2695 target_reset_examined(target);
2696 retval = target_examine_one(target);
2697 /* Target examination could have failed due to unstable connection,
2698 * but we set the examined flag anyway to repoll it later */
2699 if (retval != ERROR_OK) {
2700 target->examined = true;
2701 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2702 target->backoff.times * polling_interval);
2703 return retval;
2707 /* Since we succeeded, we reset backoff count */
2708 target->backoff.times = 0;
2712 return retval;
2715 COMMAND_HANDLER(handle_reg_command)
2717 struct target *target;
2718 struct reg *reg = NULL;
2719 unsigned count = 0;
2720 char *value;
2722 LOG_DEBUG("-");
2724 target = get_current_target(CMD_CTX);
2726 /* list all available registers for the current target */
2727 if (CMD_ARGC == 0) {
2728 struct reg_cache *cache = target->reg_cache;
2730 count = 0;
2731 while (cache) {
2732 unsigned i;
2734 command_print(CMD_CTX, "===== %s", cache->name);
2736 for (i = 0, reg = cache->reg_list;
2737 i < cache->num_regs;
2738 i++, reg++, count++) {
2739 /* only print cached values if they are valid */
2740 if (reg->valid) {
2741 value = buf_to_str(reg->value,
2742 reg->size, 16);
2743 command_print(CMD_CTX,
2744 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2745 count, reg->name,
2746 reg->size, value,
2747 reg->dirty
2748 ? " (dirty)"
2749 : "");
2750 free(value);
2751 } else {
2752 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2753 count, reg->name,
2754 reg->size) ;
2757 cache = cache->next;
2760 return ERROR_OK;
2763 /* access a single register by its ordinal number */
2764 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2765 unsigned num;
2766 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2768 struct reg_cache *cache = target->reg_cache;
2769 count = 0;
2770 while (cache) {
2771 unsigned i;
2772 for (i = 0; i < cache->num_regs; i++) {
2773 if (count++ == num) {
2774 reg = &cache->reg_list[i];
2775 break;
2778 if (reg)
2779 break;
2780 cache = cache->next;
2783 if (!reg) {
2784 command_print(CMD_CTX, "%i is out of bounds, the current target "
2785 "has only %i registers (0 - %i)", num, count, count - 1);
2786 return ERROR_OK;
2788 } else {
2789 /* access a single register by its name */
2790 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2792 if (!reg) {
2793 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2794 return ERROR_OK;
2798 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2800 /* display a register */
2801 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2802 && (CMD_ARGV[1][0] <= '9')))) {
2803 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2804 reg->valid = 0;
2806 if (reg->valid == 0)
2807 reg->type->get(reg);
2808 value = buf_to_str(reg->value, reg->size, 16);
2809 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2810 free(value);
2811 return ERROR_OK;
2814 /* set register value */
2815 if (CMD_ARGC == 2) {
2816 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2817 if (buf == NULL)
2818 return ERROR_FAIL;
2819 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2821 reg->type->set(reg, buf);
2823 value = buf_to_str(reg->value, reg->size, 16);
2824 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2825 free(value);
2827 free(buf);
2829 return ERROR_OK;
2832 return ERROR_COMMAND_SYNTAX_ERROR;
2835 COMMAND_HANDLER(handle_poll_command)
2837 int retval = ERROR_OK;
2838 struct target *target = get_current_target(CMD_CTX);
2840 if (CMD_ARGC == 0) {
2841 command_print(CMD_CTX, "background polling: %s",
2842 jtag_poll_get_enabled() ? "on" : "off");
2843 command_print(CMD_CTX, "TAP: %s (%s)",
2844 target->tap->dotted_name,
2845 target->tap->enabled ? "enabled" : "disabled");
2846 if (!target->tap->enabled)
2847 return ERROR_OK;
2848 retval = target_poll(target);
2849 if (retval != ERROR_OK)
2850 return retval;
2851 retval = target_arch_state(target);
2852 if (retval != ERROR_OK)
2853 return retval;
2854 } else if (CMD_ARGC == 1) {
2855 bool enable;
2856 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2857 jtag_poll_set_enabled(enable);
2858 } else
2859 return ERROR_COMMAND_SYNTAX_ERROR;
2861 return retval;
2864 COMMAND_HANDLER(handle_wait_halt_command)
2866 if (CMD_ARGC > 1)
2867 return ERROR_COMMAND_SYNTAX_ERROR;
2869 unsigned ms = DEFAULT_HALT_TIMEOUT;
2870 if (1 == CMD_ARGC) {
2871 int retval = parse_uint(CMD_ARGV[0], &ms);
2872 if (ERROR_OK != retval)
2873 return ERROR_COMMAND_SYNTAX_ERROR;
2876 struct target *target = get_current_target(CMD_CTX);
2877 return target_wait_state(target, TARGET_HALTED, ms);
2880 /* wait for target state to change. The trick here is to have a low
2881 * latency for short waits and not to suck up all the CPU time
2882 * on longer waits.
2884 * After 500ms, keep_alive() is invoked
2886 int target_wait_state(struct target *target, enum target_state state, int ms)
2888 int retval;
2889 int64_t then = 0, cur;
2890 bool once = true;
2892 for (;;) {
2893 retval = target_poll(target);
2894 if (retval != ERROR_OK)
2895 return retval;
2896 if (target->state == state)
2897 break;
2898 cur = timeval_ms();
2899 if (once) {
2900 once = false;
2901 then = timeval_ms();
2902 LOG_DEBUG("waiting for target %s...",
2903 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2906 if (cur-then > 500)
2907 keep_alive();
2909 if ((cur-then) > ms) {
2910 LOG_ERROR("timed out while waiting for target %s",
2911 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2912 return ERROR_FAIL;
2916 return ERROR_OK;
2919 COMMAND_HANDLER(handle_halt_command)
2921 LOG_DEBUG("-");
2923 struct target *target = get_current_target(CMD_CTX);
2924 int retval = target_halt(target);
2925 if (ERROR_OK != retval)
2926 return retval;
2928 if (CMD_ARGC == 1) {
2929 unsigned wait_local;
2930 retval = parse_uint(CMD_ARGV[0], &wait_local);
2931 if (ERROR_OK != retval)
2932 return ERROR_COMMAND_SYNTAX_ERROR;
2933 if (!wait_local)
2934 return ERROR_OK;
2937 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2940 COMMAND_HANDLER(handle_soft_reset_halt_command)
2942 struct target *target = get_current_target(CMD_CTX);
2944 LOG_USER("requesting target halt and executing a soft reset");
2946 target_soft_reset_halt(target);
2948 return ERROR_OK;
2951 COMMAND_HANDLER(handle_reset_command)
2953 if (CMD_ARGC > 1)
2954 return ERROR_COMMAND_SYNTAX_ERROR;
2956 enum target_reset_mode reset_mode = RESET_RUN;
2957 if (CMD_ARGC == 1) {
2958 const Jim_Nvp *n;
2959 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2960 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2961 return ERROR_COMMAND_SYNTAX_ERROR;
2962 reset_mode = n->value;
2965 /* reset *all* targets */
2966 return target_process_reset(CMD_CTX, reset_mode);
2970 COMMAND_HANDLER(handle_resume_command)
2972 int current = 1;
2973 if (CMD_ARGC > 1)
2974 return ERROR_COMMAND_SYNTAX_ERROR;
2976 struct target *target = get_current_target(CMD_CTX);
2978 /* with no CMD_ARGV, resume from current pc, addr = 0,
2979 * with one arguments, addr = CMD_ARGV[0],
2980 * handle breakpoints, not debugging */
2981 target_addr_t addr = 0;
2982 if (CMD_ARGC == 1) {
2983 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
2984 current = 0;
2987 return target_resume(target, current, addr, 1, 0);
2990 COMMAND_HANDLER(handle_step_command)
2992 if (CMD_ARGC > 1)
2993 return ERROR_COMMAND_SYNTAX_ERROR;
2995 LOG_DEBUG("-");
2997 /* with no CMD_ARGV, step from current pc, addr = 0,
2998 * with one argument addr = CMD_ARGV[0],
2999 * handle breakpoints, debugging */
3000 target_addr_t addr = 0;
3001 int current_pc = 1;
3002 if (CMD_ARGC == 1) {
3003 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3004 current_pc = 0;
3007 struct target *target = get_current_target(CMD_CTX);
3009 return target->type->step(target, current_pc, addr, 1);
3012 static void handle_md_output(struct command_context *cmd_ctx,
3013 struct target *target, target_addr_t address, unsigned size,
3014 unsigned count, const uint8_t *buffer)
3016 const unsigned line_bytecnt = 32;
3017 unsigned line_modulo = line_bytecnt / size;
3019 char output[line_bytecnt * 4 + 1];
3020 unsigned output_len = 0;
3022 const char *value_fmt;
3023 switch (size) {
3024 case 8:
3025 value_fmt = "%16.16"PRIx64" ";
3026 break;
3027 case 4:
3028 value_fmt = "%8.8"PRIx64" ";
3029 break;
3030 case 2:
3031 value_fmt = "%4.4"PRIx64" ";
3032 break;
3033 case 1:
3034 value_fmt = "%2.2"PRIx64" ";
3035 break;
3036 default:
3037 /* "can't happen", caller checked */
3038 LOG_ERROR("invalid memory read size: %u", size);
3039 return;
3042 for (unsigned i = 0; i < count; i++) {
3043 if (i % line_modulo == 0) {
3044 output_len += snprintf(output + output_len,
3045 sizeof(output) - output_len,
3046 TARGET_ADDR_FMT ": ",
3047 (address + (i * size)));
3050 uint64_t value = 0;
3051 const uint8_t *value_ptr = buffer + i * size;
3052 switch (size) {
3053 case 8:
3054 value = target_buffer_get_u64(target, value_ptr);
3055 break;
3056 case 4:
3057 value = target_buffer_get_u32(target, value_ptr);
3058 break;
3059 case 2:
3060 value = target_buffer_get_u16(target, value_ptr);
3061 break;
3062 case 1:
3063 value = *value_ptr;
3065 output_len += snprintf(output + output_len,
3066 sizeof(output) - output_len,
3067 value_fmt, value);
3069 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3070 command_print(cmd_ctx, "%s", output);
3071 output_len = 0;
3076 COMMAND_HANDLER(handle_md_command)
3078 if (CMD_ARGC < 1)
3079 return ERROR_COMMAND_SYNTAX_ERROR;
3081 unsigned size = 0;
3082 switch (CMD_NAME[2]) {
3083 case 'd':
3084 size = 8;
3085 break;
3086 case 'w':
3087 size = 4;
3088 break;
3089 case 'h':
3090 size = 2;
3091 break;
3092 case 'b':
3093 size = 1;
3094 break;
3095 default:
3096 return ERROR_COMMAND_SYNTAX_ERROR;
3099 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3100 int (*fn)(struct target *target,
3101 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3102 if (physical) {
3103 CMD_ARGC--;
3104 CMD_ARGV++;
3105 fn = target_read_phys_memory;
3106 } else
3107 fn = target_read_memory;
3108 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3109 return ERROR_COMMAND_SYNTAX_ERROR;
3111 target_addr_t address;
3112 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3114 unsigned count = 1;
3115 if (CMD_ARGC == 2)
3116 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3118 uint8_t *buffer = calloc(count, size);
3119 if (buffer == NULL) {
3120 LOG_ERROR("Failed to allocate md read buffer");
3121 return ERROR_FAIL;
3124 struct target *target = get_current_target(CMD_CTX);
3125 int retval = fn(target, address, size, count, buffer);
3126 if (ERROR_OK == retval)
3127 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3129 free(buffer);
3131 return retval;
3134 typedef int (*target_write_fn)(struct target *target,
3135 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3137 static int target_fill_mem(struct target *target,
3138 target_addr_t address,
3139 target_write_fn fn,
3140 unsigned data_size,
3141 /* value */
3142 uint64_t b,
3143 /* count */
3144 unsigned c)
3146 /* We have to write in reasonably large chunks to be able
3147 * to fill large memory areas with any sane speed */
3148 const unsigned chunk_size = 16384;
3149 uint8_t *target_buf = malloc(chunk_size * data_size);
3150 if (target_buf == NULL) {
3151 LOG_ERROR("Out of memory");
3152 return ERROR_FAIL;
3155 for (unsigned i = 0; i < chunk_size; i++) {
3156 switch (data_size) {
3157 case 8:
3158 target_buffer_set_u64(target, target_buf + i * data_size, b);
3159 break;
3160 case 4:
3161 target_buffer_set_u32(target, target_buf + i * data_size, b);
3162 break;
3163 case 2:
3164 target_buffer_set_u16(target, target_buf + i * data_size, b);
3165 break;
3166 case 1:
3167 target_buffer_set_u8(target, target_buf + i * data_size, b);
3168 break;
3169 default:
3170 exit(-1);
3174 int retval = ERROR_OK;
3176 for (unsigned x = 0; x < c; x += chunk_size) {
3177 unsigned current;
3178 current = c - x;
3179 if (current > chunk_size)
3180 current = chunk_size;
3181 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3182 if (retval != ERROR_OK)
3183 break;
3184 /* avoid GDB timeouts */
3185 keep_alive();
3187 free(target_buf);
3189 return retval;
3193 COMMAND_HANDLER(handle_mw_command)
3195 if (CMD_ARGC < 2)
3196 return ERROR_COMMAND_SYNTAX_ERROR;
3197 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3198 target_write_fn fn;
3199 if (physical) {
3200 CMD_ARGC--;
3201 CMD_ARGV++;
3202 fn = target_write_phys_memory;
3203 } else
3204 fn = target_write_memory;
3205 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3206 return ERROR_COMMAND_SYNTAX_ERROR;
3208 target_addr_t address;
3209 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3211 target_addr_t value;
3212 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3214 unsigned count = 1;
3215 if (CMD_ARGC == 3)
3216 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3218 struct target *target = get_current_target(CMD_CTX);
3219 unsigned wordsize;
3220 switch (CMD_NAME[2]) {
3221 case 'd':
3222 wordsize = 8;
3223 break;
3224 case 'w':
3225 wordsize = 4;
3226 break;
3227 case 'h':
3228 wordsize = 2;
3229 break;
3230 case 'b':
3231 wordsize = 1;
3232 break;
3233 default:
3234 return ERROR_COMMAND_SYNTAX_ERROR;
3237 return target_fill_mem(target, address, fn, wordsize, value, count);
3240 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3241 target_addr_t *min_address, target_addr_t *max_address)
3243 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3244 return ERROR_COMMAND_SYNTAX_ERROR;
3246 /* a base address isn't always necessary,
3247 * default to 0x0 (i.e. don't relocate) */
3248 if (CMD_ARGC >= 2) {
3249 target_addr_t addr;
3250 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3251 image->base_address = addr;
3252 image->base_address_set = 1;
3253 } else
3254 image->base_address_set = 0;
3256 image->start_address_set = 0;
3258 if (CMD_ARGC >= 4)
3259 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3260 if (CMD_ARGC == 5) {
3261 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3262 /* use size (given) to find max (required) */
3263 *max_address += *min_address;
3266 if (*min_address > *max_address)
3267 return ERROR_COMMAND_SYNTAX_ERROR;
3269 return ERROR_OK;
3272 COMMAND_HANDLER(handle_load_image_command)
3274 uint8_t *buffer;
3275 size_t buf_cnt;
3276 uint32_t image_size;
3277 target_addr_t min_address = 0;
3278 target_addr_t max_address = -1;
3279 int i;
3280 struct image image;
3282 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3283 &image, &min_address, &max_address);
3284 if (ERROR_OK != retval)
3285 return retval;
3287 struct target *target = get_current_target(CMD_CTX);
3289 struct duration bench;
3290 duration_start(&bench);
3292 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3293 return ERROR_FAIL;
3295 image_size = 0x0;
3296 retval = ERROR_OK;
3297 for (i = 0; i < image.num_sections; i++) {
3298 buffer = malloc(image.sections[i].size);
3299 if (buffer == NULL) {
3300 command_print(CMD_CTX,
3301 "error allocating buffer for section (%d bytes)",
3302 (int)(image.sections[i].size));
3303 retval = ERROR_FAIL;
3304 break;
3307 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3308 if (retval != ERROR_OK) {
3309 free(buffer);
3310 break;
3313 uint32_t offset = 0;
3314 uint32_t length = buf_cnt;
3316 /* DANGER!!! beware of unsigned comparision here!!! */
3318 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3319 (image.sections[i].base_address < max_address)) {
3321 if (image.sections[i].base_address < min_address) {
3322 /* clip addresses below */
3323 offset += min_address-image.sections[i].base_address;
3324 length -= offset;
3327 if (image.sections[i].base_address + buf_cnt > max_address)
3328 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3330 retval = target_write_buffer(target,
3331 image.sections[i].base_address + offset, length, buffer + offset);
3332 if (retval != ERROR_OK) {
3333 free(buffer);
3334 break;
3336 image_size += length;
3337 command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3338 (unsigned int)length,
3339 image.sections[i].base_address + offset);
3342 free(buffer);
3345 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3346 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3347 "in %fs (%0.3f KiB/s)", image_size,
3348 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3351 image_close(&image);
3353 return retval;
3357 COMMAND_HANDLER(handle_dump_image_command)
3359 struct fileio *fileio;
3360 uint8_t *buffer;
3361 int retval, retvaltemp;
3362 target_addr_t address, size;
3363 struct duration bench;
3364 struct target *target = get_current_target(CMD_CTX);
3366 if (CMD_ARGC != 3)
3367 return ERROR_COMMAND_SYNTAX_ERROR;
3369 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3370 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3372 uint32_t buf_size = (size > 4096) ? 4096 : size;
3373 buffer = malloc(buf_size);
3374 if (!buffer)
3375 return ERROR_FAIL;
3377 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3378 if (retval != ERROR_OK) {
3379 free(buffer);
3380 return retval;
3383 duration_start(&bench);
3385 while (size > 0) {
3386 size_t size_written;
3387 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3388 retval = target_read_buffer(target, address, this_run_size, buffer);
3389 if (retval != ERROR_OK)
3390 break;
3392 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3393 if (retval != ERROR_OK)
3394 break;
3396 size -= this_run_size;
3397 address += this_run_size;
3400 free(buffer);
3402 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3403 size_t filesize;
3404 retval = fileio_size(fileio, &filesize);
3405 if (retval != ERROR_OK)
3406 return retval;
3407 command_print(CMD_CTX,
3408 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3409 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3412 retvaltemp = fileio_close(fileio);
3413 if (retvaltemp != ERROR_OK)
3414 return retvaltemp;
3416 return retval;
3419 enum verify_mode {
3420 IMAGE_TEST = 0,
3421 IMAGE_VERIFY = 1,
3422 IMAGE_CHECKSUM_ONLY = 2
3425 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3427 uint8_t *buffer;
3428 size_t buf_cnt;
3429 uint32_t image_size;
3430 int i;
3431 int retval;
3432 uint32_t checksum = 0;
3433 uint32_t mem_checksum = 0;
3435 struct image image;
3437 struct target *target = get_current_target(CMD_CTX);
3439 if (CMD_ARGC < 1)
3440 return ERROR_COMMAND_SYNTAX_ERROR;
3442 if (!target) {
3443 LOG_ERROR("no target selected");
3444 return ERROR_FAIL;
3447 struct duration bench;
3448 duration_start(&bench);
3450 if (CMD_ARGC >= 2) {
3451 target_addr_t addr;
3452 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3453 image.base_address = addr;
3454 image.base_address_set = 1;
3455 } else {
3456 image.base_address_set = 0;
3457 image.base_address = 0x0;
3460 image.start_address_set = 0;
3462 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3463 if (retval != ERROR_OK)
3464 return retval;
3466 image_size = 0x0;
3467 int diffs = 0;
3468 retval = ERROR_OK;
3469 for (i = 0; i < image.num_sections; i++) {
3470 buffer = malloc(image.sections[i].size);
3471 if (buffer == NULL) {
3472 command_print(CMD_CTX,
3473 "error allocating buffer for section (%d bytes)",
3474 (int)(image.sections[i].size));
3475 break;
3477 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3478 if (retval != ERROR_OK) {
3479 free(buffer);
3480 break;
3483 if (verify >= IMAGE_VERIFY) {
3484 /* calculate checksum of image */
3485 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3486 if (retval != ERROR_OK) {
3487 free(buffer);
3488 break;
3491 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3492 if (retval != ERROR_OK) {
3493 free(buffer);
3494 break;
3496 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3497 LOG_ERROR("checksum mismatch");
3498 free(buffer);
3499 retval = ERROR_FAIL;
3500 goto done;
3502 if (checksum != mem_checksum) {
3503 /* failed crc checksum, fall back to a binary compare */
3504 uint8_t *data;
3506 if (diffs == 0)
3507 LOG_ERROR("checksum mismatch - attempting binary compare");
3509 data = malloc(buf_cnt);
3511 /* Can we use 32bit word accesses? */
3512 int size = 1;
3513 int count = buf_cnt;
3514 if ((count % 4) == 0) {
3515 size *= 4;
3516 count /= 4;
3518 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3519 if (retval == ERROR_OK) {
3520 uint32_t t;
3521 for (t = 0; t < buf_cnt; t++) {
3522 if (data[t] != buffer[t]) {
3523 command_print(CMD_CTX,
3524 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3525 diffs,
3526 (unsigned)(t + image.sections[i].base_address),
3527 data[t],
3528 buffer[t]);
3529 if (diffs++ >= 127) {
3530 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3531 free(data);
3532 free(buffer);
3533 goto done;
3536 keep_alive();
3539 free(data);
3541 } else {
3542 command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3543 image.sections[i].base_address,
3544 buf_cnt);
3547 free(buffer);
3548 image_size += buf_cnt;
3550 if (diffs > 0)
3551 command_print(CMD_CTX, "No more differences found.");
3552 done:
3553 if (diffs > 0)
3554 retval = ERROR_FAIL;
3555 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3556 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3557 "in %fs (%0.3f KiB/s)", image_size,
3558 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3561 image_close(&image);
3563 return retval;
3566 COMMAND_HANDLER(handle_verify_image_checksum_command)
3568 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3571 COMMAND_HANDLER(handle_verify_image_command)
3573 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3576 COMMAND_HANDLER(handle_test_image_command)
3578 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3581 static int handle_bp_command_list(struct command_context *cmd_ctx)
3583 struct target *target = get_current_target(cmd_ctx);
3584 struct breakpoint *breakpoint = target->breakpoints;
3585 while (breakpoint) {
3586 if (breakpoint->type == BKPT_SOFT) {
3587 char *buf = buf_to_str(breakpoint->orig_instr,
3588 breakpoint->length, 16);
3589 command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3590 breakpoint->address,
3591 breakpoint->length,
3592 breakpoint->set, buf);
3593 free(buf);
3594 } else {
3595 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3596 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3597 breakpoint->asid,
3598 breakpoint->length, breakpoint->set);
3599 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3600 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3601 breakpoint->address,
3602 breakpoint->length, breakpoint->set);
3603 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3604 breakpoint->asid);
3605 } else
3606 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3607 breakpoint->address,
3608 breakpoint->length, breakpoint->set);
3611 breakpoint = breakpoint->next;
3613 return ERROR_OK;
3616 static int handle_bp_command_set(struct command_context *cmd_ctx,
3617 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3619 struct target *target = get_current_target(cmd_ctx);
3620 int retval;
3622 if (asid == 0) {
3623 retval = breakpoint_add(target, addr, length, hw);
3624 if (ERROR_OK == retval)
3625 command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3626 else {
3627 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3628 return retval;
3630 } else if (addr == 0) {
3631 if (target->type->add_context_breakpoint == NULL) {
3632 LOG_WARNING("Context breakpoint not available");
3633 return ERROR_OK;
3635 retval = context_breakpoint_add(target, asid, length, hw);
3636 if (ERROR_OK == retval)
3637 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3638 else {
3639 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3640 return retval;
3642 } else {
3643 if (target->type->add_hybrid_breakpoint == NULL) {
3644 LOG_WARNING("Hybrid breakpoint not available");
3645 return ERROR_OK;
3647 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3648 if (ERROR_OK == retval)
3649 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3650 else {
3651 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3652 return retval;
3655 return ERROR_OK;
3658 COMMAND_HANDLER(handle_bp_command)
3660 target_addr_t addr;
3661 uint32_t asid;
3662 uint32_t length;
3663 int hw = BKPT_SOFT;
3665 switch (CMD_ARGC) {
3666 case 0:
3667 return handle_bp_command_list(CMD_CTX);
3669 case 2:
3670 asid = 0;
3671 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3672 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3673 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3675 case 3:
3676 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3677 hw = BKPT_HARD;
3678 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3679 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3680 asid = 0;
3681 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3682 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3683 hw = BKPT_HARD;
3684 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3685 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3686 addr = 0;
3687 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3689 /* fallthrough */
3690 case 4:
3691 hw = BKPT_HARD;
3692 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3693 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3694 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3695 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3697 default:
3698 return ERROR_COMMAND_SYNTAX_ERROR;
3702 COMMAND_HANDLER(handle_rbp_command)
3704 if (CMD_ARGC != 1)
3705 return ERROR_COMMAND_SYNTAX_ERROR;
3707 target_addr_t addr;
3708 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3710 struct target *target = get_current_target(CMD_CTX);
3711 breakpoint_remove(target, addr);
3713 return ERROR_OK;
3716 COMMAND_HANDLER(handle_wp_command)
3718 struct target *target = get_current_target(CMD_CTX);
3720 if (CMD_ARGC == 0) {
3721 struct watchpoint *watchpoint = target->watchpoints;
3723 while (watchpoint) {
3724 command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3725 ", len: 0x%8.8" PRIx32
3726 ", r/w/a: %i, value: 0x%8.8" PRIx32
3727 ", mask: 0x%8.8" PRIx32,
3728 watchpoint->address,
3729 watchpoint->length,
3730 (int)watchpoint->rw,
3731 watchpoint->value,
3732 watchpoint->mask);
3733 watchpoint = watchpoint->next;
3735 return ERROR_OK;
3738 enum watchpoint_rw type = WPT_ACCESS;
3739 uint32_t addr = 0;
3740 uint32_t length = 0;
3741 uint32_t data_value = 0x0;
3742 uint32_t data_mask = 0xffffffff;
3744 switch (CMD_ARGC) {
3745 case 5:
3746 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3747 /* fall through */
3748 case 4:
3749 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3750 /* fall through */
3751 case 3:
3752 switch (CMD_ARGV[2][0]) {
3753 case 'r':
3754 type = WPT_READ;
3755 break;
3756 case 'w':
3757 type = WPT_WRITE;
3758 break;
3759 case 'a':
3760 type = WPT_ACCESS;
3761 break;
3762 default:
3763 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3764 return ERROR_COMMAND_SYNTAX_ERROR;
3766 /* fall through */
3767 case 2:
3768 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3769 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3770 break;
3772 default:
3773 return ERROR_COMMAND_SYNTAX_ERROR;
3776 int retval = watchpoint_add(target, addr, length, type,
3777 data_value, data_mask);
3778 if (ERROR_OK != retval)
3779 LOG_ERROR("Failure setting watchpoints");
3781 return retval;
3784 COMMAND_HANDLER(handle_rwp_command)
3786 if (CMD_ARGC != 1)
3787 return ERROR_COMMAND_SYNTAX_ERROR;
3789 uint32_t addr;
3790 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3792 struct target *target = get_current_target(CMD_CTX);
3793 watchpoint_remove(target, addr);
3795 return ERROR_OK;
3799 * Translate a virtual address to a physical address.
3801 * The low-level target implementation must have logged a detailed error
3802 * which is forwarded to telnet/GDB session.
3804 COMMAND_HANDLER(handle_virt2phys_command)
3806 if (CMD_ARGC != 1)
3807 return ERROR_COMMAND_SYNTAX_ERROR;
3809 target_addr_t va;
3810 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3811 target_addr_t pa;
3813 struct target *target = get_current_target(CMD_CTX);
3814 int retval = target->type->virt2phys(target, va, &pa);
3815 if (retval == ERROR_OK)
3816 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3818 return retval;
3821 static void writeData(FILE *f, const void *data, size_t len)
3823 size_t written = fwrite(data, 1, len, f);
3824 if (written != len)
3825 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3828 static void writeLong(FILE *f, int l, struct target *target)
3830 uint8_t val[4];
3832 target_buffer_set_u32(target, val, l);
3833 writeData(f, val, 4);
3836 static void writeString(FILE *f, char *s)
3838 writeData(f, s, strlen(s));
3841 typedef unsigned char UNIT[2]; /* unit of profiling */
3843 /* Dump a gmon.out histogram file. */
3844 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3845 uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3847 uint32_t i;
3848 FILE *f = fopen(filename, "w");
3849 if (f == NULL)
3850 return;
3851 writeString(f, "gmon");
3852 writeLong(f, 0x00000001, target); /* Version */
3853 writeLong(f, 0, target); /* padding */
3854 writeLong(f, 0, target); /* padding */
3855 writeLong(f, 0, target); /* padding */
3857 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3858 writeData(f, &zero, 1);
3860 /* figure out bucket size */
3861 uint32_t min;
3862 uint32_t max;
3863 if (with_range) {
3864 min = start_address;
3865 max = end_address;
3866 } else {
3867 min = samples[0];
3868 max = samples[0];
3869 for (i = 0; i < sampleNum; i++) {
3870 if (min > samples[i])
3871 min = samples[i];
3872 if (max < samples[i])
3873 max = samples[i];
3876 /* max should be (largest sample + 1)
3877 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3878 max++;
3881 int addressSpace = max - min;
3882 assert(addressSpace >= 2);
3884 /* FIXME: What is the reasonable number of buckets?
3885 * The profiling result will be more accurate if there are enough buckets. */
3886 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3887 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3888 if (numBuckets > maxBuckets)
3889 numBuckets = maxBuckets;
3890 int *buckets = malloc(sizeof(int) * numBuckets);
3891 if (buckets == NULL) {
3892 fclose(f);
3893 return;
3895 memset(buckets, 0, sizeof(int) * numBuckets);
3896 for (i = 0; i < sampleNum; i++) {
3897 uint32_t address = samples[i];
3899 if ((address < min) || (max <= address))
3900 continue;
3902 long long a = address - min;
3903 long long b = numBuckets;
3904 long long c = addressSpace;
3905 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3906 buckets[index_t]++;
3909 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3910 writeLong(f, min, target); /* low_pc */
3911 writeLong(f, max, target); /* high_pc */
3912 writeLong(f, numBuckets, target); /* # of buckets */
3913 float sample_rate = sampleNum / (duration_ms / 1000.0);
3914 writeLong(f, sample_rate, target);
3915 writeString(f, "seconds");
3916 for (i = 0; i < (15-strlen("seconds")); i++)
3917 writeData(f, &zero, 1);
3918 writeString(f, "s");
3920 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3922 char *data = malloc(2 * numBuckets);
3923 if (data != NULL) {
3924 for (i = 0; i < numBuckets; i++) {
3925 int val;
3926 val = buckets[i];
3927 if (val > 65535)
3928 val = 65535;
3929 data[i * 2] = val&0xff;
3930 data[i * 2 + 1] = (val >> 8) & 0xff;
3932 free(buckets);
3933 writeData(f, data, numBuckets * 2);
3934 free(data);
3935 } else
3936 free(buckets);
3938 fclose(f);
3941 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3942 * which will be used as a random sampling of PC */
3943 COMMAND_HANDLER(handle_profile_command)
3945 struct target *target = get_current_target(CMD_CTX);
3947 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3948 return ERROR_COMMAND_SYNTAX_ERROR;
3950 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3951 uint32_t offset;
3952 uint32_t num_of_samples;
3953 int retval = ERROR_OK;
3955 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3957 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3958 if (samples == NULL) {
3959 LOG_ERROR("No memory to store samples.");
3960 return ERROR_FAIL;
3963 uint64_t timestart_ms = timeval_ms();
3965 * Some cores let us sample the PC without the
3966 * annoying halt/resume step; for example, ARMv7 PCSR.
3967 * Provide a way to use that more efficient mechanism.
3969 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3970 &num_of_samples, offset);
3971 if (retval != ERROR_OK) {
3972 free(samples);
3973 return retval;
3975 uint32_t duration_ms = timeval_ms() - timestart_ms;
3977 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3979 retval = target_poll(target);
3980 if (retval != ERROR_OK) {
3981 free(samples);
3982 return retval;
3984 if (target->state == TARGET_RUNNING) {
3985 retval = target_halt(target);
3986 if (retval != ERROR_OK) {
3987 free(samples);
3988 return retval;
3992 retval = target_poll(target);
3993 if (retval != ERROR_OK) {
3994 free(samples);
3995 return retval;
3998 uint32_t start_address = 0;
3999 uint32_t end_address = 0;
4000 bool with_range = false;
4001 if (CMD_ARGC == 4) {
4002 with_range = true;
4003 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4004 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4007 write_gmon(samples, num_of_samples, CMD_ARGV[1],
4008 with_range, start_address, end_address, target, duration_ms);
4009 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4011 free(samples);
4012 return retval;
4015 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4017 char *namebuf;
4018 Jim_Obj *nameObjPtr, *valObjPtr;
4019 int result;
4021 namebuf = alloc_printf("%s(%d)", varname, idx);
4022 if (!namebuf)
4023 return JIM_ERR;
4025 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4026 valObjPtr = Jim_NewIntObj(interp, val);
4027 if (!nameObjPtr || !valObjPtr) {
4028 free(namebuf);
4029 return JIM_ERR;
4032 Jim_IncrRefCount(nameObjPtr);
4033 Jim_IncrRefCount(valObjPtr);
4034 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4035 Jim_DecrRefCount(interp, nameObjPtr);
4036 Jim_DecrRefCount(interp, valObjPtr);
4037 free(namebuf);
4038 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4039 return result;
4042 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4044 struct command_context *context;
4045 struct target *target;
4047 context = current_command_context(interp);
4048 assert(context != NULL);
4050 target = get_current_target(context);
4051 if (target == NULL) {
4052 LOG_ERROR("mem2array: no current target");
4053 return JIM_ERR;
4056 return target_mem2array(interp, target, argc - 1, argv + 1);
4059 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4061 long l;
4062 uint32_t width;
4063 int len;
4064 uint32_t addr;
4065 uint32_t count;
4066 uint32_t v;
4067 const char *varname;
4068 const char *phys;
4069 bool is_phys;
4070 int n, e, retval;
4071 uint32_t i;
4073 /* argv[1] = name of array to receive the data
4074 * argv[2] = desired width
4075 * argv[3] = memory address
4076 * argv[4] = count of times to read
4078 if (argc < 4 || argc > 5) {
4079 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
4080 return JIM_ERR;
4082 varname = Jim_GetString(argv[0], &len);
4083 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4085 e = Jim_GetLong(interp, argv[1], &l);
4086 width = l;
4087 if (e != JIM_OK)
4088 return e;
4090 e = Jim_GetLong(interp, argv[2], &l);
4091 addr = l;
4092 if (e != JIM_OK)
4093 return e;
4094 e = Jim_GetLong(interp, argv[3], &l);
4095 len = l;
4096 if (e != JIM_OK)
4097 return e;
4098 is_phys = false;
4099 if (argc > 4) {
4100 phys = Jim_GetString(argv[4], &n);
4101 if (!strncmp(phys, "phys", n))
4102 is_phys = true;
4103 else
4104 return JIM_ERR;
4106 switch (width) {
4107 case 8:
4108 width = 1;
4109 break;
4110 case 16:
4111 width = 2;
4112 break;
4113 case 32:
4114 width = 4;
4115 break;
4116 default:
4117 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4118 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4119 return JIM_ERR;
4121 if (len == 0) {
4122 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4123 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4124 return JIM_ERR;
4126 if ((addr + (len * width)) < addr) {
4127 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4128 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4129 return JIM_ERR;
4131 /* absurd transfer size? */
4132 if (len > 65536) {
4133 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4134 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4135 return JIM_ERR;
4138 if ((width == 1) ||
4139 ((width == 2) && ((addr & 1) == 0)) ||
4140 ((width == 4) && ((addr & 3) == 0))) {
4141 /* all is well */
4142 } else {
4143 char buf[100];
4144 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4145 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4146 addr,
4147 width);
4148 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4149 return JIM_ERR;
4152 /* Transfer loop */
4154 /* index counter */
4155 n = 0;
4157 size_t buffersize = 4096;
4158 uint8_t *buffer = malloc(buffersize);
4159 if (buffer == NULL)
4160 return JIM_ERR;
4162 /* assume ok */
4163 e = JIM_OK;
4164 while (len) {
4165 /* Slurp... in buffer size chunks */
4167 count = len; /* in objects.. */
4168 if (count > (buffersize / width))
4169 count = (buffersize / width);
4171 if (is_phys)
4172 retval = target_read_phys_memory(target, addr, width, count, buffer);
4173 else
4174 retval = target_read_memory(target, addr, width, count, buffer);
4175 if (retval != ERROR_OK) {
4176 /* BOO !*/
4177 LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4178 addr,
4179 width,
4180 count);
4181 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4182 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4183 e = JIM_ERR;
4184 break;
4185 } else {
4186 v = 0; /* shut up gcc */
4187 for (i = 0; i < count ; i++, n++) {
4188 switch (width) {
4189 case 4:
4190 v = target_buffer_get_u32(target, &buffer[i*width]);
4191 break;
4192 case 2:
4193 v = target_buffer_get_u16(target, &buffer[i*width]);
4194 break;
4195 case 1:
4196 v = buffer[i] & 0x0ff;
4197 break;
4199 new_int_array_element(interp, varname, n, v);
4201 len -= count;
4202 addr += count * width;
4206 free(buffer);
4208 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4210 return e;
4213 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4215 char *namebuf;
4216 Jim_Obj *nameObjPtr, *valObjPtr;
4217 int result;
4218 long l;
4220 namebuf = alloc_printf("%s(%d)", varname, idx);
4221 if (!namebuf)
4222 return JIM_ERR;
4224 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4225 if (!nameObjPtr) {
4226 free(namebuf);
4227 return JIM_ERR;
4230 Jim_IncrRefCount(nameObjPtr);
4231 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4232 Jim_DecrRefCount(interp, nameObjPtr);
4233 free(namebuf);
4234 if (valObjPtr == NULL)
4235 return JIM_ERR;
4237 result = Jim_GetLong(interp, valObjPtr, &l);
4238 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4239 *val = l;
4240 return result;
4243 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4245 struct command_context *context;
4246 struct target *target;
4248 context = current_command_context(interp);
4249 assert(context != NULL);
4251 target = get_current_target(context);
4252 if (target == NULL) {
4253 LOG_ERROR("array2mem: no current target");
4254 return JIM_ERR;
4257 return target_array2mem(interp, target, argc-1, argv + 1);
4260 static int target_array2mem(Jim_Interp *interp, struct target *target,
4261 int argc, Jim_Obj *const *argv)
4263 long l;
4264 uint32_t width;
4265 int len;
4266 uint32_t addr;
4267 uint32_t count;
4268 uint32_t v;
4269 const char *varname;
4270 const char *phys;
4271 bool is_phys;
4272 int n, e, retval;
4273 uint32_t i;
4275 /* argv[1] = name of array to get the data
4276 * argv[2] = desired width
4277 * argv[3] = memory address
4278 * argv[4] = count to write
4280 if (argc < 4 || argc > 5) {
4281 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4282 return JIM_ERR;
4284 varname = Jim_GetString(argv[0], &len);
4285 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4287 e = Jim_GetLong(interp, argv[1], &l);
4288 width = l;
4289 if (e != JIM_OK)
4290 return e;
4292 e = Jim_GetLong(interp, argv[2], &l);
4293 addr = l;
4294 if (e != JIM_OK)
4295 return e;
4296 e = Jim_GetLong(interp, argv[3], &l);
4297 len = l;
4298 if (e != JIM_OK)
4299 return e;
4300 is_phys = false;
4301 if (argc > 4) {
4302 phys = Jim_GetString(argv[4], &n);
4303 if (!strncmp(phys, "phys", n))
4304 is_phys = true;
4305 else
4306 return JIM_ERR;
4308 switch (width) {
4309 case 8:
4310 width = 1;
4311 break;
4312 case 16:
4313 width = 2;
4314 break;
4315 case 32:
4316 width = 4;
4317 break;
4318 default:
4319 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4320 Jim_AppendStrings(interp, Jim_GetResult(interp),
4321 "Invalid width param, must be 8/16/32", NULL);
4322 return JIM_ERR;
4324 if (len == 0) {
4325 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4326 Jim_AppendStrings(interp, Jim_GetResult(interp),
4327 "array2mem: zero width read?", NULL);
4328 return JIM_ERR;
4330 if ((addr + (len * width)) < addr) {
4331 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4332 Jim_AppendStrings(interp, Jim_GetResult(interp),
4333 "array2mem: addr + len - wraps to zero?", NULL);
4334 return JIM_ERR;
4336 /* absurd transfer size? */
4337 if (len > 65536) {
4338 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4339 Jim_AppendStrings(interp, Jim_GetResult(interp),
4340 "array2mem: absurd > 64K item request", NULL);
4341 return JIM_ERR;
4344 if ((width == 1) ||
4345 ((width == 2) && ((addr & 1) == 0)) ||
4346 ((width == 4) && ((addr & 3) == 0))) {
4347 /* all is well */
4348 } else {
4349 char buf[100];
4350 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4351 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4352 addr,
4353 width);
4354 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4355 return JIM_ERR;
4358 /* Transfer loop */
4360 /* index counter */
4361 n = 0;
4362 /* assume ok */
4363 e = JIM_OK;
4365 size_t buffersize = 4096;
4366 uint8_t *buffer = malloc(buffersize);
4367 if (buffer == NULL)
4368 return JIM_ERR;
4370 while (len) {
4371 /* Slurp... in buffer size chunks */
4373 count = len; /* in objects.. */
4374 if (count > (buffersize / width))
4375 count = (buffersize / width);
4377 v = 0; /* shut up gcc */
4378 for (i = 0; i < count; i++, n++) {
4379 get_int_array_element(interp, varname, n, &v);
4380 switch (width) {
4381 case 4:
4382 target_buffer_set_u32(target, &buffer[i * width], v);
4383 break;
4384 case 2:
4385 target_buffer_set_u16(target, &buffer[i * width], v);
4386 break;
4387 case 1:
4388 buffer[i] = v & 0x0ff;
4389 break;
4392 len -= count;
4394 if (is_phys)
4395 retval = target_write_phys_memory(target, addr, width, count, buffer);
4396 else
4397 retval = target_write_memory(target, addr, width, count, buffer);
4398 if (retval != ERROR_OK) {
4399 /* BOO !*/
4400 LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4401 addr,
4402 width,
4403 count);
4404 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4405 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4406 e = JIM_ERR;
4407 break;
4409 addr += count * width;
4412 free(buffer);
4414 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4416 return e;
4419 /* FIX? should we propagate errors here rather than printing them
4420 * and continuing?
4422 void target_handle_event(struct target *target, enum target_event e)
4424 struct target_event_action *teap;
4426 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4427 if (teap->event == e) {
4428 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4429 target->target_number,
4430 target_name(target),
4431 target_type_name(target),
4433 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4434 Jim_GetString(teap->body, NULL));
4435 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4436 Jim_MakeErrorMessage(teap->interp);
4437 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4444 * Returns true only if the target has a handler for the specified event.
4446 bool target_has_event_action(struct target *target, enum target_event event)
4448 struct target_event_action *teap;
4450 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4451 if (teap->event == event)
4452 return true;
4454 return false;
4457 enum target_cfg_param {
4458 TCFG_TYPE,
4459 TCFG_EVENT,
4460 TCFG_WORK_AREA_VIRT,
4461 TCFG_WORK_AREA_PHYS,
4462 TCFG_WORK_AREA_SIZE,
4463 TCFG_WORK_AREA_BACKUP,
4464 TCFG_ENDIAN,
4465 TCFG_COREID,
4466 TCFG_CHAIN_POSITION,
4467 TCFG_DBGBASE,
4468 TCFG_CTIBASE,
4469 TCFG_RTOS,
4470 TCFG_DEFER_EXAMINE,
4473 static Jim_Nvp nvp_config_opts[] = {
4474 { .name = "-type", .value = TCFG_TYPE },
4475 { .name = "-event", .value = TCFG_EVENT },
4476 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4477 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4478 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4479 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4480 { .name = "-endian" , .value = TCFG_ENDIAN },
4481 { .name = "-coreid", .value = TCFG_COREID },
4482 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4483 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4484 { .name = "-ctibase", .value = TCFG_CTIBASE },
4485 { .name = "-rtos", .value = TCFG_RTOS },
4486 { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4487 { .name = NULL, .value = -1 }
4490 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4492 Jim_Nvp *n;
4493 Jim_Obj *o;
4494 jim_wide w;
4495 int e;
4497 /* parse config or cget options ... */
4498 while (goi->argc > 0) {
4499 Jim_SetEmptyResult(goi->interp);
4500 /* Jim_GetOpt_Debug(goi); */
4502 if (target->type->target_jim_configure) {
4503 /* target defines a configure function */
4504 /* target gets first dibs on parameters */
4505 e = (*(target->type->target_jim_configure))(target, goi);
4506 if (e == JIM_OK) {
4507 /* more? */
4508 continue;
4510 if (e == JIM_ERR) {
4511 /* An error */
4512 return e;
4514 /* otherwise we 'continue' below */
4516 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4517 if (e != JIM_OK) {
4518 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4519 return e;
4521 switch (n->value) {
4522 case TCFG_TYPE:
4523 /* not setable */
4524 if (goi->isconfigure) {
4525 Jim_SetResultFormatted(goi->interp,
4526 "not settable: %s", n->name);
4527 return JIM_ERR;
4528 } else {
4529 no_params:
4530 if (goi->argc != 0) {
4531 Jim_WrongNumArgs(goi->interp,
4532 goi->argc, goi->argv,
4533 "NO PARAMS");
4534 return JIM_ERR;
4537 Jim_SetResultString(goi->interp,
4538 target_type_name(target), -1);
4539 /* loop for more */
4540 break;
4541 case TCFG_EVENT:
4542 if (goi->argc == 0) {
4543 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4544 return JIM_ERR;
4547 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4548 if (e != JIM_OK) {
4549 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4550 return e;
4553 if (goi->isconfigure) {
4554 if (goi->argc != 1) {
4555 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4556 return JIM_ERR;
4558 } else {
4559 if (goi->argc != 0) {
4560 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4561 return JIM_ERR;
4566 struct target_event_action *teap;
4568 teap = target->event_action;
4569 /* replace existing? */
4570 while (teap) {
4571 if (teap->event == (enum target_event)n->value)
4572 break;
4573 teap = teap->next;
4576 if (goi->isconfigure) {
4577 bool replace = true;
4578 if (teap == NULL) {
4579 /* create new */
4580 teap = calloc(1, sizeof(*teap));
4581 replace = false;
4583 teap->event = n->value;
4584 teap->interp = goi->interp;
4585 Jim_GetOpt_Obj(goi, &o);
4586 if (teap->body)
4587 Jim_DecrRefCount(teap->interp, teap->body);
4588 teap->body = Jim_DuplicateObj(goi->interp, o);
4590 * FIXME:
4591 * Tcl/TK - "tk events" have a nice feature.
4592 * See the "BIND" command.
4593 * We should support that here.
4594 * You can specify %X and %Y in the event code.
4595 * The idea is: %T - target name.
4596 * The idea is: %N - target number
4597 * The idea is: %E - event name.
4599 Jim_IncrRefCount(teap->body);
4601 if (!replace) {
4602 /* add to head of event list */
4603 teap->next = target->event_action;
4604 target->event_action = teap;
4606 Jim_SetEmptyResult(goi->interp);
4607 } else {
4608 /* get */
4609 if (teap == NULL)
4610 Jim_SetEmptyResult(goi->interp);
4611 else
4612 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4615 /* loop for more */
4616 break;
4618 case TCFG_WORK_AREA_VIRT:
4619 if (goi->isconfigure) {
4620 target_free_all_working_areas(target);
4621 e = Jim_GetOpt_Wide(goi, &w);
4622 if (e != JIM_OK)
4623 return e;
4624 target->working_area_virt = w;
4625 target->working_area_virt_spec = true;
4626 } else {
4627 if (goi->argc != 0)
4628 goto no_params;
4630 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4631 /* loop for more */
4632 break;
4634 case TCFG_WORK_AREA_PHYS:
4635 if (goi->isconfigure) {
4636 target_free_all_working_areas(target);
4637 e = Jim_GetOpt_Wide(goi, &w);
4638 if (e != JIM_OK)
4639 return e;
4640 target->working_area_phys = w;
4641 target->working_area_phys_spec = true;
4642 } else {
4643 if (goi->argc != 0)
4644 goto no_params;
4646 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4647 /* loop for more */
4648 break;
4650 case TCFG_WORK_AREA_SIZE:
4651 if (goi->isconfigure) {
4652 target_free_all_working_areas(target);
4653 e = Jim_GetOpt_Wide(goi, &w);
4654 if (e != JIM_OK)
4655 return e;
4656 target->working_area_size = w;
4657 } else {
4658 if (goi->argc != 0)
4659 goto no_params;
4661 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4662 /* loop for more */
4663 break;
4665 case TCFG_WORK_AREA_BACKUP:
4666 if (goi->isconfigure) {
4667 target_free_all_working_areas(target);
4668 e = Jim_GetOpt_Wide(goi, &w);
4669 if (e != JIM_OK)
4670 return e;
4671 /* make this exactly 1 or 0 */
4672 target->backup_working_area = (!!w);
4673 } else {
4674 if (goi->argc != 0)
4675 goto no_params;
4677 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4678 /* loop for more e*/
4679 break;
4682 case TCFG_ENDIAN:
4683 if (goi->isconfigure) {
4684 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4685 if (e != JIM_OK) {
4686 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4687 return e;
4689 target->endianness = n->value;
4690 } else {
4691 if (goi->argc != 0)
4692 goto no_params;
4694 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4695 if (n->name == NULL) {
4696 target->endianness = TARGET_LITTLE_ENDIAN;
4697 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4699 Jim_SetResultString(goi->interp, n->name, -1);
4700 /* loop for more */
4701 break;
4703 case TCFG_COREID:
4704 if (goi->isconfigure) {
4705 e = Jim_GetOpt_Wide(goi, &w);
4706 if (e != JIM_OK)
4707 return e;
4708 target->coreid = (int32_t)w;
4709 } else {
4710 if (goi->argc != 0)
4711 goto no_params;
4713 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4714 /* loop for more */
4715 break;
4717 case TCFG_CHAIN_POSITION:
4718 if (goi->isconfigure) {
4719 Jim_Obj *o_t;
4720 struct jtag_tap *tap;
4721 target_free_all_working_areas(target);
4722 e = Jim_GetOpt_Obj(goi, &o_t);
4723 if (e != JIM_OK)
4724 return e;
4725 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4726 if (tap == NULL)
4727 return JIM_ERR;
4728 /* make this exactly 1 or 0 */
4729 target->tap = tap;
4730 } else {
4731 if (goi->argc != 0)
4732 goto no_params;
4734 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4735 /* loop for more e*/
4736 break;
4737 case TCFG_DBGBASE:
4738 if (goi->isconfigure) {
4739 e = Jim_GetOpt_Wide(goi, &w);
4740 if (e != JIM_OK)
4741 return e;
4742 target->dbgbase = (uint32_t)w;
4743 target->dbgbase_set = true;
4744 } else {
4745 if (goi->argc != 0)
4746 goto no_params;
4748 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4749 /* loop for more */
4750 break;
4751 case TCFG_CTIBASE:
4752 if (goi->isconfigure) {
4753 e = Jim_GetOpt_Wide(goi, &w);
4754 if (e != JIM_OK)
4755 return e;
4756 target->ctibase = (uint32_t)w;
4757 target->ctibase_set = true;
4758 } else {
4759 if (goi->argc != 0)
4760 goto no_params;
4762 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->ctibase));
4763 /* loop for more */
4764 break;
4765 case TCFG_RTOS:
4766 /* RTOS */
4768 int result = rtos_create(goi, target);
4769 if (result != JIM_OK)
4770 return result;
4772 /* loop for more */
4773 break;
4775 case TCFG_DEFER_EXAMINE:
4776 /* DEFER_EXAMINE */
4777 target->defer_examine = true;
4778 /* loop for more */
4779 break;
4782 } /* while (goi->argc) */
4785 /* done - we return */
4786 return JIM_OK;
4789 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4791 Jim_GetOptInfo goi;
4793 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4794 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4795 if (goi.argc < 1) {
4796 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4797 "missing: -option ...");
4798 return JIM_ERR;
4800 struct target *target = Jim_CmdPrivData(goi.interp);
4801 return target_configure(&goi, target);
4804 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4806 const char *cmd_name = Jim_GetString(argv[0], NULL);
4808 Jim_GetOptInfo goi;
4809 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4811 if (goi.argc < 2 || goi.argc > 4) {
4812 Jim_SetResultFormatted(goi.interp,
4813 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4814 return JIM_ERR;
4817 target_write_fn fn;
4818 fn = target_write_memory;
4820 int e;
4821 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4822 /* consume it */
4823 struct Jim_Obj *obj;
4824 e = Jim_GetOpt_Obj(&goi, &obj);
4825 if (e != JIM_OK)
4826 return e;
4828 fn = target_write_phys_memory;
4831 jim_wide a;
4832 e = Jim_GetOpt_Wide(&goi, &a);
4833 if (e != JIM_OK)
4834 return e;
4836 jim_wide b;
4837 e = Jim_GetOpt_Wide(&goi, &b);
4838 if (e != JIM_OK)
4839 return e;
4841 jim_wide c = 1;
4842 if (goi.argc == 1) {
4843 e = Jim_GetOpt_Wide(&goi, &c);
4844 if (e != JIM_OK)
4845 return e;
4848 /* all args must be consumed */
4849 if (goi.argc != 0)
4850 return JIM_ERR;
4852 struct target *target = Jim_CmdPrivData(goi.interp);
4853 unsigned data_size;
4854 if (strcasecmp(cmd_name, "mww") == 0)
4855 data_size = 4;
4856 else if (strcasecmp(cmd_name, "mwh") == 0)
4857 data_size = 2;
4858 else if (strcasecmp(cmd_name, "mwb") == 0)
4859 data_size = 1;
4860 else {
4861 LOG_ERROR("command '%s' unknown: ", cmd_name);
4862 return JIM_ERR;
4865 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4869 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4871 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4872 * mdh [phys] <address> [<count>] - for 16 bit reads
4873 * mdb [phys] <address> [<count>] - for 8 bit reads
4875 * Count defaults to 1.
4877 * Calls target_read_memory or target_read_phys_memory depending on
4878 * the presence of the "phys" argument
4879 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4880 * to int representation in base16.
4881 * Also outputs read data in a human readable form using command_print
4883 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4884 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4885 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4886 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4887 * on success, with [<count>] number of elements.
4889 * In case of little endian target:
4890 * Example1: "mdw 0x00000000" returns "10123456"
4891 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4892 * Example3: "mdb 0x00000000" returns "56"
4893 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4894 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4896 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4898 const char *cmd_name = Jim_GetString(argv[0], NULL);
4900 Jim_GetOptInfo goi;
4901 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4903 if ((goi.argc < 1) || (goi.argc > 3)) {
4904 Jim_SetResultFormatted(goi.interp,
4905 "usage: %s [phys] <address> [<count>]", cmd_name);
4906 return JIM_ERR;
4909 int (*fn)(struct target *target,
4910 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4911 fn = target_read_memory;
4913 int e;
4914 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4915 /* consume it */
4916 struct Jim_Obj *obj;
4917 e = Jim_GetOpt_Obj(&goi, &obj);
4918 if (e != JIM_OK)
4919 return e;
4921 fn = target_read_phys_memory;
4924 /* Read address parameter */
4925 jim_wide addr;
4926 e = Jim_GetOpt_Wide(&goi, &addr);
4927 if (e != JIM_OK)
4928 return JIM_ERR;
4930 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4931 jim_wide count;
4932 if (goi.argc == 1) {
4933 e = Jim_GetOpt_Wide(&goi, &count);
4934 if (e != JIM_OK)
4935 return JIM_ERR;
4936 } else
4937 count = 1;
4939 /* all args must be consumed */
4940 if (goi.argc != 0)
4941 return JIM_ERR;
4943 jim_wide dwidth = 1; /* shut up gcc */
4944 if (strcasecmp(cmd_name, "mdw") == 0)
4945 dwidth = 4;
4946 else if (strcasecmp(cmd_name, "mdh") == 0)
4947 dwidth = 2;
4948 else if (strcasecmp(cmd_name, "mdb") == 0)
4949 dwidth = 1;
4950 else {
4951 LOG_ERROR("command '%s' unknown: ", cmd_name);
4952 return JIM_ERR;
4955 /* convert count to "bytes" */
4956 int bytes = count * dwidth;
4958 struct target *target = Jim_CmdPrivData(goi.interp);
4959 uint8_t target_buf[32];
4960 jim_wide x, y, z;
4961 while (bytes > 0) {
4962 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4964 /* Try to read out next block */
4965 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4967 if (e != ERROR_OK) {
4968 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4969 return JIM_ERR;
4972 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4973 switch (dwidth) {
4974 case 4:
4975 for (x = 0; x < 16 && x < y; x += 4) {
4976 z = target_buffer_get_u32(target, &(target_buf[x]));
4977 command_print_sameline(NULL, "%08x ", (int)(z));
4979 for (; (x < 16) ; x += 4)
4980 command_print_sameline(NULL, " ");
4981 break;
4982 case 2:
4983 for (x = 0; x < 16 && x < y; x += 2) {
4984 z = target_buffer_get_u16(target, &(target_buf[x]));
4985 command_print_sameline(NULL, "%04x ", (int)(z));
4987 for (; (x < 16) ; x += 2)
4988 command_print_sameline(NULL, " ");
4989 break;
4990 case 1:
4991 default:
4992 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4993 z = target_buffer_get_u8(target, &(target_buf[x]));
4994 command_print_sameline(NULL, "%02x ", (int)(z));
4996 for (; (x < 16) ; x += 1)
4997 command_print_sameline(NULL, " ");
4998 break;
5000 /* ascii-ify the bytes */
5001 for (x = 0 ; x < y ; x++) {
5002 if ((target_buf[x] >= 0x20) &&
5003 (target_buf[x] <= 0x7e)) {
5004 /* good */
5005 } else {
5006 /* smack it */
5007 target_buf[x] = '.';
5010 /* space pad */
5011 while (x < 16) {
5012 target_buf[x] = ' ';
5013 x++;
5015 /* terminate */
5016 target_buf[16] = 0;
5017 /* print - with a newline */
5018 command_print_sameline(NULL, "%s\n", target_buf);
5019 /* NEXT... */
5020 bytes -= 16;
5021 addr += 16;
5023 return JIM_OK;
5026 static int jim_target_mem2array(Jim_Interp *interp,
5027 int argc, Jim_Obj *const *argv)
5029 struct target *target = Jim_CmdPrivData(interp);
5030 return target_mem2array(interp, target, argc - 1, argv + 1);
5033 static int jim_target_array2mem(Jim_Interp *interp,
5034 int argc, Jim_Obj *const *argv)
5036 struct target *target = Jim_CmdPrivData(interp);
5037 return target_array2mem(interp, target, argc - 1, argv + 1);
5040 static int jim_target_tap_disabled(Jim_Interp *interp)
5042 Jim_SetResultFormatted(interp, "[TAP is disabled]");
5043 return JIM_ERR;
5046 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5048 bool allow_defer = false;
5050 Jim_GetOptInfo goi;
5051 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5052 if (goi.argc > 1) {
5053 const char *cmd_name = Jim_GetString(argv[0], NULL);
5054 Jim_SetResultFormatted(goi.interp,
5055 "usage: %s ['allow-defer']", cmd_name);
5056 return JIM_ERR;
5058 if (goi.argc > 0 &&
5059 strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5060 /* consume it */
5061 struct Jim_Obj *obj;
5062 int e = Jim_GetOpt_Obj(&goi, &obj);
5063 if (e != JIM_OK)
5064 return e;
5065 allow_defer = true;
5068 struct target *target = Jim_CmdPrivData(interp);
5069 if (!target->tap->enabled)
5070 return jim_target_tap_disabled(interp);
5072 if (allow_defer && target->defer_examine) {
5073 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5074 LOG_INFO("Use arp_examine command to examine it manually!");
5075 return JIM_OK;
5078 int e = target->type->examine(target);
5079 if (e != ERROR_OK)
5080 return JIM_ERR;
5081 return JIM_OK;
5084 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5086 struct target *target = Jim_CmdPrivData(interp);
5088 Jim_SetResultBool(interp, target_was_examined(target));
5089 return JIM_OK;
5092 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5094 struct target *target = Jim_CmdPrivData(interp);
5096 Jim_SetResultBool(interp, target->defer_examine);
5097 return JIM_OK;
5100 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5102 if (argc != 1) {
5103 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5104 return JIM_ERR;
5106 struct target *target = Jim_CmdPrivData(interp);
5108 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5109 return JIM_ERR;
5111 return JIM_OK;
5114 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5116 if (argc != 1) {
5117 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5118 return JIM_ERR;
5120 struct target *target = Jim_CmdPrivData(interp);
5121 if (!target->tap->enabled)
5122 return jim_target_tap_disabled(interp);
5124 int e;
5125 if (!(target_was_examined(target)))
5126 e = ERROR_TARGET_NOT_EXAMINED;
5127 else
5128 e = target->type->poll(target);
5129 if (e != ERROR_OK)
5130 return JIM_ERR;
5131 return JIM_OK;
5134 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5136 Jim_GetOptInfo goi;
5137 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5139 if (goi.argc != 2) {
5140 Jim_WrongNumArgs(interp, 0, argv,
5141 "([tT]|[fF]|assert|deassert) BOOL");
5142 return JIM_ERR;
5145 Jim_Nvp *n;
5146 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5147 if (e != JIM_OK) {
5148 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5149 return e;
5151 /* the halt or not param */
5152 jim_wide a;
5153 e = Jim_GetOpt_Wide(&goi, &a);
5154 if (e != JIM_OK)
5155 return e;
5157 struct target *target = Jim_CmdPrivData(goi.interp);
5158 if (!target->tap->enabled)
5159 return jim_target_tap_disabled(interp);
5161 if (!target->type->assert_reset || !target->type->deassert_reset) {
5162 Jim_SetResultFormatted(interp,
5163 "No target-specific reset for %s",
5164 target_name(target));
5165 return JIM_ERR;
5168 if (target->defer_examine)
5169 target_reset_examined(target);
5171 /* determine if we should halt or not. */
5172 target->reset_halt = !!a;
5173 /* When this happens - all workareas are invalid. */
5174 target_free_all_working_areas_restore(target, 0);
5176 /* do the assert */
5177 if (n->value == NVP_ASSERT)
5178 e = target->type->assert_reset(target);
5179 else
5180 e = target->type->deassert_reset(target);
5181 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5184 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5186 if (argc != 1) {
5187 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5188 return JIM_ERR;
5190 struct target *target = Jim_CmdPrivData(interp);
5191 if (!target->tap->enabled)
5192 return jim_target_tap_disabled(interp);
5193 int e = target->type->halt(target);
5194 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5197 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5199 Jim_GetOptInfo goi;
5200 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5202 /* params: <name> statename timeoutmsecs */
5203 if (goi.argc != 2) {
5204 const char *cmd_name = Jim_GetString(argv[0], NULL);
5205 Jim_SetResultFormatted(goi.interp,
5206 "%s <state_name> <timeout_in_msec>", cmd_name);
5207 return JIM_ERR;
5210 Jim_Nvp *n;
5211 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5212 if (e != JIM_OK) {
5213 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5214 return e;
5216 jim_wide a;
5217 e = Jim_GetOpt_Wide(&goi, &a);
5218 if (e != JIM_OK)
5219 return e;
5220 struct target *target = Jim_CmdPrivData(interp);
5221 if (!target->tap->enabled)
5222 return jim_target_tap_disabled(interp);
5224 e = target_wait_state(target, n->value, a);
5225 if (e != ERROR_OK) {
5226 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5227 Jim_SetResultFormatted(goi.interp,
5228 "target: %s wait %s fails (%#s) %s",
5229 target_name(target), n->name,
5230 eObj, target_strerror_safe(e));
5231 Jim_FreeNewObj(interp, eObj);
5232 return JIM_ERR;
5234 return JIM_OK;
5236 /* List for human, Events defined for this target.
5237 * scripts/programs should use 'name cget -event NAME'
5239 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5241 struct command_context *cmd_ctx = current_command_context(interp);
5242 assert(cmd_ctx != NULL);
5244 struct target *target = Jim_CmdPrivData(interp);
5245 struct target_event_action *teap = target->event_action;
5246 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5247 target->target_number,
5248 target_name(target));
5249 command_print(cmd_ctx, "%-25s | Body", "Event");
5250 command_print(cmd_ctx, "------------------------- | "
5251 "----------------------------------------");
5252 while (teap) {
5253 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5254 command_print(cmd_ctx, "%-25s | %s",
5255 opt->name, Jim_GetString(teap->body, NULL));
5256 teap = teap->next;
5258 command_print(cmd_ctx, "***END***");
5259 return JIM_OK;
5261 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5263 if (argc != 1) {
5264 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5265 return JIM_ERR;
5267 struct target *target = Jim_CmdPrivData(interp);
5268 Jim_SetResultString(interp, target_state_name(target), -1);
5269 return JIM_OK;
5271 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5273 Jim_GetOptInfo goi;
5274 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5275 if (goi.argc != 1) {
5276 const char *cmd_name = Jim_GetString(argv[0], NULL);
5277 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5278 return JIM_ERR;
5280 Jim_Nvp *n;
5281 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5282 if (e != JIM_OK) {
5283 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5284 return e;
5286 struct target *target = Jim_CmdPrivData(interp);
5287 target_handle_event(target, n->value);
5288 return JIM_OK;
5291 static const struct command_registration target_instance_command_handlers[] = {
5293 .name = "configure",
5294 .mode = COMMAND_CONFIG,
5295 .jim_handler = jim_target_configure,
5296 .help = "configure a new target for use",
5297 .usage = "[target_attribute ...]",
5300 .name = "cget",
5301 .mode = COMMAND_ANY,
5302 .jim_handler = jim_target_configure,
5303 .help = "returns the specified target attribute",
5304 .usage = "target_attribute",
5307 .name = "mww",
5308 .mode = COMMAND_EXEC,
5309 .jim_handler = jim_target_mw,
5310 .help = "Write 32-bit word(s) to target memory",
5311 .usage = "address data [count]",
5314 .name = "mwh",
5315 .mode = COMMAND_EXEC,
5316 .jim_handler = jim_target_mw,
5317 .help = "Write 16-bit half-word(s) to target memory",
5318 .usage = "address data [count]",
5321 .name = "mwb",
5322 .mode = COMMAND_EXEC,
5323 .jim_handler = jim_target_mw,
5324 .help = "Write byte(s) to target memory",
5325 .usage = "address data [count]",
5328 .name = "mdw",
5329 .mode = COMMAND_EXEC,
5330 .jim_handler = jim_target_md,
5331 .help = "Display target memory as 32-bit words",
5332 .usage = "address [count]",
5335 .name = "mdh",
5336 .mode = COMMAND_EXEC,
5337 .jim_handler = jim_target_md,
5338 .help = "Display target memory as 16-bit half-words",
5339 .usage = "address [count]",
5342 .name = "mdb",
5343 .mode = COMMAND_EXEC,
5344 .jim_handler = jim_target_md,
5345 .help = "Display target memory as 8-bit bytes",
5346 .usage = "address [count]",
5349 .name = "array2mem",
5350 .mode = COMMAND_EXEC,
5351 .jim_handler = jim_target_array2mem,
5352 .help = "Writes Tcl array of 8/16/32 bit numbers "
5353 "to target memory",
5354 .usage = "arrayname bitwidth address count",
5357 .name = "mem2array",
5358 .mode = COMMAND_EXEC,
5359 .jim_handler = jim_target_mem2array,
5360 .help = "Loads Tcl array of 8/16/32 bit numbers "
5361 "from target memory",
5362 .usage = "arrayname bitwidth address count",
5365 .name = "eventlist",
5366 .mode = COMMAND_EXEC,
5367 .jim_handler = jim_target_event_list,
5368 .help = "displays a table of events defined for this target",
5371 .name = "curstate",
5372 .mode = COMMAND_EXEC,
5373 .jim_handler = jim_target_current_state,
5374 .help = "displays the current state of this target",
5377 .name = "arp_examine",
5378 .mode = COMMAND_EXEC,
5379 .jim_handler = jim_target_examine,
5380 .help = "used internally for reset processing",
5381 .usage = "arp_examine ['allow-defer']",
5384 .name = "was_examined",
5385 .mode = COMMAND_EXEC,
5386 .jim_handler = jim_target_was_examined,
5387 .help = "used internally for reset processing",
5388 .usage = "was_examined",
5391 .name = "examine_deferred",
5392 .mode = COMMAND_EXEC,
5393 .jim_handler = jim_target_examine_deferred,
5394 .help = "used internally for reset processing",
5395 .usage = "examine_deferred",
5398 .name = "arp_halt_gdb",
5399 .mode = COMMAND_EXEC,
5400 .jim_handler = jim_target_halt_gdb,
5401 .help = "used internally for reset processing to halt GDB",
5404 .name = "arp_poll",
5405 .mode = COMMAND_EXEC,
5406 .jim_handler = jim_target_poll,
5407 .help = "used internally for reset processing",
5410 .name = "arp_reset",
5411 .mode = COMMAND_EXEC,
5412 .jim_handler = jim_target_reset,
5413 .help = "used internally for reset processing",
5416 .name = "arp_halt",
5417 .mode = COMMAND_EXEC,
5418 .jim_handler = jim_target_halt,
5419 .help = "used internally for reset processing",
5422 .name = "arp_waitstate",
5423 .mode = COMMAND_EXEC,
5424 .jim_handler = jim_target_wait_state,
5425 .help = "used internally for reset processing",
5428 .name = "invoke-event",
5429 .mode = COMMAND_EXEC,
5430 .jim_handler = jim_target_invoke_event,
5431 .help = "invoke handler for specified event",
5432 .usage = "event_name",
5434 COMMAND_REGISTRATION_DONE
5437 static int target_create(Jim_GetOptInfo *goi)
5439 Jim_Obj *new_cmd;
5440 Jim_Cmd *cmd;
5441 const char *cp;
5442 int e;
5443 int x;
5444 struct target *target;
5445 struct command_context *cmd_ctx;
5447 cmd_ctx = current_command_context(goi->interp);
5448 assert(cmd_ctx != NULL);
5450 if (goi->argc < 3) {
5451 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5452 return JIM_ERR;
5455 /* COMMAND */
5456 Jim_GetOpt_Obj(goi, &new_cmd);
5457 /* does this command exist? */
5458 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5459 if (cmd) {
5460 cp = Jim_GetString(new_cmd, NULL);
5461 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5462 return JIM_ERR;
5465 /* TYPE */
5466 e = Jim_GetOpt_String(goi, &cp, NULL);
5467 if (e != JIM_OK)
5468 return e;
5469 struct transport *tr = get_current_transport();
5470 if (tr->override_target) {
5471 e = tr->override_target(&cp);
5472 if (e != ERROR_OK) {
5473 LOG_ERROR("The selected transport doesn't support this target");
5474 return JIM_ERR;
5476 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5478 /* now does target type exist */
5479 for (x = 0 ; target_types[x] ; x++) {
5480 if (0 == strcmp(cp, target_types[x]->name)) {
5481 /* found */
5482 break;
5485 /* check for deprecated name */
5486 if (target_types[x]->deprecated_name) {
5487 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5488 /* found */
5489 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5490 break;
5494 if (target_types[x] == NULL) {
5495 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5496 for (x = 0 ; target_types[x] ; x++) {
5497 if (target_types[x + 1]) {
5498 Jim_AppendStrings(goi->interp,
5499 Jim_GetResult(goi->interp),
5500 target_types[x]->name,
5501 ", ", NULL);
5502 } else {
5503 Jim_AppendStrings(goi->interp,
5504 Jim_GetResult(goi->interp),
5505 " or ",
5506 target_types[x]->name, NULL);
5509 return JIM_ERR;
5512 /* Create it */
5513 target = calloc(1, sizeof(struct target));
5514 /* set target number */
5515 target->target_number = new_target_number();
5516 cmd_ctx->current_target = target->target_number;
5518 /* allocate memory for each unique target type */
5519 target->type = calloc(1, sizeof(struct target_type));
5521 memcpy(target->type, target_types[x], sizeof(struct target_type));
5523 /* will be set by "-endian" */
5524 target->endianness = TARGET_ENDIAN_UNKNOWN;
5526 /* default to first core, override with -coreid */
5527 target->coreid = 0;
5529 target->working_area = 0x0;
5530 target->working_area_size = 0x0;
5531 target->working_areas = NULL;
5532 target->backup_working_area = 0;
5534 target->state = TARGET_UNKNOWN;
5535 target->debug_reason = DBG_REASON_UNDEFINED;
5536 target->reg_cache = NULL;
5537 target->breakpoints = NULL;
5538 target->watchpoints = NULL;
5539 target->next = NULL;
5540 target->arch_info = NULL;
5542 target->display = 1;
5544 target->halt_issued = false;
5546 /* initialize trace information */
5547 target->trace_info = calloc(1, sizeof(struct trace));
5549 target->dbgmsg = NULL;
5550 target->dbg_msg_enabled = 0;
5552 target->endianness = TARGET_ENDIAN_UNKNOWN;
5554 target->rtos = NULL;
5555 target->rtos_auto_detect = false;
5557 /* Do the rest as "configure" options */
5558 goi->isconfigure = 1;
5559 e = target_configure(goi, target);
5561 if (target->tap == NULL) {
5562 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5563 e = JIM_ERR;
5566 if (e != JIM_OK) {
5567 free(target->type);
5568 free(target);
5569 return e;
5572 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5573 /* default endian to little if not specified */
5574 target->endianness = TARGET_LITTLE_ENDIAN;
5577 cp = Jim_GetString(new_cmd, NULL);
5578 target->cmd_name = strdup(cp);
5580 /* create the target specific commands */
5581 if (target->type->commands) {
5582 e = register_commands(cmd_ctx, NULL, target->type->commands);
5583 if (ERROR_OK != e)
5584 LOG_ERROR("unable to register '%s' commands", cp);
5586 if (target->type->target_create)
5587 (*(target->type->target_create))(target, goi->interp);
5589 /* append to end of list */
5591 struct target **tpp;
5592 tpp = &(all_targets);
5593 while (*tpp)
5594 tpp = &((*tpp)->next);
5595 *tpp = target;
5598 /* now - create the new target name command */
5599 const struct command_registration target_subcommands[] = {
5601 .chain = target_instance_command_handlers,
5604 .chain = target->type->commands,
5606 COMMAND_REGISTRATION_DONE
5608 const struct command_registration target_commands[] = {
5610 .name = cp,
5611 .mode = COMMAND_ANY,
5612 .help = "target command group",
5613 .usage = "",
5614 .chain = target_subcommands,
5616 COMMAND_REGISTRATION_DONE
5618 e = register_commands(cmd_ctx, NULL, target_commands);
5619 if (ERROR_OK != e)
5620 return JIM_ERR;
5622 struct command *c = command_find_in_context(cmd_ctx, cp);
5623 assert(c);
5624 command_set_handler_data(c, target);
5626 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5629 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5631 if (argc != 1) {
5632 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5633 return JIM_ERR;
5635 struct command_context *cmd_ctx = current_command_context(interp);
5636 assert(cmd_ctx != NULL);
5638 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5639 return JIM_OK;
5642 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5644 if (argc != 1) {
5645 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5646 return JIM_ERR;
5648 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5649 for (unsigned x = 0; NULL != target_types[x]; x++) {
5650 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5651 Jim_NewStringObj(interp, target_types[x]->name, -1));
5653 return JIM_OK;
5656 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5658 if (argc != 1) {
5659 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5660 return JIM_ERR;
5662 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5663 struct target *target = all_targets;
5664 while (target) {
5665 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5666 Jim_NewStringObj(interp, target_name(target), -1));
5667 target = target->next;
5669 return JIM_OK;
5672 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5674 int i;
5675 const char *targetname;
5676 int retval, len;
5677 struct target *target = (struct target *) NULL;
5678 struct target_list *head, *curr, *new;
5679 curr = (struct target_list *) NULL;
5680 head = (struct target_list *) NULL;
5682 retval = 0;
5683 LOG_DEBUG("%d", argc);
5684 /* argv[1] = target to associate in smp
5685 * argv[2] = target to assoicate in smp
5686 * argv[3] ...
5689 for (i = 1; i < argc; i++) {
5691 targetname = Jim_GetString(argv[i], &len);
5692 target = get_target(targetname);
5693 LOG_DEBUG("%s ", targetname);
5694 if (target) {
5695 new = malloc(sizeof(struct target_list));
5696 new->target = target;
5697 new->next = (struct target_list *)NULL;
5698 if (head == (struct target_list *)NULL) {
5699 head = new;
5700 curr = head;
5701 } else {
5702 curr->next = new;
5703 curr = new;
5707 /* now parse the list of cpu and put the target in smp mode*/
5708 curr = head;
5710 while (curr != (struct target_list *)NULL) {
5711 target = curr->target;
5712 target->smp = 1;
5713 target->head = head;
5714 curr = curr->next;
5717 if (target && target->rtos)
5718 retval = rtos_smp_init(head->target);
5720 return retval;
5724 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5726 Jim_GetOptInfo goi;
5727 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5728 if (goi.argc < 3) {
5729 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5730 "<name> <target_type> [<target_options> ...]");
5731 return JIM_ERR;
5733 return target_create(&goi);
5736 static const struct command_registration target_subcommand_handlers[] = {
5738 .name = "init",
5739 .mode = COMMAND_CONFIG,
5740 .handler = handle_target_init_command,
5741 .help = "initialize targets",
5744 .name = "create",
5745 /* REVISIT this should be COMMAND_CONFIG ... */
5746 .mode = COMMAND_ANY,
5747 .jim_handler = jim_target_create,
5748 .usage = "name type '-chain-position' name [options ...]",
5749 .help = "Creates and selects a new target",
5752 .name = "current",
5753 .mode = COMMAND_ANY,
5754 .jim_handler = jim_target_current,
5755 .help = "Returns the currently selected target",
5758 .name = "types",
5759 .mode = COMMAND_ANY,
5760 .jim_handler = jim_target_types,
5761 .help = "Returns the available target types as "
5762 "a list of strings",
5765 .name = "names",
5766 .mode = COMMAND_ANY,
5767 .jim_handler = jim_target_names,
5768 .help = "Returns the names of all targets as a list of strings",
5771 .name = "smp",
5772 .mode = COMMAND_ANY,
5773 .jim_handler = jim_target_smp,
5774 .usage = "targetname1 targetname2 ...",
5775 .help = "gather several target in a smp list"
5778 COMMAND_REGISTRATION_DONE
5781 struct FastLoad {
5782 target_addr_t address;
5783 uint8_t *data;
5784 int length;
5788 static int fastload_num;
5789 static struct FastLoad *fastload;
5791 static void free_fastload(void)
5793 if (fastload != NULL) {
5794 int i;
5795 for (i = 0; i < fastload_num; i++) {
5796 if (fastload[i].data)
5797 free(fastload[i].data);
5799 free(fastload);
5800 fastload = NULL;
5804 COMMAND_HANDLER(handle_fast_load_image_command)
5806 uint8_t *buffer;
5807 size_t buf_cnt;
5808 uint32_t image_size;
5809 target_addr_t min_address = 0;
5810 target_addr_t max_address = -1;
5811 int i;
5813 struct image image;
5815 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5816 &image, &min_address, &max_address);
5817 if (ERROR_OK != retval)
5818 return retval;
5820 struct duration bench;
5821 duration_start(&bench);
5823 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5824 if (retval != ERROR_OK)
5825 return retval;
5827 image_size = 0x0;
5828 retval = ERROR_OK;
5829 fastload_num = image.num_sections;
5830 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5831 if (fastload == NULL) {
5832 command_print(CMD_CTX, "out of memory");
5833 image_close(&image);
5834 return ERROR_FAIL;
5836 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5837 for (i = 0; i < image.num_sections; i++) {
5838 buffer = malloc(image.sections[i].size);
5839 if (buffer == NULL) {
5840 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5841 (int)(image.sections[i].size));
5842 retval = ERROR_FAIL;
5843 break;
5846 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5847 if (retval != ERROR_OK) {
5848 free(buffer);
5849 break;
5852 uint32_t offset = 0;
5853 uint32_t length = buf_cnt;
5855 /* DANGER!!! beware of unsigned comparision here!!! */
5857 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5858 (image.sections[i].base_address < max_address)) {
5859 if (image.sections[i].base_address < min_address) {
5860 /* clip addresses below */
5861 offset += min_address-image.sections[i].base_address;
5862 length -= offset;
5865 if (image.sections[i].base_address + buf_cnt > max_address)
5866 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5868 fastload[i].address = image.sections[i].base_address + offset;
5869 fastload[i].data = malloc(length);
5870 if (fastload[i].data == NULL) {
5871 free(buffer);
5872 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5873 length);
5874 retval = ERROR_FAIL;
5875 break;
5877 memcpy(fastload[i].data, buffer + offset, length);
5878 fastload[i].length = length;
5880 image_size += length;
5881 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5882 (unsigned int)length,
5883 ((unsigned int)(image.sections[i].base_address + offset)));
5886 free(buffer);
5889 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5890 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5891 "in %fs (%0.3f KiB/s)", image_size,
5892 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5894 command_print(CMD_CTX,
5895 "WARNING: image has not been loaded to target!"
5896 "You can issue a 'fast_load' to finish loading.");
5899 image_close(&image);
5901 if (retval != ERROR_OK)
5902 free_fastload();
5904 return retval;
5907 COMMAND_HANDLER(handle_fast_load_command)
5909 if (CMD_ARGC > 0)
5910 return ERROR_COMMAND_SYNTAX_ERROR;
5911 if (fastload == NULL) {
5912 LOG_ERROR("No image in memory");
5913 return ERROR_FAIL;
5915 int i;
5916 int64_t ms = timeval_ms();
5917 int size = 0;
5918 int retval = ERROR_OK;
5919 for (i = 0; i < fastload_num; i++) {
5920 struct target *target = get_current_target(CMD_CTX);
5921 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5922 (unsigned int)(fastload[i].address),
5923 (unsigned int)(fastload[i].length));
5924 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5925 if (retval != ERROR_OK)
5926 break;
5927 size += fastload[i].length;
5929 if (retval == ERROR_OK) {
5930 int64_t after = timeval_ms();
5931 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5933 return retval;
5936 static const struct command_registration target_command_handlers[] = {
5938 .name = "targets",
5939 .handler = handle_targets_command,
5940 .mode = COMMAND_ANY,
5941 .help = "change current default target (one parameter) "
5942 "or prints table of all targets (no parameters)",
5943 .usage = "[target]",
5946 .name = "target",
5947 .mode = COMMAND_CONFIG,
5948 .help = "configure target",
5950 .chain = target_subcommand_handlers,
5952 COMMAND_REGISTRATION_DONE
5955 int target_register_commands(struct command_context *cmd_ctx)
5957 return register_commands(cmd_ctx, NULL, target_command_handlers);
5960 static bool target_reset_nag = true;
5962 bool get_target_reset_nag(void)
5964 return target_reset_nag;
5967 COMMAND_HANDLER(handle_target_reset_nag)
5969 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5970 &target_reset_nag, "Nag after each reset about options to improve "
5971 "performance");
5974 COMMAND_HANDLER(handle_ps_command)
5976 struct target *target = get_current_target(CMD_CTX);
5977 char *display;
5978 if (target->state != TARGET_HALTED) {
5979 LOG_INFO("target not halted !!");
5980 return ERROR_OK;
5983 if ((target->rtos) && (target->rtos->type)
5984 && (target->rtos->type->ps_command)) {
5985 display = target->rtos->type->ps_command(target);
5986 command_print(CMD_CTX, "%s", display);
5987 free(display);
5988 return ERROR_OK;
5989 } else {
5990 LOG_INFO("failed");
5991 return ERROR_TARGET_FAILURE;
5995 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5997 if (text != NULL)
5998 command_print_sameline(cmd_ctx, "%s", text);
5999 for (int i = 0; i < size; i++)
6000 command_print_sameline(cmd_ctx, " %02x", buf[i]);
6001 command_print(cmd_ctx, " ");
6004 COMMAND_HANDLER(handle_test_mem_access_command)
6006 struct target *target = get_current_target(CMD_CTX);
6007 uint32_t test_size;
6008 int retval = ERROR_OK;
6010 if (target->state != TARGET_HALTED) {
6011 LOG_INFO("target not halted !!");
6012 return ERROR_FAIL;
6015 if (CMD_ARGC != 1)
6016 return ERROR_COMMAND_SYNTAX_ERROR;
6018 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6020 /* Test reads */
6021 size_t num_bytes = test_size + 4;
6023 struct working_area *wa = NULL;
6024 retval = target_alloc_working_area(target, num_bytes, &wa);
6025 if (retval != ERROR_OK) {
6026 LOG_ERROR("Not enough working area");
6027 return ERROR_FAIL;
6030 uint8_t *test_pattern = malloc(num_bytes);
6032 for (size_t i = 0; i < num_bytes; i++)
6033 test_pattern[i] = rand();
6035 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6036 if (retval != ERROR_OK) {
6037 LOG_ERROR("Test pattern write failed");
6038 goto out;
6041 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6042 for (int size = 1; size <= 4; size *= 2) {
6043 for (int offset = 0; offset < 4; offset++) {
6044 uint32_t count = test_size / size;
6045 size_t host_bufsiz = (count + 2) * size + host_offset;
6046 uint8_t *read_ref = malloc(host_bufsiz);
6047 uint8_t *read_buf = malloc(host_bufsiz);
6049 for (size_t i = 0; i < host_bufsiz; i++) {
6050 read_ref[i] = rand();
6051 read_buf[i] = read_ref[i];
6053 command_print_sameline(CMD_CTX,
6054 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6055 size, offset, host_offset ? "un" : "");
6057 struct duration bench;
6058 duration_start(&bench);
6060 retval = target_read_memory(target, wa->address + offset, size, count,
6061 read_buf + size + host_offset);
6063 duration_measure(&bench);
6065 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6066 command_print(CMD_CTX, "Unsupported alignment");
6067 goto next;
6068 } else if (retval != ERROR_OK) {
6069 command_print(CMD_CTX, "Memory read failed");
6070 goto next;
6073 /* replay on host */
6074 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6076 /* check result */
6077 int result = memcmp(read_ref, read_buf, host_bufsiz);
6078 if (result == 0) {
6079 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6080 duration_elapsed(&bench),
6081 duration_kbps(&bench, count * size));
6082 } else {
6083 command_print(CMD_CTX, "Compare failed");
6084 binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6085 binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6087 next:
6088 free(read_ref);
6089 free(read_buf);
6094 out:
6095 free(test_pattern);
6097 if (wa != NULL)
6098 target_free_working_area(target, wa);
6100 /* Test writes */
6101 num_bytes = test_size + 4 + 4 + 4;
6103 retval = target_alloc_working_area(target, num_bytes, &wa);
6104 if (retval != ERROR_OK) {
6105 LOG_ERROR("Not enough working area");
6106 return ERROR_FAIL;
6109 test_pattern = malloc(num_bytes);
6111 for (size_t i = 0; i < num_bytes; i++)
6112 test_pattern[i] = rand();
6114 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6115 for (int size = 1; size <= 4; size *= 2) {
6116 for (int offset = 0; offset < 4; offset++) {
6117 uint32_t count = test_size / size;
6118 size_t host_bufsiz = count * size + host_offset;
6119 uint8_t *read_ref = malloc(num_bytes);
6120 uint8_t *read_buf = malloc(num_bytes);
6121 uint8_t *write_buf = malloc(host_bufsiz);
6123 for (size_t i = 0; i < host_bufsiz; i++)
6124 write_buf[i] = rand();
6125 command_print_sameline(CMD_CTX,
6126 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6127 size, offset, host_offset ? "un" : "");
6129 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6130 if (retval != ERROR_OK) {
6131 command_print(CMD_CTX, "Test pattern write failed");
6132 goto nextw;
6135 /* replay on host */
6136 memcpy(read_ref, test_pattern, num_bytes);
6137 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6139 struct duration bench;
6140 duration_start(&bench);
6142 retval = target_write_memory(target, wa->address + size + offset, size, count,
6143 write_buf + host_offset);
6145 duration_measure(&bench);
6147 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6148 command_print(CMD_CTX, "Unsupported alignment");
6149 goto nextw;
6150 } else if (retval != ERROR_OK) {
6151 command_print(CMD_CTX, "Memory write failed");
6152 goto nextw;
6155 /* read back */
6156 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6157 if (retval != ERROR_OK) {
6158 command_print(CMD_CTX, "Test pattern write failed");
6159 goto nextw;
6162 /* check result */
6163 int result = memcmp(read_ref, read_buf, num_bytes);
6164 if (result == 0) {
6165 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6166 duration_elapsed(&bench),
6167 duration_kbps(&bench, count * size));
6168 } else {
6169 command_print(CMD_CTX, "Compare failed");
6170 binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6171 binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6173 nextw:
6174 free(read_ref);
6175 free(read_buf);
6180 free(test_pattern);
6182 if (wa != NULL)
6183 target_free_working_area(target, wa);
6184 return retval;
6187 static const struct command_registration target_exec_command_handlers[] = {
6189 .name = "fast_load_image",
6190 .handler = handle_fast_load_image_command,
6191 .mode = COMMAND_ANY,
6192 .help = "Load image into server memory for later use by "
6193 "fast_load; primarily for profiling",
6194 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6195 "[min_address [max_length]]",
6198 .name = "fast_load",
6199 .handler = handle_fast_load_command,
6200 .mode = COMMAND_EXEC,
6201 .help = "loads active fast load image to current target "
6202 "- mainly for profiling purposes",
6203 .usage = "",
6206 .name = "profile",
6207 .handler = handle_profile_command,
6208 .mode = COMMAND_EXEC,
6209 .usage = "seconds filename [start end]",
6210 .help = "profiling samples the CPU PC",
6212 /** @todo don't register virt2phys() unless target supports it */
6214 .name = "virt2phys",
6215 .handler = handle_virt2phys_command,
6216 .mode = COMMAND_ANY,
6217 .help = "translate a virtual address into a physical address",
6218 .usage = "virtual_address",
6221 .name = "reg",
6222 .handler = handle_reg_command,
6223 .mode = COMMAND_EXEC,
6224 .help = "display (reread from target with \"force\") or set a register; "
6225 "with no arguments, displays all registers and their values",
6226 .usage = "[(register_number|register_name) [(value|'force')]]",
6229 .name = "poll",
6230 .handler = handle_poll_command,
6231 .mode = COMMAND_EXEC,
6232 .help = "poll target state; or reconfigure background polling",
6233 .usage = "['on'|'off']",
6236 .name = "wait_halt",
6237 .handler = handle_wait_halt_command,
6238 .mode = COMMAND_EXEC,
6239 .help = "wait up to the specified number of milliseconds "
6240 "(default 5000) for a previously requested halt",
6241 .usage = "[milliseconds]",
6244 .name = "halt",
6245 .handler = handle_halt_command,
6246 .mode = COMMAND_EXEC,
6247 .help = "request target to halt, then wait up to the specified"
6248 "number of milliseconds (default 5000) for it to complete",
6249 .usage = "[milliseconds]",
6252 .name = "resume",
6253 .handler = handle_resume_command,
6254 .mode = COMMAND_EXEC,
6255 .help = "resume target execution from current PC or address",
6256 .usage = "[address]",
6259 .name = "reset",
6260 .handler = handle_reset_command,
6261 .mode = COMMAND_EXEC,
6262 .usage = "[run|halt|init]",
6263 .help = "Reset all targets into the specified mode."
6264 "Default reset mode is run, if not given.",
6267 .name = "soft_reset_halt",
6268 .handler = handle_soft_reset_halt_command,
6269 .mode = COMMAND_EXEC,
6270 .usage = "",
6271 .help = "halt the target and do a soft reset",
6274 .name = "step",
6275 .handler = handle_step_command,
6276 .mode = COMMAND_EXEC,
6277 .help = "step one instruction from current PC or address",
6278 .usage = "[address]",
6281 .name = "mdd",
6282 .handler = handle_md_command,
6283 .mode = COMMAND_EXEC,
6284 .help = "display memory words",
6285 .usage = "['phys'] address [count]",
6288 .name = "mdw",
6289 .handler = handle_md_command,
6290 .mode = COMMAND_EXEC,
6291 .help = "display memory words",
6292 .usage = "['phys'] address [count]",
6295 .name = "mdh",
6296 .handler = handle_md_command,
6297 .mode = COMMAND_EXEC,
6298 .help = "display memory half-words",
6299 .usage = "['phys'] address [count]",
6302 .name = "mdb",
6303 .handler = handle_md_command,
6304 .mode = COMMAND_EXEC,
6305 .help = "display memory bytes",
6306 .usage = "['phys'] address [count]",
6309 .name = "mwd",
6310 .handler = handle_mw_command,
6311 .mode = COMMAND_EXEC,
6312 .help = "write memory word",
6313 .usage = "['phys'] address value [count]",
6316 .name = "mww",
6317 .handler = handle_mw_command,
6318 .mode = COMMAND_EXEC,
6319 .help = "write memory word",
6320 .usage = "['phys'] address value [count]",
6323 .name = "mwh",
6324 .handler = handle_mw_command,
6325 .mode = COMMAND_EXEC,
6326 .help = "write memory half-word",
6327 .usage = "['phys'] address value [count]",
6330 .name = "mwb",
6331 .handler = handle_mw_command,
6332 .mode = COMMAND_EXEC,
6333 .help = "write memory byte",
6334 .usage = "['phys'] address value [count]",
6337 .name = "bp",
6338 .handler = handle_bp_command,
6339 .mode = COMMAND_EXEC,
6340 .help = "list or set hardware or software breakpoint",
6341 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6344 .name = "rbp",
6345 .handler = handle_rbp_command,
6346 .mode = COMMAND_EXEC,
6347 .help = "remove breakpoint",
6348 .usage = "address",
6351 .name = "wp",
6352 .handler = handle_wp_command,
6353 .mode = COMMAND_EXEC,
6354 .help = "list (no params) or create watchpoints",
6355 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6358 .name = "rwp",
6359 .handler = handle_rwp_command,
6360 .mode = COMMAND_EXEC,
6361 .help = "remove watchpoint",
6362 .usage = "address",
6365 .name = "load_image",
6366 .handler = handle_load_image_command,
6367 .mode = COMMAND_EXEC,
6368 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6369 "[min_address] [max_length]",
6372 .name = "dump_image",
6373 .handler = handle_dump_image_command,
6374 .mode = COMMAND_EXEC,
6375 .usage = "filename address size",
6378 .name = "verify_image_checksum",
6379 .handler = handle_verify_image_checksum_command,
6380 .mode = COMMAND_EXEC,
6381 .usage = "filename [offset [type]]",
6384 .name = "verify_image",
6385 .handler = handle_verify_image_command,
6386 .mode = COMMAND_EXEC,
6387 .usage = "filename [offset [type]]",
6390 .name = "test_image",
6391 .handler = handle_test_image_command,
6392 .mode = COMMAND_EXEC,
6393 .usage = "filename [offset [type]]",
6396 .name = "mem2array",
6397 .mode = COMMAND_EXEC,
6398 .jim_handler = jim_mem2array,
6399 .help = "read 8/16/32 bit memory and return as a TCL array "
6400 "for script processing",
6401 .usage = "arrayname bitwidth address count",
6404 .name = "array2mem",
6405 .mode = COMMAND_EXEC,
6406 .jim_handler = jim_array2mem,
6407 .help = "convert a TCL array to memory locations "
6408 "and write the 8/16/32 bit values",
6409 .usage = "arrayname bitwidth address count",
6412 .name = "reset_nag",
6413 .handler = handle_target_reset_nag,
6414 .mode = COMMAND_ANY,
6415 .help = "Nag after each reset about options that could have been "
6416 "enabled to improve performance. ",
6417 .usage = "['enable'|'disable']",
6420 .name = "ps",
6421 .handler = handle_ps_command,
6422 .mode = COMMAND_EXEC,
6423 .help = "list all tasks ",
6424 .usage = " ",
6427 .name = "test_mem_access",
6428 .handler = handle_test_mem_access_command,
6429 .mode = COMMAND_EXEC,
6430 .help = "Test the target's memory access functions",
6431 .usage = "size",
6434 COMMAND_REGISTRATION_DONE
6436 static int target_register_user_commands(struct command_context *cmd_ctx)
6438 int retval = ERROR_OK;
6439 retval = target_request_register_commands(cmd_ctx);
6440 if (retval != ERROR_OK)
6441 return retval;
6443 retval = trace_register_commands(cmd_ctx);
6444 if (retval != ERROR_OK)
6445 return retval;
6448 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);