openocd: src/jtag: replace the GPL-2.0-or-later license tag
[openocd.git] / src / jtag / drivers / ftdi.c
blob3c902a797408d10df51eb99ec906bcbad4666712
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 /**************************************************************************
4 * Copyright (C) 2012 by Andreas Fritiofson *
5 * andreas.fritiofson@gmail.com *
6 ***************************************************************************/
8 /**
9 * @file
10 * JTAG adapters based on the FT2232 full and high speed USB parts are
11 * popular low cost JTAG debug solutions. Many FT2232 based JTAG adapters
12 * are discrete, but development boards may integrate them as alternatives
13 * to more capable (and expensive) third party JTAG pods.
15 * JTAG uses only one of the two communications channels ("MPSSE engines")
16 * on these devices. Adapters based on FT4232 parts have four ports/channels
17 * (A/B/C/D), instead of just two (A/B).
19 * Especially on development boards integrating one of these chips (as
20 * opposed to discrete pods/dongles), the additional channels can be used
21 * for a variety of purposes, but OpenOCD only uses one channel at a time.
23 * - As a USB-to-serial adapter for the target's console UART ...
24 * which may be able to support ROM boot loaders that load initial
25 * firmware images to flash (or SRAM).
27 * - On systems which support ARM's SWD in addition to JTAG, or instead
28 * of it, that second port can be used for reading SWV/SWO trace data.
30 * - Additional JTAG links, e.g. to a CPLD or * FPGA.
32 * FT2232 based JTAG adapters are "dumb" not "smart", because most JTAG
33 * request/response interactions involve round trips over the USB link.
34 * A "smart" JTAG adapter has intelligence close to the scan chain, so it
35 * can for example poll quickly for a status change (usually taking on the
36 * order of microseconds not milliseconds) before beginning a queued
37 * transaction which require the previous one to have completed.
39 * There are dozens of adapters of this type, differing in details which
40 * this driver needs to understand. Those "layout" details are required
41 * as part of FT2232 driver configuration.
43 * This code uses information contained in the MPSSE specification which was
44 * found here:
45 * https://www.ftdichip.com/Support/Documents/AppNotes/AN2232C-01_MPSSE_Cmnd.pdf
46 * Hereafter this is called the "MPSSE Spec".
48 * The datasheet for the ftdichip.com's FT2232H part is here:
49 * https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
51 * Also note the issue with code 0x4b (clock data to TMS) noted in
52 * http://developer.intra2net.com/mailarchive/html/libftdi/2009/msg00292.html
53 * which can affect longer JTAG state paths.
56 #ifdef HAVE_CONFIG_H
57 #include "config.h"
58 #endif
60 /* project specific includes */
61 #include <jtag/adapter.h>
62 #include <jtag/interface.h>
63 #include <jtag/swd.h>
64 #include <transport/transport.h>
65 #include <helper/time_support.h>
66 #include <helper/log.h>
68 #if IS_CYGWIN == 1
69 #include <windows.h>
70 #endif
72 #include <assert.h>
74 /* FTDI access library includes */
75 #include "mpsse.h"
77 #define JTAG_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
78 #define JTAG_MODE_ALT (LSB_FIRST | NEG_EDGE_IN | NEG_EDGE_OUT)
79 #define SWD_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
81 static char *ftdi_device_desc;
82 static uint8_t ftdi_channel;
83 static uint8_t ftdi_jtag_mode = JTAG_MODE;
85 static bool swd_mode;
87 #define MAX_USB_IDS 8
88 /* vid = pid = 0 marks the end of the list */
89 static uint16_t ftdi_vid[MAX_USB_IDS + 1] = { 0 };
90 static uint16_t ftdi_pid[MAX_USB_IDS + 1] = { 0 };
92 static struct mpsse_ctx *mpsse_ctx;
94 struct signal {
95 const char *name;
96 uint16_t data_mask;
97 uint16_t input_mask;
98 uint16_t oe_mask;
99 bool invert_data;
100 bool invert_input;
101 bool invert_oe;
102 struct signal *next;
105 static struct signal *signals;
107 /* FIXME: Where to store per-instance data? We need an SWD context. */
108 static struct swd_cmd_queue_entry {
109 uint8_t cmd;
110 uint32_t *dst;
111 uint8_t trn_ack_data_parity_trn[DIV_ROUND_UP(4 + 3 + 32 + 1 + 4, 8)];
112 } *swd_cmd_queue;
113 static size_t swd_cmd_queue_length;
114 static size_t swd_cmd_queue_alloced;
115 static int queued_retval;
116 static int freq;
118 static uint16_t output;
119 static uint16_t direction;
120 static uint16_t jtag_output_init;
121 static uint16_t jtag_direction_init;
123 static int ftdi_swd_switch_seq(enum swd_special_seq seq);
125 static struct signal *find_signal_by_name(const char *name)
127 for (struct signal *sig = signals; sig; sig = sig->next) {
128 if (strcmp(name, sig->name) == 0)
129 return sig;
131 return NULL;
134 static struct signal *create_signal(const char *name)
136 struct signal **psig = &signals;
137 while (*psig)
138 psig = &(*psig)->next;
140 *psig = calloc(1, sizeof(**psig));
141 if (!*psig)
142 return NULL;
144 (*psig)->name = strdup(name);
145 if (!(*psig)->name) {
146 free(*psig);
147 *psig = NULL;
149 return *psig;
152 static int ftdi_set_signal(const struct signal *s, char value)
154 bool data;
155 bool oe;
157 if (s->data_mask == 0 && s->oe_mask == 0) {
158 LOG_ERROR("interface doesn't provide signal '%s'", s->name);
159 return ERROR_FAIL;
161 switch (value) {
162 case '0':
163 data = s->invert_data;
164 oe = !s->invert_oe;
165 break;
166 case '1':
167 if (s->data_mask == 0) {
168 LOG_ERROR("interface can't drive '%s' high", s->name);
169 return ERROR_FAIL;
171 data = !s->invert_data;
172 oe = !s->invert_oe;
173 break;
174 case 'z':
175 case 'Z':
176 if (s->oe_mask == 0) {
177 LOG_ERROR("interface can't tri-state '%s'", s->name);
178 return ERROR_FAIL;
180 data = s->invert_data;
181 oe = s->invert_oe;
182 break;
183 default:
184 assert(0 && "invalid signal level specifier");
185 return ERROR_FAIL;
188 uint16_t old_output = output;
189 uint16_t old_direction = direction;
191 output = data ? output | s->data_mask : output & ~s->data_mask;
192 if (s->oe_mask == s->data_mask)
193 direction = oe ? direction | s->oe_mask : direction & ~s->oe_mask;
194 else
195 output = oe ? output | s->oe_mask : output & ~s->oe_mask;
197 if ((output & 0xff) != (old_output & 0xff) || (direction & 0xff) != (old_direction & 0xff))
198 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
199 if ((output >> 8 != old_output >> 8) || (direction >> 8 != old_direction >> 8))
200 mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
202 return ERROR_OK;
205 static int ftdi_get_signal(const struct signal *s, uint16_t *value_out)
207 uint8_t data_low = 0;
208 uint8_t data_high = 0;
210 if (s->input_mask == 0) {
211 LOG_ERROR("interface doesn't provide signal '%s'", s->name);
212 return ERROR_FAIL;
215 if (s->input_mask & 0xff)
216 mpsse_read_data_bits_low_byte(mpsse_ctx, &data_low);
217 if (s->input_mask >> 8)
218 mpsse_read_data_bits_high_byte(mpsse_ctx, &data_high);
220 mpsse_flush(mpsse_ctx);
222 *value_out = (((uint16_t)data_high) << 8) | data_low;
224 if (s->invert_input)
225 *value_out = ~(*value_out);
227 *value_out &= s->input_mask;
229 return ERROR_OK;
233 * Function move_to_state
234 * moves the TAP controller from the current state to a
235 * \a goal_state through a path given by tap_get_tms_path(). State transition
236 * logging is performed by delegation to clock_tms().
238 * @param goal_state is the destination state for the move.
240 static void move_to_state(tap_state_t goal_state)
242 tap_state_t start_state = tap_get_state();
244 /* goal_state is 1/2 of a tuple/pair of states which allow convenient
245 lookup of the required TMS pattern to move to this state from the
246 start state.
249 /* do the 2 lookups */
250 uint8_t tms_bits = tap_get_tms_path(start_state, goal_state);
251 int tms_count = tap_get_tms_path_len(start_state, goal_state);
252 assert(tms_count <= 8);
254 LOG_DEBUG_IO("start=%s goal=%s", tap_state_name(start_state), tap_state_name(goal_state));
256 /* Track state transitions step by step */
257 for (int i = 0; i < tms_count; i++)
258 tap_set_state(tap_state_transition(tap_get_state(), (tms_bits >> i) & 1));
260 mpsse_clock_tms_cs_out(mpsse_ctx,
261 &tms_bits,
263 tms_count,
264 false,
265 ftdi_jtag_mode);
268 static int ftdi_speed(int speed)
270 int retval;
271 retval = mpsse_set_frequency(mpsse_ctx, speed);
273 if (retval < 0) {
274 LOG_ERROR("couldn't set FTDI TCK speed");
275 return retval;
278 if (!swd_mode && speed >= 10000000 && ftdi_jtag_mode != JTAG_MODE_ALT)
279 LOG_INFO("ftdi: if you experience problems at higher adapter clocks, try "
280 "the command \"ftdi tdo_sample_edge falling\"");
281 return ERROR_OK;
284 static int ftdi_speed_div(int speed, int *khz)
286 *khz = speed / 1000;
287 return ERROR_OK;
290 static int ftdi_khz(int khz, int *jtag_speed)
292 if (khz == 0 && !mpsse_is_high_speed(mpsse_ctx)) {
293 LOG_DEBUG("RCLK not supported");
294 return ERROR_FAIL;
297 *jtag_speed = khz * 1000;
298 return ERROR_OK;
301 static void ftdi_end_state(tap_state_t state)
303 if (tap_is_state_stable(state))
304 tap_set_end_state(state);
305 else {
306 LOG_ERROR("BUG: %s is not a stable end state", tap_state_name(state));
307 exit(-1);
311 static void ftdi_execute_runtest(struct jtag_command *cmd)
313 int i;
314 uint8_t zero = 0;
316 LOG_DEBUG_IO("runtest %i cycles, end in %s",
317 cmd->cmd.runtest->num_cycles,
318 tap_state_name(cmd->cmd.runtest->end_state));
320 if (tap_get_state() != TAP_IDLE)
321 move_to_state(TAP_IDLE);
323 /* TODO: Reuse ftdi_execute_stableclocks */
324 i = cmd->cmd.runtest->num_cycles;
325 while (i > 0) {
326 /* there are no state transitions in this code, so omit state tracking */
327 unsigned this_len = i > 7 ? 7 : i;
328 mpsse_clock_tms_cs_out(mpsse_ctx, &zero, 0, this_len, false, ftdi_jtag_mode);
329 i -= this_len;
332 ftdi_end_state(cmd->cmd.runtest->end_state);
334 if (tap_get_state() != tap_get_end_state())
335 move_to_state(tap_get_end_state());
337 LOG_DEBUG_IO("runtest: %i, end in %s",
338 cmd->cmd.runtest->num_cycles,
339 tap_state_name(tap_get_end_state()));
342 static void ftdi_execute_statemove(struct jtag_command *cmd)
344 LOG_DEBUG_IO("statemove end in %s",
345 tap_state_name(cmd->cmd.statemove->end_state));
347 ftdi_end_state(cmd->cmd.statemove->end_state);
349 /* shortest-path move to desired end state */
350 if (tap_get_state() != tap_get_end_state() || tap_get_end_state() == TAP_RESET)
351 move_to_state(tap_get_end_state());
355 * Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG
356 * (or SWD) state machine. REVISIT: Not the best method, perhaps.
358 static void ftdi_execute_tms(struct jtag_command *cmd)
360 LOG_DEBUG_IO("TMS: %d bits", cmd->cmd.tms->num_bits);
362 /* TODO: Missing tap state tracking, also missing from ft2232.c! */
363 mpsse_clock_tms_cs_out(mpsse_ctx,
364 cmd->cmd.tms->bits,
366 cmd->cmd.tms->num_bits,
367 false,
368 ftdi_jtag_mode);
371 static void ftdi_execute_pathmove(struct jtag_command *cmd)
373 tap_state_t *path = cmd->cmd.pathmove->path;
374 int num_states = cmd->cmd.pathmove->num_states;
376 LOG_DEBUG_IO("pathmove: %i states, current: %s end: %s", num_states,
377 tap_state_name(tap_get_state()),
378 tap_state_name(path[num_states-1]));
380 int state_count = 0;
381 unsigned bit_count = 0;
382 uint8_t tms_byte = 0;
384 LOG_DEBUG_IO("-");
386 /* this loop verifies that the path is legal and logs each state in the path */
387 while (num_states--) {
389 /* either TMS=0 or TMS=1 must work ... */
390 if (tap_state_transition(tap_get_state(), false)
391 == path[state_count])
392 buf_set_u32(&tms_byte, bit_count++, 1, 0x0);
393 else if (tap_state_transition(tap_get_state(), true)
394 == path[state_count]) {
395 buf_set_u32(&tms_byte, bit_count++, 1, 0x1);
397 /* ... or else the caller goofed BADLY */
398 } else {
399 LOG_ERROR("BUG: %s -> %s isn't a valid "
400 "TAP state transition",
401 tap_state_name(tap_get_state()),
402 tap_state_name(path[state_count]));
403 exit(-1);
406 tap_set_state(path[state_count]);
407 state_count++;
409 if (bit_count == 7 || num_states == 0) {
410 mpsse_clock_tms_cs_out(mpsse_ctx,
411 &tms_byte,
413 bit_count,
414 false,
415 ftdi_jtag_mode);
416 bit_count = 0;
419 tap_set_end_state(tap_get_state());
422 static void ftdi_execute_scan(struct jtag_command *cmd)
424 LOG_DEBUG_IO("%s type:%d", cmd->cmd.scan->ir_scan ? "IRSCAN" : "DRSCAN",
425 jtag_scan_type(cmd->cmd.scan));
427 /* Make sure there are no trailing fields with num_bits == 0, or the logic below will fail. */
428 while (cmd->cmd.scan->num_fields > 0
429 && cmd->cmd.scan->fields[cmd->cmd.scan->num_fields - 1].num_bits == 0) {
430 cmd->cmd.scan->num_fields--;
431 LOG_DEBUG_IO("discarding trailing empty field");
434 if (cmd->cmd.scan->num_fields == 0) {
435 LOG_DEBUG_IO("empty scan, doing nothing");
436 return;
439 if (cmd->cmd.scan->ir_scan) {
440 if (tap_get_state() != TAP_IRSHIFT)
441 move_to_state(TAP_IRSHIFT);
442 } else {
443 if (tap_get_state() != TAP_DRSHIFT)
444 move_to_state(TAP_DRSHIFT);
447 ftdi_end_state(cmd->cmd.scan->end_state);
449 struct scan_field *field = cmd->cmd.scan->fields;
450 unsigned scan_size = 0;
452 for (int i = 0; i < cmd->cmd.scan->num_fields; i++, field++) {
453 scan_size += field->num_bits;
454 LOG_DEBUG_IO("%s%s field %d/%d %d bits",
455 field->in_value ? "in" : "",
456 field->out_value ? "out" : "",
458 cmd->cmd.scan->num_fields,
459 field->num_bits);
461 if (i == cmd->cmd.scan->num_fields - 1 && tap_get_state() != tap_get_end_state()) {
462 /* Last field, and we're leaving IRSHIFT/DRSHIFT. Clock last bit during tap
463 * movement. This last field can't have length zero, it was checked above. */
464 mpsse_clock_data(mpsse_ctx,
465 field->out_value,
467 field->in_value,
469 field->num_bits - 1,
470 ftdi_jtag_mode);
471 uint8_t last_bit = 0;
472 if (field->out_value)
473 bit_copy(&last_bit, 0, field->out_value, field->num_bits - 1, 1);
475 /* If endstate is TAP_IDLE, clock out 1-1-0 (->EXIT1 ->UPDATE ->IDLE)
476 * Otherwise, clock out 1-0 (->EXIT1 ->PAUSE)
478 uint8_t tms_bits = 0x03;
479 mpsse_clock_tms_cs(mpsse_ctx,
480 &tms_bits,
482 field->in_value,
483 field->num_bits - 1,
485 last_bit,
486 ftdi_jtag_mode);
487 tap_set_state(tap_state_transition(tap_get_state(), 1));
488 if (tap_get_end_state() == TAP_IDLE) {
489 mpsse_clock_tms_cs_out(mpsse_ctx,
490 &tms_bits,
493 last_bit,
494 ftdi_jtag_mode);
495 tap_set_state(tap_state_transition(tap_get_state(), 1));
496 tap_set_state(tap_state_transition(tap_get_state(), 0));
497 } else {
498 mpsse_clock_tms_cs_out(mpsse_ctx,
499 &tms_bits,
502 last_bit,
503 ftdi_jtag_mode);
504 tap_set_state(tap_state_transition(tap_get_state(), 0));
506 } else
507 mpsse_clock_data(mpsse_ctx,
508 field->out_value,
510 field->in_value,
512 field->num_bits,
513 ftdi_jtag_mode);
516 if (tap_get_state() != tap_get_end_state())
517 move_to_state(tap_get_end_state());
519 LOG_DEBUG_IO("%s scan, %i bits, end in %s",
520 (cmd->cmd.scan->ir_scan) ? "IR" : "DR", scan_size,
521 tap_state_name(tap_get_end_state()));
524 static int ftdi_reset(int trst, int srst)
526 struct signal *sig_ntrst = find_signal_by_name("nTRST");
527 struct signal *sig_nsrst = find_signal_by_name("nSRST");
529 LOG_DEBUG_IO("reset trst: %i srst %i", trst, srst);
531 if (!swd_mode) {
532 if (trst == 1) {
533 if (sig_ntrst)
534 ftdi_set_signal(sig_ntrst, '0');
535 else
536 LOG_ERROR("Can't assert TRST: nTRST signal is not defined");
537 } else if (sig_ntrst && jtag_get_reset_config() & RESET_HAS_TRST &&
538 trst == 0) {
539 if (jtag_get_reset_config() & RESET_TRST_OPEN_DRAIN)
540 ftdi_set_signal(sig_ntrst, 'z');
541 else
542 ftdi_set_signal(sig_ntrst, '1');
546 if (srst == 1) {
547 if (sig_nsrst)
548 ftdi_set_signal(sig_nsrst, '0');
549 else
550 LOG_ERROR("Can't assert SRST: nSRST signal is not defined");
551 } else if (sig_nsrst && jtag_get_reset_config() & RESET_HAS_SRST &&
552 srst == 0) {
553 if (jtag_get_reset_config() & RESET_SRST_PUSH_PULL)
554 ftdi_set_signal(sig_nsrst, '1');
555 else
556 ftdi_set_signal(sig_nsrst, 'z');
559 return mpsse_flush(mpsse_ctx);
562 static void ftdi_execute_sleep(struct jtag_command *cmd)
564 LOG_DEBUG_IO("sleep %" PRIu32, cmd->cmd.sleep->us);
566 mpsse_flush(mpsse_ctx);
567 jtag_sleep(cmd->cmd.sleep->us);
568 LOG_DEBUG_IO("sleep %" PRIu32 " usec while in %s",
569 cmd->cmd.sleep->us,
570 tap_state_name(tap_get_state()));
573 static void ftdi_execute_stableclocks(struct jtag_command *cmd)
575 /* this is only allowed while in a stable state. A check for a stable
576 * state was done in jtag_add_clocks()
578 int num_cycles = cmd->cmd.stableclocks->num_cycles;
580 /* 7 bits of either ones or zeros. */
581 uint8_t tms = tap_get_state() == TAP_RESET ? 0x7f : 0x00;
583 /* TODO: Use mpsse_clock_data with in=out=0 for this, if TMS can be set to
584 * the correct level and remain there during the scan */
585 while (num_cycles > 0) {
586 /* there are no state transitions in this code, so omit state tracking */
587 unsigned this_len = num_cycles > 7 ? 7 : num_cycles;
588 mpsse_clock_tms_cs_out(mpsse_ctx, &tms, 0, this_len, false, ftdi_jtag_mode);
589 num_cycles -= this_len;
592 LOG_DEBUG_IO("clocks %i while in %s",
593 cmd->cmd.stableclocks->num_cycles,
594 tap_state_name(tap_get_state()));
597 static void ftdi_execute_command(struct jtag_command *cmd)
599 switch (cmd->type) {
600 case JTAG_RUNTEST:
601 ftdi_execute_runtest(cmd);
602 break;
603 case JTAG_TLR_RESET:
604 ftdi_execute_statemove(cmd);
605 break;
606 case JTAG_PATHMOVE:
607 ftdi_execute_pathmove(cmd);
608 break;
609 case JTAG_SCAN:
610 ftdi_execute_scan(cmd);
611 break;
612 case JTAG_SLEEP:
613 ftdi_execute_sleep(cmd);
614 break;
615 case JTAG_STABLECLOCKS:
616 ftdi_execute_stableclocks(cmd);
617 break;
618 case JTAG_TMS:
619 ftdi_execute_tms(cmd);
620 break;
621 default:
622 LOG_ERROR("BUG: unknown JTAG command type encountered: %d", cmd->type);
623 break;
627 static int ftdi_execute_queue(void)
629 /* blink, if the current layout has that feature */
630 struct signal *led = find_signal_by_name("LED");
631 if (led)
632 ftdi_set_signal(led, '1');
634 for (struct jtag_command *cmd = jtag_command_queue; cmd; cmd = cmd->next) {
635 /* fill the write buffer with the desired command */
636 ftdi_execute_command(cmd);
639 if (led)
640 ftdi_set_signal(led, '0');
642 int retval = mpsse_flush(mpsse_ctx);
643 if (retval != ERROR_OK)
644 LOG_ERROR("error while flushing MPSSE queue: %d", retval);
646 return retval;
649 static int ftdi_initialize(void)
651 if (tap_get_tms_path_len(TAP_IRPAUSE, TAP_IRPAUSE) == 7)
652 LOG_DEBUG("ftdi interface using 7 step jtag state transitions");
653 else
654 LOG_DEBUG("ftdi interface using shortest path jtag state transitions");
656 if (!ftdi_vid[0] && !ftdi_pid[0]) {
657 LOG_ERROR("Please specify ftdi vid_pid");
658 return ERROR_JTAG_INIT_FAILED;
661 for (int i = 0; ftdi_vid[i] || ftdi_pid[i]; i++) {
662 mpsse_ctx = mpsse_open(&ftdi_vid[i], &ftdi_pid[i], ftdi_device_desc,
663 adapter_get_required_serial(), adapter_usb_get_location(), ftdi_channel);
664 if (mpsse_ctx)
665 break;
668 if (!mpsse_ctx)
669 return ERROR_JTAG_INIT_FAILED;
671 output = jtag_output_init;
672 direction = jtag_direction_init;
674 if (swd_mode) {
675 struct signal *sig = find_signal_by_name("SWD_EN");
676 if (!sig) {
677 LOG_ERROR("SWD mode is active but SWD_EN signal is not defined");
678 return ERROR_JTAG_INIT_FAILED;
680 /* A dummy SWD_EN would have zero mask */
681 if (sig->data_mask)
682 ftdi_set_signal(sig, '1');
685 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
686 mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
688 mpsse_loopback_config(mpsse_ctx, false);
690 freq = mpsse_set_frequency(mpsse_ctx, adapter_get_speed_khz() * 1000);
692 return mpsse_flush(mpsse_ctx);
695 static int ftdi_quit(void)
697 mpsse_close(mpsse_ctx);
699 struct signal *sig = signals;
700 while (sig) {
701 struct signal *next = sig->next;
702 free((void *)sig->name);
703 free(sig);
704 sig = next;
707 free(ftdi_device_desc);
709 free(swd_cmd_queue);
711 return ERROR_OK;
714 COMMAND_HANDLER(ftdi_handle_device_desc_command)
716 if (CMD_ARGC == 1) {
717 free(ftdi_device_desc);
718 ftdi_device_desc = strdup(CMD_ARGV[0]);
719 } else {
720 LOG_ERROR("expected exactly one argument to ftdi device_desc <description>");
723 return ERROR_OK;
726 COMMAND_HANDLER(ftdi_handle_channel_command)
728 if (CMD_ARGC == 1)
729 COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], ftdi_channel);
730 else
731 return ERROR_COMMAND_SYNTAX_ERROR;
733 return ERROR_OK;
736 COMMAND_HANDLER(ftdi_handle_layout_init_command)
738 if (CMD_ARGC != 2)
739 return ERROR_COMMAND_SYNTAX_ERROR;
741 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], jtag_output_init);
742 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], jtag_direction_init);
744 return ERROR_OK;
747 COMMAND_HANDLER(ftdi_handle_layout_signal_command)
749 if (CMD_ARGC < 1)
750 return ERROR_COMMAND_SYNTAX_ERROR;
752 bool invert_data = false;
753 uint16_t data_mask = 0;
754 bool invert_input = false;
755 uint16_t input_mask = 0;
756 bool invert_oe = false;
757 uint16_t oe_mask = 0;
758 for (unsigned i = 1; i < CMD_ARGC; i += 2) {
759 if (strcmp("-data", CMD_ARGV[i]) == 0) {
760 invert_data = false;
761 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
762 } else if (strcmp("-ndata", CMD_ARGV[i]) == 0) {
763 invert_data = true;
764 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
765 } else if (strcmp("-input", CMD_ARGV[i]) == 0) {
766 invert_input = false;
767 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], input_mask);
768 } else if (strcmp("-ninput", CMD_ARGV[i]) == 0) {
769 invert_input = true;
770 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], input_mask);
771 } else if (strcmp("-oe", CMD_ARGV[i]) == 0) {
772 invert_oe = false;
773 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
774 } else if (strcmp("-noe", CMD_ARGV[i]) == 0) {
775 invert_oe = true;
776 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
777 } else if (!strcmp("-alias", CMD_ARGV[i]) ||
778 !strcmp("-nalias", CMD_ARGV[i])) {
779 if (!strcmp("-nalias", CMD_ARGV[i])) {
780 invert_data = true;
781 invert_input = true;
783 struct signal *sig = find_signal_by_name(CMD_ARGV[i + 1]);
784 if (!sig) {
785 LOG_ERROR("signal %s is not defined", CMD_ARGV[i + 1]);
786 return ERROR_FAIL;
788 data_mask = sig->data_mask;
789 input_mask = sig->input_mask;
790 oe_mask = sig->oe_mask;
791 invert_input ^= sig->invert_input;
792 invert_oe = sig->invert_oe;
793 invert_data ^= sig->invert_data;
794 } else {
795 LOG_ERROR("unknown option '%s'", CMD_ARGV[i]);
796 return ERROR_COMMAND_SYNTAX_ERROR;
800 struct signal *sig;
801 sig = find_signal_by_name(CMD_ARGV[0]);
802 if (!sig)
803 sig = create_signal(CMD_ARGV[0]);
804 if (!sig) {
805 LOG_ERROR("failed to create signal %s", CMD_ARGV[0]);
806 return ERROR_FAIL;
809 sig->invert_data = invert_data;
810 sig->data_mask = data_mask;
811 sig->invert_input = invert_input;
812 sig->input_mask = input_mask;
813 sig->invert_oe = invert_oe;
814 sig->oe_mask = oe_mask;
816 return ERROR_OK;
819 COMMAND_HANDLER(ftdi_handle_set_signal_command)
821 if (CMD_ARGC < 2)
822 return ERROR_COMMAND_SYNTAX_ERROR;
824 struct signal *sig;
825 sig = find_signal_by_name(CMD_ARGV[0]);
826 if (!sig) {
827 LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
828 return ERROR_FAIL;
831 switch (*CMD_ARGV[1]) {
832 case '0':
833 case '1':
834 case 'z':
835 case 'Z':
836 /* single character level specifier only */
837 if (CMD_ARGV[1][1] == '\0') {
838 ftdi_set_signal(sig, *CMD_ARGV[1]);
839 break;
841 /* fallthrough */
842 default:
843 LOG_ERROR("unknown signal level '%s', use 0, 1 or z", CMD_ARGV[1]);
844 return ERROR_COMMAND_SYNTAX_ERROR;
847 return mpsse_flush(mpsse_ctx);
850 COMMAND_HANDLER(ftdi_handle_get_signal_command)
852 if (CMD_ARGC < 1)
853 return ERROR_COMMAND_SYNTAX_ERROR;
855 struct signal *sig;
856 uint16_t sig_data = 0;
857 sig = find_signal_by_name(CMD_ARGV[0]);
858 if (!sig) {
859 LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
860 return ERROR_FAIL;
863 int ret = ftdi_get_signal(sig, &sig_data);
864 if (ret != ERROR_OK)
865 return ret;
867 LOG_USER("Signal %s = %#06x", sig->name, sig_data);
869 return ERROR_OK;
872 COMMAND_HANDLER(ftdi_handle_vid_pid_command)
874 if (CMD_ARGC > MAX_USB_IDS * 2) {
875 LOG_WARNING("ignoring extra IDs in ftdi vid_pid "
876 "(maximum is %d pairs)", MAX_USB_IDS);
877 CMD_ARGC = MAX_USB_IDS * 2;
879 if (CMD_ARGC < 2 || (CMD_ARGC & 1)) {
880 LOG_WARNING("incomplete ftdi vid_pid configuration directive");
881 if (CMD_ARGC < 2)
882 return ERROR_COMMAND_SYNTAX_ERROR;
883 /* remove the incomplete trailing id */
884 CMD_ARGC -= 1;
887 unsigned i;
888 for (i = 0; i < CMD_ARGC; i += 2) {
889 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i], ftdi_vid[i >> 1]);
890 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], ftdi_pid[i >> 1]);
894 * Explicitly terminate, in case there are multiples instances of
895 * ftdi vid_pid.
897 ftdi_vid[i >> 1] = ftdi_pid[i >> 1] = 0;
899 return ERROR_OK;
902 COMMAND_HANDLER(ftdi_handle_tdo_sample_edge_command)
904 struct jim_nvp *n;
905 static const struct jim_nvp nvp_ftdi_jtag_modes[] = {
906 { .name = "rising", .value = JTAG_MODE },
907 { .name = "falling", .value = JTAG_MODE_ALT },
908 { .name = NULL, .value = -1 },
911 if (CMD_ARGC > 0) {
912 n = jim_nvp_name2value_simple(nvp_ftdi_jtag_modes, CMD_ARGV[0]);
913 if (!n->name)
914 return ERROR_COMMAND_SYNTAX_ERROR;
915 ftdi_jtag_mode = n->value;
919 n = jim_nvp_value2name_simple(nvp_ftdi_jtag_modes, ftdi_jtag_mode);
920 command_print(CMD, "ftdi samples TDO on %s edge of TCK", n->name);
922 return ERROR_OK;
925 static const struct command_registration ftdi_subcommand_handlers[] = {
927 .name = "device_desc",
928 .handler = &ftdi_handle_device_desc_command,
929 .mode = COMMAND_CONFIG,
930 .help = "set the USB device description of the FTDI device",
931 .usage = "description_string",
934 .name = "channel",
935 .handler = &ftdi_handle_channel_command,
936 .mode = COMMAND_CONFIG,
937 .help = "set the channel of the FTDI device that is used as JTAG",
938 .usage = "(0-3)",
941 .name = "layout_init",
942 .handler = &ftdi_handle_layout_init_command,
943 .mode = COMMAND_CONFIG,
944 .help = "initialize the FTDI GPIO signals used "
945 "to control output-enables and reset signals",
946 .usage = "data direction",
949 .name = "layout_signal",
950 .handler = &ftdi_handle_layout_signal_command,
951 .mode = COMMAND_ANY,
952 .help = "define a signal controlled by one or more FTDI GPIO as data "
953 "and/or output enable",
954 .usage = "name [-data mask|-ndata mask] [-oe mask|-noe mask] [-alias|-nalias name]",
957 .name = "set_signal",
958 .handler = &ftdi_handle_set_signal_command,
959 .mode = COMMAND_EXEC,
960 .help = "control a layout-specific signal",
961 .usage = "name (1|0|z)",
964 .name = "get_signal",
965 .handler = &ftdi_handle_get_signal_command,
966 .mode = COMMAND_EXEC,
967 .help = "read the value of a layout-specific signal",
968 .usage = "name",
971 .name = "vid_pid",
972 .handler = &ftdi_handle_vid_pid_command,
973 .mode = COMMAND_CONFIG,
974 .help = "the vendor ID and product ID of the FTDI device",
975 .usage = "(vid pid)*",
978 .name = "tdo_sample_edge",
979 .handler = &ftdi_handle_tdo_sample_edge_command,
980 .mode = COMMAND_ANY,
981 .help = "set which TCK clock edge is used for sampling TDO "
982 "- default is rising-edge (Setting to falling-edge may "
983 "allow signalling speed increase)",
984 .usage = "(rising|falling)",
986 COMMAND_REGISTRATION_DONE
989 static const struct command_registration ftdi_command_handlers[] = {
991 .name = "ftdi",
992 .mode = COMMAND_ANY,
993 .help = "perform ftdi management",
994 .chain = ftdi_subcommand_handlers,
995 .usage = "",
997 COMMAND_REGISTRATION_DONE
1000 static int create_default_signal(const char *name, uint16_t data_mask)
1002 struct signal *sig = create_signal(name);
1003 if (!sig) {
1004 LOG_ERROR("failed to create signal %s", name);
1005 return ERROR_FAIL;
1007 sig->invert_data = false;
1008 sig->data_mask = data_mask;
1009 sig->invert_oe = false;
1010 sig->oe_mask = 0;
1012 return ERROR_OK;
1015 static int create_signals(void)
1017 if (create_default_signal("TCK", 0x01) != ERROR_OK)
1018 return ERROR_FAIL;
1019 if (create_default_signal("TDI", 0x02) != ERROR_OK)
1020 return ERROR_FAIL;
1021 if (create_default_signal("TDO", 0x04) != ERROR_OK)
1022 return ERROR_FAIL;
1023 if (create_default_signal("TMS", 0x08) != ERROR_OK)
1024 return ERROR_FAIL;
1025 return ERROR_OK;
1028 static int ftdi_swd_init(void)
1030 LOG_INFO("FTDI SWD mode enabled");
1031 swd_mode = true;
1033 if (create_signals() != ERROR_OK)
1034 return ERROR_FAIL;
1036 swd_cmd_queue_alloced = 10;
1037 swd_cmd_queue = malloc(swd_cmd_queue_alloced * sizeof(*swd_cmd_queue));
1039 return swd_cmd_queue ? ERROR_OK : ERROR_FAIL;
1042 static void ftdi_swd_swdio_en(bool enable)
1044 struct signal *oe = find_signal_by_name("SWDIO_OE");
1045 if (oe) {
1046 if (oe->data_mask)
1047 ftdi_set_signal(oe, enable ? '1' : '0');
1048 else {
1049 /* Sets TDI/DO pin to input during rx when both pins are connected
1050 to SWDIO */
1051 if (enable)
1052 direction |= jtag_direction_init & 0x0002U;
1053 else
1054 direction &= ~0x0002U;
1055 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
1061 * Flush the MPSSE queue and process the SWD transaction queue
1062 * @return
1064 static int ftdi_swd_run_queue(void)
1066 LOG_DEBUG_IO("Executing %zu queued transactions", swd_cmd_queue_length);
1067 int retval;
1068 struct signal *led = find_signal_by_name("LED");
1070 if (queued_retval != ERROR_OK) {
1071 LOG_DEBUG_IO("Skipping due to previous errors: %d", queued_retval);
1072 goto skip;
1075 /* A transaction must be followed by another transaction or at least 8 idle cycles to
1076 * ensure that data is clocked through the AP. */
1077 mpsse_clock_data_out(mpsse_ctx, NULL, 0, 8, SWD_MODE);
1079 /* Terminate the "blink", if the current layout has that feature */
1080 if (led)
1081 ftdi_set_signal(led, '0');
1083 queued_retval = mpsse_flush(mpsse_ctx);
1084 if (queued_retval != ERROR_OK) {
1085 LOG_ERROR("MPSSE failed");
1086 goto skip;
1089 for (size_t i = 0; i < swd_cmd_queue_length; i++) {
1090 int ack = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1, 3);
1092 /* Devices do not reply to DP_TARGETSEL write cmd, ignore received ack */
1093 bool check_ack = swd_cmd_returns_ack(swd_cmd_queue[i].cmd);
1095 LOG_DEBUG_IO("%s%s %s %s reg %X = %08"PRIx32,
1096 check_ack ? "" : "ack ignored ",
1097 ack == SWD_ACK_OK ? "OK" : ack == SWD_ACK_WAIT ? "WAIT" : ack == SWD_ACK_FAULT ? "FAULT" : "JUNK",
1098 swd_cmd_queue[i].cmd & SWD_CMD_APNDP ? "AP" : "DP",
1099 swd_cmd_queue[i].cmd & SWD_CMD_RNW ? "read" : "write",
1100 (swd_cmd_queue[i].cmd & SWD_CMD_A32) >> 1,
1101 buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn,
1102 1 + 3 + (swd_cmd_queue[i].cmd & SWD_CMD_RNW ? 0 : 1), 32));
1104 if (ack != SWD_ACK_OK && check_ack) {
1105 queued_retval = swd_ack_to_error_code(ack);
1106 goto skip;
1108 } else if (swd_cmd_queue[i].cmd & SWD_CMD_RNW) {
1109 uint32_t data = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3, 32);
1110 int parity = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 32, 1);
1112 if (parity != parity_u32(data)) {
1113 LOG_ERROR("SWD Read data parity mismatch");
1114 queued_retval = ERROR_FAIL;
1115 goto skip;
1118 if (swd_cmd_queue[i].dst)
1119 *swd_cmd_queue[i].dst = data;
1123 skip:
1124 swd_cmd_queue_length = 0;
1125 retval = queued_retval;
1126 queued_retval = ERROR_OK;
1128 /* Queue a new "blink" */
1129 if (led && retval == ERROR_OK)
1130 ftdi_set_signal(led, '1');
1132 return retval;
1135 static void ftdi_swd_queue_cmd(uint8_t cmd, uint32_t *dst, uint32_t data, uint32_t ap_delay_clk)
1137 if (swd_cmd_queue_length >= swd_cmd_queue_alloced) {
1138 /* Not enough room in the queue. Run the queue and increase its size for next time.
1139 * Note that it's not possible to avoid running the queue here, because mpsse contains
1140 * pointers into the queue which may be invalid after the realloc. */
1141 queued_retval = ftdi_swd_run_queue();
1142 struct swd_cmd_queue_entry *q = realloc(swd_cmd_queue, swd_cmd_queue_alloced * 2 * sizeof(*swd_cmd_queue));
1143 if (q) {
1144 swd_cmd_queue = q;
1145 swd_cmd_queue_alloced *= 2;
1146 LOG_DEBUG("Increased SWD command queue to %zu elements", swd_cmd_queue_alloced);
1150 if (queued_retval != ERROR_OK)
1151 return;
1153 size_t i = swd_cmd_queue_length++;
1154 swd_cmd_queue[i].cmd = cmd | SWD_CMD_START | SWD_CMD_PARK;
1156 mpsse_clock_data_out(mpsse_ctx, &swd_cmd_queue[i].cmd, 0, 8, SWD_MODE);
1158 if (swd_cmd_queue[i].cmd & SWD_CMD_RNW) {
1159 /* Queue a read transaction */
1160 swd_cmd_queue[i].dst = dst;
1162 ftdi_swd_swdio_en(false);
1163 mpsse_clock_data_in(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1164 0, 1 + 3 + 32 + 1 + 1, SWD_MODE);
1165 ftdi_swd_swdio_en(true);
1166 } else {
1167 /* Queue a write transaction */
1168 ftdi_swd_swdio_en(false);
1170 mpsse_clock_data_in(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1171 0, 1 + 3 + 1, SWD_MODE);
1173 ftdi_swd_swdio_en(true);
1175 buf_set_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 1, 32, data);
1176 buf_set_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 1 + 32, 1, parity_u32(data));
1178 mpsse_clock_data_out(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1179 1 + 3 + 1, 32 + 1, SWD_MODE);
1182 /* Insert idle cycles after AP accesses to avoid WAIT */
1183 if (cmd & SWD_CMD_APNDP)
1184 mpsse_clock_data_out(mpsse_ctx, NULL, 0, ap_delay_clk, SWD_MODE);
1188 static void ftdi_swd_read_reg(uint8_t cmd, uint32_t *value, uint32_t ap_delay_clk)
1190 assert(cmd & SWD_CMD_RNW);
1191 ftdi_swd_queue_cmd(cmd, value, 0, ap_delay_clk);
1194 static void ftdi_swd_write_reg(uint8_t cmd, uint32_t value, uint32_t ap_delay_clk)
1196 assert(!(cmd & SWD_CMD_RNW));
1197 ftdi_swd_queue_cmd(cmd, NULL, value, ap_delay_clk);
1200 static int ftdi_swd_switch_seq(enum swd_special_seq seq)
1202 switch (seq) {
1203 case LINE_RESET:
1204 LOG_DEBUG("SWD line reset");
1205 ftdi_swd_swdio_en(true);
1206 mpsse_clock_data_out(mpsse_ctx, swd_seq_line_reset, 0, swd_seq_line_reset_len, SWD_MODE);
1207 break;
1208 case JTAG_TO_SWD:
1209 LOG_DEBUG("JTAG-to-SWD");
1210 ftdi_swd_swdio_en(true);
1211 mpsse_clock_data_out(mpsse_ctx, swd_seq_jtag_to_swd, 0, swd_seq_jtag_to_swd_len, SWD_MODE);
1212 break;
1213 case JTAG_TO_DORMANT:
1214 LOG_DEBUG("JTAG-to-DORMANT");
1215 ftdi_swd_swdio_en(true);
1216 mpsse_clock_data_out(mpsse_ctx, swd_seq_jtag_to_dormant, 0, swd_seq_jtag_to_dormant_len, SWD_MODE);
1217 break;
1218 case SWD_TO_JTAG:
1219 LOG_DEBUG("SWD-to-JTAG");
1220 ftdi_swd_swdio_en(true);
1221 mpsse_clock_data_out(mpsse_ctx, swd_seq_swd_to_jtag, 0, swd_seq_swd_to_jtag_len, SWD_MODE);
1222 break;
1223 case SWD_TO_DORMANT:
1224 LOG_DEBUG("SWD-to-DORMANT");
1225 ftdi_swd_swdio_en(true);
1226 mpsse_clock_data_out(mpsse_ctx, swd_seq_swd_to_dormant, 0, swd_seq_swd_to_dormant_len, SWD_MODE);
1227 break;
1228 case DORMANT_TO_SWD:
1229 LOG_DEBUG("DORMANT-to-SWD");
1230 ftdi_swd_swdio_en(true);
1231 mpsse_clock_data_out(mpsse_ctx, swd_seq_dormant_to_swd, 0, swd_seq_dormant_to_swd_len, SWD_MODE);
1232 break;
1233 case DORMANT_TO_JTAG:
1234 LOG_DEBUG("DORMANT-to-JTAG");
1235 ftdi_swd_swdio_en(true);
1236 mpsse_clock_data_out(mpsse_ctx, swd_seq_dormant_to_jtag, 0, swd_seq_dormant_to_jtag_len, SWD_MODE);
1237 break;
1238 default:
1239 LOG_ERROR("Sequence %d not supported", seq);
1240 return ERROR_FAIL;
1243 return ERROR_OK;
1246 static const struct swd_driver ftdi_swd = {
1247 .init = ftdi_swd_init,
1248 .switch_seq = ftdi_swd_switch_seq,
1249 .read_reg = ftdi_swd_read_reg,
1250 .write_reg = ftdi_swd_write_reg,
1251 .run = ftdi_swd_run_queue,
1254 static const char * const ftdi_transports[] = { "jtag", "swd", NULL };
1256 static struct jtag_interface ftdi_interface = {
1257 .supported = DEBUG_CAP_TMS_SEQ,
1258 .execute_queue = ftdi_execute_queue,
1261 struct adapter_driver ftdi_adapter_driver = {
1262 .name = "ftdi",
1263 .transports = ftdi_transports,
1264 .commands = ftdi_command_handlers,
1266 .init = ftdi_initialize,
1267 .quit = ftdi_quit,
1268 .reset = ftdi_reset,
1269 .speed = ftdi_speed,
1270 .khz = ftdi_khz,
1271 .speed_div = ftdi_speed_div,
1273 .jtag_ops = &ftdi_interface,
1274 .swd_ops = &ftdi_swd,