target: fix some minor typo
[openocd.git] / src / target / target.c
blobd60e642c94632e6c061811a134b70f812ccfc069
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
76 /* targets */
77 extern struct target_type arm7tdmi_target;
78 extern struct target_type arm720t_target;
79 extern struct target_type arm9tdmi_target;
80 extern struct target_type arm920t_target;
81 extern struct target_type arm966e_target;
82 extern struct target_type arm946e_target;
83 extern struct target_type arm926ejs_target;
84 extern struct target_type fa526_target;
85 extern struct target_type feroceon_target;
86 extern struct target_type dragonite_target;
87 extern struct target_type xscale_target;
88 extern struct target_type cortexm_target;
89 extern struct target_type cortexa_target;
90 extern struct target_type aarch64_target;
91 extern struct target_type cortexr4_target;
92 extern struct target_type arm11_target;
93 extern struct target_type ls1_sap_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type mips_mips64_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
109 extern struct target_type riscv_target;
110 extern struct target_type mem_ap_target;
111 extern struct target_type esirisc_target;
112 extern struct target_type arcv2_target;
114 static struct target_type *target_types[] = {
115 &arm7tdmi_target,
116 &arm9tdmi_target,
117 &arm920t_target,
118 &arm720t_target,
119 &arm966e_target,
120 &arm946e_target,
121 &arm926ejs_target,
122 &fa526_target,
123 &feroceon_target,
124 &dragonite_target,
125 &xscale_target,
126 &cortexm_target,
127 &cortexa_target,
128 &cortexr4_target,
129 &arm11_target,
130 &ls1_sap_target,
131 &mips_m4k_target,
132 &avr_target,
133 &dsp563xx_target,
134 &dsp5680xx_target,
135 &testee_target,
136 &avr32_ap7k_target,
137 &hla_target,
138 &nds32_v2_target,
139 &nds32_v3_target,
140 &nds32_v3m_target,
141 &or1k_target,
142 &quark_x10xx_target,
143 &quark_d20xx_target,
144 &stm8_target,
145 &riscv_target,
146 &mem_ap_target,
147 &esirisc_target,
148 &arcv2_target,
149 &aarch64_target,
150 &mips_mips64_target,
151 NULL,
154 struct target *all_targets;
155 static struct target_event_callback *target_event_callbacks;
156 static struct target_timer_callback *target_timer_callbacks;
157 static LIST_HEAD(target_reset_callback_list);
158 static LIST_HEAD(target_trace_callback_list);
159 static const int polling_interval = 100;
161 static const Jim_Nvp nvp_assert[] = {
162 { .name = "assert", NVP_ASSERT },
163 { .name = "deassert", NVP_DEASSERT },
164 { .name = "T", NVP_ASSERT },
165 { .name = "F", NVP_DEASSERT },
166 { .name = "t", NVP_ASSERT },
167 { .name = "f", NVP_DEASSERT },
168 { .name = NULL, .value = -1 }
171 static const Jim_Nvp nvp_error_target[] = {
172 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
173 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
174 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
175 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
176 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
177 { .value = ERROR_TARGET_UNALIGNED_ACCESS, .name = "err-unaligned-access" },
178 { .value = ERROR_TARGET_DATA_ABORT, .name = "err-data-abort" },
179 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE, .name = "err-resource-not-available" },
180 { .value = ERROR_TARGET_TRANSLATION_FAULT, .name = "err-translation-fault" },
181 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
182 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
183 { .value = -1, .name = NULL }
186 static const char *target_strerror_safe(int err)
188 const Jim_Nvp *n;
190 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
191 if (n->name == NULL)
192 return "unknown";
193 else
194 return n->name;
197 static const Jim_Nvp nvp_target_event[] = {
199 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
200 { .value = TARGET_EVENT_HALTED, .name = "halted" },
201 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
202 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
203 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
204 { .value = TARGET_EVENT_STEP_START, .name = "step-start" },
205 { .value = TARGET_EVENT_STEP_END, .name = "step-end" },
207 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
208 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
210 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
211 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
212 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
213 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
214 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
215 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
216 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
217 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
219 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
220 { .value = TARGET_EVENT_EXAMINE_FAIL, .name = "examine-fail" },
221 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
223 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
224 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
226 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
227 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
229 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
230 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END, .name = "gdb-flash-write-end" },
232 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
233 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END, .name = "gdb-flash-erase-end" },
235 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
237 { .name = NULL, .value = -1 }
240 static const Jim_Nvp nvp_target_state[] = {
241 { .name = "unknown", .value = TARGET_UNKNOWN },
242 { .name = "running", .value = TARGET_RUNNING },
243 { .name = "halted", .value = TARGET_HALTED },
244 { .name = "reset", .value = TARGET_RESET },
245 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
246 { .name = NULL, .value = -1 },
249 static const Jim_Nvp nvp_target_debug_reason[] = {
250 { .name = "debug-request", .value = DBG_REASON_DBGRQ },
251 { .name = "breakpoint", .value = DBG_REASON_BREAKPOINT },
252 { .name = "watchpoint", .value = DBG_REASON_WATCHPOINT },
253 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
254 { .name = "single-step", .value = DBG_REASON_SINGLESTEP },
255 { .name = "target-not-halted", .value = DBG_REASON_NOTHALTED },
256 { .name = "program-exit", .value = DBG_REASON_EXIT },
257 { .name = "exception-catch", .value = DBG_REASON_EXC_CATCH },
258 { .name = "undefined", .value = DBG_REASON_UNDEFINED },
259 { .name = NULL, .value = -1 },
262 static const Jim_Nvp nvp_target_endian[] = {
263 { .name = "big", .value = TARGET_BIG_ENDIAN },
264 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
265 { .name = "be", .value = TARGET_BIG_ENDIAN },
266 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
267 { .name = NULL, .value = -1 },
270 static const Jim_Nvp nvp_reset_modes[] = {
271 { .name = "unknown", .value = RESET_UNKNOWN },
272 { .name = "run", .value = RESET_RUN },
273 { .name = "halt", .value = RESET_HALT },
274 { .name = "init", .value = RESET_INIT },
275 { .name = NULL, .value = -1 },
278 const char *debug_reason_name(struct target *t)
280 const char *cp;
282 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
283 t->debug_reason)->name;
284 if (!cp) {
285 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
286 cp = "(*BUG*unknown*BUG*)";
288 return cp;
291 const char *target_state_name(struct target *t)
293 const char *cp;
294 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
295 if (!cp) {
296 LOG_ERROR("Invalid target state: %d", (int)(t->state));
297 cp = "(*BUG*unknown*BUG*)";
300 if (!target_was_examined(t) && t->defer_examine)
301 cp = "examine deferred";
303 return cp;
306 const char *target_event_name(enum target_event event)
308 const char *cp;
309 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
310 if (!cp) {
311 LOG_ERROR("Invalid target event: %d", (int)(event));
312 cp = "(*BUG*unknown*BUG*)";
314 return cp;
317 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
319 const char *cp;
320 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
321 if (!cp) {
322 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
323 cp = "(*BUG*unknown*BUG*)";
325 return cp;
328 /* determine the number of the new target */
329 static int new_target_number(void)
331 struct target *t;
332 int x;
334 /* number is 0 based */
335 x = -1;
336 t = all_targets;
337 while (t) {
338 if (x < t->target_number)
339 x = t->target_number;
340 t = t->next;
342 return x + 1;
345 static void append_to_list_all_targets(struct target *target)
347 struct target **t = &all_targets;
349 while (*t)
350 t = &((*t)->next);
351 *t = target;
354 /* read a uint64_t from a buffer in target memory endianness */
355 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
357 if (target->endianness == TARGET_LITTLE_ENDIAN)
358 return le_to_h_u64(buffer);
359 else
360 return be_to_h_u64(buffer);
363 /* read a uint32_t from a buffer in target memory endianness */
364 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
366 if (target->endianness == TARGET_LITTLE_ENDIAN)
367 return le_to_h_u32(buffer);
368 else
369 return be_to_h_u32(buffer);
372 /* read a uint24_t from a buffer in target memory endianness */
373 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
375 if (target->endianness == TARGET_LITTLE_ENDIAN)
376 return le_to_h_u24(buffer);
377 else
378 return be_to_h_u24(buffer);
381 /* read a uint16_t from a buffer in target memory endianness */
382 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
384 if (target->endianness == TARGET_LITTLE_ENDIAN)
385 return le_to_h_u16(buffer);
386 else
387 return be_to_h_u16(buffer);
390 /* write a uint64_t to a buffer in target memory endianness */
391 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
393 if (target->endianness == TARGET_LITTLE_ENDIAN)
394 h_u64_to_le(buffer, value);
395 else
396 h_u64_to_be(buffer, value);
399 /* write a uint32_t to a buffer in target memory endianness */
400 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
402 if (target->endianness == TARGET_LITTLE_ENDIAN)
403 h_u32_to_le(buffer, value);
404 else
405 h_u32_to_be(buffer, value);
408 /* write a uint24_t to a buffer in target memory endianness */
409 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
411 if (target->endianness == TARGET_LITTLE_ENDIAN)
412 h_u24_to_le(buffer, value);
413 else
414 h_u24_to_be(buffer, value);
417 /* write a uint16_t to a buffer in target memory endianness */
418 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
420 if (target->endianness == TARGET_LITTLE_ENDIAN)
421 h_u16_to_le(buffer, value);
422 else
423 h_u16_to_be(buffer, value);
426 /* write a uint8_t to a buffer in target memory endianness */
427 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
429 *buffer = value;
432 /* write a uint64_t array to a buffer in target memory endianness */
433 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
435 uint32_t i;
436 for (i = 0; i < count; i++)
437 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
440 /* write a uint32_t array to a buffer in target memory endianness */
441 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
443 uint32_t i;
444 for (i = 0; i < count; i++)
445 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
448 /* write a uint16_t array to a buffer in target memory endianness */
449 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
451 uint32_t i;
452 for (i = 0; i < count; i++)
453 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
456 /* write a uint64_t array to a buffer in target memory endianness */
457 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
459 uint32_t i;
460 for (i = 0; i < count; i++)
461 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
464 /* write a uint32_t array to a buffer in target memory endianness */
465 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
467 uint32_t i;
468 for (i = 0; i < count; i++)
469 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
472 /* write a uint16_t array to a buffer in target memory endianness */
473 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
475 uint32_t i;
476 for (i = 0; i < count; i++)
477 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
480 /* return a pointer to a configured target; id is name or number */
481 struct target *get_target(const char *id)
483 struct target *target;
485 /* try as tcltarget name */
486 for (target = all_targets; target; target = target->next) {
487 if (target_name(target) == NULL)
488 continue;
489 if (strcmp(id, target_name(target)) == 0)
490 return target;
493 /* It's OK to remove this fallback sometime after August 2010 or so */
495 /* no match, try as number */
496 unsigned num;
497 if (parse_uint(id, &num) != ERROR_OK)
498 return NULL;
500 for (target = all_targets; target; target = target->next) {
501 if (target->target_number == (int)num) {
502 LOG_WARNING("use '%s' as target identifier, not '%u'",
503 target_name(target), num);
504 return target;
508 return NULL;
511 /* returns a pointer to the n-th configured target */
512 struct target *get_target_by_num(int num)
514 struct target *target = all_targets;
516 while (target) {
517 if (target->target_number == num)
518 return target;
519 target = target->next;
522 return NULL;
525 struct target *get_current_target(struct command_context *cmd_ctx)
527 struct target *target = get_current_target_or_null(cmd_ctx);
529 if (target == NULL) {
530 LOG_ERROR("BUG: current_target out of bounds");
531 exit(-1);
534 return target;
537 struct target *get_current_target_or_null(struct command_context *cmd_ctx)
539 return cmd_ctx->current_target_override
540 ? cmd_ctx->current_target_override
541 : cmd_ctx->current_target;
544 int target_poll(struct target *target)
546 int retval;
548 /* We can't poll until after examine */
549 if (!target_was_examined(target)) {
550 /* Fail silently lest we pollute the log */
551 return ERROR_FAIL;
554 retval = target->type->poll(target);
555 if (retval != ERROR_OK)
556 return retval;
558 if (target->halt_issued) {
559 if (target->state == TARGET_HALTED)
560 target->halt_issued = false;
561 else {
562 int64_t t = timeval_ms() - target->halt_issued_time;
563 if (t > DEFAULT_HALT_TIMEOUT) {
564 target->halt_issued = false;
565 LOG_INFO("Halt timed out, wake up GDB.");
566 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
571 return ERROR_OK;
574 int target_halt(struct target *target)
576 int retval;
577 /* We can't poll until after examine */
578 if (!target_was_examined(target)) {
579 LOG_ERROR("Target not examined yet");
580 return ERROR_FAIL;
583 retval = target->type->halt(target);
584 if (retval != ERROR_OK)
585 return retval;
587 target->halt_issued = true;
588 target->halt_issued_time = timeval_ms();
590 return ERROR_OK;
594 * Make the target (re)start executing using its saved execution
595 * context (possibly with some modifications).
597 * @param target Which target should start executing.
598 * @param current True to use the target's saved program counter instead
599 * of the address parameter
600 * @param address Optionally used as the program counter.
601 * @param handle_breakpoints True iff breakpoints at the resumption PC
602 * should be skipped. (For example, maybe execution was stopped by
603 * such a breakpoint, in which case it would be counterproductive to
604 * let it re-trigger.
605 * @param debug_execution False if all working areas allocated by OpenOCD
606 * should be released and/or restored to their original contents.
607 * (This would for example be true to run some downloaded "helper"
608 * algorithm code, which resides in one such working buffer and uses
609 * another for data storage.)
611 * @todo Resolve the ambiguity about what the "debug_execution" flag
612 * signifies. For example, Target implementations don't agree on how
613 * it relates to invalidation of the register cache, or to whether
614 * breakpoints and watchpoints should be enabled. (It would seem wrong
615 * to enable breakpoints when running downloaded "helper" algorithms
616 * (debug_execution true), since the breakpoints would be set to match
617 * target firmware being debugged, not the helper algorithm.... and
618 * enabling them could cause such helpers to malfunction (for example,
619 * by overwriting data with a breakpoint instruction. On the other
620 * hand the infrastructure for running such helpers might use this
621 * procedure but rely on hardware breakpoint to detect termination.)
623 int target_resume(struct target *target, int current, target_addr_t address,
624 int handle_breakpoints, int debug_execution)
626 int retval;
628 /* We can't poll until after examine */
629 if (!target_was_examined(target)) {
630 LOG_ERROR("Target not examined yet");
631 return ERROR_FAIL;
634 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
636 /* note that resume *must* be asynchronous. The CPU can halt before
637 * we poll. The CPU can even halt at the current PC as a result of
638 * a software breakpoint being inserted by (a bug?) the application.
641 * resume() triggers the event 'resumed'. The execution of TCL commands
642 * in the event handler causes the polling of targets. If the target has
643 * already halted for a breakpoint, polling will run the 'halted' event
644 * handler before the pending 'resumed' handler.
645 * Disable polling during resume() to guarantee the execution of handlers
646 * in the correct order.
648 bool save_poll = jtag_poll_get_enabled();
649 jtag_poll_set_enabled(false);
650 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
651 jtag_poll_set_enabled(save_poll);
652 if (retval != ERROR_OK)
653 return retval;
655 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
657 return retval;
660 static int target_process_reset(struct command_invocation *cmd, enum target_reset_mode reset_mode)
662 char buf[100];
663 int retval;
664 Jim_Nvp *n;
665 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
666 if (n->name == NULL) {
667 LOG_ERROR("invalid reset mode");
668 return ERROR_FAIL;
671 struct target *target;
672 for (target = all_targets; target; target = target->next)
673 target_call_reset_callbacks(target, reset_mode);
675 /* disable polling during reset to make reset event scripts
676 * more predictable, i.e. dr/irscan & pathmove in events will
677 * not have JTAG operations injected into the middle of a sequence.
679 bool save_poll = jtag_poll_get_enabled();
681 jtag_poll_set_enabled(false);
683 sprintf(buf, "ocd_process_reset %s", n->name);
684 retval = Jim_Eval(cmd->ctx->interp, buf);
686 jtag_poll_set_enabled(save_poll);
688 if (retval != JIM_OK) {
689 Jim_MakeErrorMessage(cmd->ctx->interp);
690 command_print(cmd, "%s", Jim_GetString(Jim_GetResult(cmd->ctx->interp), NULL));
691 return ERROR_FAIL;
694 /* We want any events to be processed before the prompt */
695 retval = target_call_timer_callbacks_now();
697 for (target = all_targets; target; target = target->next) {
698 target->type->check_reset(target);
699 target->running_alg = false;
702 return retval;
705 static int identity_virt2phys(struct target *target,
706 target_addr_t virtual, target_addr_t *physical)
708 *physical = virtual;
709 return ERROR_OK;
712 static int no_mmu(struct target *target, int *enabled)
714 *enabled = 0;
715 return ERROR_OK;
718 static int default_examine(struct target *target)
720 target_set_examined(target);
721 return ERROR_OK;
724 /* no check by default */
725 static int default_check_reset(struct target *target)
727 return ERROR_OK;
730 /* Equivalent Tcl code arp_examine_one is in src/target/startup.tcl
731 * Keep in sync */
732 int target_examine_one(struct target *target)
734 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
736 int retval = target->type->examine(target);
737 if (retval != ERROR_OK) {
738 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_FAIL);
739 return retval;
742 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
744 return ERROR_OK;
747 static int jtag_enable_callback(enum jtag_event event, void *priv)
749 struct target *target = priv;
751 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
752 return ERROR_OK;
754 jtag_unregister_event_callback(jtag_enable_callback, target);
756 return target_examine_one(target);
759 /* Targets that correctly implement init + examine, i.e.
760 * no communication with target during init:
762 * XScale
764 int target_examine(void)
766 int retval = ERROR_OK;
767 struct target *target;
769 for (target = all_targets; target; target = target->next) {
770 /* defer examination, but don't skip it */
771 if (!target->tap->enabled) {
772 jtag_register_event_callback(jtag_enable_callback,
773 target);
774 continue;
777 if (target->defer_examine)
778 continue;
780 int retval2 = target_examine_one(target);
781 if (retval2 != ERROR_OK) {
782 LOG_WARNING("target %s examination failed", target_name(target));
783 retval = retval2;
786 return retval;
789 const char *target_type_name(struct target *target)
791 return target->type->name;
794 static int target_soft_reset_halt(struct target *target)
796 if (!target_was_examined(target)) {
797 LOG_ERROR("Target not examined yet");
798 return ERROR_FAIL;
800 if (!target->type->soft_reset_halt) {
801 LOG_ERROR("Target %s does not support soft_reset_halt",
802 target_name(target));
803 return ERROR_FAIL;
805 return target->type->soft_reset_halt(target);
809 * Downloads a target-specific native code algorithm to the target,
810 * and executes it. * Note that some targets may need to set up, enable,
811 * and tear down a breakpoint (hard or * soft) to detect algorithm
812 * termination, while others may support lower overhead schemes where
813 * soft breakpoints embedded in the algorithm automatically terminate the
814 * algorithm.
816 * @param target used to run the algorithm
817 * @param num_mem_params
818 * @param mem_params
819 * @param num_reg_params
820 * @param reg_param
821 * @param entry_point
822 * @param exit_point
823 * @param timeout_ms
824 * @param arch_info target-specific description of the algorithm.
826 int target_run_algorithm(struct target *target,
827 int num_mem_params, struct mem_param *mem_params,
828 int num_reg_params, struct reg_param *reg_param,
829 uint32_t entry_point, uint32_t exit_point,
830 int timeout_ms, void *arch_info)
832 int retval = ERROR_FAIL;
834 if (!target_was_examined(target)) {
835 LOG_ERROR("Target not examined yet");
836 goto done;
838 if (!target->type->run_algorithm) {
839 LOG_ERROR("Target type '%s' does not support %s",
840 target_type_name(target), __func__);
841 goto done;
844 target->running_alg = true;
845 retval = target->type->run_algorithm(target,
846 num_mem_params, mem_params,
847 num_reg_params, reg_param,
848 entry_point, exit_point, timeout_ms, arch_info);
849 target->running_alg = false;
851 done:
852 return retval;
856 * Executes a target-specific native code algorithm and leaves it running.
858 * @param target used to run the algorithm
859 * @param num_mem_params
860 * @param mem_params
861 * @param num_reg_params
862 * @param reg_params
863 * @param entry_point
864 * @param exit_point
865 * @param arch_info target-specific description of the algorithm.
867 int target_start_algorithm(struct target *target,
868 int num_mem_params, struct mem_param *mem_params,
869 int num_reg_params, struct reg_param *reg_params,
870 uint32_t entry_point, uint32_t exit_point,
871 void *arch_info)
873 int retval = ERROR_FAIL;
875 if (!target_was_examined(target)) {
876 LOG_ERROR("Target not examined yet");
877 goto done;
879 if (!target->type->start_algorithm) {
880 LOG_ERROR("Target type '%s' does not support %s",
881 target_type_name(target), __func__);
882 goto done;
884 if (target->running_alg) {
885 LOG_ERROR("Target is already running an algorithm");
886 goto done;
889 target->running_alg = true;
890 retval = target->type->start_algorithm(target,
891 num_mem_params, mem_params,
892 num_reg_params, reg_params,
893 entry_point, exit_point, arch_info);
895 done:
896 return retval;
900 * Waits for an algorithm started with target_start_algorithm() to complete.
902 * @param target used to run the algorithm
903 * @param num_mem_params
904 * @param mem_params
905 * @param num_reg_params
906 * @param reg_params
907 * @param exit_point
908 * @param timeout_ms
909 * @param arch_info target-specific description of the algorithm.
911 int target_wait_algorithm(struct target *target,
912 int num_mem_params, struct mem_param *mem_params,
913 int num_reg_params, struct reg_param *reg_params,
914 uint32_t exit_point, int timeout_ms,
915 void *arch_info)
917 int retval = ERROR_FAIL;
919 if (!target->type->wait_algorithm) {
920 LOG_ERROR("Target type '%s' does not support %s",
921 target_type_name(target), __func__);
922 goto done;
924 if (!target->running_alg) {
925 LOG_ERROR("Target is not running an algorithm");
926 goto done;
929 retval = target->type->wait_algorithm(target,
930 num_mem_params, mem_params,
931 num_reg_params, reg_params,
932 exit_point, timeout_ms, arch_info);
933 if (retval != ERROR_TARGET_TIMEOUT)
934 target->running_alg = false;
936 done:
937 return retval;
941 * Streams data to a circular buffer on target intended for consumption by code
942 * running asynchronously on target.
944 * This is intended for applications where target-specific native code runs
945 * on the target, receives data from the circular buffer, does something with
946 * it (most likely writing it to a flash memory), and advances the circular
947 * buffer pointer.
949 * This assumes that the helper algorithm has already been loaded to the target,
950 * but has not been started yet. Given memory and register parameters are passed
951 * to the algorithm.
953 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
954 * following format:
956 * [buffer_start + 0, buffer_start + 4):
957 * Write Pointer address (aka head). Written and updated by this
958 * routine when new data is written to the circular buffer.
959 * [buffer_start + 4, buffer_start + 8):
960 * Read Pointer address (aka tail). Updated by code running on the
961 * target after it consumes data.
962 * [buffer_start + 8, buffer_start + buffer_size):
963 * Circular buffer contents.
965 * See contrib/loaders/flash/stm32f1x.S for an example.
967 * @param target used to run the algorithm
968 * @param buffer address on the host where data to be sent is located
969 * @param count number of blocks to send
970 * @param block_size size in bytes of each block
971 * @param num_mem_params count of memory-based params to pass to algorithm
972 * @param mem_params memory-based params to pass to algorithm
973 * @param num_reg_params count of register-based params to pass to algorithm
974 * @param reg_params memory-based params to pass to algorithm
975 * @param buffer_start address on the target of the circular buffer structure
976 * @param buffer_size size of the circular buffer structure
977 * @param entry_point address on the target to execute to start the algorithm
978 * @param exit_point address at which to set a breakpoint to catch the
979 * end of the algorithm; can be 0 if target triggers a breakpoint itself
980 * @param arch_info
983 int target_run_flash_async_algorithm(struct target *target,
984 const uint8_t *buffer, uint32_t count, int block_size,
985 int num_mem_params, struct mem_param *mem_params,
986 int num_reg_params, struct reg_param *reg_params,
987 uint32_t buffer_start, uint32_t buffer_size,
988 uint32_t entry_point, uint32_t exit_point, void *arch_info)
990 int retval;
991 int timeout = 0;
993 const uint8_t *buffer_orig = buffer;
995 /* Set up working area. First word is write pointer, second word is read pointer,
996 * rest is fifo data area. */
997 uint32_t wp_addr = buffer_start;
998 uint32_t rp_addr = buffer_start + 4;
999 uint32_t fifo_start_addr = buffer_start + 8;
1000 uint32_t fifo_end_addr = buffer_start + buffer_size;
1002 uint32_t wp = fifo_start_addr;
1003 uint32_t rp = fifo_start_addr;
1005 /* validate block_size is 2^n */
1006 assert(!block_size || !(block_size & (block_size - 1)));
1008 retval = target_write_u32(target, wp_addr, wp);
1009 if (retval != ERROR_OK)
1010 return retval;
1011 retval = target_write_u32(target, rp_addr, rp);
1012 if (retval != ERROR_OK)
1013 return retval;
1015 /* Start up algorithm on target and let it idle while writing the first chunk */
1016 retval = target_start_algorithm(target, num_mem_params, mem_params,
1017 num_reg_params, reg_params,
1018 entry_point,
1019 exit_point,
1020 arch_info);
1022 if (retval != ERROR_OK) {
1023 LOG_ERROR("error starting target flash write algorithm");
1024 return retval;
1027 while (count > 0) {
1029 retval = target_read_u32(target, rp_addr, &rp);
1030 if (retval != ERROR_OK) {
1031 LOG_ERROR("failed to get read pointer");
1032 break;
1035 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
1036 (size_t) (buffer - buffer_orig), count, wp, rp);
1038 if (rp == 0) {
1039 LOG_ERROR("flash write algorithm aborted by target");
1040 retval = ERROR_FLASH_OPERATION_FAILED;
1041 break;
1044 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
1045 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
1046 break;
1049 /* Count the number of bytes available in the fifo without
1050 * crossing the wrap around. Make sure to not fill it completely,
1051 * because that would make wp == rp and that's the empty condition. */
1052 uint32_t thisrun_bytes;
1053 if (rp > wp)
1054 thisrun_bytes = rp - wp - block_size;
1055 else if (rp > fifo_start_addr)
1056 thisrun_bytes = fifo_end_addr - wp;
1057 else
1058 thisrun_bytes = fifo_end_addr - wp - block_size;
1060 if (thisrun_bytes == 0) {
1061 /* Throttle polling a bit if transfer is (much) faster than flash
1062 * programming. The exact delay shouldn't matter as long as it's
1063 * less than buffer size / flash speed. This is very unlikely to
1064 * run when using high latency connections such as USB. */
1065 alive_sleep(2);
1067 /* to stop an infinite loop on some targets check and increment a timeout
1068 * this issue was observed on a stellaris using the new ICDI interface */
1069 if (timeout++ >= 2500) {
1070 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1071 return ERROR_FLASH_OPERATION_FAILED;
1073 continue;
1076 /* reset our timeout */
1077 timeout = 0;
1079 /* Limit to the amount of data we actually want to write */
1080 if (thisrun_bytes > count * block_size)
1081 thisrun_bytes = count * block_size;
1083 /* Force end of large blocks to be word aligned */
1084 if (thisrun_bytes >= 16)
1085 thisrun_bytes -= (rp + thisrun_bytes) & 0x03;
1087 /* Write data to fifo */
1088 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1089 if (retval != ERROR_OK)
1090 break;
1092 /* Update counters and wrap write pointer */
1093 buffer += thisrun_bytes;
1094 count -= thisrun_bytes / block_size;
1095 wp += thisrun_bytes;
1096 if (wp >= fifo_end_addr)
1097 wp = fifo_start_addr;
1099 /* Store updated write pointer to target */
1100 retval = target_write_u32(target, wp_addr, wp);
1101 if (retval != ERROR_OK)
1102 break;
1104 /* Avoid GDB timeouts */
1105 keep_alive();
1108 if (retval != ERROR_OK) {
1109 /* abort flash write algorithm on target */
1110 target_write_u32(target, wp_addr, 0);
1113 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1114 num_reg_params, reg_params,
1115 exit_point,
1116 10000,
1117 arch_info);
1119 if (retval2 != ERROR_OK) {
1120 LOG_ERROR("error waiting for target flash write algorithm");
1121 retval = retval2;
1124 if (retval == ERROR_OK) {
1125 /* check if algorithm set rp = 0 after fifo writer loop finished */
1126 retval = target_read_u32(target, rp_addr, &rp);
1127 if (retval == ERROR_OK && rp == 0) {
1128 LOG_ERROR("flash write algorithm aborted by target");
1129 retval = ERROR_FLASH_OPERATION_FAILED;
1133 return retval;
1136 int target_run_read_async_algorithm(struct target *target,
1137 uint8_t *buffer, uint32_t count, int block_size,
1138 int num_mem_params, struct mem_param *mem_params,
1139 int num_reg_params, struct reg_param *reg_params,
1140 uint32_t buffer_start, uint32_t buffer_size,
1141 uint32_t entry_point, uint32_t exit_point, void *arch_info)
1143 int retval;
1144 int timeout = 0;
1146 const uint8_t *buffer_orig = buffer;
1148 /* Set up working area. First word is write pointer, second word is read pointer,
1149 * rest is fifo data area. */
1150 uint32_t wp_addr = buffer_start;
1151 uint32_t rp_addr = buffer_start + 4;
1152 uint32_t fifo_start_addr = buffer_start + 8;
1153 uint32_t fifo_end_addr = buffer_start + buffer_size;
1155 uint32_t wp = fifo_start_addr;
1156 uint32_t rp = fifo_start_addr;
1158 /* validate block_size is 2^n */
1159 assert(!block_size || !(block_size & (block_size - 1)));
1161 retval = target_write_u32(target, wp_addr, wp);
1162 if (retval != ERROR_OK)
1163 return retval;
1164 retval = target_write_u32(target, rp_addr, rp);
1165 if (retval != ERROR_OK)
1166 return retval;
1168 /* Start up algorithm on target */
1169 retval = target_start_algorithm(target, num_mem_params, mem_params,
1170 num_reg_params, reg_params,
1171 entry_point,
1172 exit_point,
1173 arch_info);
1175 if (retval != ERROR_OK) {
1176 LOG_ERROR("error starting target flash read algorithm");
1177 return retval;
1180 while (count > 0) {
1181 retval = target_read_u32(target, wp_addr, &wp);
1182 if (retval != ERROR_OK) {
1183 LOG_ERROR("failed to get write pointer");
1184 break;
1187 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
1188 (size_t)(buffer - buffer_orig), count, wp, rp);
1190 if (wp == 0) {
1191 LOG_ERROR("flash read algorithm aborted by target");
1192 retval = ERROR_FLASH_OPERATION_FAILED;
1193 break;
1196 if (((wp - fifo_start_addr) & (block_size - 1)) || wp < fifo_start_addr || wp >= fifo_end_addr) {
1197 LOG_ERROR("corrupted fifo write pointer 0x%" PRIx32, wp);
1198 break;
1201 /* Count the number of bytes available in the fifo without
1202 * crossing the wrap around. */
1203 uint32_t thisrun_bytes;
1204 if (wp >= rp)
1205 thisrun_bytes = wp - rp;
1206 else
1207 thisrun_bytes = fifo_end_addr - rp;
1209 if (thisrun_bytes == 0) {
1210 /* Throttle polling a bit if transfer is (much) faster than flash
1211 * reading. The exact delay shouldn't matter as long as it's
1212 * less than buffer size / flash speed. This is very unlikely to
1213 * run when using high latency connections such as USB. */
1214 alive_sleep(2);
1216 /* to stop an infinite loop on some targets check and increment a timeout
1217 * this issue was observed on a stellaris using the new ICDI interface */
1218 if (timeout++ >= 2500) {
1219 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1220 return ERROR_FLASH_OPERATION_FAILED;
1222 continue;
1225 /* Reset our timeout */
1226 timeout = 0;
1228 /* Limit to the amount of data we actually want to read */
1229 if (thisrun_bytes > count * block_size)
1230 thisrun_bytes = count * block_size;
1232 /* Force end of large blocks to be word aligned */
1233 if (thisrun_bytes >= 16)
1234 thisrun_bytes -= (rp + thisrun_bytes) & 0x03;
1236 /* Read data from fifo */
1237 retval = target_read_buffer(target, rp, thisrun_bytes, buffer);
1238 if (retval != ERROR_OK)
1239 break;
1241 /* Update counters and wrap write pointer */
1242 buffer += thisrun_bytes;
1243 count -= thisrun_bytes / block_size;
1244 rp += thisrun_bytes;
1245 if (rp >= fifo_end_addr)
1246 rp = fifo_start_addr;
1248 /* Store updated write pointer to target */
1249 retval = target_write_u32(target, rp_addr, rp);
1250 if (retval != ERROR_OK)
1251 break;
1253 /* Avoid GDB timeouts */
1254 keep_alive();
1258 if (retval != ERROR_OK) {
1259 /* abort flash write algorithm on target */
1260 target_write_u32(target, rp_addr, 0);
1263 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1264 num_reg_params, reg_params,
1265 exit_point,
1266 10000,
1267 arch_info);
1269 if (retval2 != ERROR_OK) {
1270 LOG_ERROR("error waiting for target flash write algorithm");
1271 retval = retval2;
1274 if (retval == ERROR_OK) {
1275 /* check if algorithm set wp = 0 after fifo writer loop finished */
1276 retval = target_read_u32(target, wp_addr, &wp);
1277 if (retval == ERROR_OK && wp == 0) {
1278 LOG_ERROR("flash read algorithm aborted by target");
1279 retval = ERROR_FLASH_OPERATION_FAILED;
1283 return retval;
1286 int target_read_memory(struct target *target,
1287 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1289 if (!target_was_examined(target)) {
1290 LOG_ERROR("Target not examined yet");
1291 return ERROR_FAIL;
1293 if (!target->type->read_memory) {
1294 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1295 return ERROR_FAIL;
1297 return target->type->read_memory(target, address, size, count, buffer);
1300 int target_read_phys_memory(struct target *target,
1301 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1303 if (!target_was_examined(target)) {
1304 LOG_ERROR("Target not examined yet");
1305 return ERROR_FAIL;
1307 if (!target->type->read_phys_memory) {
1308 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1309 return ERROR_FAIL;
1311 return target->type->read_phys_memory(target, address, size, count, buffer);
1314 int target_write_memory(struct target *target,
1315 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1317 if (!target_was_examined(target)) {
1318 LOG_ERROR("Target not examined yet");
1319 return ERROR_FAIL;
1321 if (!target->type->write_memory) {
1322 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1323 return ERROR_FAIL;
1325 return target->type->write_memory(target, address, size, count, buffer);
1328 int target_write_phys_memory(struct target *target,
1329 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1331 if (!target_was_examined(target)) {
1332 LOG_ERROR("Target not examined yet");
1333 return ERROR_FAIL;
1335 if (!target->type->write_phys_memory) {
1336 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1337 return ERROR_FAIL;
1339 return target->type->write_phys_memory(target, address, size, count, buffer);
1342 int target_add_breakpoint(struct target *target,
1343 struct breakpoint *breakpoint)
1345 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1346 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1347 return ERROR_TARGET_NOT_HALTED;
1349 return target->type->add_breakpoint(target, breakpoint);
1352 int target_add_context_breakpoint(struct target *target,
1353 struct breakpoint *breakpoint)
1355 if (target->state != TARGET_HALTED) {
1356 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1357 return ERROR_TARGET_NOT_HALTED;
1359 return target->type->add_context_breakpoint(target, breakpoint);
1362 int target_add_hybrid_breakpoint(struct target *target,
1363 struct breakpoint *breakpoint)
1365 if (target->state != TARGET_HALTED) {
1366 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1367 return ERROR_TARGET_NOT_HALTED;
1369 return target->type->add_hybrid_breakpoint(target, breakpoint);
1372 int target_remove_breakpoint(struct target *target,
1373 struct breakpoint *breakpoint)
1375 return target->type->remove_breakpoint(target, breakpoint);
1378 int target_add_watchpoint(struct target *target,
1379 struct watchpoint *watchpoint)
1381 if (target->state != TARGET_HALTED) {
1382 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1383 return ERROR_TARGET_NOT_HALTED;
1385 return target->type->add_watchpoint(target, watchpoint);
1387 int target_remove_watchpoint(struct target *target,
1388 struct watchpoint *watchpoint)
1390 return target->type->remove_watchpoint(target, watchpoint);
1392 int target_hit_watchpoint(struct target *target,
1393 struct watchpoint **hit_watchpoint)
1395 if (target->state != TARGET_HALTED) {
1396 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1397 return ERROR_TARGET_NOT_HALTED;
1400 if (target->type->hit_watchpoint == NULL) {
1401 /* For backward compatible, if hit_watchpoint is not implemented,
1402 * return ERROR_FAIL such that gdb_server will not take the nonsense
1403 * information. */
1404 return ERROR_FAIL;
1407 return target->type->hit_watchpoint(target, hit_watchpoint);
1410 const char *target_get_gdb_arch(struct target *target)
1412 if (target->type->get_gdb_arch == NULL)
1413 return NULL;
1414 return target->type->get_gdb_arch(target);
1417 int target_get_gdb_reg_list(struct target *target,
1418 struct reg **reg_list[], int *reg_list_size,
1419 enum target_register_class reg_class)
1421 int result = ERROR_FAIL;
1423 if (!target_was_examined(target)) {
1424 LOG_ERROR("Target not examined yet");
1425 goto done;
1428 result = target->type->get_gdb_reg_list(target, reg_list,
1429 reg_list_size, reg_class);
1431 done:
1432 if (result != ERROR_OK) {
1433 *reg_list = NULL;
1434 *reg_list_size = 0;
1436 return result;
1439 int target_get_gdb_reg_list_noread(struct target *target,
1440 struct reg **reg_list[], int *reg_list_size,
1441 enum target_register_class reg_class)
1443 if (target->type->get_gdb_reg_list_noread &&
1444 target->type->get_gdb_reg_list_noread(target, reg_list,
1445 reg_list_size, reg_class) == ERROR_OK)
1446 return ERROR_OK;
1447 return target_get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1450 bool target_supports_gdb_connection(struct target *target)
1453 * exclude all the targets that don't provide get_gdb_reg_list
1454 * or that have explicit gdb_max_connection == 0
1456 return !!target->type->get_gdb_reg_list && !!target->gdb_max_connections;
1459 int target_step(struct target *target,
1460 int current, target_addr_t address, int handle_breakpoints)
1462 int retval;
1464 target_call_event_callbacks(target, TARGET_EVENT_STEP_START);
1466 retval = target->type->step(target, current, address, handle_breakpoints);
1467 if (retval != ERROR_OK)
1468 return retval;
1470 target_call_event_callbacks(target, TARGET_EVENT_STEP_END);
1472 return retval;
1475 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1477 if (target->state != TARGET_HALTED) {
1478 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1479 return ERROR_TARGET_NOT_HALTED;
1481 return target->type->get_gdb_fileio_info(target, fileio_info);
1484 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1486 if (target->state != TARGET_HALTED) {
1487 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1488 return ERROR_TARGET_NOT_HALTED;
1490 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1493 target_addr_t target_address_max(struct target *target)
1495 unsigned bits = target_address_bits(target);
1496 if (sizeof(target_addr_t) * 8 == bits)
1497 return (target_addr_t) -1;
1498 else
1499 return (((target_addr_t) 1) << bits) - 1;
1502 unsigned target_address_bits(struct target *target)
1504 if (target->type->address_bits)
1505 return target->type->address_bits(target);
1506 return 32;
1509 static int target_profiling(struct target *target, uint32_t *samples,
1510 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1512 return target->type->profiling(target, samples, max_num_samples,
1513 num_samples, seconds);
1517 * Reset the @c examined flag for the given target.
1518 * Pure paranoia -- targets are zeroed on allocation.
1520 static void target_reset_examined(struct target *target)
1522 target->examined = false;
1525 static int handle_target(void *priv);
1527 static int target_init_one(struct command_context *cmd_ctx,
1528 struct target *target)
1530 target_reset_examined(target);
1532 struct target_type *type = target->type;
1533 if (type->examine == NULL)
1534 type->examine = default_examine;
1536 if (type->check_reset == NULL)
1537 type->check_reset = default_check_reset;
1539 assert(type->init_target != NULL);
1541 int retval = type->init_target(cmd_ctx, target);
1542 if (ERROR_OK != retval) {
1543 LOG_ERROR("target '%s' init failed", target_name(target));
1544 return retval;
1547 /* Sanity-check MMU support ... stub in what we must, to help
1548 * implement it in stages, but warn if we need to do so.
1550 if (type->mmu) {
1551 if (type->virt2phys == NULL) {
1552 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1553 type->virt2phys = identity_virt2phys;
1555 } else {
1556 /* Make sure no-MMU targets all behave the same: make no
1557 * distinction between physical and virtual addresses, and
1558 * ensure that virt2phys() is always an identity mapping.
1560 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1561 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1563 type->mmu = no_mmu;
1564 type->write_phys_memory = type->write_memory;
1565 type->read_phys_memory = type->read_memory;
1566 type->virt2phys = identity_virt2phys;
1569 if (target->type->read_buffer == NULL)
1570 target->type->read_buffer = target_read_buffer_default;
1572 if (target->type->write_buffer == NULL)
1573 target->type->write_buffer = target_write_buffer_default;
1575 if (target->type->get_gdb_fileio_info == NULL)
1576 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1578 if (target->type->gdb_fileio_end == NULL)
1579 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1581 if (target->type->profiling == NULL)
1582 target->type->profiling = target_profiling_default;
1584 return ERROR_OK;
1587 static int target_init(struct command_context *cmd_ctx)
1589 struct target *target;
1590 int retval;
1592 for (target = all_targets; target; target = target->next) {
1593 retval = target_init_one(cmd_ctx, target);
1594 if (ERROR_OK != retval)
1595 return retval;
1598 if (!all_targets)
1599 return ERROR_OK;
1601 retval = target_register_user_commands(cmd_ctx);
1602 if (ERROR_OK != retval)
1603 return retval;
1605 retval = target_register_timer_callback(&handle_target,
1606 polling_interval, TARGET_TIMER_TYPE_PERIODIC, cmd_ctx->interp);
1607 if (ERROR_OK != retval)
1608 return retval;
1610 return ERROR_OK;
1613 COMMAND_HANDLER(handle_target_init_command)
1615 int retval;
1617 if (CMD_ARGC != 0)
1618 return ERROR_COMMAND_SYNTAX_ERROR;
1620 static bool target_initialized;
1621 if (target_initialized) {
1622 LOG_INFO("'target init' has already been called");
1623 return ERROR_OK;
1625 target_initialized = true;
1627 retval = command_run_line(CMD_CTX, "init_targets");
1628 if (ERROR_OK != retval)
1629 return retval;
1631 retval = command_run_line(CMD_CTX, "init_target_events");
1632 if (ERROR_OK != retval)
1633 return retval;
1635 retval = command_run_line(CMD_CTX, "init_board");
1636 if (ERROR_OK != retval)
1637 return retval;
1639 LOG_DEBUG("Initializing targets...");
1640 return target_init(CMD_CTX);
1643 int target_register_event_callback(int (*callback)(struct target *target,
1644 enum target_event event, void *priv), void *priv)
1646 struct target_event_callback **callbacks_p = &target_event_callbacks;
1648 if (callback == NULL)
1649 return ERROR_COMMAND_SYNTAX_ERROR;
1651 if (*callbacks_p) {
1652 while ((*callbacks_p)->next)
1653 callbacks_p = &((*callbacks_p)->next);
1654 callbacks_p = &((*callbacks_p)->next);
1657 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1658 (*callbacks_p)->callback = callback;
1659 (*callbacks_p)->priv = priv;
1660 (*callbacks_p)->next = NULL;
1662 return ERROR_OK;
1665 int target_register_reset_callback(int (*callback)(struct target *target,
1666 enum target_reset_mode reset_mode, void *priv), void *priv)
1668 struct target_reset_callback *entry;
1670 if (callback == NULL)
1671 return ERROR_COMMAND_SYNTAX_ERROR;
1673 entry = malloc(sizeof(struct target_reset_callback));
1674 if (entry == NULL) {
1675 LOG_ERROR("error allocating buffer for reset callback entry");
1676 return ERROR_COMMAND_SYNTAX_ERROR;
1679 entry->callback = callback;
1680 entry->priv = priv;
1681 list_add(&entry->list, &target_reset_callback_list);
1684 return ERROR_OK;
1687 int target_register_trace_callback(int (*callback)(struct target *target,
1688 size_t len, uint8_t *data, void *priv), void *priv)
1690 struct target_trace_callback *entry;
1692 if (callback == NULL)
1693 return ERROR_COMMAND_SYNTAX_ERROR;
1695 entry = malloc(sizeof(struct target_trace_callback));
1696 if (entry == NULL) {
1697 LOG_ERROR("error allocating buffer for trace callback entry");
1698 return ERROR_COMMAND_SYNTAX_ERROR;
1701 entry->callback = callback;
1702 entry->priv = priv;
1703 list_add(&entry->list, &target_trace_callback_list);
1706 return ERROR_OK;
1709 int target_register_timer_callback(int (*callback)(void *priv),
1710 unsigned int time_ms, enum target_timer_type type, void *priv)
1712 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1714 if (callback == NULL)
1715 return ERROR_COMMAND_SYNTAX_ERROR;
1717 if (*callbacks_p) {
1718 while ((*callbacks_p)->next)
1719 callbacks_p = &((*callbacks_p)->next);
1720 callbacks_p = &((*callbacks_p)->next);
1723 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1724 (*callbacks_p)->callback = callback;
1725 (*callbacks_p)->type = type;
1726 (*callbacks_p)->time_ms = time_ms;
1727 (*callbacks_p)->removed = false;
1729 gettimeofday(&(*callbacks_p)->when, NULL);
1730 timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1732 (*callbacks_p)->priv = priv;
1733 (*callbacks_p)->next = NULL;
1735 return ERROR_OK;
1738 int target_unregister_event_callback(int (*callback)(struct target *target,
1739 enum target_event event, void *priv), void *priv)
1741 struct target_event_callback **p = &target_event_callbacks;
1742 struct target_event_callback *c = target_event_callbacks;
1744 if (callback == NULL)
1745 return ERROR_COMMAND_SYNTAX_ERROR;
1747 while (c) {
1748 struct target_event_callback *next = c->next;
1749 if ((c->callback == callback) && (c->priv == priv)) {
1750 *p = next;
1751 free(c);
1752 return ERROR_OK;
1753 } else
1754 p = &(c->next);
1755 c = next;
1758 return ERROR_OK;
1761 int target_unregister_reset_callback(int (*callback)(struct target *target,
1762 enum target_reset_mode reset_mode, void *priv), void *priv)
1764 struct target_reset_callback *entry;
1766 if (callback == NULL)
1767 return ERROR_COMMAND_SYNTAX_ERROR;
1769 list_for_each_entry(entry, &target_reset_callback_list, list) {
1770 if (entry->callback == callback && entry->priv == priv) {
1771 list_del(&entry->list);
1772 free(entry);
1773 break;
1777 return ERROR_OK;
1780 int target_unregister_trace_callback(int (*callback)(struct target *target,
1781 size_t len, uint8_t *data, void *priv), void *priv)
1783 struct target_trace_callback *entry;
1785 if (callback == NULL)
1786 return ERROR_COMMAND_SYNTAX_ERROR;
1788 list_for_each_entry(entry, &target_trace_callback_list, list) {
1789 if (entry->callback == callback && entry->priv == priv) {
1790 list_del(&entry->list);
1791 free(entry);
1792 break;
1796 return ERROR_OK;
1799 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1801 if (callback == NULL)
1802 return ERROR_COMMAND_SYNTAX_ERROR;
1804 for (struct target_timer_callback *c = target_timer_callbacks;
1805 c; c = c->next) {
1806 if ((c->callback == callback) && (c->priv == priv)) {
1807 c->removed = true;
1808 return ERROR_OK;
1812 return ERROR_FAIL;
1815 int target_call_event_callbacks(struct target *target, enum target_event event)
1817 struct target_event_callback *callback = target_event_callbacks;
1818 struct target_event_callback *next_callback;
1820 if (event == TARGET_EVENT_HALTED) {
1821 /* execute early halted first */
1822 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1825 LOG_DEBUG("target event %i (%s) for core %s", event,
1826 Jim_Nvp_value2name_simple(nvp_target_event, event)->name,
1827 target_name(target));
1829 target_handle_event(target, event);
1831 while (callback) {
1832 next_callback = callback->next;
1833 callback->callback(target, event, callback->priv);
1834 callback = next_callback;
1837 return ERROR_OK;
1840 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1842 struct target_reset_callback *callback;
1844 LOG_DEBUG("target reset %i (%s)", reset_mode,
1845 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1847 list_for_each_entry(callback, &target_reset_callback_list, list)
1848 callback->callback(target, reset_mode, callback->priv);
1850 return ERROR_OK;
1853 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1855 struct target_trace_callback *callback;
1857 list_for_each_entry(callback, &target_trace_callback_list, list)
1858 callback->callback(target, len, data, callback->priv);
1860 return ERROR_OK;
1863 static int target_timer_callback_periodic_restart(
1864 struct target_timer_callback *cb, struct timeval *now)
1866 cb->when = *now;
1867 timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1868 return ERROR_OK;
1871 static int target_call_timer_callback(struct target_timer_callback *cb,
1872 struct timeval *now)
1874 cb->callback(cb->priv);
1876 if (cb->type == TARGET_TIMER_TYPE_PERIODIC)
1877 return target_timer_callback_periodic_restart(cb, now);
1879 return target_unregister_timer_callback(cb->callback, cb->priv);
1882 static int target_call_timer_callbacks_check_time(int checktime)
1884 static bool callback_processing;
1886 /* Do not allow nesting */
1887 if (callback_processing)
1888 return ERROR_OK;
1890 callback_processing = true;
1892 keep_alive();
1894 struct timeval now;
1895 gettimeofday(&now, NULL);
1897 /* Store an address of the place containing a pointer to the
1898 * next item; initially, that's a standalone "root of the
1899 * list" variable. */
1900 struct target_timer_callback **callback = &target_timer_callbacks;
1901 while (callback && *callback) {
1902 if ((*callback)->removed) {
1903 struct target_timer_callback *p = *callback;
1904 *callback = (*callback)->next;
1905 free(p);
1906 continue;
1909 bool call_it = (*callback)->callback &&
1910 ((!checktime && (*callback)->type == TARGET_TIMER_TYPE_PERIODIC) ||
1911 timeval_compare(&now, &(*callback)->when) >= 0);
1913 if (call_it)
1914 target_call_timer_callback(*callback, &now);
1916 callback = &(*callback)->next;
1919 callback_processing = false;
1920 return ERROR_OK;
1923 int target_call_timer_callbacks(void)
1925 return target_call_timer_callbacks_check_time(1);
1928 /* invoke periodic callbacks immediately */
1929 int target_call_timer_callbacks_now(void)
1931 return target_call_timer_callbacks_check_time(0);
1934 /* Prints the working area layout for debug purposes */
1935 static void print_wa_layout(struct target *target)
1937 struct working_area *c = target->working_areas;
1939 while (c) {
1940 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1941 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1942 c->address, c->address + c->size - 1, c->size);
1943 c = c->next;
1947 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1948 static void target_split_working_area(struct working_area *area, uint32_t size)
1950 assert(area->free); /* Shouldn't split an allocated area */
1951 assert(size <= area->size); /* Caller should guarantee this */
1953 /* Split only if not already the right size */
1954 if (size < area->size) {
1955 struct working_area *new_wa = malloc(sizeof(*new_wa));
1957 if (new_wa == NULL)
1958 return;
1960 new_wa->next = area->next;
1961 new_wa->size = area->size - size;
1962 new_wa->address = area->address + size;
1963 new_wa->backup = NULL;
1964 new_wa->user = NULL;
1965 new_wa->free = true;
1967 area->next = new_wa;
1968 area->size = size;
1970 /* If backup memory was allocated to this area, it has the wrong size
1971 * now so free it and it will be reallocated if/when needed */
1972 free(area->backup);
1973 area->backup = NULL;
1977 /* Merge all adjacent free areas into one */
1978 static void target_merge_working_areas(struct target *target)
1980 struct working_area *c = target->working_areas;
1982 while (c && c->next) {
1983 assert(c->next->address == c->address + c->size); /* This is an invariant */
1985 /* Find two adjacent free areas */
1986 if (c->free && c->next->free) {
1987 /* Merge the last into the first */
1988 c->size += c->next->size;
1990 /* Remove the last */
1991 struct working_area *to_be_freed = c->next;
1992 c->next = c->next->next;
1993 free(to_be_freed->backup);
1994 free(to_be_freed);
1996 /* If backup memory was allocated to the remaining area, it's has
1997 * the wrong size now */
1998 free(c->backup);
1999 c->backup = NULL;
2000 } else {
2001 c = c->next;
2006 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
2008 /* Reevaluate working area address based on MMU state*/
2009 if (target->working_areas == NULL) {
2010 int retval;
2011 int enabled;
2013 retval = target->type->mmu(target, &enabled);
2014 if (retval != ERROR_OK)
2015 return retval;
2017 if (!enabled) {
2018 if (target->working_area_phys_spec) {
2019 LOG_DEBUG("MMU disabled, using physical "
2020 "address for working memory " TARGET_ADDR_FMT,
2021 target->working_area_phys);
2022 target->working_area = target->working_area_phys;
2023 } else {
2024 LOG_ERROR("No working memory available. "
2025 "Specify -work-area-phys to target.");
2026 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2028 } else {
2029 if (target->working_area_virt_spec) {
2030 LOG_DEBUG("MMU enabled, using virtual "
2031 "address for working memory " TARGET_ADDR_FMT,
2032 target->working_area_virt);
2033 target->working_area = target->working_area_virt;
2034 } else {
2035 LOG_ERROR("No working memory available. "
2036 "Specify -work-area-virt to target.");
2037 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2041 /* Set up initial working area on first call */
2042 struct working_area *new_wa = malloc(sizeof(*new_wa));
2043 if (new_wa) {
2044 new_wa->next = NULL;
2045 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
2046 new_wa->address = target->working_area;
2047 new_wa->backup = NULL;
2048 new_wa->user = NULL;
2049 new_wa->free = true;
2052 target->working_areas = new_wa;
2055 /* only allocate multiples of 4 byte */
2056 if (size % 4)
2057 size = (size + 3) & (~3UL);
2059 struct working_area *c = target->working_areas;
2061 /* Find the first large enough working area */
2062 while (c) {
2063 if (c->free && c->size >= size)
2064 break;
2065 c = c->next;
2068 if (c == NULL)
2069 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2071 /* Split the working area into the requested size */
2072 target_split_working_area(c, size);
2074 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
2075 size, c->address);
2077 if (target->backup_working_area) {
2078 if (c->backup == NULL) {
2079 c->backup = malloc(c->size);
2080 if (c->backup == NULL)
2081 return ERROR_FAIL;
2084 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
2085 if (retval != ERROR_OK)
2086 return retval;
2089 /* mark as used, and return the new (reused) area */
2090 c->free = false;
2091 *area = c;
2093 /* user pointer */
2094 c->user = area;
2096 print_wa_layout(target);
2098 return ERROR_OK;
2101 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
2103 int retval;
2105 retval = target_alloc_working_area_try(target, size, area);
2106 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
2107 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
2108 return retval;
2112 static int target_restore_working_area(struct target *target, struct working_area *area)
2114 int retval = ERROR_OK;
2116 if (target->backup_working_area && area->backup != NULL) {
2117 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
2118 if (retval != ERROR_OK)
2119 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
2120 area->size, area->address);
2123 return retval;
2126 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
2127 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
2129 int retval = ERROR_OK;
2131 if (area->free)
2132 return retval;
2134 if (restore) {
2135 retval = target_restore_working_area(target, area);
2136 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
2137 if (retval != ERROR_OK)
2138 return retval;
2141 area->free = true;
2143 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
2144 area->size, area->address);
2146 /* mark user pointer invalid */
2147 /* TODO: Is this really safe? It points to some previous caller's memory.
2148 * How could we know that the area pointer is still in that place and not
2149 * some other vital data? What's the purpose of this, anyway? */
2150 *area->user = NULL;
2151 area->user = NULL;
2153 target_merge_working_areas(target);
2155 print_wa_layout(target);
2157 return retval;
2160 int target_free_working_area(struct target *target, struct working_area *area)
2162 return target_free_working_area_restore(target, area, 1);
2165 /* free resources and restore memory, if restoring memory fails,
2166 * free up resources anyway
2168 static void target_free_all_working_areas_restore(struct target *target, int restore)
2170 struct working_area *c = target->working_areas;
2172 LOG_DEBUG("freeing all working areas");
2174 /* Loop through all areas, restoring the allocated ones and marking them as free */
2175 while (c) {
2176 if (!c->free) {
2177 if (restore)
2178 target_restore_working_area(target, c);
2179 c->free = true;
2180 *c->user = NULL; /* Same as above */
2181 c->user = NULL;
2183 c = c->next;
2186 /* Run a merge pass to combine all areas into one */
2187 target_merge_working_areas(target);
2189 print_wa_layout(target);
2192 void target_free_all_working_areas(struct target *target)
2194 target_free_all_working_areas_restore(target, 1);
2196 /* Now we have none or only one working area marked as free */
2197 if (target->working_areas) {
2198 /* Free the last one to allow on-the-fly moving and resizing */
2199 free(target->working_areas->backup);
2200 free(target->working_areas);
2201 target->working_areas = NULL;
2205 /* Find the largest number of bytes that can be allocated */
2206 uint32_t target_get_working_area_avail(struct target *target)
2208 struct working_area *c = target->working_areas;
2209 uint32_t max_size = 0;
2211 if (c == NULL)
2212 return target->working_area_size;
2214 while (c) {
2215 if (c->free && max_size < c->size)
2216 max_size = c->size;
2218 c = c->next;
2221 return max_size;
2224 static void target_destroy(struct target *target)
2226 if (target->type->deinit_target)
2227 target->type->deinit_target(target);
2229 free(target->semihosting);
2231 jtag_unregister_event_callback(jtag_enable_callback, target);
2233 struct target_event_action *teap = target->event_action;
2234 while (teap) {
2235 struct target_event_action *next = teap->next;
2236 Jim_DecrRefCount(teap->interp, teap->body);
2237 free(teap);
2238 teap = next;
2241 target_free_all_working_areas(target);
2243 /* release the targets SMP list */
2244 if (target->smp) {
2245 struct target_list *head = target->head;
2246 while (head != NULL) {
2247 struct target_list *pos = head->next;
2248 head->target->smp = 0;
2249 free(head);
2250 head = pos;
2252 target->smp = 0;
2255 rtos_destroy(target);
2257 free(target->gdb_port_override);
2258 free(target->type);
2259 free(target->trace_info);
2260 free(target->fileio_info);
2261 free(target->cmd_name);
2262 free(target);
2265 void target_quit(void)
2267 struct target_event_callback *pe = target_event_callbacks;
2268 while (pe) {
2269 struct target_event_callback *t = pe->next;
2270 free(pe);
2271 pe = t;
2273 target_event_callbacks = NULL;
2275 struct target_timer_callback *pt = target_timer_callbacks;
2276 while (pt) {
2277 struct target_timer_callback *t = pt->next;
2278 free(pt);
2279 pt = t;
2281 target_timer_callbacks = NULL;
2283 for (struct target *target = all_targets; target;) {
2284 struct target *tmp;
2286 tmp = target->next;
2287 target_destroy(target);
2288 target = tmp;
2291 all_targets = NULL;
2294 int target_arch_state(struct target *target)
2296 int retval;
2297 if (target == NULL) {
2298 LOG_WARNING("No target has been configured");
2299 return ERROR_OK;
2302 if (target->state != TARGET_HALTED)
2303 return ERROR_OK;
2305 retval = target->type->arch_state(target);
2306 return retval;
2309 static int target_get_gdb_fileio_info_default(struct target *target,
2310 struct gdb_fileio_info *fileio_info)
2312 /* If target does not support semi-hosting function, target
2313 has no need to provide .get_gdb_fileio_info callback.
2314 It just return ERROR_FAIL and gdb_server will return "Txx"
2315 as target halted every time. */
2316 return ERROR_FAIL;
2319 static int target_gdb_fileio_end_default(struct target *target,
2320 int retcode, int fileio_errno, bool ctrl_c)
2322 return ERROR_OK;
2325 int target_profiling_default(struct target *target, uint32_t *samples,
2326 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2328 struct timeval timeout, now;
2330 gettimeofday(&timeout, NULL);
2331 timeval_add_time(&timeout, seconds, 0);
2333 LOG_INFO("Starting profiling. Halting and resuming the"
2334 " target as often as we can...");
2336 uint32_t sample_count = 0;
2337 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2338 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2340 int retval = ERROR_OK;
2341 for (;;) {
2342 target_poll(target);
2343 if (target->state == TARGET_HALTED) {
2344 uint32_t t = buf_get_u32(reg->value, 0, 32);
2345 samples[sample_count++] = t;
2346 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2347 retval = target_resume(target, 1, 0, 0, 0);
2348 target_poll(target);
2349 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2350 } else if (target->state == TARGET_RUNNING) {
2351 /* We want to quickly sample the PC. */
2352 retval = target_halt(target);
2353 } else {
2354 LOG_INFO("Target not halted or running");
2355 retval = ERROR_OK;
2356 break;
2359 if (retval != ERROR_OK)
2360 break;
2362 gettimeofday(&now, NULL);
2363 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2364 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2365 break;
2369 *num_samples = sample_count;
2370 return retval;
2373 /* Single aligned words are guaranteed to use 16 or 32 bit access
2374 * mode respectively, otherwise data is handled as quickly as
2375 * possible
2377 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2379 LOG_DEBUG("writing buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
2380 size, address);
2382 if (!target_was_examined(target)) {
2383 LOG_ERROR("Target not examined yet");
2384 return ERROR_FAIL;
2387 if (size == 0)
2388 return ERROR_OK;
2390 if ((address + size - 1) < address) {
2391 /* GDB can request this when e.g. PC is 0xfffffffc */
2392 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2393 address,
2394 size);
2395 return ERROR_FAIL;
2398 return target->type->write_buffer(target, address, size, buffer);
2401 static int target_write_buffer_default(struct target *target,
2402 target_addr_t address, uint32_t count, const uint8_t *buffer)
2404 uint32_t size;
2406 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2407 * will have something to do with the size we leave to it. */
2408 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2409 if (address & size) {
2410 int retval = target_write_memory(target, address, size, 1, buffer);
2411 if (retval != ERROR_OK)
2412 return retval;
2413 address += size;
2414 count -= size;
2415 buffer += size;
2419 /* Write the data with as large access size as possible. */
2420 for (; size > 0; size /= 2) {
2421 uint32_t aligned = count - count % size;
2422 if (aligned > 0) {
2423 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2424 if (retval != ERROR_OK)
2425 return retval;
2426 address += aligned;
2427 count -= aligned;
2428 buffer += aligned;
2432 return ERROR_OK;
2435 /* Single aligned words are guaranteed to use 16 or 32 bit access
2436 * mode respectively, otherwise data is handled as quickly as
2437 * possible
2439 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2441 LOG_DEBUG("reading buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
2442 size, address);
2444 if (!target_was_examined(target)) {
2445 LOG_ERROR("Target not examined yet");
2446 return ERROR_FAIL;
2449 if (size == 0)
2450 return ERROR_OK;
2452 if ((address + size - 1) < address) {
2453 /* GDB can request this when e.g. PC is 0xfffffffc */
2454 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2455 address,
2456 size);
2457 return ERROR_FAIL;
2460 return target->type->read_buffer(target, address, size, buffer);
2463 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2465 uint32_t size;
2467 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2468 * will have something to do with the size we leave to it. */
2469 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2470 if (address & size) {
2471 int retval = target_read_memory(target, address, size, 1, buffer);
2472 if (retval != ERROR_OK)
2473 return retval;
2474 address += size;
2475 count -= size;
2476 buffer += size;
2480 /* Read the data with as large access size as possible. */
2481 for (; size > 0; size /= 2) {
2482 uint32_t aligned = count - count % size;
2483 if (aligned > 0) {
2484 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2485 if (retval != ERROR_OK)
2486 return retval;
2487 address += aligned;
2488 count -= aligned;
2489 buffer += aligned;
2493 return ERROR_OK;
2496 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t *crc)
2498 uint8_t *buffer;
2499 int retval;
2500 uint32_t i;
2501 uint32_t checksum = 0;
2502 if (!target_was_examined(target)) {
2503 LOG_ERROR("Target not examined yet");
2504 return ERROR_FAIL;
2507 retval = target->type->checksum_memory(target, address, size, &checksum);
2508 if (retval != ERROR_OK) {
2509 buffer = malloc(size);
2510 if (buffer == NULL) {
2511 LOG_ERROR("error allocating buffer for section (%" PRIu32 " bytes)", size);
2512 return ERROR_COMMAND_SYNTAX_ERROR;
2514 retval = target_read_buffer(target, address, size, buffer);
2515 if (retval != ERROR_OK) {
2516 free(buffer);
2517 return retval;
2520 /* convert to target endianness */
2521 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2522 uint32_t target_data;
2523 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2524 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2527 retval = image_calculate_checksum(buffer, size, &checksum);
2528 free(buffer);
2531 *crc = checksum;
2533 return retval;
2536 int target_blank_check_memory(struct target *target,
2537 struct target_memory_check_block *blocks, int num_blocks,
2538 uint8_t erased_value)
2540 if (!target_was_examined(target)) {
2541 LOG_ERROR("Target not examined yet");
2542 return ERROR_FAIL;
2545 if (target->type->blank_check_memory == NULL)
2546 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2548 return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2551 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2553 uint8_t value_buf[8];
2554 if (!target_was_examined(target)) {
2555 LOG_ERROR("Target not examined yet");
2556 return ERROR_FAIL;
2559 int retval = target_read_memory(target, address, 8, 1, value_buf);
2561 if (retval == ERROR_OK) {
2562 *value = target_buffer_get_u64(target, value_buf);
2563 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2564 address,
2565 *value);
2566 } else {
2567 *value = 0x0;
2568 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2569 address);
2572 return retval;
2575 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2577 uint8_t value_buf[4];
2578 if (!target_was_examined(target)) {
2579 LOG_ERROR("Target not examined yet");
2580 return ERROR_FAIL;
2583 int retval = target_read_memory(target, address, 4, 1, value_buf);
2585 if (retval == ERROR_OK) {
2586 *value = target_buffer_get_u32(target, value_buf);
2587 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2588 address,
2589 *value);
2590 } else {
2591 *value = 0x0;
2592 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2593 address);
2596 return retval;
2599 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2601 uint8_t value_buf[2];
2602 if (!target_was_examined(target)) {
2603 LOG_ERROR("Target not examined yet");
2604 return ERROR_FAIL;
2607 int retval = target_read_memory(target, address, 2, 1, value_buf);
2609 if (retval == ERROR_OK) {
2610 *value = target_buffer_get_u16(target, value_buf);
2611 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2612 address,
2613 *value);
2614 } else {
2615 *value = 0x0;
2616 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2617 address);
2620 return retval;
2623 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2625 if (!target_was_examined(target)) {
2626 LOG_ERROR("Target not examined yet");
2627 return ERROR_FAIL;
2630 int retval = target_read_memory(target, address, 1, 1, value);
2632 if (retval == ERROR_OK) {
2633 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2634 address,
2635 *value);
2636 } else {
2637 *value = 0x0;
2638 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2639 address);
2642 return retval;
2645 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2647 int retval;
2648 uint8_t value_buf[8];
2649 if (!target_was_examined(target)) {
2650 LOG_ERROR("Target not examined yet");
2651 return ERROR_FAIL;
2654 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2655 address,
2656 value);
2658 target_buffer_set_u64(target, value_buf, value);
2659 retval = target_write_memory(target, address, 8, 1, value_buf);
2660 if (retval != ERROR_OK)
2661 LOG_DEBUG("failed: %i", retval);
2663 return retval;
2666 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2668 int retval;
2669 uint8_t value_buf[4];
2670 if (!target_was_examined(target)) {
2671 LOG_ERROR("Target not examined yet");
2672 return ERROR_FAIL;
2675 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2676 address,
2677 value);
2679 target_buffer_set_u32(target, value_buf, value);
2680 retval = target_write_memory(target, address, 4, 1, value_buf);
2681 if (retval != ERROR_OK)
2682 LOG_DEBUG("failed: %i", retval);
2684 return retval;
2687 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2689 int retval;
2690 uint8_t value_buf[2];
2691 if (!target_was_examined(target)) {
2692 LOG_ERROR("Target not examined yet");
2693 return ERROR_FAIL;
2696 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2697 address,
2698 value);
2700 target_buffer_set_u16(target, value_buf, value);
2701 retval = target_write_memory(target, address, 2, 1, value_buf);
2702 if (retval != ERROR_OK)
2703 LOG_DEBUG("failed: %i", retval);
2705 return retval;
2708 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2710 int retval;
2711 if (!target_was_examined(target)) {
2712 LOG_ERROR("Target not examined yet");
2713 return ERROR_FAIL;
2716 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2717 address, value);
2719 retval = target_write_memory(target, address, 1, 1, &value);
2720 if (retval != ERROR_OK)
2721 LOG_DEBUG("failed: %i", retval);
2723 return retval;
2726 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2728 int retval;
2729 uint8_t value_buf[8];
2730 if (!target_was_examined(target)) {
2731 LOG_ERROR("Target not examined yet");
2732 return ERROR_FAIL;
2735 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2736 address,
2737 value);
2739 target_buffer_set_u64(target, value_buf, value);
2740 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2741 if (retval != ERROR_OK)
2742 LOG_DEBUG("failed: %i", retval);
2744 return retval;
2747 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2749 int retval;
2750 uint8_t value_buf[4];
2751 if (!target_was_examined(target)) {
2752 LOG_ERROR("Target not examined yet");
2753 return ERROR_FAIL;
2756 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2757 address,
2758 value);
2760 target_buffer_set_u32(target, value_buf, value);
2761 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2762 if (retval != ERROR_OK)
2763 LOG_DEBUG("failed: %i", retval);
2765 return retval;
2768 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2770 int retval;
2771 uint8_t value_buf[2];
2772 if (!target_was_examined(target)) {
2773 LOG_ERROR("Target not examined yet");
2774 return ERROR_FAIL;
2777 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2778 address,
2779 value);
2781 target_buffer_set_u16(target, value_buf, value);
2782 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2783 if (retval != ERROR_OK)
2784 LOG_DEBUG("failed: %i", retval);
2786 return retval;
2789 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2791 int retval;
2792 if (!target_was_examined(target)) {
2793 LOG_ERROR("Target not examined yet");
2794 return ERROR_FAIL;
2797 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2798 address, value);
2800 retval = target_write_phys_memory(target, address, 1, 1, &value);
2801 if (retval != ERROR_OK)
2802 LOG_DEBUG("failed: %i", retval);
2804 return retval;
2807 static int find_target(struct command_invocation *cmd, const char *name)
2809 struct target *target = get_target(name);
2810 if (target == NULL) {
2811 command_print(cmd, "Target: %s is unknown, try one of:\n", name);
2812 return ERROR_FAIL;
2814 if (!target->tap->enabled) {
2815 command_print(cmd, "Target: TAP %s is disabled, "
2816 "can't be the current target\n",
2817 target->tap->dotted_name);
2818 return ERROR_FAIL;
2821 cmd->ctx->current_target = target;
2822 if (cmd->ctx->current_target_override)
2823 cmd->ctx->current_target_override = target;
2825 return ERROR_OK;
2829 COMMAND_HANDLER(handle_targets_command)
2831 int retval = ERROR_OK;
2832 if (CMD_ARGC == 1) {
2833 retval = find_target(CMD, CMD_ARGV[0]);
2834 if (retval == ERROR_OK) {
2835 /* we're done! */
2836 return retval;
2840 struct target *target = all_targets;
2841 command_print(CMD, " TargetName Type Endian TapName State ");
2842 command_print(CMD, "-- ------------------ ---------- ------ ------------------ ------------");
2843 while (target) {
2844 const char *state;
2845 char marker = ' ';
2847 if (target->tap->enabled)
2848 state = target_state_name(target);
2849 else
2850 state = "tap-disabled";
2852 if (CMD_CTX->current_target == target)
2853 marker = '*';
2855 /* keep columns lined up to match the headers above */
2856 command_print(CMD,
2857 "%2d%c %-18s %-10s %-6s %-18s %s",
2858 target->target_number,
2859 marker,
2860 target_name(target),
2861 target_type_name(target),
2862 Jim_Nvp_value2name_simple(nvp_target_endian,
2863 target->endianness)->name,
2864 target->tap->dotted_name,
2865 state);
2866 target = target->next;
2869 return retval;
2872 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2874 static int powerDropout;
2875 static int srstAsserted;
2877 static int runPowerRestore;
2878 static int runPowerDropout;
2879 static int runSrstAsserted;
2880 static int runSrstDeasserted;
2882 static int sense_handler(void)
2884 static int prevSrstAsserted;
2885 static int prevPowerdropout;
2887 int retval = jtag_power_dropout(&powerDropout);
2888 if (retval != ERROR_OK)
2889 return retval;
2891 int powerRestored;
2892 powerRestored = prevPowerdropout && !powerDropout;
2893 if (powerRestored)
2894 runPowerRestore = 1;
2896 int64_t current = timeval_ms();
2897 static int64_t lastPower;
2898 bool waitMore = lastPower + 2000 > current;
2899 if (powerDropout && !waitMore) {
2900 runPowerDropout = 1;
2901 lastPower = current;
2904 retval = jtag_srst_asserted(&srstAsserted);
2905 if (retval != ERROR_OK)
2906 return retval;
2908 int srstDeasserted;
2909 srstDeasserted = prevSrstAsserted && !srstAsserted;
2911 static int64_t lastSrst;
2912 waitMore = lastSrst + 2000 > current;
2913 if (srstDeasserted && !waitMore) {
2914 runSrstDeasserted = 1;
2915 lastSrst = current;
2918 if (!prevSrstAsserted && srstAsserted)
2919 runSrstAsserted = 1;
2921 prevSrstAsserted = srstAsserted;
2922 prevPowerdropout = powerDropout;
2924 if (srstDeasserted || powerRestored) {
2925 /* Other than logging the event we can't do anything here.
2926 * Issuing a reset is a particularly bad idea as we might
2927 * be inside a reset already.
2931 return ERROR_OK;
2934 /* process target state changes */
2935 static int handle_target(void *priv)
2937 Jim_Interp *interp = (Jim_Interp *)priv;
2938 int retval = ERROR_OK;
2940 if (!is_jtag_poll_safe()) {
2941 /* polling is disabled currently */
2942 return ERROR_OK;
2945 /* we do not want to recurse here... */
2946 static int recursive;
2947 if (!recursive) {
2948 recursive = 1;
2949 sense_handler();
2950 /* danger! running these procedures can trigger srst assertions and power dropouts.
2951 * We need to avoid an infinite loop/recursion here and we do that by
2952 * clearing the flags after running these events.
2954 int did_something = 0;
2955 if (runSrstAsserted) {
2956 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2957 Jim_Eval(interp, "srst_asserted");
2958 did_something = 1;
2960 if (runSrstDeasserted) {
2961 Jim_Eval(interp, "srst_deasserted");
2962 did_something = 1;
2964 if (runPowerDropout) {
2965 LOG_INFO("Power dropout detected, running power_dropout proc.");
2966 Jim_Eval(interp, "power_dropout");
2967 did_something = 1;
2969 if (runPowerRestore) {
2970 Jim_Eval(interp, "power_restore");
2971 did_something = 1;
2974 if (did_something) {
2975 /* clear detect flags */
2976 sense_handler();
2979 /* clear action flags */
2981 runSrstAsserted = 0;
2982 runSrstDeasserted = 0;
2983 runPowerRestore = 0;
2984 runPowerDropout = 0;
2986 recursive = 0;
2989 /* Poll targets for state changes unless that's globally disabled.
2990 * Skip targets that are currently disabled.
2992 for (struct target *target = all_targets;
2993 is_jtag_poll_safe() && target;
2994 target = target->next) {
2996 if (!target_was_examined(target))
2997 continue;
2999 if (!target->tap->enabled)
3000 continue;
3002 if (target->backoff.times > target->backoff.count) {
3003 /* do not poll this time as we failed previously */
3004 target->backoff.count++;
3005 continue;
3007 target->backoff.count = 0;
3009 /* only poll target if we've got power and srst isn't asserted */
3010 if (!powerDropout && !srstAsserted) {
3011 /* polling may fail silently until the target has been examined */
3012 retval = target_poll(target);
3013 if (retval != ERROR_OK) {
3014 /* 100ms polling interval. Increase interval between polling up to 5000ms */
3015 if (target->backoff.times * polling_interval < 5000) {
3016 target->backoff.times *= 2;
3017 target->backoff.times++;
3020 /* Tell GDB to halt the debugger. This allows the user to
3021 * run monitor commands to handle the situation.
3023 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
3025 if (target->backoff.times > 0) {
3026 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
3027 target_reset_examined(target);
3028 retval = target_examine_one(target);
3029 /* Target examination could have failed due to unstable connection,
3030 * but we set the examined flag anyway to repoll it later */
3031 if (retval != ERROR_OK) {
3032 target->examined = true;
3033 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
3034 target->backoff.times * polling_interval);
3035 return retval;
3039 /* Since we succeeded, we reset backoff count */
3040 target->backoff.times = 0;
3044 return retval;
3047 COMMAND_HANDLER(handle_reg_command)
3049 struct target *target;
3050 struct reg *reg = NULL;
3051 unsigned count = 0;
3052 char *value;
3054 LOG_DEBUG("-");
3056 target = get_current_target(CMD_CTX);
3058 /* list all available registers for the current target */
3059 if (CMD_ARGC == 0) {
3060 struct reg_cache *cache = target->reg_cache;
3062 count = 0;
3063 while (cache) {
3064 unsigned i;
3066 command_print(CMD, "===== %s", cache->name);
3068 for (i = 0, reg = cache->reg_list;
3069 i < cache->num_regs;
3070 i++, reg++, count++) {
3071 if (reg->exist == false || reg->hidden)
3072 continue;
3073 /* only print cached values if they are valid */
3074 if (reg->valid) {
3075 value = buf_to_hex_str(reg->value,
3076 reg->size);
3077 command_print(CMD,
3078 "(%i) %s (/%" PRIu32 "): 0x%s%s",
3079 count, reg->name,
3080 reg->size, value,
3081 reg->dirty
3082 ? " (dirty)"
3083 : "");
3084 free(value);
3085 } else {
3086 command_print(CMD, "(%i) %s (/%" PRIu32 ")",
3087 count, reg->name,
3088 reg->size);
3091 cache = cache->next;
3094 return ERROR_OK;
3097 /* access a single register by its ordinal number */
3098 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
3099 unsigned num;
3100 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
3102 struct reg_cache *cache = target->reg_cache;
3103 count = 0;
3104 while (cache) {
3105 unsigned i;
3106 for (i = 0; i < cache->num_regs; i++) {
3107 if (count++ == num) {
3108 reg = &cache->reg_list[i];
3109 break;
3112 if (reg)
3113 break;
3114 cache = cache->next;
3117 if (!reg) {
3118 command_print(CMD, "%i is out of bounds, the current target "
3119 "has only %i registers (0 - %i)", num, count, count - 1);
3120 return ERROR_OK;
3122 } else {
3123 /* access a single register by its name */
3124 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
3126 if (!reg)
3127 goto not_found;
3130 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
3132 if (!reg->exist)
3133 goto not_found;
3135 /* display a register */
3136 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
3137 && (CMD_ARGV[1][0] <= '9')))) {
3138 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
3139 reg->valid = 0;
3141 if (reg->valid == 0)
3142 reg->type->get(reg);
3143 value = buf_to_hex_str(reg->value, reg->size);
3144 command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
3145 free(value);
3146 return ERROR_OK;
3149 /* set register value */
3150 if (CMD_ARGC == 2) {
3151 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
3152 if (buf == NULL)
3153 return ERROR_FAIL;
3154 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
3156 reg->type->set(reg, buf);
3158 value = buf_to_hex_str(reg->value, reg->size);
3159 command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
3160 free(value);
3162 free(buf);
3164 return ERROR_OK;
3167 return ERROR_COMMAND_SYNTAX_ERROR;
3169 not_found:
3170 command_print(CMD, "register %s not found in current target", CMD_ARGV[0]);
3171 return ERROR_OK;
3174 COMMAND_HANDLER(handle_poll_command)
3176 int retval = ERROR_OK;
3177 struct target *target = get_current_target(CMD_CTX);
3179 if (CMD_ARGC == 0) {
3180 command_print(CMD, "background polling: %s",
3181 jtag_poll_get_enabled() ? "on" : "off");
3182 command_print(CMD, "TAP: %s (%s)",
3183 target->tap->dotted_name,
3184 target->tap->enabled ? "enabled" : "disabled");
3185 if (!target->tap->enabled)
3186 return ERROR_OK;
3187 retval = target_poll(target);
3188 if (retval != ERROR_OK)
3189 return retval;
3190 retval = target_arch_state(target);
3191 if (retval != ERROR_OK)
3192 return retval;
3193 } else if (CMD_ARGC == 1) {
3194 bool enable;
3195 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
3196 jtag_poll_set_enabled(enable);
3197 } else
3198 return ERROR_COMMAND_SYNTAX_ERROR;
3200 return retval;
3203 COMMAND_HANDLER(handle_wait_halt_command)
3205 if (CMD_ARGC > 1)
3206 return ERROR_COMMAND_SYNTAX_ERROR;
3208 unsigned ms = DEFAULT_HALT_TIMEOUT;
3209 if (1 == CMD_ARGC) {
3210 int retval = parse_uint(CMD_ARGV[0], &ms);
3211 if (ERROR_OK != retval)
3212 return ERROR_COMMAND_SYNTAX_ERROR;
3215 struct target *target = get_current_target(CMD_CTX);
3216 return target_wait_state(target, TARGET_HALTED, ms);
3219 /* wait for target state to change. The trick here is to have a low
3220 * latency for short waits and not to suck up all the CPU time
3221 * on longer waits.
3223 * After 500ms, keep_alive() is invoked
3225 int target_wait_state(struct target *target, enum target_state state, int ms)
3227 int retval;
3228 int64_t then = 0, cur;
3229 bool once = true;
3231 for (;;) {
3232 retval = target_poll(target);
3233 if (retval != ERROR_OK)
3234 return retval;
3235 if (target->state == state)
3236 break;
3237 cur = timeval_ms();
3238 if (once) {
3239 once = false;
3240 then = timeval_ms();
3241 LOG_DEBUG("waiting for target %s...",
3242 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3245 if (cur-then > 500)
3246 keep_alive();
3248 if ((cur-then) > ms) {
3249 LOG_ERROR("timed out while waiting for target %s",
3250 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3251 return ERROR_FAIL;
3255 return ERROR_OK;
3258 COMMAND_HANDLER(handle_halt_command)
3260 LOG_DEBUG("-");
3262 struct target *target = get_current_target(CMD_CTX);
3264 target->verbose_halt_msg = true;
3266 int retval = target_halt(target);
3267 if (ERROR_OK != retval)
3268 return retval;
3270 if (CMD_ARGC == 1) {
3271 unsigned wait_local;
3272 retval = parse_uint(CMD_ARGV[0], &wait_local);
3273 if (ERROR_OK != retval)
3274 return ERROR_COMMAND_SYNTAX_ERROR;
3275 if (!wait_local)
3276 return ERROR_OK;
3279 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
3282 COMMAND_HANDLER(handle_soft_reset_halt_command)
3284 struct target *target = get_current_target(CMD_CTX);
3286 LOG_USER("requesting target halt and executing a soft reset");
3288 target_soft_reset_halt(target);
3290 return ERROR_OK;
3293 COMMAND_HANDLER(handle_reset_command)
3295 if (CMD_ARGC > 1)
3296 return ERROR_COMMAND_SYNTAX_ERROR;
3298 enum target_reset_mode reset_mode = RESET_RUN;
3299 if (CMD_ARGC == 1) {
3300 const Jim_Nvp *n;
3301 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3302 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3303 return ERROR_COMMAND_SYNTAX_ERROR;
3304 reset_mode = n->value;
3307 /* reset *all* targets */
3308 return target_process_reset(CMD, reset_mode);
3312 COMMAND_HANDLER(handle_resume_command)
3314 int current = 1;
3315 if (CMD_ARGC > 1)
3316 return ERROR_COMMAND_SYNTAX_ERROR;
3318 struct target *target = get_current_target(CMD_CTX);
3320 /* with no CMD_ARGV, resume from current pc, addr = 0,
3321 * with one arguments, addr = CMD_ARGV[0],
3322 * handle breakpoints, not debugging */
3323 target_addr_t addr = 0;
3324 if (CMD_ARGC == 1) {
3325 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3326 current = 0;
3329 return target_resume(target, current, addr, 1, 0);
3332 COMMAND_HANDLER(handle_step_command)
3334 if (CMD_ARGC > 1)
3335 return ERROR_COMMAND_SYNTAX_ERROR;
3337 LOG_DEBUG("-");
3339 /* with no CMD_ARGV, step from current pc, addr = 0,
3340 * with one argument addr = CMD_ARGV[0],
3341 * handle breakpoints, debugging */
3342 target_addr_t addr = 0;
3343 int current_pc = 1;
3344 if (CMD_ARGC == 1) {
3345 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3346 current_pc = 0;
3349 struct target *target = get_current_target(CMD_CTX);
3351 return target_step(target, current_pc, addr, 1);
3354 void target_handle_md_output(struct command_invocation *cmd,
3355 struct target *target, target_addr_t address, unsigned size,
3356 unsigned count, const uint8_t *buffer)
3358 const unsigned line_bytecnt = 32;
3359 unsigned line_modulo = line_bytecnt / size;
3361 char output[line_bytecnt * 4 + 1];
3362 unsigned output_len = 0;
3364 const char *value_fmt;
3365 switch (size) {
3366 case 8:
3367 value_fmt = "%16.16"PRIx64" ";
3368 break;
3369 case 4:
3370 value_fmt = "%8.8"PRIx64" ";
3371 break;
3372 case 2:
3373 value_fmt = "%4.4"PRIx64" ";
3374 break;
3375 case 1:
3376 value_fmt = "%2.2"PRIx64" ";
3377 break;
3378 default:
3379 /* "can't happen", caller checked */
3380 LOG_ERROR("invalid memory read size: %u", size);
3381 return;
3384 for (unsigned i = 0; i < count; i++) {
3385 if (i % line_modulo == 0) {
3386 output_len += snprintf(output + output_len,
3387 sizeof(output) - output_len,
3388 TARGET_ADDR_FMT ": ",
3389 (address + (i * size)));
3392 uint64_t value = 0;
3393 const uint8_t *value_ptr = buffer + i * size;
3394 switch (size) {
3395 case 8:
3396 value = target_buffer_get_u64(target, value_ptr);
3397 break;
3398 case 4:
3399 value = target_buffer_get_u32(target, value_ptr);
3400 break;
3401 case 2:
3402 value = target_buffer_get_u16(target, value_ptr);
3403 break;
3404 case 1:
3405 value = *value_ptr;
3407 output_len += snprintf(output + output_len,
3408 sizeof(output) - output_len,
3409 value_fmt, value);
3411 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3412 command_print(cmd, "%s", output);
3413 output_len = 0;
3418 COMMAND_HANDLER(handle_md_command)
3420 if (CMD_ARGC < 1)
3421 return ERROR_COMMAND_SYNTAX_ERROR;
3423 unsigned size = 0;
3424 switch (CMD_NAME[2]) {
3425 case 'd':
3426 size = 8;
3427 break;
3428 case 'w':
3429 size = 4;
3430 break;
3431 case 'h':
3432 size = 2;
3433 break;
3434 case 'b':
3435 size = 1;
3436 break;
3437 default:
3438 return ERROR_COMMAND_SYNTAX_ERROR;
3441 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3442 int (*fn)(struct target *target,
3443 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3444 if (physical) {
3445 CMD_ARGC--;
3446 CMD_ARGV++;
3447 fn = target_read_phys_memory;
3448 } else
3449 fn = target_read_memory;
3450 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3451 return ERROR_COMMAND_SYNTAX_ERROR;
3453 target_addr_t address;
3454 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3456 unsigned count = 1;
3457 if (CMD_ARGC == 2)
3458 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3460 uint8_t *buffer = calloc(count, size);
3461 if (buffer == NULL) {
3462 LOG_ERROR("Failed to allocate md read buffer");
3463 return ERROR_FAIL;
3466 struct target *target = get_current_target(CMD_CTX);
3467 int retval = fn(target, address, size, count, buffer);
3468 if (ERROR_OK == retval)
3469 target_handle_md_output(CMD, target, address, size, count, buffer);
3471 free(buffer);
3473 return retval;
3476 typedef int (*target_write_fn)(struct target *target,
3477 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3479 static int target_fill_mem(struct target *target,
3480 target_addr_t address,
3481 target_write_fn fn,
3482 unsigned data_size,
3483 /* value */
3484 uint64_t b,
3485 /* count */
3486 unsigned c)
3488 /* We have to write in reasonably large chunks to be able
3489 * to fill large memory areas with any sane speed */
3490 const unsigned chunk_size = 16384;
3491 uint8_t *target_buf = malloc(chunk_size * data_size);
3492 if (target_buf == NULL) {
3493 LOG_ERROR("Out of memory");
3494 return ERROR_FAIL;
3497 for (unsigned i = 0; i < chunk_size; i++) {
3498 switch (data_size) {
3499 case 8:
3500 target_buffer_set_u64(target, target_buf + i * data_size, b);
3501 break;
3502 case 4:
3503 target_buffer_set_u32(target, target_buf + i * data_size, b);
3504 break;
3505 case 2:
3506 target_buffer_set_u16(target, target_buf + i * data_size, b);
3507 break;
3508 case 1:
3509 target_buffer_set_u8(target, target_buf + i * data_size, b);
3510 break;
3511 default:
3512 exit(-1);
3516 int retval = ERROR_OK;
3518 for (unsigned x = 0; x < c; x += chunk_size) {
3519 unsigned current;
3520 current = c - x;
3521 if (current > chunk_size)
3522 current = chunk_size;
3523 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3524 if (retval != ERROR_OK)
3525 break;
3526 /* avoid GDB timeouts */
3527 keep_alive();
3529 free(target_buf);
3531 return retval;
3535 COMMAND_HANDLER(handle_mw_command)
3537 if (CMD_ARGC < 2)
3538 return ERROR_COMMAND_SYNTAX_ERROR;
3539 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3540 target_write_fn fn;
3541 if (physical) {
3542 CMD_ARGC--;
3543 CMD_ARGV++;
3544 fn = target_write_phys_memory;
3545 } else
3546 fn = target_write_memory;
3547 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3548 return ERROR_COMMAND_SYNTAX_ERROR;
3550 target_addr_t address;
3551 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3553 uint64_t value;
3554 COMMAND_PARSE_NUMBER(u64, CMD_ARGV[1], value);
3556 unsigned count = 1;
3557 if (CMD_ARGC == 3)
3558 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3560 struct target *target = get_current_target(CMD_CTX);
3561 unsigned wordsize;
3562 switch (CMD_NAME[2]) {
3563 case 'd':
3564 wordsize = 8;
3565 break;
3566 case 'w':
3567 wordsize = 4;
3568 break;
3569 case 'h':
3570 wordsize = 2;
3571 break;
3572 case 'b':
3573 wordsize = 1;
3574 break;
3575 default:
3576 return ERROR_COMMAND_SYNTAX_ERROR;
3579 return target_fill_mem(target, address, fn, wordsize, value, count);
3582 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3583 target_addr_t *min_address, target_addr_t *max_address)
3585 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3586 return ERROR_COMMAND_SYNTAX_ERROR;
3588 /* a base address isn't always necessary,
3589 * default to 0x0 (i.e. don't relocate) */
3590 if (CMD_ARGC >= 2) {
3591 target_addr_t addr;
3592 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3593 image->base_address = addr;
3594 image->base_address_set = true;
3595 } else
3596 image->base_address_set = false;
3598 image->start_address_set = false;
3600 if (CMD_ARGC >= 4)
3601 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3602 if (CMD_ARGC == 5) {
3603 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3604 /* use size (given) to find max (required) */
3605 *max_address += *min_address;
3608 if (*min_address > *max_address)
3609 return ERROR_COMMAND_SYNTAX_ERROR;
3611 return ERROR_OK;
3614 COMMAND_HANDLER(handle_load_image_command)
3616 uint8_t *buffer;
3617 size_t buf_cnt;
3618 uint32_t image_size;
3619 target_addr_t min_address = 0;
3620 target_addr_t max_address = -1;
3621 struct image image;
3623 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3624 &image, &min_address, &max_address);
3625 if (ERROR_OK != retval)
3626 return retval;
3628 struct target *target = get_current_target(CMD_CTX);
3630 struct duration bench;
3631 duration_start(&bench);
3633 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3634 return ERROR_FAIL;
3636 image_size = 0x0;
3637 retval = ERROR_OK;
3638 for (unsigned int i = 0; i < image.num_sections; i++) {
3639 buffer = malloc(image.sections[i].size);
3640 if (buffer == NULL) {
3641 command_print(CMD,
3642 "error allocating buffer for section (%d bytes)",
3643 (int)(image.sections[i].size));
3644 retval = ERROR_FAIL;
3645 break;
3648 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3649 if (retval != ERROR_OK) {
3650 free(buffer);
3651 break;
3654 uint32_t offset = 0;
3655 uint32_t length = buf_cnt;
3657 /* DANGER!!! beware of unsigned comparison here!!! */
3659 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3660 (image.sections[i].base_address < max_address)) {
3662 if (image.sections[i].base_address < min_address) {
3663 /* clip addresses below */
3664 offset += min_address-image.sections[i].base_address;
3665 length -= offset;
3668 if (image.sections[i].base_address + buf_cnt > max_address)
3669 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3671 retval = target_write_buffer(target,
3672 image.sections[i].base_address + offset, length, buffer + offset);
3673 if (retval != ERROR_OK) {
3674 free(buffer);
3675 break;
3677 image_size += length;
3678 command_print(CMD, "%u bytes written at address " TARGET_ADDR_FMT "",
3679 (unsigned int)length,
3680 image.sections[i].base_address + offset);
3683 free(buffer);
3686 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3687 command_print(CMD, "downloaded %" PRIu32 " bytes "
3688 "in %fs (%0.3f KiB/s)", image_size,
3689 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3692 image_close(&image);
3694 return retval;
3698 COMMAND_HANDLER(handle_dump_image_command)
3700 struct fileio *fileio;
3701 uint8_t *buffer;
3702 int retval, retvaltemp;
3703 target_addr_t address, size;
3704 struct duration bench;
3705 struct target *target = get_current_target(CMD_CTX);
3707 if (CMD_ARGC != 3)
3708 return ERROR_COMMAND_SYNTAX_ERROR;
3710 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3711 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3713 uint32_t buf_size = (size > 4096) ? 4096 : size;
3714 buffer = malloc(buf_size);
3715 if (!buffer)
3716 return ERROR_FAIL;
3718 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3719 if (retval != ERROR_OK) {
3720 free(buffer);
3721 return retval;
3724 duration_start(&bench);
3726 while (size > 0) {
3727 size_t size_written;
3728 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3729 retval = target_read_buffer(target, address, this_run_size, buffer);
3730 if (retval != ERROR_OK)
3731 break;
3733 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3734 if (retval != ERROR_OK)
3735 break;
3737 size -= this_run_size;
3738 address += this_run_size;
3741 free(buffer);
3743 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3744 size_t filesize;
3745 retval = fileio_size(fileio, &filesize);
3746 if (retval != ERROR_OK)
3747 return retval;
3748 command_print(CMD,
3749 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3750 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3753 retvaltemp = fileio_close(fileio);
3754 if (retvaltemp != ERROR_OK)
3755 return retvaltemp;
3757 return retval;
3760 enum verify_mode {
3761 IMAGE_TEST = 0,
3762 IMAGE_VERIFY = 1,
3763 IMAGE_CHECKSUM_ONLY = 2
3766 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3768 uint8_t *buffer;
3769 size_t buf_cnt;
3770 uint32_t image_size;
3771 int retval;
3772 uint32_t checksum = 0;
3773 uint32_t mem_checksum = 0;
3775 struct image image;
3777 struct target *target = get_current_target(CMD_CTX);
3779 if (CMD_ARGC < 1)
3780 return ERROR_COMMAND_SYNTAX_ERROR;
3782 if (!target) {
3783 LOG_ERROR("no target selected");
3784 return ERROR_FAIL;
3787 struct duration bench;
3788 duration_start(&bench);
3790 if (CMD_ARGC >= 2) {
3791 target_addr_t addr;
3792 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3793 image.base_address = addr;
3794 image.base_address_set = true;
3795 } else {
3796 image.base_address_set = false;
3797 image.base_address = 0x0;
3800 image.start_address_set = false;
3802 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3803 if (retval != ERROR_OK)
3804 return retval;
3806 image_size = 0x0;
3807 int diffs = 0;
3808 retval = ERROR_OK;
3809 for (unsigned int i = 0; i < image.num_sections; i++) {
3810 buffer = malloc(image.sections[i].size);
3811 if (buffer == NULL) {
3812 command_print(CMD,
3813 "error allocating buffer for section (%" PRIu32 " bytes)",
3814 image.sections[i].size);
3815 break;
3817 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3818 if (retval != ERROR_OK) {
3819 free(buffer);
3820 break;
3823 if (verify >= IMAGE_VERIFY) {
3824 /* calculate checksum of image */
3825 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3826 if (retval != ERROR_OK) {
3827 free(buffer);
3828 break;
3831 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3832 if (retval != ERROR_OK) {
3833 free(buffer);
3834 break;
3836 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3837 LOG_ERROR("checksum mismatch");
3838 free(buffer);
3839 retval = ERROR_FAIL;
3840 goto done;
3842 if (checksum != mem_checksum) {
3843 /* failed crc checksum, fall back to a binary compare */
3844 uint8_t *data;
3846 if (diffs == 0)
3847 LOG_ERROR("checksum mismatch - attempting binary compare");
3849 data = malloc(buf_cnt);
3851 retval = target_read_buffer(target, image.sections[i].base_address, buf_cnt, data);
3852 if (retval == ERROR_OK) {
3853 uint32_t t;
3854 for (t = 0; t < buf_cnt; t++) {
3855 if (data[t] != buffer[t]) {
3856 command_print(CMD,
3857 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3858 diffs,
3859 (unsigned)(t + image.sections[i].base_address),
3860 data[t],
3861 buffer[t]);
3862 if (diffs++ >= 127) {
3863 command_print(CMD, "More than 128 errors, the rest are not printed.");
3864 free(data);
3865 free(buffer);
3866 goto done;
3869 keep_alive();
3872 free(data);
3874 } else {
3875 command_print(CMD, "address " TARGET_ADDR_FMT " length 0x%08zx",
3876 image.sections[i].base_address,
3877 buf_cnt);
3880 free(buffer);
3881 image_size += buf_cnt;
3883 if (diffs > 0)
3884 command_print(CMD, "No more differences found.");
3885 done:
3886 if (diffs > 0)
3887 retval = ERROR_FAIL;
3888 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3889 command_print(CMD, "verified %" PRIu32 " bytes "
3890 "in %fs (%0.3f KiB/s)", image_size,
3891 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3894 image_close(&image);
3896 return retval;
3899 COMMAND_HANDLER(handle_verify_image_checksum_command)
3901 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3904 COMMAND_HANDLER(handle_verify_image_command)
3906 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3909 COMMAND_HANDLER(handle_test_image_command)
3911 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3914 static int handle_bp_command_list(struct command_invocation *cmd)
3916 struct target *target = get_current_target(cmd->ctx);
3917 struct breakpoint *breakpoint = target->breakpoints;
3918 while (breakpoint) {
3919 if (breakpoint->type == BKPT_SOFT) {
3920 char *buf = buf_to_hex_str(breakpoint->orig_instr,
3921 breakpoint->length);
3922 command_print(cmd, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3923 breakpoint->address,
3924 breakpoint->length,
3925 breakpoint->set, buf);
3926 free(buf);
3927 } else {
3928 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3929 command_print(cmd, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3930 breakpoint->asid,
3931 breakpoint->length, breakpoint->set);
3932 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3933 command_print(cmd, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3934 breakpoint->address,
3935 breakpoint->length, breakpoint->set);
3936 command_print(cmd, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3937 breakpoint->asid);
3938 } else
3939 command_print(cmd, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3940 breakpoint->address,
3941 breakpoint->length, breakpoint->set);
3944 breakpoint = breakpoint->next;
3946 return ERROR_OK;
3949 static int handle_bp_command_set(struct command_invocation *cmd,
3950 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3952 struct target *target = get_current_target(cmd->ctx);
3953 int retval;
3955 if (asid == 0) {
3956 retval = breakpoint_add(target, addr, length, hw);
3957 /* error is always logged in breakpoint_add(), do not print it again */
3958 if (ERROR_OK == retval)
3959 command_print(cmd, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3961 } else if (addr == 0) {
3962 if (target->type->add_context_breakpoint == NULL) {
3963 LOG_ERROR("Context breakpoint not available");
3964 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
3966 retval = context_breakpoint_add(target, asid, length, hw);
3967 /* error is always logged in context_breakpoint_add(), do not print it again */
3968 if (ERROR_OK == retval)
3969 command_print(cmd, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3971 } else {
3972 if (target->type->add_hybrid_breakpoint == NULL) {
3973 LOG_ERROR("Hybrid breakpoint not available");
3974 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
3976 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3977 /* error is always logged in hybrid_breakpoint_add(), do not print it again */
3978 if (ERROR_OK == retval)
3979 command_print(cmd, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3981 return retval;
3984 COMMAND_HANDLER(handle_bp_command)
3986 target_addr_t addr;
3987 uint32_t asid;
3988 uint32_t length;
3989 int hw = BKPT_SOFT;
3991 switch (CMD_ARGC) {
3992 case 0:
3993 return handle_bp_command_list(CMD);
3995 case 2:
3996 asid = 0;
3997 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3998 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3999 return handle_bp_command_set(CMD, addr, asid, length, hw);
4001 case 3:
4002 if (strcmp(CMD_ARGV[2], "hw") == 0) {
4003 hw = BKPT_HARD;
4004 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
4005 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
4006 asid = 0;
4007 return handle_bp_command_set(CMD, addr, asid, length, hw);
4008 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
4009 hw = BKPT_HARD;
4010 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
4011 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
4012 addr = 0;
4013 return handle_bp_command_set(CMD, addr, asid, length, hw);
4015 /* fallthrough */
4016 case 4:
4017 hw = BKPT_HARD;
4018 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
4019 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
4020 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
4021 return handle_bp_command_set(CMD, addr, asid, length, hw);
4023 default:
4024 return ERROR_COMMAND_SYNTAX_ERROR;
4028 COMMAND_HANDLER(handle_rbp_command)
4030 if (CMD_ARGC != 1)
4031 return ERROR_COMMAND_SYNTAX_ERROR;
4033 struct target *target = get_current_target(CMD_CTX);
4035 if (!strcmp(CMD_ARGV[0], "all")) {
4036 breakpoint_remove_all(target);
4037 } else {
4038 target_addr_t addr;
4039 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
4041 breakpoint_remove(target, addr);
4044 return ERROR_OK;
4047 COMMAND_HANDLER(handle_wp_command)
4049 struct target *target = get_current_target(CMD_CTX);
4051 if (CMD_ARGC == 0) {
4052 struct watchpoint *watchpoint = target->watchpoints;
4054 while (watchpoint) {
4055 command_print(CMD, "address: " TARGET_ADDR_FMT
4056 ", len: 0x%8.8" PRIx32
4057 ", r/w/a: %i, value: 0x%8.8" PRIx32
4058 ", mask: 0x%8.8" PRIx32,
4059 watchpoint->address,
4060 watchpoint->length,
4061 (int)watchpoint->rw,
4062 watchpoint->value,
4063 watchpoint->mask);
4064 watchpoint = watchpoint->next;
4066 return ERROR_OK;
4069 enum watchpoint_rw type = WPT_ACCESS;
4070 target_addr_t addr = 0;
4071 uint32_t length = 0;
4072 uint32_t data_value = 0x0;
4073 uint32_t data_mask = 0xffffffff;
4075 switch (CMD_ARGC) {
4076 case 5:
4077 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
4078 /* fall through */
4079 case 4:
4080 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
4081 /* fall through */
4082 case 3:
4083 switch (CMD_ARGV[2][0]) {
4084 case 'r':
4085 type = WPT_READ;
4086 break;
4087 case 'w':
4088 type = WPT_WRITE;
4089 break;
4090 case 'a':
4091 type = WPT_ACCESS;
4092 break;
4093 default:
4094 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
4095 return ERROR_COMMAND_SYNTAX_ERROR;
4097 /* fall through */
4098 case 2:
4099 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
4100 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
4101 break;
4103 default:
4104 return ERROR_COMMAND_SYNTAX_ERROR;
4107 int retval = watchpoint_add(target, addr, length, type,
4108 data_value, data_mask);
4109 if (ERROR_OK != retval)
4110 LOG_ERROR("Failure setting watchpoints");
4112 return retval;
4115 COMMAND_HANDLER(handle_rwp_command)
4117 if (CMD_ARGC != 1)
4118 return ERROR_COMMAND_SYNTAX_ERROR;
4120 target_addr_t addr;
4121 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
4123 struct target *target = get_current_target(CMD_CTX);
4124 watchpoint_remove(target, addr);
4126 return ERROR_OK;
4130 * Translate a virtual address to a physical address.
4132 * The low-level target implementation must have logged a detailed error
4133 * which is forwarded to telnet/GDB session.
4135 COMMAND_HANDLER(handle_virt2phys_command)
4137 if (CMD_ARGC != 1)
4138 return ERROR_COMMAND_SYNTAX_ERROR;
4140 target_addr_t va;
4141 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
4142 target_addr_t pa;
4144 struct target *target = get_current_target(CMD_CTX);
4145 int retval = target->type->virt2phys(target, va, &pa);
4146 if (retval == ERROR_OK)
4147 command_print(CMD, "Physical address " TARGET_ADDR_FMT "", pa);
4149 return retval;
4152 static void writeData(FILE *f, const void *data, size_t len)
4154 size_t written = fwrite(data, 1, len, f);
4155 if (written != len)
4156 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
4159 static void writeLong(FILE *f, int l, struct target *target)
4161 uint8_t val[4];
4163 target_buffer_set_u32(target, val, l);
4164 writeData(f, val, 4);
4167 static void writeString(FILE *f, char *s)
4169 writeData(f, s, strlen(s));
4172 typedef unsigned char UNIT[2]; /* unit of profiling */
4174 /* Dump a gmon.out histogram file. */
4175 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
4176 uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
4178 uint32_t i;
4179 FILE *f = fopen(filename, "w");
4180 if (f == NULL)
4181 return;
4182 writeString(f, "gmon");
4183 writeLong(f, 0x00000001, target); /* Version */
4184 writeLong(f, 0, target); /* padding */
4185 writeLong(f, 0, target); /* padding */
4186 writeLong(f, 0, target); /* padding */
4188 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
4189 writeData(f, &zero, 1);
4191 /* figure out bucket size */
4192 uint32_t min;
4193 uint32_t max;
4194 if (with_range) {
4195 min = start_address;
4196 max = end_address;
4197 } else {
4198 min = samples[0];
4199 max = samples[0];
4200 for (i = 0; i < sampleNum; i++) {
4201 if (min > samples[i])
4202 min = samples[i];
4203 if (max < samples[i])
4204 max = samples[i];
4207 /* max should be (largest sample + 1)
4208 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
4209 max++;
4212 int addressSpace = max - min;
4213 assert(addressSpace >= 2);
4215 /* FIXME: What is the reasonable number of buckets?
4216 * The profiling result will be more accurate if there are enough buckets. */
4217 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
4218 uint32_t numBuckets = addressSpace / sizeof(UNIT);
4219 if (numBuckets > maxBuckets)
4220 numBuckets = maxBuckets;
4221 int *buckets = malloc(sizeof(int) * numBuckets);
4222 if (buckets == NULL) {
4223 fclose(f);
4224 return;
4226 memset(buckets, 0, sizeof(int) * numBuckets);
4227 for (i = 0; i < sampleNum; i++) {
4228 uint32_t address = samples[i];
4230 if ((address < min) || (max <= address))
4231 continue;
4233 long long a = address - min;
4234 long long b = numBuckets;
4235 long long c = addressSpace;
4236 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
4237 buckets[index_t]++;
4240 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
4241 writeLong(f, min, target); /* low_pc */
4242 writeLong(f, max, target); /* high_pc */
4243 writeLong(f, numBuckets, target); /* # of buckets */
4244 float sample_rate = sampleNum / (duration_ms / 1000.0);
4245 writeLong(f, sample_rate, target);
4246 writeString(f, "seconds");
4247 for (i = 0; i < (15-strlen("seconds")); i++)
4248 writeData(f, &zero, 1);
4249 writeString(f, "s");
4251 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
4253 char *data = malloc(2 * numBuckets);
4254 if (data != NULL) {
4255 for (i = 0; i < numBuckets; i++) {
4256 int val;
4257 val = buckets[i];
4258 if (val > 65535)
4259 val = 65535;
4260 data[i * 2] = val&0xff;
4261 data[i * 2 + 1] = (val >> 8) & 0xff;
4263 free(buckets);
4264 writeData(f, data, numBuckets * 2);
4265 free(data);
4266 } else
4267 free(buckets);
4269 fclose(f);
4272 /* profiling samples the CPU PC as quickly as OpenOCD is able,
4273 * which will be used as a random sampling of PC */
4274 COMMAND_HANDLER(handle_profile_command)
4276 struct target *target = get_current_target(CMD_CTX);
4278 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4279 return ERROR_COMMAND_SYNTAX_ERROR;
4281 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4282 uint32_t offset;
4283 uint32_t num_of_samples;
4284 int retval = ERROR_OK;
4285 bool halted_before_profiling = target->state == TARGET_HALTED;
4287 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4289 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4290 if (samples == NULL) {
4291 LOG_ERROR("No memory to store samples.");
4292 return ERROR_FAIL;
4295 uint64_t timestart_ms = timeval_ms();
4297 * Some cores let us sample the PC without the
4298 * annoying halt/resume step; for example, ARMv7 PCSR.
4299 * Provide a way to use that more efficient mechanism.
4301 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4302 &num_of_samples, offset);
4303 if (retval != ERROR_OK) {
4304 free(samples);
4305 return retval;
4307 uint32_t duration_ms = timeval_ms() - timestart_ms;
4309 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4311 retval = target_poll(target);
4312 if (retval != ERROR_OK) {
4313 free(samples);
4314 return retval;
4317 if (target->state == TARGET_RUNNING && halted_before_profiling) {
4318 /* The target was halted before we started and is running now. Halt it,
4319 * for consistency. */
4320 retval = target_halt(target);
4321 if (retval != ERROR_OK) {
4322 free(samples);
4323 return retval;
4325 } else if (target->state == TARGET_HALTED && !halted_before_profiling) {
4326 /* The target was running before we started and is halted now. Resume
4327 * it, for consistency. */
4328 retval = target_resume(target, 1, 0, 0, 0);
4329 if (retval != ERROR_OK) {
4330 free(samples);
4331 return retval;
4335 retval = target_poll(target);
4336 if (retval != ERROR_OK) {
4337 free(samples);
4338 return retval;
4341 uint32_t start_address = 0;
4342 uint32_t end_address = 0;
4343 bool with_range = false;
4344 if (CMD_ARGC == 4) {
4345 with_range = true;
4346 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4347 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4350 write_gmon(samples, num_of_samples, CMD_ARGV[1],
4351 with_range, start_address, end_address, target, duration_ms);
4352 command_print(CMD, "Wrote %s", CMD_ARGV[1]);
4354 free(samples);
4355 return retval;
4358 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4360 char *namebuf;
4361 Jim_Obj *nameObjPtr, *valObjPtr;
4362 int result;
4364 namebuf = alloc_printf("%s(%d)", varname, idx);
4365 if (!namebuf)
4366 return JIM_ERR;
4368 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4369 valObjPtr = Jim_NewIntObj(interp, val);
4370 if (!nameObjPtr || !valObjPtr) {
4371 free(namebuf);
4372 return JIM_ERR;
4375 Jim_IncrRefCount(nameObjPtr);
4376 Jim_IncrRefCount(valObjPtr);
4377 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4378 Jim_DecrRefCount(interp, nameObjPtr);
4379 Jim_DecrRefCount(interp, valObjPtr);
4380 free(namebuf);
4381 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4382 return result;
4385 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4387 struct command_context *context;
4388 struct target *target;
4390 context = current_command_context(interp);
4391 assert(context != NULL);
4393 target = get_current_target(context);
4394 if (target == NULL) {
4395 LOG_ERROR("mem2array: no current target");
4396 return JIM_ERR;
4399 return target_mem2array(interp, target, argc - 1, argv + 1);
4402 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4404 long l;
4405 uint32_t width;
4406 int len;
4407 uint32_t addr;
4408 uint32_t count;
4409 uint32_t v;
4410 const char *varname;
4411 const char *phys;
4412 bool is_phys;
4413 int n, e, retval;
4414 uint32_t i;
4416 /* argv[1] = name of array to receive the data
4417 * argv[2] = desired width
4418 * argv[3] = memory address
4419 * argv[4] = count of times to read
4422 if (argc < 4 || argc > 5) {
4423 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4424 return JIM_ERR;
4426 varname = Jim_GetString(argv[0], &len);
4427 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4429 e = Jim_GetLong(interp, argv[1], &l);
4430 width = l;
4431 if (e != JIM_OK)
4432 return e;
4434 e = Jim_GetLong(interp, argv[2], &l);
4435 addr = l;
4436 if (e != JIM_OK)
4437 return e;
4438 e = Jim_GetLong(interp, argv[3], &l);
4439 len = l;
4440 if (e != JIM_OK)
4441 return e;
4442 is_phys = false;
4443 if (argc > 4) {
4444 phys = Jim_GetString(argv[4], &n);
4445 if (!strncmp(phys, "phys", n))
4446 is_phys = true;
4447 else
4448 return JIM_ERR;
4450 switch (width) {
4451 case 8:
4452 width = 1;
4453 break;
4454 case 16:
4455 width = 2;
4456 break;
4457 case 32:
4458 width = 4;
4459 break;
4460 default:
4461 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4462 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4463 return JIM_ERR;
4465 if (len == 0) {
4466 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4467 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4468 return JIM_ERR;
4470 if ((addr + (len * width)) < addr) {
4471 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4472 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4473 return JIM_ERR;
4475 /* absurd transfer size? */
4476 if (len > 65536) {
4477 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4478 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4479 return JIM_ERR;
4482 if ((width == 1) ||
4483 ((width == 2) && ((addr & 1) == 0)) ||
4484 ((width == 4) && ((addr & 3) == 0))) {
4485 /* all is well */
4486 } else {
4487 char buf[100];
4488 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4489 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRIu32 " byte reads",
4490 addr,
4491 width);
4492 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4493 return JIM_ERR;
4496 /* Transfer loop */
4498 /* index counter */
4499 n = 0;
4501 size_t buffersize = 4096;
4502 uint8_t *buffer = malloc(buffersize);
4503 if (buffer == NULL)
4504 return JIM_ERR;
4506 /* assume ok */
4507 e = JIM_OK;
4508 while (len) {
4509 /* Slurp... in buffer size chunks */
4511 count = len; /* in objects.. */
4512 if (count > (buffersize / width))
4513 count = (buffersize / width);
4515 if (is_phys)
4516 retval = target_read_phys_memory(target, addr, width, count, buffer);
4517 else
4518 retval = target_read_memory(target, addr, width, count, buffer);
4519 if (retval != ERROR_OK) {
4520 /* BOO !*/
4521 LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRIu32 ", cnt=%" PRIu32 ", failed",
4522 addr,
4523 width,
4524 count);
4525 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4526 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4527 e = JIM_ERR;
4528 break;
4529 } else {
4530 v = 0; /* shut up gcc */
4531 for (i = 0; i < count ; i++, n++) {
4532 switch (width) {
4533 case 4:
4534 v = target_buffer_get_u32(target, &buffer[i*width]);
4535 break;
4536 case 2:
4537 v = target_buffer_get_u16(target, &buffer[i*width]);
4538 break;
4539 case 1:
4540 v = buffer[i] & 0x0ff;
4541 break;
4543 new_int_array_element(interp, varname, n, v);
4545 len -= count;
4546 addr += count * width;
4550 free(buffer);
4552 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4554 return e;
4557 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4559 char *namebuf;
4560 Jim_Obj *nameObjPtr, *valObjPtr;
4561 int result;
4562 long l;
4564 namebuf = alloc_printf("%s(%d)", varname, idx);
4565 if (!namebuf)
4566 return JIM_ERR;
4568 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4569 if (!nameObjPtr) {
4570 free(namebuf);
4571 return JIM_ERR;
4574 Jim_IncrRefCount(nameObjPtr);
4575 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4576 Jim_DecrRefCount(interp, nameObjPtr);
4577 free(namebuf);
4578 if (valObjPtr == NULL)
4579 return JIM_ERR;
4581 result = Jim_GetLong(interp, valObjPtr, &l);
4582 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4583 *val = l;
4584 return result;
4587 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4589 struct command_context *context;
4590 struct target *target;
4592 context = current_command_context(interp);
4593 assert(context != NULL);
4595 target = get_current_target(context);
4596 if (target == NULL) {
4597 LOG_ERROR("array2mem: no current target");
4598 return JIM_ERR;
4601 return target_array2mem(interp, target, argc-1, argv + 1);
4604 static int target_array2mem(Jim_Interp *interp, struct target *target,
4605 int argc, Jim_Obj *const *argv)
4607 long l;
4608 uint32_t width;
4609 int len;
4610 uint32_t addr;
4611 uint32_t count;
4612 uint32_t v;
4613 const char *varname;
4614 const char *phys;
4615 bool is_phys;
4616 int n, e, retval;
4617 uint32_t i;
4619 /* argv[1] = name of array to get the data
4620 * argv[2] = desired width
4621 * argv[3] = memory address
4622 * argv[4] = count to write
4624 if (argc < 4 || argc > 5) {
4625 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4626 return JIM_ERR;
4628 varname = Jim_GetString(argv[0], &len);
4629 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4631 e = Jim_GetLong(interp, argv[1], &l);
4632 width = l;
4633 if (e != JIM_OK)
4634 return e;
4636 e = Jim_GetLong(interp, argv[2], &l);
4637 addr = l;
4638 if (e != JIM_OK)
4639 return e;
4640 e = Jim_GetLong(interp, argv[3], &l);
4641 len = l;
4642 if (e != JIM_OK)
4643 return e;
4644 is_phys = false;
4645 if (argc > 4) {
4646 phys = Jim_GetString(argv[4], &n);
4647 if (!strncmp(phys, "phys", n))
4648 is_phys = true;
4649 else
4650 return JIM_ERR;
4652 switch (width) {
4653 case 8:
4654 width = 1;
4655 break;
4656 case 16:
4657 width = 2;
4658 break;
4659 case 32:
4660 width = 4;
4661 break;
4662 default:
4663 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4664 Jim_AppendStrings(interp, Jim_GetResult(interp),
4665 "Invalid width param, must be 8/16/32", NULL);
4666 return JIM_ERR;
4668 if (len == 0) {
4669 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4670 Jim_AppendStrings(interp, Jim_GetResult(interp),
4671 "array2mem: zero width read?", NULL);
4672 return JIM_ERR;
4674 if ((addr + (len * width)) < addr) {
4675 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4676 Jim_AppendStrings(interp, Jim_GetResult(interp),
4677 "array2mem: addr + len - wraps to zero?", NULL);
4678 return JIM_ERR;
4680 /* absurd transfer size? */
4681 if (len > 65536) {
4682 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4683 Jim_AppendStrings(interp, Jim_GetResult(interp),
4684 "array2mem: absurd > 64K item request", NULL);
4685 return JIM_ERR;
4688 if ((width == 1) ||
4689 ((width == 2) && ((addr & 1) == 0)) ||
4690 ((width == 4) && ((addr & 3) == 0))) {
4691 /* all is well */
4692 } else {
4693 char buf[100];
4694 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4695 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRIu32 " byte reads",
4696 addr,
4697 width);
4698 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4699 return JIM_ERR;
4702 /* Transfer loop */
4704 /* index counter */
4705 n = 0;
4706 /* assume ok */
4707 e = JIM_OK;
4709 size_t buffersize = 4096;
4710 uint8_t *buffer = malloc(buffersize);
4711 if (buffer == NULL)
4712 return JIM_ERR;
4714 while (len) {
4715 /* Slurp... in buffer size chunks */
4717 count = len; /* in objects.. */
4718 if (count > (buffersize / width))
4719 count = (buffersize / width);
4721 v = 0; /* shut up gcc */
4722 for (i = 0; i < count; i++, n++) {
4723 get_int_array_element(interp, varname, n, &v);
4724 switch (width) {
4725 case 4:
4726 target_buffer_set_u32(target, &buffer[i * width], v);
4727 break;
4728 case 2:
4729 target_buffer_set_u16(target, &buffer[i * width], v);
4730 break;
4731 case 1:
4732 buffer[i] = v & 0x0ff;
4733 break;
4736 len -= count;
4738 if (is_phys)
4739 retval = target_write_phys_memory(target, addr, width, count, buffer);
4740 else
4741 retval = target_write_memory(target, addr, width, count, buffer);
4742 if (retval != ERROR_OK) {
4743 /* BOO !*/
4744 LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRIu32 ", cnt=%" PRIu32 ", failed",
4745 addr,
4746 width,
4747 count);
4748 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4749 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4750 e = JIM_ERR;
4751 break;
4753 addr += count * width;
4756 free(buffer);
4758 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4760 return e;
4763 /* FIX? should we propagate errors here rather than printing them
4764 * and continuing?
4766 void target_handle_event(struct target *target, enum target_event e)
4768 struct target_event_action *teap;
4769 int retval;
4771 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4772 if (teap->event == e) {
4773 LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4774 target->target_number,
4775 target_name(target),
4776 target_type_name(target),
4778 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4779 Jim_GetString(teap->body, NULL));
4781 /* Override current target by the target an event
4782 * is issued from (lot of scripts need it).
4783 * Return back to previous override as soon
4784 * as the handler processing is done */
4785 struct command_context *cmd_ctx = current_command_context(teap->interp);
4786 struct target *saved_target_override = cmd_ctx->current_target_override;
4787 cmd_ctx->current_target_override = target;
4789 retval = Jim_EvalObj(teap->interp, teap->body);
4791 cmd_ctx->current_target_override = saved_target_override;
4793 if (retval == ERROR_COMMAND_CLOSE_CONNECTION)
4794 return;
4796 if (retval == JIM_RETURN)
4797 retval = teap->interp->returnCode;
4799 if (retval != JIM_OK) {
4800 Jim_MakeErrorMessage(teap->interp);
4801 LOG_USER("Error executing event %s on target %s:\n%s",
4802 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4803 target_name(target),
4804 Jim_GetString(Jim_GetResult(teap->interp), NULL));
4805 /* clean both error code and stacktrace before return */
4806 Jim_Eval(teap->interp, "error \"\" \"\"");
4813 * Returns true only if the target has a handler for the specified event.
4815 bool target_has_event_action(struct target *target, enum target_event event)
4817 struct target_event_action *teap;
4819 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4820 if (teap->event == event)
4821 return true;
4823 return false;
4826 enum target_cfg_param {
4827 TCFG_TYPE,
4828 TCFG_EVENT,
4829 TCFG_WORK_AREA_VIRT,
4830 TCFG_WORK_AREA_PHYS,
4831 TCFG_WORK_AREA_SIZE,
4832 TCFG_WORK_AREA_BACKUP,
4833 TCFG_ENDIAN,
4834 TCFG_COREID,
4835 TCFG_CHAIN_POSITION,
4836 TCFG_DBGBASE,
4837 TCFG_RTOS,
4838 TCFG_DEFER_EXAMINE,
4839 TCFG_GDB_PORT,
4840 TCFG_GDB_MAX_CONNECTIONS,
4843 static Jim_Nvp nvp_config_opts[] = {
4844 { .name = "-type", .value = TCFG_TYPE },
4845 { .name = "-event", .value = TCFG_EVENT },
4846 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4847 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4848 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4849 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4850 { .name = "-endian", .value = TCFG_ENDIAN },
4851 { .name = "-coreid", .value = TCFG_COREID },
4852 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4853 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4854 { .name = "-rtos", .value = TCFG_RTOS },
4855 { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4856 { .name = "-gdb-port", .value = TCFG_GDB_PORT },
4857 { .name = "-gdb-max-connections", .value = TCFG_GDB_MAX_CONNECTIONS },
4858 { .name = NULL, .value = -1 }
4861 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4863 Jim_Nvp *n;
4864 Jim_Obj *o;
4865 jim_wide w;
4866 int e;
4868 /* parse config or cget options ... */
4869 while (goi->argc > 0) {
4870 Jim_SetEmptyResult(goi->interp);
4871 /* Jim_GetOpt_Debug(goi); */
4873 if (target->type->target_jim_configure) {
4874 /* target defines a configure function */
4875 /* target gets first dibs on parameters */
4876 e = (*(target->type->target_jim_configure))(target, goi);
4877 if (e == JIM_OK) {
4878 /* more? */
4879 continue;
4881 if (e == JIM_ERR) {
4882 /* An error */
4883 return e;
4885 /* otherwise we 'continue' below */
4887 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4888 if (e != JIM_OK) {
4889 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4890 return e;
4892 switch (n->value) {
4893 case TCFG_TYPE:
4894 /* not settable */
4895 if (goi->isconfigure) {
4896 Jim_SetResultFormatted(goi->interp,
4897 "not settable: %s", n->name);
4898 return JIM_ERR;
4899 } else {
4900 no_params:
4901 if (goi->argc != 0) {
4902 Jim_WrongNumArgs(goi->interp,
4903 goi->argc, goi->argv,
4904 "NO PARAMS");
4905 return JIM_ERR;
4908 Jim_SetResultString(goi->interp,
4909 target_type_name(target), -1);
4910 /* loop for more */
4911 break;
4912 case TCFG_EVENT:
4913 if (goi->argc == 0) {
4914 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4915 return JIM_ERR;
4918 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4919 if (e != JIM_OK) {
4920 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4921 return e;
4924 if (goi->isconfigure) {
4925 if (goi->argc != 1) {
4926 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4927 return JIM_ERR;
4929 } else {
4930 if (goi->argc != 0) {
4931 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4932 return JIM_ERR;
4937 struct target_event_action *teap;
4939 teap = target->event_action;
4940 /* replace existing? */
4941 while (teap) {
4942 if (teap->event == (enum target_event)n->value)
4943 break;
4944 teap = teap->next;
4947 if (goi->isconfigure) {
4948 /* START_DEPRECATED_TPIU */
4949 if (n->value == TARGET_EVENT_TRACE_CONFIG)
4950 LOG_INFO("DEPRECATED target event %s", n->name);
4951 /* END_DEPRECATED_TPIU */
4953 bool replace = true;
4954 if (teap == NULL) {
4955 /* create new */
4956 teap = calloc(1, sizeof(*teap));
4957 replace = false;
4959 teap->event = n->value;
4960 teap->interp = goi->interp;
4961 Jim_GetOpt_Obj(goi, &o);
4962 if (teap->body)
4963 Jim_DecrRefCount(teap->interp, teap->body);
4964 teap->body = Jim_DuplicateObj(goi->interp, o);
4966 * FIXME:
4967 * Tcl/TK - "tk events" have a nice feature.
4968 * See the "BIND" command.
4969 * We should support that here.
4970 * You can specify %X and %Y in the event code.
4971 * The idea is: %T - target name.
4972 * The idea is: %N - target number
4973 * The idea is: %E - event name.
4975 Jim_IncrRefCount(teap->body);
4977 if (!replace) {
4978 /* add to head of event list */
4979 teap->next = target->event_action;
4980 target->event_action = teap;
4982 Jim_SetEmptyResult(goi->interp);
4983 } else {
4984 /* get */
4985 if (teap == NULL)
4986 Jim_SetEmptyResult(goi->interp);
4987 else
4988 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4991 /* loop for more */
4992 break;
4994 case TCFG_WORK_AREA_VIRT:
4995 if (goi->isconfigure) {
4996 target_free_all_working_areas(target);
4997 e = Jim_GetOpt_Wide(goi, &w);
4998 if (e != JIM_OK)
4999 return e;
5000 target->working_area_virt = w;
5001 target->working_area_virt_spec = true;
5002 } else {
5003 if (goi->argc != 0)
5004 goto no_params;
5006 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
5007 /* loop for more */
5008 break;
5010 case TCFG_WORK_AREA_PHYS:
5011 if (goi->isconfigure) {
5012 target_free_all_working_areas(target);
5013 e = Jim_GetOpt_Wide(goi, &w);
5014 if (e != JIM_OK)
5015 return e;
5016 target->working_area_phys = w;
5017 target->working_area_phys_spec = true;
5018 } else {
5019 if (goi->argc != 0)
5020 goto no_params;
5022 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
5023 /* loop for more */
5024 break;
5026 case TCFG_WORK_AREA_SIZE:
5027 if (goi->isconfigure) {
5028 target_free_all_working_areas(target);
5029 e = Jim_GetOpt_Wide(goi, &w);
5030 if (e != JIM_OK)
5031 return e;
5032 target->working_area_size = w;
5033 } else {
5034 if (goi->argc != 0)
5035 goto no_params;
5037 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
5038 /* loop for more */
5039 break;
5041 case TCFG_WORK_AREA_BACKUP:
5042 if (goi->isconfigure) {
5043 target_free_all_working_areas(target);
5044 e = Jim_GetOpt_Wide(goi, &w);
5045 if (e != JIM_OK)
5046 return e;
5047 /* make this exactly 1 or 0 */
5048 target->backup_working_area = (!!w);
5049 } else {
5050 if (goi->argc != 0)
5051 goto no_params;
5053 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
5054 /* loop for more e*/
5055 break;
5058 case TCFG_ENDIAN:
5059 if (goi->isconfigure) {
5060 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
5061 if (e != JIM_OK) {
5062 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
5063 return e;
5065 target->endianness = n->value;
5066 } else {
5067 if (goi->argc != 0)
5068 goto no_params;
5070 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
5071 if (n->name == NULL) {
5072 target->endianness = TARGET_LITTLE_ENDIAN;
5073 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
5075 Jim_SetResultString(goi->interp, n->name, -1);
5076 /* loop for more */
5077 break;
5079 case TCFG_COREID:
5080 if (goi->isconfigure) {
5081 e = Jim_GetOpt_Wide(goi, &w);
5082 if (e != JIM_OK)
5083 return e;
5084 target->coreid = (int32_t)w;
5085 } else {
5086 if (goi->argc != 0)
5087 goto no_params;
5089 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->coreid));
5090 /* loop for more */
5091 break;
5093 case TCFG_CHAIN_POSITION:
5094 if (goi->isconfigure) {
5095 Jim_Obj *o_t;
5096 struct jtag_tap *tap;
5098 if (target->has_dap) {
5099 Jim_SetResultString(goi->interp,
5100 "target requires -dap parameter instead of -chain-position!", -1);
5101 return JIM_ERR;
5104 target_free_all_working_areas(target);
5105 e = Jim_GetOpt_Obj(goi, &o_t);
5106 if (e != JIM_OK)
5107 return e;
5108 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
5109 if (tap == NULL)
5110 return JIM_ERR;
5111 target->tap = tap;
5112 target->tap_configured = true;
5113 } else {
5114 if (goi->argc != 0)
5115 goto no_params;
5117 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
5118 /* loop for more e*/
5119 break;
5120 case TCFG_DBGBASE:
5121 if (goi->isconfigure) {
5122 e = Jim_GetOpt_Wide(goi, &w);
5123 if (e != JIM_OK)
5124 return e;
5125 target->dbgbase = (uint32_t)w;
5126 target->dbgbase_set = true;
5127 } else {
5128 if (goi->argc != 0)
5129 goto no_params;
5131 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
5132 /* loop for more */
5133 break;
5134 case TCFG_RTOS:
5135 /* RTOS */
5137 int result = rtos_create(goi, target);
5138 if (result != JIM_OK)
5139 return result;
5141 /* loop for more */
5142 break;
5144 case TCFG_DEFER_EXAMINE:
5145 /* DEFER_EXAMINE */
5146 target->defer_examine = true;
5147 /* loop for more */
5148 break;
5150 case TCFG_GDB_PORT:
5151 if (goi->isconfigure) {
5152 struct command_context *cmd_ctx = current_command_context(goi->interp);
5153 if (cmd_ctx->mode != COMMAND_CONFIG) {
5154 Jim_SetResultString(goi->interp, "-gdb-port must be configured before 'init'", -1);
5155 return JIM_ERR;
5158 const char *s;
5159 e = Jim_GetOpt_String(goi, &s, NULL);
5160 if (e != JIM_OK)
5161 return e;
5162 free(target->gdb_port_override);
5163 target->gdb_port_override = strdup(s);
5164 } else {
5165 if (goi->argc != 0)
5166 goto no_params;
5168 Jim_SetResultString(goi->interp, target->gdb_port_override ? : "undefined", -1);
5169 /* loop for more */
5170 break;
5172 case TCFG_GDB_MAX_CONNECTIONS:
5173 if (goi->isconfigure) {
5174 struct command_context *cmd_ctx = current_command_context(goi->interp);
5175 if (cmd_ctx->mode != COMMAND_CONFIG) {
5176 Jim_SetResultString(goi->interp, "-gdb-max-connections must be configured before 'init'", -1);
5177 return JIM_ERR;
5180 e = Jim_GetOpt_Wide(goi, &w);
5181 if (e != JIM_OK)
5182 return e;
5183 target->gdb_max_connections = (w < 0) ? CONNECTION_LIMIT_UNLIMITED : (int)w;
5184 } else {
5185 if (goi->argc != 0)
5186 goto no_params;
5188 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->gdb_max_connections));
5189 break;
5191 } /* while (goi->argc) */
5194 /* done - we return */
5195 return JIM_OK;
5198 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5200 struct command *c = jim_to_command(interp);
5201 Jim_GetOptInfo goi;
5203 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5204 goi.isconfigure = !strcmp(c->name, "configure");
5205 if (goi.argc < 1) {
5206 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5207 "missing: -option ...");
5208 return JIM_ERR;
5210 struct command_context *cmd_ctx = current_command_context(interp);
5211 assert(cmd_ctx);
5212 struct target *target = get_current_target(cmd_ctx);
5213 return target_configure(&goi, target);
5216 static int jim_target_mem2array(Jim_Interp *interp,
5217 int argc, Jim_Obj *const *argv)
5219 struct command_context *cmd_ctx = current_command_context(interp);
5220 assert(cmd_ctx);
5221 struct target *target = get_current_target(cmd_ctx);
5222 return target_mem2array(interp, target, argc - 1, argv + 1);
5225 static int jim_target_array2mem(Jim_Interp *interp,
5226 int argc, Jim_Obj *const *argv)
5228 struct command_context *cmd_ctx = current_command_context(interp);
5229 assert(cmd_ctx);
5230 struct target *target = get_current_target(cmd_ctx);
5231 return target_array2mem(interp, target, argc - 1, argv + 1);
5234 static int jim_target_tap_disabled(Jim_Interp *interp)
5236 Jim_SetResultFormatted(interp, "[TAP is disabled]");
5237 return JIM_ERR;
5240 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5242 bool allow_defer = false;
5244 Jim_GetOptInfo goi;
5245 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5246 if (goi.argc > 1) {
5247 const char *cmd_name = Jim_GetString(argv[0], NULL);
5248 Jim_SetResultFormatted(goi.interp,
5249 "usage: %s ['allow-defer']", cmd_name);
5250 return JIM_ERR;
5252 if (goi.argc > 0 &&
5253 strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5254 /* consume it */
5255 Jim_Obj *obj;
5256 int e = Jim_GetOpt_Obj(&goi, &obj);
5257 if (e != JIM_OK)
5258 return e;
5259 allow_defer = true;
5262 struct command_context *cmd_ctx = current_command_context(interp);
5263 assert(cmd_ctx);
5264 struct target *target = get_current_target(cmd_ctx);
5265 if (!target->tap->enabled)
5266 return jim_target_tap_disabled(interp);
5268 if (allow_defer && target->defer_examine) {
5269 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5270 LOG_INFO("Use arp_examine command to examine it manually!");
5271 return JIM_OK;
5274 int e = target->type->examine(target);
5275 if (e != ERROR_OK)
5276 return JIM_ERR;
5277 return JIM_OK;
5280 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5282 struct command_context *cmd_ctx = current_command_context(interp);
5283 assert(cmd_ctx);
5284 struct target *target = get_current_target(cmd_ctx);
5286 Jim_SetResultBool(interp, target_was_examined(target));
5287 return JIM_OK;
5290 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5292 struct command_context *cmd_ctx = current_command_context(interp);
5293 assert(cmd_ctx);
5294 struct target *target = get_current_target(cmd_ctx);
5296 Jim_SetResultBool(interp, target->defer_examine);
5297 return JIM_OK;
5300 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5302 if (argc != 1) {
5303 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5304 return JIM_ERR;
5306 struct command_context *cmd_ctx = current_command_context(interp);
5307 assert(cmd_ctx);
5308 struct target *target = get_current_target(cmd_ctx);
5310 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5311 return JIM_ERR;
5313 return JIM_OK;
5316 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5318 if (argc != 1) {
5319 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5320 return JIM_ERR;
5322 struct command_context *cmd_ctx = current_command_context(interp);
5323 assert(cmd_ctx);
5324 struct target *target = get_current_target(cmd_ctx);
5325 if (!target->tap->enabled)
5326 return jim_target_tap_disabled(interp);
5328 int e;
5329 if (!(target_was_examined(target)))
5330 e = ERROR_TARGET_NOT_EXAMINED;
5331 else
5332 e = target->type->poll(target);
5333 if (e != ERROR_OK)
5334 return JIM_ERR;
5335 return JIM_OK;
5338 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5340 Jim_GetOptInfo goi;
5341 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5343 if (goi.argc != 2) {
5344 Jim_WrongNumArgs(interp, 0, argv,
5345 "([tT]|[fF]|assert|deassert) BOOL");
5346 return JIM_ERR;
5349 Jim_Nvp *n;
5350 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5351 if (e != JIM_OK) {
5352 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5353 return e;
5355 /* the halt or not param */
5356 jim_wide a;
5357 e = Jim_GetOpt_Wide(&goi, &a);
5358 if (e != JIM_OK)
5359 return e;
5361 struct command_context *cmd_ctx = current_command_context(interp);
5362 assert(cmd_ctx);
5363 struct target *target = get_current_target(cmd_ctx);
5364 if (!target->tap->enabled)
5365 return jim_target_tap_disabled(interp);
5367 if (!target->type->assert_reset || !target->type->deassert_reset) {
5368 Jim_SetResultFormatted(interp,
5369 "No target-specific reset for %s",
5370 target_name(target));
5371 return JIM_ERR;
5374 if (target->defer_examine)
5375 target_reset_examined(target);
5377 /* determine if we should halt or not. */
5378 target->reset_halt = !!a;
5379 /* When this happens - all workareas are invalid. */
5380 target_free_all_working_areas_restore(target, 0);
5382 /* do the assert */
5383 if (n->value == NVP_ASSERT)
5384 e = target->type->assert_reset(target);
5385 else
5386 e = target->type->deassert_reset(target);
5387 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5390 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5392 if (argc != 1) {
5393 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5394 return JIM_ERR;
5396 struct command_context *cmd_ctx = current_command_context(interp);
5397 assert(cmd_ctx);
5398 struct target *target = get_current_target(cmd_ctx);
5399 if (!target->tap->enabled)
5400 return jim_target_tap_disabled(interp);
5401 int e = target->type->halt(target);
5402 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5405 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5407 Jim_GetOptInfo goi;
5408 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5410 /* params: <name> statename timeoutmsecs */
5411 if (goi.argc != 2) {
5412 const char *cmd_name = Jim_GetString(argv[0], NULL);
5413 Jim_SetResultFormatted(goi.interp,
5414 "%s <state_name> <timeout_in_msec>", cmd_name);
5415 return JIM_ERR;
5418 Jim_Nvp *n;
5419 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5420 if (e != JIM_OK) {
5421 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5422 return e;
5424 jim_wide a;
5425 e = Jim_GetOpt_Wide(&goi, &a);
5426 if (e != JIM_OK)
5427 return e;
5428 struct command_context *cmd_ctx = current_command_context(interp);
5429 assert(cmd_ctx);
5430 struct target *target = get_current_target(cmd_ctx);
5431 if (!target->tap->enabled)
5432 return jim_target_tap_disabled(interp);
5434 e = target_wait_state(target, n->value, a);
5435 if (e != ERROR_OK) {
5436 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5437 Jim_SetResultFormatted(goi.interp,
5438 "target: %s wait %s fails (%#s) %s",
5439 target_name(target), n->name,
5440 eObj, target_strerror_safe(e));
5441 return JIM_ERR;
5443 return JIM_OK;
5445 /* List for human, Events defined for this target.
5446 * scripts/programs should use 'name cget -event NAME'
5448 COMMAND_HANDLER(handle_target_event_list)
5450 struct target *target = get_current_target(CMD_CTX);
5451 struct target_event_action *teap = target->event_action;
5453 command_print(CMD, "Event actions for target (%d) %s\n",
5454 target->target_number,
5455 target_name(target));
5456 command_print(CMD, "%-25s | Body", "Event");
5457 command_print(CMD, "------------------------- | "
5458 "----------------------------------------");
5459 while (teap) {
5460 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5461 command_print(CMD, "%-25s | %s",
5462 opt->name, Jim_GetString(teap->body, NULL));
5463 teap = teap->next;
5465 command_print(CMD, "***END***");
5466 return ERROR_OK;
5468 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5470 if (argc != 1) {
5471 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5472 return JIM_ERR;
5474 struct command_context *cmd_ctx = current_command_context(interp);
5475 assert(cmd_ctx);
5476 struct target *target = get_current_target(cmd_ctx);
5477 Jim_SetResultString(interp, target_state_name(target), -1);
5478 return JIM_OK;
5480 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5482 Jim_GetOptInfo goi;
5483 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5484 if (goi.argc != 1) {
5485 const char *cmd_name = Jim_GetString(argv[0], NULL);
5486 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5487 return JIM_ERR;
5489 Jim_Nvp *n;
5490 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5491 if (e != JIM_OK) {
5492 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5493 return e;
5495 struct command_context *cmd_ctx = current_command_context(interp);
5496 assert(cmd_ctx);
5497 struct target *target = get_current_target(cmd_ctx);
5498 target_handle_event(target, n->value);
5499 return JIM_OK;
5502 static const struct command_registration target_instance_command_handlers[] = {
5504 .name = "configure",
5505 .mode = COMMAND_ANY,
5506 .jim_handler = jim_target_configure,
5507 .help = "configure a new target for use",
5508 .usage = "[target_attribute ...]",
5511 .name = "cget",
5512 .mode = COMMAND_ANY,
5513 .jim_handler = jim_target_configure,
5514 .help = "returns the specified target attribute",
5515 .usage = "target_attribute",
5518 .name = "mwd",
5519 .handler = handle_mw_command,
5520 .mode = COMMAND_EXEC,
5521 .help = "Write 64-bit word(s) to target memory",
5522 .usage = "address data [count]",
5525 .name = "mww",
5526 .handler = handle_mw_command,
5527 .mode = COMMAND_EXEC,
5528 .help = "Write 32-bit word(s) to target memory",
5529 .usage = "address data [count]",
5532 .name = "mwh",
5533 .handler = handle_mw_command,
5534 .mode = COMMAND_EXEC,
5535 .help = "Write 16-bit half-word(s) to target memory",
5536 .usage = "address data [count]",
5539 .name = "mwb",
5540 .handler = handle_mw_command,
5541 .mode = COMMAND_EXEC,
5542 .help = "Write byte(s) to target memory",
5543 .usage = "address data [count]",
5546 .name = "mdd",
5547 .handler = handle_md_command,
5548 .mode = COMMAND_EXEC,
5549 .help = "Display target memory as 64-bit words",
5550 .usage = "address [count]",
5553 .name = "mdw",
5554 .handler = handle_md_command,
5555 .mode = COMMAND_EXEC,
5556 .help = "Display target memory as 32-bit words",
5557 .usage = "address [count]",
5560 .name = "mdh",
5561 .handler = handle_md_command,
5562 .mode = COMMAND_EXEC,
5563 .help = "Display target memory as 16-bit half-words",
5564 .usage = "address [count]",
5567 .name = "mdb",
5568 .handler = handle_md_command,
5569 .mode = COMMAND_EXEC,
5570 .help = "Display target memory as 8-bit bytes",
5571 .usage = "address [count]",
5574 .name = "array2mem",
5575 .mode = COMMAND_EXEC,
5576 .jim_handler = jim_target_array2mem,
5577 .help = "Writes Tcl array of 8/16/32 bit numbers "
5578 "to target memory",
5579 .usage = "arrayname bitwidth address count",
5582 .name = "mem2array",
5583 .mode = COMMAND_EXEC,
5584 .jim_handler = jim_target_mem2array,
5585 .help = "Loads Tcl array of 8/16/32 bit numbers "
5586 "from target memory",
5587 .usage = "arrayname bitwidth address count",
5590 .name = "eventlist",
5591 .handler = handle_target_event_list,
5592 .mode = COMMAND_EXEC,
5593 .help = "displays a table of events defined for this target",
5594 .usage = "",
5597 .name = "curstate",
5598 .mode = COMMAND_EXEC,
5599 .jim_handler = jim_target_current_state,
5600 .help = "displays the current state of this target",
5603 .name = "arp_examine",
5604 .mode = COMMAND_EXEC,
5605 .jim_handler = jim_target_examine,
5606 .help = "used internally for reset processing",
5607 .usage = "['allow-defer']",
5610 .name = "was_examined",
5611 .mode = COMMAND_EXEC,
5612 .jim_handler = jim_target_was_examined,
5613 .help = "used internally for reset processing",
5616 .name = "examine_deferred",
5617 .mode = COMMAND_EXEC,
5618 .jim_handler = jim_target_examine_deferred,
5619 .help = "used internally for reset processing",
5622 .name = "arp_halt_gdb",
5623 .mode = COMMAND_EXEC,
5624 .jim_handler = jim_target_halt_gdb,
5625 .help = "used internally for reset processing to halt GDB",
5628 .name = "arp_poll",
5629 .mode = COMMAND_EXEC,
5630 .jim_handler = jim_target_poll,
5631 .help = "used internally for reset processing",
5634 .name = "arp_reset",
5635 .mode = COMMAND_EXEC,
5636 .jim_handler = jim_target_reset,
5637 .help = "used internally for reset processing",
5640 .name = "arp_halt",
5641 .mode = COMMAND_EXEC,
5642 .jim_handler = jim_target_halt,
5643 .help = "used internally for reset processing",
5646 .name = "arp_waitstate",
5647 .mode = COMMAND_EXEC,
5648 .jim_handler = jim_target_wait_state,
5649 .help = "used internally for reset processing",
5652 .name = "invoke-event",
5653 .mode = COMMAND_EXEC,
5654 .jim_handler = jim_target_invoke_event,
5655 .help = "invoke handler for specified event",
5656 .usage = "event_name",
5658 COMMAND_REGISTRATION_DONE
5661 static int target_create(Jim_GetOptInfo *goi)
5663 Jim_Obj *new_cmd;
5664 Jim_Cmd *cmd;
5665 const char *cp;
5666 int e;
5667 int x;
5668 struct target *target;
5669 struct command_context *cmd_ctx;
5671 cmd_ctx = current_command_context(goi->interp);
5672 assert(cmd_ctx != NULL);
5674 if (goi->argc < 3) {
5675 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5676 return JIM_ERR;
5679 /* COMMAND */
5680 Jim_GetOpt_Obj(goi, &new_cmd);
5681 /* does this command exist? */
5682 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5683 if (cmd) {
5684 cp = Jim_GetString(new_cmd, NULL);
5685 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5686 return JIM_ERR;
5689 /* TYPE */
5690 e = Jim_GetOpt_String(goi, &cp, NULL);
5691 if (e != JIM_OK)
5692 return e;
5693 struct transport *tr = get_current_transport();
5694 if (tr->override_target) {
5695 e = tr->override_target(&cp);
5696 if (e != ERROR_OK) {
5697 LOG_ERROR("The selected transport doesn't support this target");
5698 return JIM_ERR;
5700 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5702 /* now does target type exist */
5703 for (x = 0 ; target_types[x] ; x++) {
5704 if (0 == strcmp(cp, target_types[x]->name)) {
5705 /* found */
5706 break;
5709 if (target_types[x] == NULL) {
5710 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5711 for (x = 0 ; target_types[x] ; x++) {
5712 if (target_types[x + 1]) {
5713 Jim_AppendStrings(goi->interp,
5714 Jim_GetResult(goi->interp),
5715 target_types[x]->name,
5716 ", ", NULL);
5717 } else {
5718 Jim_AppendStrings(goi->interp,
5719 Jim_GetResult(goi->interp),
5720 " or ",
5721 target_types[x]->name, NULL);
5724 return JIM_ERR;
5727 /* Create it */
5728 target = calloc(1, sizeof(struct target));
5729 if (!target) {
5730 LOG_ERROR("Out of memory");
5731 return JIM_ERR;
5734 /* set target number */
5735 target->target_number = new_target_number();
5737 /* allocate memory for each unique target type */
5738 target->type = malloc(sizeof(struct target_type));
5739 if (!target->type) {
5740 LOG_ERROR("Out of memory");
5741 free(target);
5742 return JIM_ERR;
5745 memcpy(target->type, target_types[x], sizeof(struct target_type));
5747 /* default to first core, override with -coreid */
5748 target->coreid = 0;
5750 target->working_area = 0x0;
5751 target->working_area_size = 0x0;
5752 target->working_areas = NULL;
5753 target->backup_working_area = 0;
5755 target->state = TARGET_UNKNOWN;
5756 target->debug_reason = DBG_REASON_UNDEFINED;
5757 target->reg_cache = NULL;
5758 target->breakpoints = NULL;
5759 target->watchpoints = NULL;
5760 target->next = NULL;
5761 target->arch_info = NULL;
5763 target->verbose_halt_msg = true;
5765 target->halt_issued = false;
5767 /* initialize trace information */
5768 target->trace_info = calloc(1, sizeof(struct trace));
5769 if (!target->trace_info) {
5770 LOG_ERROR("Out of memory");
5771 free(target->type);
5772 free(target);
5773 return JIM_ERR;
5776 target->dbgmsg = NULL;
5777 target->dbg_msg_enabled = 0;
5779 target->endianness = TARGET_ENDIAN_UNKNOWN;
5781 target->rtos = NULL;
5782 target->rtos_auto_detect = false;
5784 target->gdb_port_override = NULL;
5785 target->gdb_max_connections = 1;
5787 /* Do the rest as "configure" options */
5788 goi->isconfigure = 1;
5789 e = target_configure(goi, target);
5791 if (e == JIM_OK) {
5792 if (target->has_dap) {
5793 if (!target->dap_configured) {
5794 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5795 e = JIM_ERR;
5797 } else {
5798 if (!target->tap_configured) {
5799 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5800 e = JIM_ERR;
5803 /* tap must be set after target was configured */
5804 if (target->tap == NULL)
5805 e = JIM_ERR;
5808 if (e != JIM_OK) {
5809 rtos_destroy(target);
5810 free(target->gdb_port_override);
5811 free(target->trace_info);
5812 free(target->type);
5813 free(target);
5814 return e;
5817 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5818 /* default endian to little if not specified */
5819 target->endianness = TARGET_LITTLE_ENDIAN;
5822 cp = Jim_GetString(new_cmd, NULL);
5823 target->cmd_name = strdup(cp);
5824 if (!target->cmd_name) {
5825 LOG_ERROR("Out of memory");
5826 rtos_destroy(target);
5827 free(target->gdb_port_override);
5828 free(target->trace_info);
5829 free(target->type);
5830 free(target);
5831 return JIM_ERR;
5834 if (target->type->target_create) {
5835 e = (*(target->type->target_create))(target, goi->interp);
5836 if (e != ERROR_OK) {
5837 LOG_DEBUG("target_create failed");
5838 free(target->cmd_name);
5839 rtos_destroy(target);
5840 free(target->gdb_port_override);
5841 free(target->trace_info);
5842 free(target->type);
5843 free(target);
5844 return JIM_ERR;
5848 /* create the target specific commands */
5849 if (target->type->commands) {
5850 e = register_commands(cmd_ctx, NULL, target->type->commands);
5851 if (ERROR_OK != e)
5852 LOG_ERROR("unable to register '%s' commands", cp);
5855 /* now - create the new target name command */
5856 const struct command_registration target_subcommands[] = {
5858 .chain = target_instance_command_handlers,
5861 .chain = target->type->commands,
5863 COMMAND_REGISTRATION_DONE
5865 const struct command_registration target_commands[] = {
5867 .name = cp,
5868 .mode = COMMAND_ANY,
5869 .help = "target command group",
5870 .usage = "",
5871 .chain = target_subcommands,
5873 COMMAND_REGISTRATION_DONE
5875 e = register_commands_override_target(cmd_ctx, NULL, target_commands, target);
5876 if (e != ERROR_OK) {
5877 if (target->type->deinit_target)
5878 target->type->deinit_target(target);
5879 free(target->cmd_name);
5880 rtos_destroy(target);
5881 free(target->gdb_port_override);
5882 free(target->trace_info);
5883 free(target->type);
5884 free(target);
5885 return JIM_ERR;
5888 /* append to end of list */
5889 append_to_list_all_targets(target);
5891 cmd_ctx->current_target = target;
5892 return JIM_OK;
5895 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5897 if (argc != 1) {
5898 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5899 return JIM_ERR;
5901 struct command_context *cmd_ctx = current_command_context(interp);
5902 assert(cmd_ctx != NULL);
5904 struct target *target = get_current_target_or_null(cmd_ctx);
5905 if (target)
5906 Jim_SetResultString(interp, target_name(target), -1);
5907 return JIM_OK;
5910 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5912 if (argc != 1) {
5913 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5914 return JIM_ERR;
5916 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5917 for (unsigned x = 0; NULL != target_types[x]; x++) {
5918 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5919 Jim_NewStringObj(interp, target_types[x]->name, -1));
5921 return JIM_OK;
5924 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5926 if (argc != 1) {
5927 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5928 return JIM_ERR;
5930 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5931 struct target *target = all_targets;
5932 while (target) {
5933 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5934 Jim_NewStringObj(interp, target_name(target), -1));
5935 target = target->next;
5937 return JIM_OK;
5940 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5942 int i;
5943 const char *targetname;
5944 int retval, len;
5945 struct target *target = (struct target *) NULL;
5946 struct target_list *head, *curr, *new;
5947 curr = (struct target_list *) NULL;
5948 head = (struct target_list *) NULL;
5950 retval = 0;
5951 LOG_DEBUG("%d", argc);
5952 /* argv[1] = target to associate in smp
5953 * argv[2] = target to associate in smp
5954 * argv[3] ...
5957 for (i = 1; i < argc; i++) {
5959 targetname = Jim_GetString(argv[i], &len);
5960 target = get_target(targetname);
5961 LOG_DEBUG("%s ", targetname);
5962 if (target) {
5963 new = malloc(sizeof(struct target_list));
5964 new->target = target;
5965 new->next = (struct target_list *)NULL;
5966 if (head == (struct target_list *)NULL) {
5967 head = new;
5968 curr = head;
5969 } else {
5970 curr->next = new;
5971 curr = new;
5975 /* now parse the list of cpu and put the target in smp mode*/
5976 curr = head;
5978 while (curr != (struct target_list *)NULL) {
5979 target = curr->target;
5980 target->smp = 1;
5981 target->head = head;
5982 curr = curr->next;
5985 if (target && target->rtos)
5986 retval = rtos_smp_init(head->target);
5988 return retval;
5992 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5994 Jim_GetOptInfo goi;
5995 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5996 if (goi.argc < 3) {
5997 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5998 "<name> <target_type> [<target_options> ...]");
5999 return JIM_ERR;
6001 return target_create(&goi);
6004 static const struct command_registration target_subcommand_handlers[] = {
6006 .name = "init",
6007 .mode = COMMAND_CONFIG,
6008 .handler = handle_target_init_command,
6009 .help = "initialize targets",
6010 .usage = "",
6013 .name = "create",
6014 .mode = COMMAND_CONFIG,
6015 .jim_handler = jim_target_create,
6016 .usage = "name type '-chain-position' name [options ...]",
6017 .help = "Creates and selects a new target",
6020 .name = "current",
6021 .mode = COMMAND_ANY,
6022 .jim_handler = jim_target_current,
6023 .help = "Returns the currently selected target",
6026 .name = "types",
6027 .mode = COMMAND_ANY,
6028 .jim_handler = jim_target_types,
6029 .help = "Returns the available target types as "
6030 "a list of strings",
6033 .name = "names",
6034 .mode = COMMAND_ANY,
6035 .jim_handler = jim_target_names,
6036 .help = "Returns the names of all targets as a list of strings",
6039 .name = "smp",
6040 .mode = COMMAND_ANY,
6041 .jim_handler = jim_target_smp,
6042 .usage = "targetname1 targetname2 ...",
6043 .help = "gather several target in a smp list"
6046 COMMAND_REGISTRATION_DONE
6049 struct FastLoad {
6050 target_addr_t address;
6051 uint8_t *data;
6052 int length;
6056 static int fastload_num;
6057 static struct FastLoad *fastload;
6059 static void free_fastload(void)
6061 if (fastload != NULL) {
6062 for (int i = 0; i < fastload_num; i++)
6063 free(fastload[i].data);
6064 free(fastload);
6065 fastload = NULL;
6069 COMMAND_HANDLER(handle_fast_load_image_command)
6071 uint8_t *buffer;
6072 size_t buf_cnt;
6073 uint32_t image_size;
6074 target_addr_t min_address = 0;
6075 target_addr_t max_address = -1;
6077 struct image image;
6079 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
6080 &image, &min_address, &max_address);
6081 if (ERROR_OK != retval)
6082 return retval;
6084 struct duration bench;
6085 duration_start(&bench);
6087 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
6088 if (retval != ERROR_OK)
6089 return retval;
6091 image_size = 0x0;
6092 retval = ERROR_OK;
6093 fastload_num = image.num_sections;
6094 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
6095 if (fastload == NULL) {
6096 command_print(CMD, "out of memory");
6097 image_close(&image);
6098 return ERROR_FAIL;
6100 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
6101 for (unsigned int i = 0; i < image.num_sections; i++) {
6102 buffer = malloc(image.sections[i].size);
6103 if (buffer == NULL) {
6104 command_print(CMD, "error allocating buffer for section (%d bytes)",
6105 (int)(image.sections[i].size));
6106 retval = ERROR_FAIL;
6107 break;
6110 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
6111 if (retval != ERROR_OK) {
6112 free(buffer);
6113 break;
6116 uint32_t offset = 0;
6117 uint32_t length = buf_cnt;
6119 /* DANGER!!! beware of unsigned comparison here!!! */
6121 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
6122 (image.sections[i].base_address < max_address)) {
6123 if (image.sections[i].base_address < min_address) {
6124 /* clip addresses below */
6125 offset += min_address-image.sections[i].base_address;
6126 length -= offset;
6129 if (image.sections[i].base_address + buf_cnt > max_address)
6130 length -= (image.sections[i].base_address + buf_cnt)-max_address;
6132 fastload[i].address = image.sections[i].base_address + offset;
6133 fastload[i].data = malloc(length);
6134 if (fastload[i].data == NULL) {
6135 free(buffer);
6136 command_print(CMD, "error allocating buffer for section (%" PRIu32 " bytes)",
6137 length);
6138 retval = ERROR_FAIL;
6139 break;
6141 memcpy(fastload[i].data, buffer + offset, length);
6142 fastload[i].length = length;
6144 image_size += length;
6145 command_print(CMD, "%u bytes written at address 0x%8.8x",
6146 (unsigned int)length,
6147 ((unsigned int)(image.sections[i].base_address + offset)));
6150 free(buffer);
6153 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
6154 command_print(CMD, "Loaded %" PRIu32 " bytes "
6155 "in %fs (%0.3f KiB/s)", image_size,
6156 duration_elapsed(&bench), duration_kbps(&bench, image_size));
6158 command_print(CMD,
6159 "WARNING: image has not been loaded to target!"
6160 "You can issue a 'fast_load' to finish loading.");
6163 image_close(&image);
6165 if (retval != ERROR_OK)
6166 free_fastload();
6168 return retval;
6171 COMMAND_HANDLER(handle_fast_load_command)
6173 if (CMD_ARGC > 0)
6174 return ERROR_COMMAND_SYNTAX_ERROR;
6175 if (fastload == NULL) {
6176 LOG_ERROR("No image in memory");
6177 return ERROR_FAIL;
6179 int i;
6180 int64_t ms = timeval_ms();
6181 int size = 0;
6182 int retval = ERROR_OK;
6183 for (i = 0; i < fastload_num; i++) {
6184 struct target *target = get_current_target(CMD_CTX);
6185 command_print(CMD, "Write to 0x%08x, length 0x%08x",
6186 (unsigned int)(fastload[i].address),
6187 (unsigned int)(fastload[i].length));
6188 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
6189 if (retval != ERROR_OK)
6190 break;
6191 size += fastload[i].length;
6193 if (retval == ERROR_OK) {
6194 int64_t after = timeval_ms();
6195 command_print(CMD, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
6197 return retval;
6200 static const struct command_registration target_command_handlers[] = {
6202 .name = "targets",
6203 .handler = handle_targets_command,
6204 .mode = COMMAND_ANY,
6205 .help = "change current default target (one parameter) "
6206 "or prints table of all targets (no parameters)",
6207 .usage = "[target]",
6210 .name = "target",
6211 .mode = COMMAND_CONFIG,
6212 .help = "configure target",
6213 .chain = target_subcommand_handlers,
6214 .usage = "",
6216 COMMAND_REGISTRATION_DONE
6219 int target_register_commands(struct command_context *cmd_ctx)
6221 return register_commands(cmd_ctx, NULL, target_command_handlers);
6224 static bool target_reset_nag = true;
6226 bool get_target_reset_nag(void)
6228 return target_reset_nag;
6231 COMMAND_HANDLER(handle_target_reset_nag)
6233 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6234 &target_reset_nag, "Nag after each reset about options to improve "
6235 "performance");
6238 COMMAND_HANDLER(handle_ps_command)
6240 struct target *target = get_current_target(CMD_CTX);
6241 char *display;
6242 if (target->state != TARGET_HALTED) {
6243 LOG_INFO("target not halted !!");
6244 return ERROR_OK;
6247 if ((target->rtos) && (target->rtos->type)
6248 && (target->rtos->type->ps_command)) {
6249 display = target->rtos->type->ps_command(target);
6250 command_print(CMD, "%s", display);
6251 free(display);
6252 return ERROR_OK;
6253 } else {
6254 LOG_INFO("failed");
6255 return ERROR_TARGET_FAILURE;
6259 static void binprint(struct command_invocation *cmd, const char *text, const uint8_t *buf, int size)
6261 if (text != NULL)
6262 command_print_sameline(cmd, "%s", text);
6263 for (int i = 0; i < size; i++)
6264 command_print_sameline(cmd, " %02x", buf[i]);
6265 command_print(cmd, " ");
6268 COMMAND_HANDLER(handle_test_mem_access_command)
6270 struct target *target = get_current_target(CMD_CTX);
6271 uint32_t test_size;
6272 int retval = ERROR_OK;
6274 if (target->state != TARGET_HALTED) {
6275 LOG_INFO("target not halted !!");
6276 return ERROR_FAIL;
6279 if (CMD_ARGC != 1)
6280 return ERROR_COMMAND_SYNTAX_ERROR;
6282 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6284 /* Test reads */
6285 size_t num_bytes = test_size + 4;
6287 struct working_area *wa = NULL;
6288 retval = target_alloc_working_area(target, num_bytes, &wa);
6289 if (retval != ERROR_OK) {
6290 LOG_ERROR("Not enough working area");
6291 return ERROR_FAIL;
6294 uint8_t *test_pattern = malloc(num_bytes);
6296 for (size_t i = 0; i < num_bytes; i++)
6297 test_pattern[i] = rand();
6299 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6300 if (retval != ERROR_OK) {
6301 LOG_ERROR("Test pattern write failed");
6302 goto out;
6305 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6306 for (int size = 1; size <= 4; size *= 2) {
6307 for (int offset = 0; offset < 4; offset++) {
6308 uint32_t count = test_size / size;
6309 size_t host_bufsiz = (count + 2) * size + host_offset;
6310 uint8_t *read_ref = malloc(host_bufsiz);
6311 uint8_t *read_buf = malloc(host_bufsiz);
6313 for (size_t i = 0; i < host_bufsiz; i++) {
6314 read_ref[i] = rand();
6315 read_buf[i] = read_ref[i];
6317 command_print_sameline(CMD,
6318 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6319 size, offset, host_offset ? "un" : "");
6321 struct duration bench;
6322 duration_start(&bench);
6324 retval = target_read_memory(target, wa->address + offset, size, count,
6325 read_buf + size + host_offset);
6327 duration_measure(&bench);
6329 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6330 command_print(CMD, "Unsupported alignment");
6331 goto next;
6332 } else if (retval != ERROR_OK) {
6333 command_print(CMD, "Memory read failed");
6334 goto next;
6337 /* replay on host */
6338 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6340 /* check result */
6341 int result = memcmp(read_ref, read_buf, host_bufsiz);
6342 if (result == 0) {
6343 command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6344 duration_elapsed(&bench),
6345 duration_kbps(&bench, count * size));
6346 } else {
6347 command_print(CMD, "Compare failed");
6348 binprint(CMD, "ref:", read_ref, host_bufsiz);
6349 binprint(CMD, "buf:", read_buf, host_bufsiz);
6351 next:
6352 free(read_ref);
6353 free(read_buf);
6358 out:
6359 free(test_pattern);
6361 if (wa != NULL)
6362 target_free_working_area(target, wa);
6364 /* Test writes */
6365 num_bytes = test_size + 4 + 4 + 4;
6367 retval = target_alloc_working_area(target, num_bytes, &wa);
6368 if (retval != ERROR_OK) {
6369 LOG_ERROR("Not enough working area");
6370 return ERROR_FAIL;
6373 test_pattern = malloc(num_bytes);
6375 for (size_t i = 0; i < num_bytes; i++)
6376 test_pattern[i] = rand();
6378 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6379 for (int size = 1; size <= 4; size *= 2) {
6380 for (int offset = 0; offset < 4; offset++) {
6381 uint32_t count = test_size / size;
6382 size_t host_bufsiz = count * size + host_offset;
6383 uint8_t *read_ref = malloc(num_bytes);
6384 uint8_t *read_buf = malloc(num_bytes);
6385 uint8_t *write_buf = malloc(host_bufsiz);
6387 for (size_t i = 0; i < host_bufsiz; i++)
6388 write_buf[i] = rand();
6389 command_print_sameline(CMD,
6390 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6391 size, offset, host_offset ? "un" : "");
6393 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6394 if (retval != ERROR_OK) {
6395 command_print(CMD, "Test pattern write failed");
6396 goto nextw;
6399 /* replay on host */
6400 memcpy(read_ref, test_pattern, num_bytes);
6401 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6403 struct duration bench;
6404 duration_start(&bench);
6406 retval = target_write_memory(target, wa->address + size + offset, size, count,
6407 write_buf + host_offset);
6409 duration_measure(&bench);
6411 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6412 command_print(CMD, "Unsupported alignment");
6413 goto nextw;
6414 } else if (retval != ERROR_OK) {
6415 command_print(CMD, "Memory write failed");
6416 goto nextw;
6419 /* read back */
6420 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6421 if (retval != ERROR_OK) {
6422 command_print(CMD, "Test pattern write failed");
6423 goto nextw;
6426 /* check result */
6427 int result = memcmp(read_ref, read_buf, num_bytes);
6428 if (result == 0) {
6429 command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6430 duration_elapsed(&bench),
6431 duration_kbps(&bench, count * size));
6432 } else {
6433 command_print(CMD, "Compare failed");
6434 binprint(CMD, "ref:", read_ref, num_bytes);
6435 binprint(CMD, "buf:", read_buf, num_bytes);
6437 nextw:
6438 free(read_ref);
6439 free(read_buf);
6444 free(test_pattern);
6446 if (wa != NULL)
6447 target_free_working_area(target, wa);
6448 return retval;
6451 static const struct command_registration target_exec_command_handlers[] = {
6453 .name = "fast_load_image",
6454 .handler = handle_fast_load_image_command,
6455 .mode = COMMAND_ANY,
6456 .help = "Load image into server memory for later use by "
6457 "fast_load; primarily for profiling",
6458 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6459 "[min_address [max_length]]",
6462 .name = "fast_load",
6463 .handler = handle_fast_load_command,
6464 .mode = COMMAND_EXEC,
6465 .help = "loads active fast load image to current target "
6466 "- mainly for profiling purposes",
6467 .usage = "",
6470 .name = "profile",
6471 .handler = handle_profile_command,
6472 .mode = COMMAND_EXEC,
6473 .usage = "seconds filename [start end]",
6474 .help = "profiling samples the CPU PC",
6476 /** @todo don't register virt2phys() unless target supports it */
6478 .name = "virt2phys",
6479 .handler = handle_virt2phys_command,
6480 .mode = COMMAND_ANY,
6481 .help = "translate a virtual address into a physical address",
6482 .usage = "virtual_address",
6485 .name = "reg",
6486 .handler = handle_reg_command,
6487 .mode = COMMAND_EXEC,
6488 .help = "display (reread from target with \"force\") or set a register; "
6489 "with no arguments, displays all registers and their values",
6490 .usage = "[(register_number|register_name) [(value|'force')]]",
6493 .name = "poll",
6494 .handler = handle_poll_command,
6495 .mode = COMMAND_EXEC,
6496 .help = "poll target state; or reconfigure background polling",
6497 .usage = "['on'|'off']",
6500 .name = "wait_halt",
6501 .handler = handle_wait_halt_command,
6502 .mode = COMMAND_EXEC,
6503 .help = "wait up to the specified number of milliseconds "
6504 "(default 5000) for a previously requested halt",
6505 .usage = "[milliseconds]",
6508 .name = "halt",
6509 .handler = handle_halt_command,
6510 .mode = COMMAND_EXEC,
6511 .help = "request target to halt, then wait up to the specified "
6512 "number of milliseconds (default 5000) for it to complete",
6513 .usage = "[milliseconds]",
6516 .name = "resume",
6517 .handler = handle_resume_command,
6518 .mode = COMMAND_EXEC,
6519 .help = "resume target execution from current PC or address",
6520 .usage = "[address]",
6523 .name = "reset",
6524 .handler = handle_reset_command,
6525 .mode = COMMAND_EXEC,
6526 .usage = "[run|halt|init]",
6527 .help = "Reset all targets into the specified mode. "
6528 "Default reset mode is run, if not given.",
6531 .name = "soft_reset_halt",
6532 .handler = handle_soft_reset_halt_command,
6533 .mode = COMMAND_EXEC,
6534 .usage = "",
6535 .help = "halt the target and do a soft reset",
6538 .name = "step",
6539 .handler = handle_step_command,
6540 .mode = COMMAND_EXEC,
6541 .help = "step one instruction from current PC or address",
6542 .usage = "[address]",
6545 .name = "mdd",
6546 .handler = handle_md_command,
6547 .mode = COMMAND_EXEC,
6548 .help = "display memory double-words",
6549 .usage = "['phys'] address [count]",
6552 .name = "mdw",
6553 .handler = handle_md_command,
6554 .mode = COMMAND_EXEC,
6555 .help = "display memory words",
6556 .usage = "['phys'] address [count]",
6559 .name = "mdh",
6560 .handler = handle_md_command,
6561 .mode = COMMAND_EXEC,
6562 .help = "display memory half-words",
6563 .usage = "['phys'] address [count]",
6566 .name = "mdb",
6567 .handler = handle_md_command,
6568 .mode = COMMAND_EXEC,
6569 .help = "display memory bytes",
6570 .usage = "['phys'] address [count]",
6573 .name = "mwd",
6574 .handler = handle_mw_command,
6575 .mode = COMMAND_EXEC,
6576 .help = "write memory double-word",
6577 .usage = "['phys'] address value [count]",
6580 .name = "mww",
6581 .handler = handle_mw_command,
6582 .mode = COMMAND_EXEC,
6583 .help = "write memory word",
6584 .usage = "['phys'] address value [count]",
6587 .name = "mwh",
6588 .handler = handle_mw_command,
6589 .mode = COMMAND_EXEC,
6590 .help = "write memory half-word",
6591 .usage = "['phys'] address value [count]",
6594 .name = "mwb",
6595 .handler = handle_mw_command,
6596 .mode = COMMAND_EXEC,
6597 .help = "write memory byte",
6598 .usage = "['phys'] address value [count]",
6601 .name = "bp",
6602 .handler = handle_bp_command,
6603 .mode = COMMAND_EXEC,
6604 .help = "list or set hardware or software breakpoint",
6605 .usage = "[<address> [<asid>] <length> ['hw'|'hw_ctx']]",
6608 .name = "rbp",
6609 .handler = handle_rbp_command,
6610 .mode = COMMAND_EXEC,
6611 .help = "remove breakpoint",
6612 .usage = "'all' | address",
6615 .name = "wp",
6616 .handler = handle_wp_command,
6617 .mode = COMMAND_EXEC,
6618 .help = "list (no params) or create watchpoints",
6619 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6622 .name = "rwp",
6623 .handler = handle_rwp_command,
6624 .mode = COMMAND_EXEC,
6625 .help = "remove watchpoint",
6626 .usage = "address",
6629 .name = "load_image",
6630 .handler = handle_load_image_command,
6631 .mode = COMMAND_EXEC,
6632 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6633 "[min_address] [max_length]",
6636 .name = "dump_image",
6637 .handler = handle_dump_image_command,
6638 .mode = COMMAND_EXEC,
6639 .usage = "filename address size",
6642 .name = "verify_image_checksum",
6643 .handler = handle_verify_image_checksum_command,
6644 .mode = COMMAND_EXEC,
6645 .usage = "filename [offset [type]]",
6648 .name = "verify_image",
6649 .handler = handle_verify_image_command,
6650 .mode = COMMAND_EXEC,
6651 .usage = "filename [offset [type]]",
6654 .name = "test_image",
6655 .handler = handle_test_image_command,
6656 .mode = COMMAND_EXEC,
6657 .usage = "filename [offset [type]]",
6660 .name = "mem2array",
6661 .mode = COMMAND_EXEC,
6662 .jim_handler = jim_mem2array,
6663 .help = "read 8/16/32 bit memory and return as a TCL array "
6664 "for script processing",
6665 .usage = "arrayname bitwidth address count",
6668 .name = "array2mem",
6669 .mode = COMMAND_EXEC,
6670 .jim_handler = jim_array2mem,
6671 .help = "convert a TCL array to memory locations "
6672 "and write the 8/16/32 bit values",
6673 .usage = "arrayname bitwidth address count",
6676 .name = "reset_nag",
6677 .handler = handle_target_reset_nag,
6678 .mode = COMMAND_ANY,
6679 .help = "Nag after each reset about options that could have been "
6680 "enabled to improve performance. ",
6681 .usage = "['enable'|'disable']",
6684 .name = "ps",
6685 .handler = handle_ps_command,
6686 .mode = COMMAND_EXEC,
6687 .help = "list all tasks ",
6688 .usage = " ",
6691 .name = "test_mem_access",
6692 .handler = handle_test_mem_access_command,
6693 .mode = COMMAND_EXEC,
6694 .help = "Test the target's memory access functions",
6695 .usage = "size",
6698 COMMAND_REGISTRATION_DONE
6700 static int target_register_user_commands(struct command_context *cmd_ctx)
6702 int retval = ERROR_OK;
6703 retval = target_request_register_commands(cmd_ctx);
6704 if (retval != ERROR_OK)
6705 return retval;
6707 retval = trace_register_commands(cmd_ctx);
6708 if (retval != ERROR_OK)
6709 return retval;
6712 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);