target init sanity check
[openocd.git] / src / target / target.c
bloba414a6a7d7ef2f8542cd4bdf0ea3b5d734b1beb4
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * This program is free software; you can redistribute it and/or modify *
24 * it under the terms of the GNU General Public License as published by *
25 * the Free Software Foundation; either version 2 of the License, or *
26 * (at your option) any later version. *
27 * *
28 * This program is distributed in the hope that it will be useful, *
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
31 * GNU General Public License for more details. *
32 * *
33 * You should have received a copy of the GNU General Public License *
34 * along with this program; if not, write to the *
35 * Free Software Foundation, Inc., *
36 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
37 ***************************************************************************/
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
42 #include <helper/time_support.h>
43 #include <jtag/jtag.h>
44 #include <flash/nor/core.h>
46 #include "target.h"
47 #include "target_type.h"
48 #include "target_request.h"
49 #include "breakpoints.h"
50 #include "register.h"
51 #include "trace.h"
52 #include "image.h"
53 #include "rtos/rtos.h"
56 static int target_read_buffer_default(struct target *target, uint32_t address,
57 uint32_t size, uint8_t *buffer);
58 static int target_write_buffer_default(struct target *target, uint32_t address,
59 uint32_t size, const uint8_t *buffer);
60 static int target_array2mem(Jim_Interp *interp, struct target *target,
61 int argc, Jim_Obj *const *argv);
62 static int target_mem2array(Jim_Interp *interp, struct target *target,
63 int argc, Jim_Obj *const *argv);
64 static int target_register_user_commands(struct command_context *cmd_ctx);
66 /* targets */
67 extern struct target_type arm7tdmi_target;
68 extern struct target_type arm720t_target;
69 extern struct target_type arm9tdmi_target;
70 extern struct target_type arm920t_target;
71 extern struct target_type arm966e_target;
72 extern struct target_type arm946e_target;
73 extern struct target_type arm926ejs_target;
74 extern struct target_type fa526_target;
75 extern struct target_type feroceon_target;
76 extern struct target_type dragonite_target;
77 extern struct target_type xscale_target;
78 extern struct target_type cortexm3_target;
79 extern struct target_type cortexa8_target;
80 extern struct target_type arm11_target;
81 extern struct target_type mips_m4k_target;
82 extern struct target_type avr_target;
83 extern struct target_type dsp563xx_target;
84 extern struct target_type dsp5680xx_target;
85 extern struct target_type testee_target;
86 extern struct target_type avr32_ap7k_target;
88 static struct target_type *target_types[] =
90 &arm7tdmi_target,
91 &arm9tdmi_target,
92 &arm920t_target,
93 &arm720t_target,
94 &arm966e_target,
95 &arm946e_target,
96 &arm926ejs_target,
97 &fa526_target,
98 &feroceon_target,
99 &dragonite_target,
100 &xscale_target,
101 &cortexm3_target,
102 &cortexa8_target,
103 &arm11_target,
104 &mips_m4k_target,
105 &avr_target,
106 &dsp563xx_target,
107 &dsp5680xx_target,
108 &testee_target,
109 &avr32_ap7k_target,
110 NULL,
113 struct target *all_targets = NULL;
114 static struct target_event_callback *target_event_callbacks = NULL;
115 static struct target_timer_callback *target_timer_callbacks = NULL;
116 static const int polling_interval = 100;
118 static const Jim_Nvp nvp_assert[] = {
119 { .name = "assert", NVP_ASSERT },
120 { .name = "deassert", NVP_DEASSERT },
121 { .name = "T", NVP_ASSERT },
122 { .name = "F", NVP_DEASSERT },
123 { .name = "t", NVP_ASSERT },
124 { .name = "f", NVP_DEASSERT },
125 { .name = NULL, .value = -1 }
128 static const Jim_Nvp nvp_error_target[] = {
129 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
130 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
131 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
132 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
133 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
134 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
135 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
136 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
137 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
138 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
139 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
140 { .value = -1, .name = NULL }
143 static const char *target_strerror_safe(int err)
145 const Jim_Nvp *n;
147 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
148 if (n->name == NULL) {
149 return "unknown";
150 } else {
151 return n->name;
155 static const Jim_Nvp nvp_target_event[] = {
156 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
157 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
159 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
160 { .value = TARGET_EVENT_HALTED, .name = "halted" },
161 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
162 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
163 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
165 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
166 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
168 /* historical name */
170 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
172 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
173 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
174 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
175 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
176 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
177 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
178 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
179 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
180 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
181 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
182 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
184 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
185 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
187 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
188 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
190 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
191 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
193 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
194 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
196 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
197 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
199 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
200 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
201 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
203 { .name = NULL, .value = -1 }
206 static const Jim_Nvp nvp_target_state[] = {
207 { .name = "unknown", .value = TARGET_UNKNOWN },
208 { .name = "running", .value = TARGET_RUNNING },
209 { .name = "halted", .value = TARGET_HALTED },
210 { .name = "reset", .value = TARGET_RESET },
211 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
212 { .name = NULL, .value = -1 },
215 static const Jim_Nvp nvp_target_debug_reason [] = {
216 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
217 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
218 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
219 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
220 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
221 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
222 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
223 { .name = NULL, .value = -1 },
226 static const Jim_Nvp nvp_target_endian[] = {
227 { .name = "big", .value = TARGET_BIG_ENDIAN },
228 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
229 { .name = "be", .value = TARGET_BIG_ENDIAN },
230 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
231 { .name = NULL, .value = -1 },
234 static const Jim_Nvp nvp_reset_modes[] = {
235 { .name = "unknown", .value = RESET_UNKNOWN },
236 { .name = "run" , .value = RESET_RUN },
237 { .name = "halt" , .value = RESET_HALT },
238 { .name = "init" , .value = RESET_INIT },
239 { .name = NULL , .value = -1 },
242 const char *debug_reason_name(struct target *t)
244 const char *cp;
246 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
247 t->debug_reason)->name;
248 if (!cp) {
249 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
250 cp = "(*BUG*unknown*BUG*)";
252 return cp;
255 const char *
256 target_state_name( struct target *t )
258 const char *cp;
259 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
260 if( !cp ){
261 LOG_ERROR("Invalid target state: %d", (int)(t->state));
262 cp = "(*BUG*unknown*BUG*)";
264 return cp;
267 /* determine the number of the new target */
268 static int new_target_number(void)
270 struct target *t;
271 int x;
273 /* number is 0 based */
274 x = -1;
275 t = all_targets;
276 while (t) {
277 if (x < t->target_number) {
278 x = t->target_number;
280 t = t->next;
282 return x + 1;
285 /* read a uint32_t from a buffer in target memory endianness */
286 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
288 if (target->endianness == TARGET_LITTLE_ENDIAN)
289 return le_to_h_u32(buffer);
290 else
291 return be_to_h_u32(buffer);
294 /* read a uint24_t from a buffer in target memory endianness */
295 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
297 if (target->endianness == TARGET_LITTLE_ENDIAN)
298 return le_to_h_u24(buffer);
299 else
300 return be_to_h_u24(buffer);
303 /* read a uint16_t from a buffer in target memory endianness */
304 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
306 if (target->endianness == TARGET_LITTLE_ENDIAN)
307 return le_to_h_u16(buffer);
308 else
309 return be_to_h_u16(buffer);
312 /* read a uint8_t from a buffer in target memory endianness */
313 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
315 return *buffer & 0x0ff;
318 /* write a uint32_t to a buffer in target memory endianness */
319 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
321 if (target->endianness == TARGET_LITTLE_ENDIAN)
322 h_u32_to_le(buffer, value);
323 else
324 h_u32_to_be(buffer, value);
327 /* write a uint24_t to a buffer in target memory endianness */
328 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
330 if (target->endianness == TARGET_LITTLE_ENDIAN)
331 h_u24_to_le(buffer, value);
332 else
333 h_u24_to_be(buffer, value);
336 /* write a uint16_t to a buffer in target memory endianness */
337 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
339 if (target->endianness == TARGET_LITTLE_ENDIAN)
340 h_u16_to_le(buffer, value);
341 else
342 h_u16_to_be(buffer, value);
345 /* write a uint8_t to a buffer in target memory endianness */
346 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
348 *buffer = value;
351 /* write a uint32_t array to a buffer in target memory endianness */
352 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
354 uint32_t i;
355 for(i = 0; i < count; i ++)
356 dstbuf[i] = target_buffer_get_u32(target,&buffer[i*4]);
359 /* write a uint16_t array to a buffer in target memory endianness */
360 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
362 uint32_t i;
363 for(i = 0; i < count; i ++)
364 dstbuf[i] = target_buffer_get_u16(target,&buffer[i*2]);
367 /* write a uint32_t array to a buffer in target memory endianness */
368 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
370 uint32_t i;
371 for(i = 0; i < count; i ++)
372 target_buffer_set_u32(target,&buffer[i*4],srcbuf[i]);
375 /* write a uint16_t array to a buffer in target memory endianness */
376 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
378 uint32_t i;
379 for(i = 0; i < count; i ++)
380 target_buffer_set_u16(target,&buffer[i*2],srcbuf[i]);
383 /* return a pointer to a configured target; id is name or number */
384 struct target *get_target(const char *id)
386 struct target *target;
388 /* try as tcltarget name */
389 for (target = all_targets; target; target = target->next) {
390 if (target->cmd_name == NULL)
391 continue;
392 if (strcmp(id, target->cmd_name) == 0)
393 return target;
396 /* It's OK to remove this fallback sometime after August 2010 or so */
398 /* no match, try as number */
399 unsigned num;
400 if (parse_uint(id, &num) != ERROR_OK)
401 return NULL;
403 for (target = all_targets; target; target = target->next) {
404 if (target->target_number == (int)num) {
405 LOG_WARNING("use '%s' as target identifier, not '%u'",
406 target->cmd_name, num);
407 return target;
411 return NULL;
414 /* returns a pointer to the n-th configured target */
415 static struct target *get_target_by_num(int num)
417 struct target *target = all_targets;
419 while (target) {
420 if (target->target_number == num) {
421 return target;
423 target = target->next;
426 return NULL;
429 struct target* get_current_target(struct command_context *cmd_ctx)
431 struct target *target = get_target_by_num(cmd_ctx->current_target);
433 if (target == NULL)
435 LOG_ERROR("BUG: current_target out of bounds");
436 exit(-1);
439 return target;
442 int target_poll(struct target *target)
444 int retval;
446 /* We can't poll until after examine */
447 if (!target_was_examined(target))
449 /* Fail silently lest we pollute the log */
450 return ERROR_FAIL;
453 retval = target->type->poll(target);
454 if (retval != ERROR_OK)
455 return retval;
457 if (target->halt_issued)
459 if (target->state == TARGET_HALTED)
461 target->halt_issued = false;
462 } else
464 long long t = timeval_ms() - target->halt_issued_time;
465 if (t>1000)
467 target->halt_issued = false;
468 LOG_INFO("Halt timed out, wake up GDB.");
469 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
474 return ERROR_OK;
477 int target_halt(struct target *target)
479 int retval;
480 /* We can't poll until after examine */
481 if (!target_was_examined(target))
483 LOG_ERROR("Target not examined yet");
484 return ERROR_FAIL;
487 retval = target->type->halt(target);
488 if (retval != ERROR_OK)
489 return retval;
491 target->halt_issued = true;
492 target->halt_issued_time = timeval_ms();
494 return ERROR_OK;
498 * Make the target (re)start executing using its saved execution
499 * context (possibly with some modifications).
501 * @param target Which target should start executing.
502 * @param current True to use the target's saved program counter instead
503 * of the address parameter
504 * @param address Optionally used as the program counter.
505 * @param handle_breakpoints True iff breakpoints at the resumption PC
506 * should be skipped. (For example, maybe execution was stopped by
507 * such a breakpoint, in which case it would be counterprodutive to
508 * let it re-trigger.
509 * @param debug_execution False if all working areas allocated by OpenOCD
510 * should be released and/or restored to their original contents.
511 * (This would for example be true to run some downloaded "helper"
512 * algorithm code, which resides in one such working buffer and uses
513 * another for data storage.)
515 * @todo Resolve the ambiguity about what the "debug_execution" flag
516 * signifies. For example, Target implementations don't agree on how
517 * it relates to invalidation of the register cache, or to whether
518 * breakpoints and watchpoints should be enabled. (It would seem wrong
519 * to enable breakpoints when running downloaded "helper" algorithms
520 * (debug_execution true), since the breakpoints would be set to match
521 * target firmware being debugged, not the helper algorithm.... and
522 * enabling them could cause such helpers to malfunction (for example,
523 * by overwriting data with a breakpoint instruction. On the other
524 * hand the infrastructure for running such helpers might use this
525 * procedure but rely on hardware breakpoint to detect termination.)
527 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
529 int retval;
531 /* We can't poll until after examine */
532 if (!target_was_examined(target))
534 LOG_ERROR("Target not examined yet");
535 return ERROR_FAIL;
538 /* note that resume *must* be asynchronous. The CPU can halt before
539 * we poll. The CPU can even halt at the current PC as a result of
540 * a software breakpoint being inserted by (a bug?) the application.
542 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
543 return retval;
545 return retval;
548 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
550 char buf[100];
551 int retval;
552 Jim_Nvp *n;
553 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
554 if (n->name == NULL) {
555 LOG_ERROR("invalid reset mode");
556 return ERROR_FAIL;
559 /* disable polling during reset to make reset event scripts
560 * more predictable, i.e. dr/irscan & pathmove in events will
561 * not have JTAG operations injected into the middle of a sequence.
563 bool save_poll = jtag_poll_get_enabled();
565 jtag_poll_set_enabled(false);
567 sprintf(buf, "ocd_process_reset %s", n->name);
568 retval = Jim_Eval(cmd_ctx->interp, buf);
570 jtag_poll_set_enabled(save_poll);
572 if (retval != JIM_OK) {
573 Jim_MakeErrorMessage(cmd_ctx->interp);
574 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
575 return ERROR_FAIL;
578 /* We want any events to be processed before the prompt */
579 retval = target_call_timer_callbacks_now();
581 struct target *target;
582 for (target = all_targets; target; target = target->next) {
583 target->type->check_reset(target);
586 return retval;
589 static int identity_virt2phys(struct target *target,
590 uint32_t virtual, uint32_t *physical)
592 *physical = virtual;
593 return ERROR_OK;
596 static int no_mmu(struct target *target, int *enabled)
598 *enabled = 0;
599 return ERROR_OK;
602 static int default_examine(struct target *target)
604 target_set_examined(target);
605 return ERROR_OK;
608 /* no check by default */
609 static int default_check_reset(struct target *target)
611 return ERROR_OK;
614 int target_examine_one(struct target *target)
616 return target->type->examine(target);
619 static int jtag_enable_callback(enum jtag_event event, void *priv)
621 struct target *target = priv;
623 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
624 return ERROR_OK;
626 jtag_unregister_event_callback(jtag_enable_callback, target);
627 return target_examine_one(target);
631 /* Targets that correctly implement init + examine, i.e.
632 * no communication with target during init:
634 * XScale
636 int target_examine(void)
638 int retval = ERROR_OK;
639 struct target *target;
641 for (target = all_targets; target; target = target->next)
643 /* defer examination, but don't skip it */
644 if (!target->tap->enabled) {
645 jtag_register_event_callback(jtag_enable_callback,
646 target);
647 continue;
649 if ((retval = target_examine_one(target)) != ERROR_OK)
650 return retval;
652 return retval;
654 const char *target_type_name(struct target *target)
656 return target->type->name;
659 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
661 if (!target_was_examined(target))
663 LOG_ERROR("Target not examined yet");
664 return ERROR_FAIL;
666 return target->type->write_memory_imp(target, address, size, count, buffer);
669 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
671 if (!target_was_examined(target))
673 LOG_ERROR("Target not examined yet");
674 return ERROR_FAIL;
676 return target->type->read_memory_imp(target, address, size, count, buffer);
679 static int target_soft_reset_halt_imp(struct target *target)
681 if (!target_was_examined(target))
683 LOG_ERROR("Target not examined yet");
684 return ERROR_FAIL;
686 if (!target->type->soft_reset_halt_imp) {
687 LOG_ERROR("Target %s does not support soft_reset_halt",
688 target_name(target));
689 return ERROR_FAIL;
691 return target->type->soft_reset_halt_imp(target);
695 * Downloads a target-specific native code algorithm to the target,
696 * and executes it. * Note that some targets may need to set up, enable,
697 * and tear down a breakpoint (hard or * soft) to detect algorithm
698 * termination, while others may support lower overhead schemes where
699 * soft breakpoints embedded in the algorithm automatically terminate the
700 * algorithm.
702 * @param target used to run the algorithm
703 * @param arch_info target-specific description of the algorithm.
705 int target_run_algorithm(struct target *target,
706 int num_mem_params, struct mem_param *mem_params,
707 int num_reg_params, struct reg_param *reg_param,
708 uint32_t entry_point, uint32_t exit_point,
709 int timeout_ms, void *arch_info)
711 int retval = ERROR_FAIL;
713 if (!target_was_examined(target))
715 LOG_ERROR("Target not examined yet");
716 goto done;
718 if (!target->type->run_algorithm) {
719 LOG_ERROR("Target type '%s' does not support %s",
720 target_type_name(target), __func__);
721 goto done;
724 target->running_alg = true;
725 retval = target->type->run_algorithm(target,
726 num_mem_params, mem_params,
727 num_reg_params, reg_param,
728 entry_point, exit_point, timeout_ms, arch_info);
729 target->running_alg = false;
731 done:
732 return retval;
736 * Downloads a target-specific native code algorithm to the target,
737 * executes and leaves it running.
739 * @param target used to run the algorithm
740 * @param arch_info target-specific description of the algorithm.
742 int target_start_algorithm(struct target *target,
743 int num_mem_params, struct mem_param *mem_params,
744 int num_reg_params, struct reg_param *reg_params,
745 uint32_t entry_point, uint32_t exit_point,
746 void *arch_info)
748 int retval = ERROR_FAIL;
750 if (!target_was_examined(target))
752 LOG_ERROR("Target not examined yet");
753 goto done;
755 if (!target->type->start_algorithm) {
756 LOG_ERROR("Target type '%s' does not support %s",
757 target_type_name(target), __func__);
758 goto done;
760 if (target->running_alg) {
761 LOG_ERROR("Target is already running an algorithm");
762 goto done;
765 target->running_alg = true;
766 retval = target->type->start_algorithm(target,
767 num_mem_params, mem_params,
768 num_reg_params, reg_params,
769 entry_point, exit_point, arch_info);
771 done:
772 return retval;
776 * Waits for an algorithm started with target_start_algorithm() to complete.
778 * @param target used to run the algorithm
779 * @param arch_info target-specific description of the algorithm.
781 int target_wait_algorithm(struct target *target,
782 int num_mem_params, struct mem_param *mem_params,
783 int num_reg_params, struct reg_param *reg_params,
784 uint32_t exit_point, int timeout_ms,
785 void *arch_info)
787 int retval = ERROR_FAIL;
789 if (!target->type->wait_algorithm) {
790 LOG_ERROR("Target type '%s' does not support %s",
791 target_type_name(target), __func__);
792 goto done;
794 if (!target->running_alg) {
795 LOG_ERROR("Target is not running an algorithm");
796 goto done;
799 retval = target->type->wait_algorithm(target,
800 num_mem_params, mem_params,
801 num_reg_params, reg_params,
802 exit_point, timeout_ms, arch_info);
803 if (retval != ERROR_TARGET_TIMEOUT)
804 target->running_alg = false;
806 done:
807 return retval;
811 int target_read_memory(struct target *target,
812 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
814 return target->type->read_memory(target, address, size, count, buffer);
817 static int target_read_phys_memory(struct target *target,
818 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
820 return target->type->read_phys_memory(target, address, size, count, buffer);
823 int target_write_memory(struct target *target,
824 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
826 return target->type->write_memory(target, address, size, count, buffer);
829 static int target_write_phys_memory(struct target *target,
830 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
832 return target->type->write_phys_memory(target, address, size, count, buffer);
835 int target_bulk_write_memory(struct target *target,
836 uint32_t address, uint32_t count, const uint8_t *buffer)
838 return target->type->bulk_write_memory(target, address, count, buffer);
841 int target_add_breakpoint(struct target *target,
842 struct breakpoint *breakpoint)
844 if ((target->state != TARGET_HALTED)&&(breakpoint->type!=BKPT_HARD)) {
845 LOG_WARNING("target %s is not halted", target->cmd_name);
846 return ERROR_TARGET_NOT_HALTED;
848 return target->type->add_breakpoint(target, breakpoint);
851 int target_add_context_breakpoint(struct target *target,
852 struct breakpoint *breakpoint)
854 if (target->state != TARGET_HALTED) {
855 LOG_WARNING("target %s is not halted", target->cmd_name);
856 return ERROR_TARGET_NOT_HALTED;
858 return target->type->add_context_breakpoint(target, breakpoint);
861 int target_add_hybrid_breakpoint(struct target *target,
862 struct breakpoint *breakpoint)
864 if (target->state != TARGET_HALTED) {
865 LOG_WARNING("target %s is not halted", target->cmd_name);
866 return ERROR_TARGET_NOT_HALTED;
868 return target->type->add_hybrid_breakpoint(target, breakpoint);
871 int target_remove_breakpoint(struct target *target,
872 struct breakpoint *breakpoint)
874 return target->type->remove_breakpoint(target, breakpoint);
877 int target_add_watchpoint(struct target *target,
878 struct watchpoint *watchpoint)
880 if (target->state != TARGET_HALTED) {
881 LOG_WARNING("target %s is not halted", target->cmd_name);
882 return ERROR_TARGET_NOT_HALTED;
884 return target->type->add_watchpoint(target, watchpoint);
886 int target_remove_watchpoint(struct target *target,
887 struct watchpoint *watchpoint)
889 return target->type->remove_watchpoint(target, watchpoint);
892 int target_get_gdb_reg_list(struct target *target,
893 struct reg **reg_list[], int *reg_list_size)
895 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
897 int target_step(struct target *target,
898 int current, uint32_t address, int handle_breakpoints)
900 return target->type->step(target, current, address, handle_breakpoints);
905 * Reset the @c examined flag for the given target.
906 * Pure paranoia -- targets are zeroed on allocation.
908 static void target_reset_examined(struct target *target)
910 target->examined = false;
913 static int
914 err_read_phys_memory(struct target *target, uint32_t address,
915 uint32_t size, uint32_t count, uint8_t *buffer)
917 LOG_ERROR("Not implemented: %s", __func__);
918 return ERROR_FAIL;
921 static int
922 err_write_phys_memory(struct target *target, uint32_t address,
923 uint32_t size, uint32_t count, const uint8_t *buffer)
925 LOG_ERROR("Not implemented: %s", __func__);
926 return ERROR_FAIL;
929 static int handle_target(void *priv);
931 static int target_init_one(struct command_context *cmd_ctx,
932 struct target *target)
934 target_reset_examined(target);
936 struct target_type *type = target->type;
937 if (type->examine == NULL)
938 type->examine = default_examine;
940 if (type->check_reset== NULL)
941 type->check_reset = default_check_reset;
943 assert(type->init_target != NULL);
945 int retval = type->init_target(cmd_ctx, target);
946 if (ERROR_OK != retval)
948 LOG_ERROR("target '%s' init failed", target_name(target));
949 return retval;
953 * @todo get rid of those *memory_imp() methods, now that all
954 * callers are using target_*_memory() accessors ... and make
955 * sure the "physical" paths handle the same issues.
957 /* a non-invasive way(in terms of patches) to add some code that
958 * runs before the type->write/read_memory implementation
960 type->write_memory_imp = target->type->write_memory;
961 type->write_memory = target_write_memory_imp;
963 type->read_memory_imp = target->type->read_memory;
964 type->read_memory = target_read_memory_imp;
966 type->soft_reset_halt_imp = target->type->soft_reset_halt;
967 type->soft_reset_halt = target_soft_reset_halt_imp;
969 /* Sanity-check MMU support ... stub in what we must, to help
970 * implement it in stages, but warn if we need to do so.
972 if (type->mmu)
974 if (type->write_phys_memory == NULL)
976 LOG_ERROR("type '%s' is missing write_phys_memory",
977 type->name);
978 type->write_phys_memory = err_write_phys_memory;
980 if (type->read_phys_memory == NULL)
982 LOG_ERROR("type '%s' is missing read_phys_memory",
983 type->name);
984 type->read_phys_memory = err_read_phys_memory;
986 if (type->virt2phys == NULL)
988 LOG_ERROR("type '%s' is missing virt2phys", type->name);
989 type->virt2phys = identity_virt2phys;
992 else
994 /* Make sure no-MMU targets all behave the same: make no
995 * distinction between physical and virtual addresses, and
996 * ensure that virt2phys() is always an identity mapping.
998 if (type->write_phys_memory || type->read_phys_memory
999 || type->virt2phys)
1001 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1004 type->mmu = no_mmu;
1005 type->write_phys_memory = type->write_memory;
1006 type->read_phys_memory = type->read_memory;
1007 type->virt2phys = identity_virt2phys;
1010 if (target->type->read_buffer == NULL)
1011 target->type->read_buffer = target_read_buffer_default;
1013 if (target->type->write_buffer == NULL)
1014 target->type->write_buffer = target_write_buffer_default;
1016 return ERROR_OK;
1019 static int target_init(struct command_context *cmd_ctx)
1021 struct target *target;
1022 int retval;
1024 for (target = all_targets; target; target = target->next)
1026 retval = target_init_one(cmd_ctx, target);
1027 if (ERROR_OK != retval)
1028 return retval;
1031 if (!all_targets)
1032 return ERROR_OK;
1034 retval = target_register_user_commands(cmd_ctx);
1035 if (ERROR_OK != retval)
1036 return retval;
1038 retval = target_register_timer_callback(&handle_target,
1039 polling_interval, 1, cmd_ctx->interp);
1040 if (ERROR_OK != retval)
1041 return retval;
1043 return ERROR_OK;
1046 COMMAND_HANDLER(handle_target_init_command)
1048 int retval;
1050 if (CMD_ARGC != 0)
1051 return ERROR_COMMAND_SYNTAX_ERROR;
1053 static bool target_initialized = false;
1054 if (target_initialized)
1056 LOG_INFO("'target init' has already been called");
1057 return ERROR_OK;
1059 target_initialized = true;
1061 retval = command_run_line(CMD_CTX, "init_targets");
1062 if (ERROR_OK != retval)
1063 return retval;
1065 LOG_DEBUG("Initializing targets...");
1066 return target_init(CMD_CTX);
1069 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1071 struct target_event_callback **callbacks_p = &target_event_callbacks;
1073 if (callback == NULL)
1075 return ERROR_INVALID_ARGUMENTS;
1078 if (*callbacks_p)
1080 while ((*callbacks_p)->next)
1081 callbacks_p = &((*callbacks_p)->next);
1082 callbacks_p = &((*callbacks_p)->next);
1085 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1086 (*callbacks_p)->callback = callback;
1087 (*callbacks_p)->priv = priv;
1088 (*callbacks_p)->next = NULL;
1090 return ERROR_OK;
1093 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1095 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1096 struct timeval now;
1098 if (callback == NULL)
1100 return ERROR_INVALID_ARGUMENTS;
1103 if (*callbacks_p)
1105 while ((*callbacks_p)->next)
1106 callbacks_p = &((*callbacks_p)->next);
1107 callbacks_p = &((*callbacks_p)->next);
1110 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1111 (*callbacks_p)->callback = callback;
1112 (*callbacks_p)->periodic = periodic;
1113 (*callbacks_p)->time_ms = time_ms;
1115 gettimeofday(&now, NULL);
1116 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1117 time_ms -= (time_ms % 1000);
1118 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1119 if ((*callbacks_p)->when.tv_usec > 1000000)
1121 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1122 (*callbacks_p)->when.tv_sec += 1;
1125 (*callbacks_p)->priv = priv;
1126 (*callbacks_p)->next = NULL;
1128 return ERROR_OK;
1131 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1133 struct target_event_callback **p = &target_event_callbacks;
1134 struct target_event_callback *c = target_event_callbacks;
1136 if (callback == NULL)
1138 return ERROR_INVALID_ARGUMENTS;
1141 while (c)
1143 struct target_event_callback *next = c->next;
1144 if ((c->callback == callback) && (c->priv == priv))
1146 *p = next;
1147 free(c);
1148 return ERROR_OK;
1150 else
1151 p = &(c->next);
1152 c = next;
1155 return ERROR_OK;
1158 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1160 struct target_timer_callback **p = &target_timer_callbacks;
1161 struct target_timer_callback *c = target_timer_callbacks;
1163 if (callback == NULL)
1165 return ERROR_INVALID_ARGUMENTS;
1168 while (c)
1170 struct target_timer_callback *next = c->next;
1171 if ((c->callback == callback) && (c->priv == priv))
1173 *p = next;
1174 free(c);
1175 return ERROR_OK;
1177 else
1178 p = &(c->next);
1179 c = next;
1182 return ERROR_OK;
1185 int target_call_event_callbacks(struct target *target, enum target_event event)
1187 struct target_event_callback *callback = target_event_callbacks;
1188 struct target_event_callback *next_callback;
1190 if (event == TARGET_EVENT_HALTED)
1192 /* execute early halted first */
1193 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1196 LOG_DEBUG("target event %i (%s)",
1197 event,
1198 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1200 target_handle_event(target, event);
1202 while (callback)
1204 next_callback = callback->next;
1205 callback->callback(target, event, callback->priv);
1206 callback = next_callback;
1209 return ERROR_OK;
1212 static int target_timer_callback_periodic_restart(
1213 struct target_timer_callback *cb, struct timeval *now)
1215 int time_ms = cb->time_ms;
1216 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1217 time_ms -= (time_ms % 1000);
1218 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1219 if (cb->when.tv_usec > 1000000)
1221 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1222 cb->when.tv_sec += 1;
1224 return ERROR_OK;
1227 static int target_call_timer_callback(struct target_timer_callback *cb,
1228 struct timeval *now)
1230 cb->callback(cb->priv);
1232 if (cb->periodic)
1233 return target_timer_callback_periodic_restart(cb, now);
1235 return target_unregister_timer_callback(cb->callback, cb->priv);
1238 static int target_call_timer_callbacks_check_time(int checktime)
1240 keep_alive();
1242 struct timeval now;
1243 gettimeofday(&now, NULL);
1245 struct target_timer_callback *callback = target_timer_callbacks;
1246 while (callback)
1248 // cleaning up may unregister and free this callback
1249 struct target_timer_callback *next_callback = callback->next;
1251 bool call_it = callback->callback &&
1252 ((!checktime && callback->periodic) ||
1253 now.tv_sec > callback->when.tv_sec ||
1254 (now.tv_sec == callback->when.tv_sec &&
1255 now.tv_usec >= callback->when.tv_usec));
1257 if (call_it)
1259 int retval = target_call_timer_callback(callback, &now);
1260 if (retval != ERROR_OK)
1261 return retval;
1264 callback = next_callback;
1267 return ERROR_OK;
1270 int target_call_timer_callbacks(void)
1272 return target_call_timer_callbacks_check_time(1);
1275 /* invoke periodic callbacks immediately */
1276 int target_call_timer_callbacks_now(void)
1278 return target_call_timer_callbacks_check_time(0);
1281 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1283 struct working_area *c = target->working_areas;
1284 struct working_area *new_wa = NULL;
1286 /* Reevaluate working area address based on MMU state*/
1287 if (target->working_areas == NULL)
1289 int retval;
1290 int enabled;
1292 retval = target->type->mmu(target, &enabled);
1293 if (retval != ERROR_OK)
1295 return retval;
1298 if (!enabled) {
1299 if (target->working_area_phys_spec) {
1300 LOG_DEBUG("MMU disabled, using physical "
1301 "address for working memory 0x%08x",
1302 (unsigned)target->working_area_phys);
1303 target->working_area = target->working_area_phys;
1304 } else {
1305 LOG_ERROR("No working memory available. "
1306 "Specify -work-area-phys to target.");
1307 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1309 } else {
1310 if (target->working_area_virt_spec) {
1311 LOG_DEBUG("MMU enabled, using virtual "
1312 "address for working memory 0x%08x",
1313 (unsigned)target->working_area_virt);
1314 target->working_area = target->working_area_virt;
1315 } else {
1316 LOG_ERROR("No working memory available. "
1317 "Specify -work-area-virt to target.");
1318 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1323 /* only allocate multiples of 4 byte */
1324 if (size % 4)
1326 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1327 size = (size + 3) & (~3);
1330 /* see if there's already a matching working area */
1331 while (c)
1333 if ((c->free) && (c->size == size))
1335 new_wa = c;
1336 break;
1338 c = c->next;
1341 /* if not, allocate a new one */
1342 if (!new_wa)
1344 struct working_area **p = &target->working_areas;
1345 uint32_t first_free = target->working_area;
1346 uint32_t free_size = target->working_area_size;
1348 c = target->working_areas;
1349 while (c)
1351 first_free += c->size;
1352 free_size -= c->size;
1353 p = &c->next;
1354 c = c->next;
1357 if (free_size < size)
1359 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1362 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1364 new_wa = malloc(sizeof(struct working_area));
1365 new_wa->next = NULL;
1366 new_wa->size = size;
1367 new_wa->address = first_free;
1369 if (target->backup_working_area)
1371 int retval;
1372 new_wa->backup = malloc(new_wa->size);
1373 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1375 free(new_wa->backup);
1376 free(new_wa);
1377 return retval;
1380 else
1382 new_wa->backup = NULL;
1385 /* put new entry in list */
1386 *p = new_wa;
1389 /* mark as used, and return the new (reused) area */
1390 new_wa->free = false;
1391 *area = new_wa;
1393 /* user pointer */
1394 new_wa->user = area;
1396 return ERROR_OK;
1399 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1401 int retval;
1403 retval = target_alloc_working_area_try(target, size, area);
1404 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1406 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1408 return retval;
1412 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1414 if (area->free)
1415 return ERROR_OK;
1417 if (restore && target->backup_working_area)
1419 int retval;
1420 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1421 return retval;
1424 area->free = true;
1426 /* mark user pointer invalid */
1427 *area->user = NULL;
1428 area->user = NULL;
1430 return ERROR_OK;
1433 int target_free_working_area(struct target *target, struct working_area *area)
1435 return target_free_working_area_restore(target, area, 1);
1438 /* free resources and restore memory, if restoring memory fails,
1439 * free up resources anyway
1441 static void target_free_all_working_areas_restore(struct target *target, int restore)
1443 struct working_area *c = target->working_areas;
1445 while (c)
1447 struct working_area *next = c->next;
1448 target_free_working_area_restore(target, c, restore);
1450 if (c->backup)
1451 free(c->backup);
1453 free(c);
1455 c = next;
1458 target->working_areas = NULL;
1461 void target_free_all_working_areas(struct target *target)
1463 target_free_all_working_areas_restore(target, 1);
1466 int target_arch_state(struct target *target)
1468 int retval;
1469 if (target == NULL)
1471 LOG_USER("No target has been configured");
1472 return ERROR_OK;
1475 LOG_USER("target state: %s", target_state_name( target ));
1477 if (target->state != TARGET_HALTED)
1478 return ERROR_OK;
1480 retval = target->type->arch_state(target);
1481 return retval;
1484 /* Single aligned words are guaranteed to use 16 or 32 bit access
1485 * mode respectively, otherwise data is handled as quickly as
1486 * possible
1488 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1490 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1491 (int)size, (unsigned)address);
1493 if (!target_was_examined(target))
1495 LOG_ERROR("Target not examined yet");
1496 return ERROR_FAIL;
1499 if (size == 0) {
1500 return ERROR_OK;
1503 if ((address + size - 1) < address)
1505 /* GDB can request this when e.g. PC is 0xfffffffc*/
1506 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1507 (unsigned)address,
1508 (unsigned)size);
1509 return ERROR_FAIL;
1512 return target->type->write_buffer(target, address, size, buffer);
1515 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1517 int retval = ERROR_OK;
1519 if (((address % 2) == 0) && (size == 2))
1521 return target_write_memory(target, address, 2, 1, buffer);
1524 /* handle unaligned head bytes */
1525 if (address % 4)
1527 uint32_t unaligned = 4 - (address % 4);
1529 if (unaligned > size)
1530 unaligned = size;
1532 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1533 return retval;
1535 buffer += unaligned;
1536 address += unaligned;
1537 size -= unaligned;
1540 /* handle aligned words */
1541 if (size >= 4)
1543 int aligned = size - (size % 4);
1545 /* use bulk writes above a certain limit. This may have to be changed */
1546 if (aligned > 128)
1548 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1549 return retval;
1551 else
1553 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1554 return retval;
1557 buffer += aligned;
1558 address += aligned;
1559 size -= aligned;
1562 /* handle tail writes of less than 4 bytes */
1563 if (size > 0)
1565 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1566 return retval;
1569 return retval;
1572 /* Single aligned words are guaranteed to use 16 or 32 bit access
1573 * mode respectively, otherwise data is handled as quickly as
1574 * possible
1576 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1578 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1579 (int)size, (unsigned)address);
1581 if (!target_was_examined(target))
1583 LOG_ERROR("Target not examined yet");
1584 return ERROR_FAIL;
1587 if (size == 0) {
1588 return ERROR_OK;
1591 if ((address + size - 1) < address)
1593 /* GDB can request this when e.g. PC is 0xfffffffc*/
1594 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1595 address,
1596 size);
1597 return ERROR_FAIL;
1600 return target->type->read_buffer(target, address, size, buffer);
1603 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1605 int retval = ERROR_OK;
1607 if (((address % 2) == 0) && (size == 2))
1609 return target_read_memory(target, address, 2, 1, buffer);
1612 /* handle unaligned head bytes */
1613 if (address % 4)
1615 uint32_t unaligned = 4 - (address % 4);
1617 if (unaligned > size)
1618 unaligned = size;
1620 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1621 return retval;
1623 buffer += unaligned;
1624 address += unaligned;
1625 size -= unaligned;
1628 /* handle aligned words */
1629 if (size >= 4)
1631 int aligned = size - (size % 4);
1633 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1634 return retval;
1636 buffer += aligned;
1637 address += aligned;
1638 size -= aligned;
1641 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1642 if(size >=2)
1644 int aligned = size - (size%2);
1645 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1646 if (retval != ERROR_OK)
1647 return retval;
1649 buffer += aligned;
1650 address += aligned;
1651 size -= aligned;
1653 /* handle tail writes of less than 4 bytes */
1654 if (size > 0)
1656 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1657 return retval;
1660 return ERROR_OK;
1663 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1665 uint8_t *buffer;
1666 int retval;
1667 uint32_t i;
1668 uint32_t checksum = 0;
1669 if (!target_was_examined(target))
1671 LOG_ERROR("Target not examined yet");
1672 return ERROR_FAIL;
1675 if ((retval = target->type->checksum_memory(target, address,
1676 size, &checksum)) != ERROR_OK)
1678 buffer = malloc(size);
1679 if (buffer == NULL)
1681 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1682 return ERROR_INVALID_ARGUMENTS;
1684 retval = target_read_buffer(target, address, size, buffer);
1685 if (retval != ERROR_OK)
1687 free(buffer);
1688 return retval;
1691 /* convert to target endianness */
1692 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1694 uint32_t target_data;
1695 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1696 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1699 retval = image_calculate_checksum(buffer, size, &checksum);
1700 free(buffer);
1703 *crc = checksum;
1705 return retval;
1708 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1710 int retval;
1711 if (!target_was_examined(target))
1713 LOG_ERROR("Target not examined yet");
1714 return ERROR_FAIL;
1717 if (target->type->blank_check_memory == 0)
1718 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1720 retval = target->type->blank_check_memory(target, address, size, blank);
1722 return retval;
1725 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1727 uint8_t value_buf[4];
1728 if (!target_was_examined(target))
1730 LOG_ERROR("Target not examined yet");
1731 return ERROR_FAIL;
1734 int retval = target_read_memory(target, address, 4, 1, value_buf);
1736 if (retval == ERROR_OK)
1738 *value = target_buffer_get_u32(target, value_buf);
1739 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1740 address,
1741 *value);
1743 else
1745 *value = 0x0;
1746 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1747 address);
1750 return retval;
1753 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1755 uint8_t value_buf[2];
1756 if (!target_was_examined(target))
1758 LOG_ERROR("Target not examined yet");
1759 return ERROR_FAIL;
1762 int retval = target_read_memory(target, address, 2, 1, value_buf);
1764 if (retval == ERROR_OK)
1766 *value = target_buffer_get_u16(target, value_buf);
1767 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1768 address,
1769 *value);
1771 else
1773 *value = 0x0;
1774 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1775 address);
1778 return retval;
1781 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1783 int retval = target_read_memory(target, address, 1, 1, value);
1784 if (!target_was_examined(target))
1786 LOG_ERROR("Target not examined yet");
1787 return ERROR_FAIL;
1790 if (retval == ERROR_OK)
1792 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1793 address,
1794 *value);
1796 else
1798 *value = 0x0;
1799 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1800 address);
1803 return retval;
1806 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1808 int retval;
1809 uint8_t value_buf[4];
1810 if (!target_was_examined(target))
1812 LOG_ERROR("Target not examined yet");
1813 return ERROR_FAIL;
1816 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1817 address,
1818 value);
1820 target_buffer_set_u32(target, value_buf, value);
1821 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1823 LOG_DEBUG("failed: %i", retval);
1826 return retval;
1829 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1831 int retval;
1832 uint8_t value_buf[2];
1833 if (!target_was_examined(target))
1835 LOG_ERROR("Target not examined yet");
1836 return ERROR_FAIL;
1839 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1840 address,
1841 value);
1843 target_buffer_set_u16(target, value_buf, value);
1844 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1846 LOG_DEBUG("failed: %i", retval);
1849 return retval;
1852 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1854 int retval;
1855 if (!target_was_examined(target))
1857 LOG_ERROR("Target not examined yet");
1858 return ERROR_FAIL;
1861 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1862 address, value);
1864 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1866 LOG_DEBUG("failed: %i", retval);
1869 return retval;
1872 static int find_target(struct command_context *cmd_ctx, const char *name)
1874 struct target *target = get_target(name);
1875 if (target == NULL) {
1876 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
1877 return ERROR_FAIL;
1879 if (!target->tap->enabled) {
1880 LOG_USER("Target: TAP %s is disabled, "
1881 "can't be the current target\n",
1882 target->tap->dotted_name);
1883 return ERROR_FAIL;
1886 cmd_ctx->current_target = target->target_number;
1887 return ERROR_OK;
1891 COMMAND_HANDLER(handle_targets_command)
1893 int retval = ERROR_OK;
1894 if (CMD_ARGC == 1)
1896 retval = find_target(CMD_CTX, CMD_ARGV[0]);
1897 if (retval == ERROR_OK) {
1898 /* we're done! */
1899 return retval;
1903 struct target *target = all_targets;
1904 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1905 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1906 while (target)
1908 const char *state;
1909 char marker = ' ';
1911 if (target->tap->enabled)
1912 state = target_state_name( target );
1913 else
1914 state = "tap-disabled";
1916 if (CMD_CTX->current_target == target->target_number)
1917 marker = '*';
1919 /* keep columns lined up to match the headers above */
1920 command_print(CMD_CTX,
1921 "%2d%c %-18s %-10s %-6s %-18s %s",
1922 target->target_number,
1923 marker,
1924 target_name(target),
1925 target_type_name(target),
1926 Jim_Nvp_value2name_simple(nvp_target_endian,
1927 target->endianness)->name,
1928 target->tap->dotted_name,
1929 state);
1930 target = target->next;
1933 return retval;
1936 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1938 static int powerDropout;
1939 static int srstAsserted;
1941 static int runPowerRestore;
1942 static int runPowerDropout;
1943 static int runSrstAsserted;
1944 static int runSrstDeasserted;
1946 static int sense_handler(void)
1948 static int prevSrstAsserted = 0;
1949 static int prevPowerdropout = 0;
1951 int retval;
1952 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1953 return retval;
1955 int powerRestored;
1956 powerRestored = prevPowerdropout && !powerDropout;
1957 if (powerRestored)
1959 runPowerRestore = 1;
1962 long long current = timeval_ms();
1963 static long long lastPower = 0;
1964 int waitMore = lastPower + 2000 > current;
1965 if (powerDropout && !waitMore)
1967 runPowerDropout = 1;
1968 lastPower = current;
1971 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1972 return retval;
1974 int srstDeasserted;
1975 srstDeasserted = prevSrstAsserted && !srstAsserted;
1977 static long long lastSrst = 0;
1978 waitMore = lastSrst + 2000 > current;
1979 if (srstDeasserted && !waitMore)
1981 runSrstDeasserted = 1;
1982 lastSrst = current;
1985 if (!prevSrstAsserted && srstAsserted)
1987 runSrstAsserted = 1;
1990 prevSrstAsserted = srstAsserted;
1991 prevPowerdropout = powerDropout;
1993 if (srstDeasserted || powerRestored)
1995 /* Other than logging the event we can't do anything here.
1996 * Issuing a reset is a particularly bad idea as we might
1997 * be inside a reset already.
2001 return ERROR_OK;
2004 static int backoff_times = 0;
2005 static int backoff_count = 0;
2007 /* process target state changes */
2008 static int handle_target(void *priv)
2010 Jim_Interp *interp = (Jim_Interp *)priv;
2011 int retval = ERROR_OK;
2013 if (!is_jtag_poll_safe())
2015 /* polling is disabled currently */
2016 return ERROR_OK;
2019 /* we do not want to recurse here... */
2020 static int recursive = 0;
2021 if (! recursive)
2023 recursive = 1;
2024 sense_handler();
2025 /* danger! running these procedures can trigger srst assertions and power dropouts.
2026 * We need to avoid an infinite loop/recursion here and we do that by
2027 * clearing the flags after running these events.
2029 int did_something = 0;
2030 if (runSrstAsserted)
2032 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2033 Jim_Eval(interp, "srst_asserted");
2034 did_something = 1;
2036 if (runSrstDeasserted)
2038 Jim_Eval(interp, "srst_deasserted");
2039 did_something = 1;
2041 if (runPowerDropout)
2043 LOG_INFO("Power dropout detected, running power_dropout proc.");
2044 Jim_Eval(interp, "power_dropout");
2045 did_something = 1;
2047 if (runPowerRestore)
2049 Jim_Eval(interp, "power_restore");
2050 did_something = 1;
2053 if (did_something)
2055 /* clear detect flags */
2056 sense_handler();
2059 /* clear action flags */
2061 runSrstAsserted = 0;
2062 runSrstDeasserted = 0;
2063 runPowerRestore = 0;
2064 runPowerDropout = 0;
2066 recursive = 0;
2069 if (backoff_times > backoff_count)
2071 /* do not poll this time as we failed previously */
2072 backoff_count++;
2073 return ERROR_OK;
2075 backoff_count = 0;
2077 /* Poll targets for state changes unless that's globally disabled.
2078 * Skip targets that are currently disabled.
2080 for (struct target *target = all_targets;
2081 is_jtag_poll_safe() && target;
2082 target = target->next)
2084 if (!target->tap->enabled)
2085 continue;
2087 /* only poll target if we've got power and srst isn't asserted */
2088 if (!powerDropout && !srstAsserted)
2090 /* polling may fail silently until the target has been examined */
2091 if ((retval = target_poll(target)) != ERROR_OK)
2093 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2094 if (backoff_times * polling_interval < 5000)
2096 backoff_times *= 2;
2097 backoff_times++;
2099 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);
2101 /* Tell GDB to halt the debugger. This allows the user to
2102 * run monitor commands to handle the situation.
2104 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2105 return retval;
2107 /* Since we succeeded, we reset backoff count */
2108 if (backoff_times > 0)
2110 LOG_USER("Polling succeeded again");
2112 backoff_times = 0;
2116 return retval;
2119 COMMAND_HANDLER(handle_reg_command)
2121 struct target *target;
2122 struct reg *reg = NULL;
2123 unsigned count = 0;
2124 char *value;
2126 LOG_DEBUG("-");
2128 target = get_current_target(CMD_CTX);
2130 /* list all available registers for the current target */
2131 if (CMD_ARGC == 0)
2133 struct reg_cache *cache = target->reg_cache;
2135 count = 0;
2136 while (cache)
2138 unsigned i;
2140 command_print(CMD_CTX, "===== %s", cache->name);
2142 for (i = 0, reg = cache->reg_list;
2143 i < cache->num_regs;
2144 i++, reg++, count++)
2146 /* only print cached values if they are valid */
2147 if (reg->valid) {
2148 value = buf_to_str(reg->value,
2149 reg->size, 16);
2150 command_print(CMD_CTX,
2151 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2152 count, reg->name,
2153 reg->size, value,
2154 reg->dirty
2155 ? " (dirty)"
2156 : "");
2157 free(value);
2158 } else {
2159 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2160 count, reg->name,
2161 reg->size) ;
2164 cache = cache->next;
2167 return ERROR_OK;
2170 /* access a single register by its ordinal number */
2171 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
2173 unsigned num;
2174 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2176 struct reg_cache *cache = target->reg_cache;
2177 count = 0;
2178 while (cache)
2180 unsigned i;
2181 for (i = 0; i < cache->num_regs; i++)
2183 if (count++ == num)
2185 reg = &cache->reg_list[i];
2186 break;
2189 if (reg)
2190 break;
2191 cache = cache->next;
2194 if (!reg)
2196 command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
2197 return ERROR_OK;
2199 } else /* access a single register by its name */
2201 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2203 if (!reg)
2205 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2206 return ERROR_OK;
2210 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2212 /* display a register */
2213 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2215 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2216 reg->valid = 0;
2218 if (reg->valid == 0)
2220 reg->type->get(reg);
2222 value = buf_to_str(reg->value, reg->size, 16);
2223 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2224 free(value);
2225 return ERROR_OK;
2228 /* set register value */
2229 if (CMD_ARGC == 2)
2231 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2232 if (buf == NULL)
2233 return ERROR_FAIL;
2234 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2236 reg->type->set(reg, buf);
2238 value = buf_to_str(reg->value, reg->size, 16);
2239 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2240 free(value);
2242 free(buf);
2244 return ERROR_OK;
2247 command_print(CMD_CTX, "usage: reg <#|name> [value]");
2249 return ERROR_OK;
2252 COMMAND_HANDLER(handle_poll_command)
2254 int retval = ERROR_OK;
2255 struct target *target = get_current_target(CMD_CTX);
2257 if (CMD_ARGC == 0)
2259 command_print(CMD_CTX, "background polling: %s",
2260 jtag_poll_get_enabled() ? "on" : "off");
2261 command_print(CMD_CTX, "TAP: %s (%s)",
2262 target->tap->dotted_name,
2263 target->tap->enabled ? "enabled" : "disabled");
2264 if (!target->tap->enabled)
2265 return ERROR_OK;
2266 if ((retval = target_poll(target)) != ERROR_OK)
2267 return retval;
2268 if ((retval = target_arch_state(target)) != ERROR_OK)
2269 return retval;
2271 else if (CMD_ARGC == 1)
2273 bool enable;
2274 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2275 jtag_poll_set_enabled(enable);
2277 else
2279 return ERROR_COMMAND_SYNTAX_ERROR;
2282 return retval;
2285 COMMAND_HANDLER(handle_wait_halt_command)
2287 if (CMD_ARGC > 1)
2288 return ERROR_COMMAND_SYNTAX_ERROR;
2290 unsigned ms = 5000;
2291 if (1 == CMD_ARGC)
2293 int retval = parse_uint(CMD_ARGV[0], &ms);
2294 if (ERROR_OK != retval)
2296 command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2297 return ERROR_COMMAND_SYNTAX_ERROR;
2299 // convert seconds (given) to milliseconds (needed)
2300 ms *= 1000;
2303 struct target *target = get_current_target(CMD_CTX);
2304 return target_wait_state(target, TARGET_HALTED, ms);
2307 /* wait for target state to change. The trick here is to have a low
2308 * latency for short waits and not to suck up all the CPU time
2309 * on longer waits.
2311 * After 500ms, keep_alive() is invoked
2313 int target_wait_state(struct target *target, enum target_state state, int ms)
2315 int retval;
2316 long long then = 0, cur;
2317 int once = 1;
2319 for (;;)
2321 if ((retval = target_poll(target)) != ERROR_OK)
2322 return retval;
2323 if (target->state == state)
2325 break;
2327 cur = timeval_ms();
2328 if (once)
2330 once = 0;
2331 then = timeval_ms();
2332 LOG_DEBUG("waiting for target %s...",
2333 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2336 if (cur-then > 500)
2338 keep_alive();
2341 if ((cur-then) > ms)
2343 LOG_ERROR("timed out while waiting for target %s",
2344 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2345 return ERROR_FAIL;
2349 return ERROR_OK;
2352 COMMAND_HANDLER(handle_halt_command)
2354 LOG_DEBUG("-");
2356 struct target *target = get_current_target(CMD_CTX);
2357 int retval = target_halt(target);
2358 if (ERROR_OK != retval)
2359 return retval;
2361 if (CMD_ARGC == 1)
2363 unsigned wait_local;
2364 retval = parse_uint(CMD_ARGV[0], &wait_local);
2365 if (ERROR_OK != retval)
2366 return ERROR_COMMAND_SYNTAX_ERROR;
2367 if (!wait_local)
2368 return ERROR_OK;
2371 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2374 COMMAND_HANDLER(handle_soft_reset_halt_command)
2376 struct target *target = get_current_target(CMD_CTX);
2378 LOG_USER("requesting target halt and executing a soft reset");
2380 target->type->soft_reset_halt(target);
2382 return ERROR_OK;
2385 COMMAND_HANDLER(handle_reset_command)
2387 if (CMD_ARGC > 1)
2388 return ERROR_COMMAND_SYNTAX_ERROR;
2390 enum target_reset_mode reset_mode = RESET_RUN;
2391 if (CMD_ARGC == 1)
2393 const Jim_Nvp *n;
2394 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2395 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2396 return ERROR_COMMAND_SYNTAX_ERROR;
2398 reset_mode = n->value;
2401 /* reset *all* targets */
2402 return target_process_reset(CMD_CTX, reset_mode);
2406 COMMAND_HANDLER(handle_resume_command)
2408 int current = 1;
2409 if (CMD_ARGC > 1)
2410 return ERROR_COMMAND_SYNTAX_ERROR;
2412 struct target *target = get_current_target(CMD_CTX);
2413 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2415 /* with no CMD_ARGV, resume from current pc, addr = 0,
2416 * with one arguments, addr = CMD_ARGV[0],
2417 * handle breakpoints, not debugging */
2418 uint32_t addr = 0;
2419 if (CMD_ARGC == 1)
2421 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2422 current = 0;
2425 return target_resume(target, current, addr, 1, 0);
2428 COMMAND_HANDLER(handle_step_command)
2430 if (CMD_ARGC > 1)
2431 return ERROR_COMMAND_SYNTAX_ERROR;
2433 LOG_DEBUG("-");
2435 /* with no CMD_ARGV, step from current pc, addr = 0,
2436 * with one argument addr = CMD_ARGV[0],
2437 * handle breakpoints, debugging */
2438 uint32_t addr = 0;
2439 int current_pc = 1;
2440 if (CMD_ARGC == 1)
2442 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2443 current_pc = 0;
2446 struct target *target = get_current_target(CMD_CTX);
2448 return target->type->step(target, current_pc, addr, 1);
2451 static void handle_md_output(struct command_context *cmd_ctx,
2452 struct target *target, uint32_t address, unsigned size,
2453 unsigned count, const uint8_t *buffer)
2455 const unsigned line_bytecnt = 32;
2456 unsigned line_modulo = line_bytecnt / size;
2458 char output[line_bytecnt * 4 + 1];
2459 unsigned output_len = 0;
2461 const char *value_fmt;
2462 switch (size) {
2463 case 4: value_fmt = "%8.8x "; break;
2464 case 2: value_fmt = "%4.4x "; break;
2465 case 1: value_fmt = "%2.2x "; break;
2466 default:
2467 /* "can't happen", caller checked */
2468 LOG_ERROR("invalid memory read size: %u", size);
2469 return;
2472 for (unsigned i = 0; i < count; i++)
2474 if (i % line_modulo == 0)
2476 output_len += snprintf(output + output_len,
2477 sizeof(output) - output_len,
2478 "0x%8.8x: ",
2479 (unsigned)(address + (i*size)));
2482 uint32_t value = 0;
2483 const uint8_t *value_ptr = buffer + i * size;
2484 switch (size) {
2485 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2486 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2487 case 1: value = *value_ptr;
2489 output_len += snprintf(output + output_len,
2490 sizeof(output) - output_len,
2491 value_fmt, value);
2493 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2495 command_print(cmd_ctx, "%s", output);
2496 output_len = 0;
2501 COMMAND_HANDLER(handle_md_command)
2503 if (CMD_ARGC < 1)
2504 return ERROR_COMMAND_SYNTAX_ERROR;
2506 unsigned size = 0;
2507 switch (CMD_NAME[2]) {
2508 case 'w': size = 4; break;
2509 case 'h': size = 2; break;
2510 case 'b': size = 1; break;
2511 default: return ERROR_COMMAND_SYNTAX_ERROR;
2514 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2515 int (*fn)(struct target *target,
2516 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2517 if (physical)
2519 CMD_ARGC--;
2520 CMD_ARGV++;
2521 fn=target_read_phys_memory;
2522 } else
2524 fn=target_read_memory;
2526 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2528 return ERROR_COMMAND_SYNTAX_ERROR;
2531 uint32_t address;
2532 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2534 unsigned count = 1;
2535 if (CMD_ARGC == 2)
2536 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2538 uint8_t *buffer = calloc(count, size);
2540 struct target *target = get_current_target(CMD_CTX);
2541 int retval = fn(target, address, size, count, buffer);
2542 if (ERROR_OK == retval)
2543 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2545 free(buffer);
2547 return retval;
2550 typedef int (*target_write_fn)(struct target *target,
2551 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2553 static int target_write_memory_fast(struct target *target,
2554 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2556 return target_write_buffer(target, address, size * count, buffer);
2559 static int target_fill_mem(struct target *target,
2560 uint32_t address,
2561 target_write_fn fn,
2562 unsigned data_size,
2563 /* value */
2564 uint32_t b,
2565 /* count */
2566 unsigned c)
2568 /* We have to write in reasonably large chunks to be able
2569 * to fill large memory areas with any sane speed */
2570 const unsigned chunk_size = 16384;
2571 uint8_t *target_buf = malloc(chunk_size * data_size);
2572 if (target_buf == NULL)
2574 LOG_ERROR("Out of memory");
2575 return ERROR_FAIL;
2578 for (unsigned i = 0; i < chunk_size; i ++)
2580 switch (data_size)
2582 case 4:
2583 target_buffer_set_u32(target, target_buf + i*data_size, b);
2584 break;
2585 case 2:
2586 target_buffer_set_u16(target, target_buf + i*data_size, b);
2587 break;
2588 case 1:
2589 target_buffer_set_u8(target, target_buf + i*data_size, b);
2590 break;
2591 default:
2592 exit(-1);
2596 int retval = ERROR_OK;
2598 for (unsigned x = 0; x < c; x += chunk_size)
2600 unsigned current;
2601 current = c - x;
2602 if (current > chunk_size)
2604 current = chunk_size;
2606 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2607 if (retval != ERROR_OK)
2609 break;
2611 /* avoid GDB timeouts */
2612 keep_alive();
2614 free(target_buf);
2616 return retval;
2620 COMMAND_HANDLER(handle_mw_command)
2622 if (CMD_ARGC < 2)
2624 return ERROR_COMMAND_SYNTAX_ERROR;
2626 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2627 target_write_fn fn;
2628 if (physical)
2630 CMD_ARGC--;
2631 CMD_ARGV++;
2632 fn=target_write_phys_memory;
2633 } else
2635 fn = target_write_memory_fast;
2637 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2638 return ERROR_COMMAND_SYNTAX_ERROR;
2640 uint32_t address;
2641 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2643 uint32_t value;
2644 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2646 unsigned count = 1;
2647 if (CMD_ARGC == 3)
2648 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2650 struct target *target = get_current_target(CMD_CTX);
2651 unsigned wordsize;
2652 switch (CMD_NAME[2])
2654 case 'w':
2655 wordsize = 4;
2656 break;
2657 case 'h':
2658 wordsize = 2;
2659 break;
2660 case 'b':
2661 wordsize = 1;
2662 break;
2663 default:
2664 return ERROR_COMMAND_SYNTAX_ERROR;
2667 return target_fill_mem(target, address, fn, wordsize, value, count);
2670 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2671 uint32_t *min_address, uint32_t *max_address)
2673 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2674 return ERROR_COMMAND_SYNTAX_ERROR;
2676 /* a base address isn't always necessary,
2677 * default to 0x0 (i.e. don't relocate) */
2678 if (CMD_ARGC >= 2)
2680 uint32_t addr;
2681 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2682 image->base_address = addr;
2683 image->base_address_set = 1;
2685 else
2686 image->base_address_set = 0;
2688 image->start_address_set = 0;
2690 if (CMD_ARGC >= 4)
2692 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2694 if (CMD_ARGC == 5)
2696 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2697 // use size (given) to find max (required)
2698 *max_address += *min_address;
2701 if (*min_address > *max_address)
2702 return ERROR_COMMAND_SYNTAX_ERROR;
2704 return ERROR_OK;
2707 COMMAND_HANDLER(handle_load_image_command)
2709 uint8_t *buffer;
2710 size_t buf_cnt;
2711 uint32_t image_size;
2712 uint32_t min_address = 0;
2713 uint32_t max_address = 0xffffffff;
2714 int i;
2715 struct image image;
2717 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2718 &image, &min_address, &max_address);
2719 if (ERROR_OK != retval)
2720 return retval;
2722 struct target *target = get_current_target(CMD_CTX);
2724 struct duration bench;
2725 duration_start(&bench);
2727 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2729 return ERROR_OK;
2732 image_size = 0x0;
2733 retval = ERROR_OK;
2734 for (i = 0; i < image.num_sections; i++)
2736 buffer = malloc(image.sections[i].size);
2737 if (buffer == NULL)
2739 command_print(CMD_CTX,
2740 "error allocating buffer for section (%d bytes)",
2741 (int)(image.sections[i].size));
2742 break;
2745 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2747 free(buffer);
2748 break;
2751 uint32_t offset = 0;
2752 uint32_t length = buf_cnt;
2754 /* DANGER!!! beware of unsigned comparision here!!! */
2756 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2757 (image.sections[i].base_address < max_address))
2759 if (image.sections[i].base_address < min_address)
2761 /* clip addresses below */
2762 offset += min_address-image.sections[i].base_address;
2763 length -= offset;
2766 if (image.sections[i].base_address + buf_cnt > max_address)
2768 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2771 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2773 free(buffer);
2774 break;
2776 image_size += length;
2777 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2778 (unsigned int)length,
2779 image.sections[i].base_address + offset);
2782 free(buffer);
2785 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2787 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2788 "in %fs (%0.3f KiB/s)", image_size,
2789 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2792 image_close(&image);
2794 return retval;
2798 COMMAND_HANDLER(handle_dump_image_command)
2800 struct fileio fileio;
2801 uint8_t buffer[560];
2802 int retval, retvaltemp;
2803 uint32_t address, size;
2804 struct duration bench;
2805 struct target *target = get_current_target(CMD_CTX);
2807 if (CMD_ARGC != 3)
2808 return ERROR_COMMAND_SYNTAX_ERROR;
2810 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2811 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2813 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2814 if (retval != ERROR_OK)
2815 return retval;
2817 duration_start(&bench);
2819 retval = ERROR_OK;
2820 while (size > 0)
2822 size_t size_written;
2823 uint32_t this_run_size = (size > 560) ? 560 : size;
2824 retval = target_read_buffer(target, address, this_run_size, buffer);
2825 if (retval != ERROR_OK)
2827 break;
2830 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2831 if (retval != ERROR_OK)
2833 break;
2836 size -= this_run_size;
2837 address += this_run_size;
2840 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2842 int filesize;
2843 retval = fileio_size(&fileio, &filesize);
2844 if (retval != ERROR_OK)
2845 return retval;
2846 command_print(CMD_CTX,
2847 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2848 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2851 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2852 return retvaltemp;
2854 return retval;
2857 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2859 uint8_t *buffer;
2860 size_t buf_cnt;
2861 uint32_t image_size;
2862 int i;
2863 int retval;
2864 uint32_t checksum = 0;
2865 uint32_t mem_checksum = 0;
2867 struct image image;
2869 struct target *target = get_current_target(CMD_CTX);
2871 if (CMD_ARGC < 1)
2873 return ERROR_COMMAND_SYNTAX_ERROR;
2876 if (!target)
2878 LOG_ERROR("no target selected");
2879 return ERROR_FAIL;
2882 struct duration bench;
2883 duration_start(&bench);
2885 if (CMD_ARGC >= 2)
2887 uint32_t addr;
2888 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2889 image.base_address = addr;
2890 image.base_address_set = 1;
2892 else
2894 image.base_address_set = 0;
2895 image.base_address = 0x0;
2898 image.start_address_set = 0;
2900 if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2902 return retval;
2905 image_size = 0x0;
2906 int diffs = 0;
2907 retval = ERROR_OK;
2908 for (i = 0; i < image.num_sections; i++)
2910 buffer = malloc(image.sections[i].size);
2911 if (buffer == NULL)
2913 command_print(CMD_CTX,
2914 "error allocating buffer for section (%d bytes)",
2915 (int)(image.sections[i].size));
2916 break;
2918 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2920 free(buffer);
2921 break;
2924 if (verify)
2926 /* calculate checksum of image */
2927 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2928 if (retval != ERROR_OK)
2930 free(buffer);
2931 break;
2934 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2935 if (retval != ERROR_OK)
2937 free(buffer);
2938 break;
2941 if (checksum != mem_checksum)
2943 /* failed crc checksum, fall back to a binary compare */
2944 uint8_t *data;
2946 if (diffs == 0)
2948 LOG_ERROR("checksum mismatch - attempting binary compare");
2951 data = (uint8_t*)malloc(buf_cnt);
2953 /* Can we use 32bit word accesses? */
2954 int size = 1;
2955 int count = buf_cnt;
2956 if ((count % 4) == 0)
2958 size *= 4;
2959 count /= 4;
2961 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2962 if (retval == ERROR_OK)
2964 uint32_t t;
2965 for (t = 0; t < buf_cnt; t++)
2967 if (data[t] != buffer[t])
2969 command_print(CMD_CTX,
2970 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2971 diffs,
2972 (unsigned)(t + image.sections[i].base_address),
2973 data[t],
2974 buffer[t]);
2975 if (diffs++ >= 127)
2977 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2978 free(data);
2979 free(buffer);
2980 goto done;
2983 keep_alive();
2986 free(data);
2988 } else
2990 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2991 image.sections[i].base_address,
2992 buf_cnt);
2995 free(buffer);
2996 image_size += buf_cnt;
2998 if (diffs > 0)
3000 command_print(CMD_CTX, "No more differences found.");
3002 done:
3003 if (diffs > 0)
3005 retval = ERROR_FAIL;
3007 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
3009 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3010 "in %fs (%0.3f KiB/s)", image_size,
3011 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3014 image_close(&image);
3016 return retval;
3019 COMMAND_HANDLER(handle_verify_image_command)
3021 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3024 COMMAND_HANDLER(handle_test_image_command)
3026 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3029 static int handle_bp_command_list(struct command_context *cmd_ctx)
3031 struct target *target = get_current_target(cmd_ctx);
3032 struct breakpoint *breakpoint = target->breakpoints;
3033 while (breakpoint)
3035 if (breakpoint->type == BKPT_SOFT)
3037 char* buf = buf_to_str(breakpoint->orig_instr,
3038 breakpoint->length, 16);
3039 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3040 breakpoint->address,
3041 breakpoint->length,
3042 breakpoint->set, buf);
3043 free(buf);
3045 else
3047 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3048 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3049 breakpoint->asid,
3050 breakpoint->length, breakpoint->set);
3051 else if ((breakpoint->address != 0) && (breakpoint->asid != 0))
3053 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3054 breakpoint->address,
3055 breakpoint->length, breakpoint->set);
3056 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3057 breakpoint->asid);
3059 else
3060 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3061 breakpoint->address,
3062 breakpoint->length, breakpoint->set);
3065 breakpoint = breakpoint->next;
3067 return ERROR_OK;
3070 static int handle_bp_command_set(struct command_context *cmd_ctx,
3071 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3073 struct target *target = get_current_target(cmd_ctx);
3075 if (asid == 0)
3077 int retval = breakpoint_add(target, addr, length, hw);
3078 if (ERROR_OK == retval)
3079 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3080 else
3082 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3083 return retval;
3086 else if (addr == 0)
3088 int retval = context_breakpoint_add(target, asid, length, hw);
3089 if (ERROR_OK == retval)
3090 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3091 else
3093 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3094 return retval;
3097 else
3099 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3100 if(ERROR_OK == retval)
3101 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3102 else
3104 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3105 return retval;
3108 return ERROR_OK;
3111 COMMAND_HANDLER(handle_bp_command)
3113 uint32_t addr;
3114 uint32_t asid;
3115 uint32_t length;
3116 int hw = BKPT_SOFT;
3117 switch(CMD_ARGC)
3119 case 0:
3120 return handle_bp_command_list(CMD_CTX);
3122 case 2:
3123 asid = 0;
3124 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3125 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3126 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3128 case 3:
3129 if(strcmp(CMD_ARGV[2], "hw") == 0)
3131 hw = BKPT_HARD;
3132 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3134 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3136 asid = 0;
3137 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3139 else if(strcmp(CMD_ARGV[2], "hw_ctx") == 0)
3141 hw = BKPT_HARD;
3142 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3143 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3144 addr = 0;
3145 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3148 case 4:
3149 hw = BKPT_HARD;
3150 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3151 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3152 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3153 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3155 default:
3156 command_print(CMD_CTX, "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']");
3157 return ERROR_COMMAND_SYNTAX_ERROR;
3161 COMMAND_HANDLER(handle_rbp_command)
3163 if (CMD_ARGC != 1)
3164 return ERROR_COMMAND_SYNTAX_ERROR;
3166 uint32_t addr;
3167 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3169 struct target *target = get_current_target(CMD_CTX);
3170 breakpoint_remove(target, addr);
3172 return ERROR_OK;
3175 COMMAND_HANDLER(handle_wp_command)
3177 struct target *target = get_current_target(CMD_CTX);
3179 if (CMD_ARGC == 0)
3181 struct watchpoint *watchpoint = target->watchpoints;
3183 while (watchpoint)
3185 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3186 ", len: 0x%8.8" PRIx32
3187 ", r/w/a: %i, value: 0x%8.8" PRIx32
3188 ", mask: 0x%8.8" PRIx32,
3189 watchpoint->address,
3190 watchpoint->length,
3191 (int)watchpoint->rw,
3192 watchpoint->value,
3193 watchpoint->mask);
3194 watchpoint = watchpoint->next;
3196 return ERROR_OK;
3199 enum watchpoint_rw type = WPT_ACCESS;
3200 uint32_t addr = 0;
3201 uint32_t length = 0;
3202 uint32_t data_value = 0x0;
3203 uint32_t data_mask = 0xffffffff;
3205 switch (CMD_ARGC)
3207 case 5:
3208 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3209 // fall through
3210 case 4:
3211 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3212 // fall through
3213 case 3:
3214 switch (CMD_ARGV[2][0])
3216 case 'r':
3217 type = WPT_READ;
3218 break;
3219 case 'w':
3220 type = WPT_WRITE;
3221 break;
3222 case 'a':
3223 type = WPT_ACCESS;
3224 break;
3225 default:
3226 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3227 return ERROR_COMMAND_SYNTAX_ERROR;
3229 // fall through
3230 case 2:
3231 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3232 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3233 break;
3235 default:
3236 command_print(CMD_CTX, "usage: wp [address length "
3237 "[(r|w|a) [value [mask]]]]");
3238 return ERROR_COMMAND_SYNTAX_ERROR;
3241 int retval = watchpoint_add(target, addr, length, type,
3242 data_value, data_mask);
3243 if (ERROR_OK != retval)
3244 LOG_ERROR("Failure setting watchpoints");
3246 return retval;
3249 COMMAND_HANDLER(handle_rwp_command)
3251 if (CMD_ARGC != 1)
3252 return ERROR_COMMAND_SYNTAX_ERROR;
3254 uint32_t addr;
3255 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3257 struct target *target = get_current_target(CMD_CTX);
3258 watchpoint_remove(target, addr);
3260 return ERROR_OK;
3265 * Translate a virtual address to a physical address.
3267 * The low-level target implementation must have logged a detailed error
3268 * which is forwarded to telnet/GDB session.
3270 COMMAND_HANDLER(handle_virt2phys_command)
3272 if (CMD_ARGC != 1)
3273 return ERROR_COMMAND_SYNTAX_ERROR;
3275 uint32_t va;
3276 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3277 uint32_t pa;
3279 struct target *target = get_current_target(CMD_CTX);
3280 int retval = target->type->virt2phys(target, va, &pa);
3281 if (retval == ERROR_OK)
3282 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3284 return retval;
3287 static void writeData(FILE *f, const void *data, size_t len)
3289 size_t written = fwrite(data, 1, len, f);
3290 if (written != len)
3291 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3294 static void writeLong(FILE *f, int l)
3296 int i;
3297 for (i = 0; i < 4; i++)
3299 char c = (l >> (i*8))&0xff;
3300 writeData(f, &c, 1);
3305 static void writeString(FILE *f, char *s)
3307 writeData(f, s, strlen(s));
3310 /* Dump a gmon.out histogram file. */
3311 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3313 uint32_t i;
3314 FILE *f = fopen(filename, "w");
3315 if (f == NULL)
3316 return;
3317 writeString(f, "gmon");
3318 writeLong(f, 0x00000001); /* Version */
3319 writeLong(f, 0); /* padding */
3320 writeLong(f, 0); /* padding */
3321 writeLong(f, 0); /* padding */
3323 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3324 writeData(f, &zero, 1);
3326 /* figure out bucket size */
3327 uint32_t min = samples[0];
3328 uint32_t max = samples[0];
3329 for (i = 0; i < sampleNum; i++)
3331 if (min > samples[i])
3333 min = samples[i];
3335 if (max < samples[i])
3337 max = samples[i];
3341 int addressSpace = (max - min + 1);
3342 assert(addressSpace >= 2);
3344 static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3345 uint32_t length = addressSpace;
3346 if (length > maxBuckets)
3348 length = maxBuckets;
3350 int *buckets = malloc(sizeof(int)*length);
3351 if (buckets == NULL)
3353 fclose(f);
3354 return;
3356 memset(buckets, 0, sizeof(int)*length);
3357 for (i = 0; i < sampleNum;i++)
3359 uint32_t address = samples[i];
3360 long long a = address-min;
3361 long long b = length-1;
3362 long long c = addressSpace-1;
3363 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3364 buckets[index_t]++;
3367 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3368 writeLong(f, min); /* low_pc */
3369 writeLong(f, max); /* high_pc */
3370 writeLong(f, length); /* # of samples */
3371 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3372 writeString(f, "seconds");
3373 for (i = 0; i < (15-strlen("seconds")); i++)
3374 writeData(f, &zero, 1);
3375 writeString(f, "s");
3377 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3379 char *data = malloc(2*length);
3380 if (data != NULL)
3382 for (i = 0; i < length;i++)
3384 int val;
3385 val = buckets[i];
3386 if (val > 65535)
3388 val = 65535;
3390 data[i*2]=val&0xff;
3391 data[i*2 + 1]=(val >> 8)&0xff;
3393 free(buckets);
3394 writeData(f, data, length * 2);
3395 free(data);
3396 } else
3398 free(buckets);
3401 fclose(f);
3404 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3405 * which will be used as a random sampling of PC */
3406 COMMAND_HANDLER(handle_profile_command)
3408 struct target *target = get_current_target(CMD_CTX);
3409 struct timeval timeout, now;
3411 gettimeofday(&timeout, NULL);
3412 if (CMD_ARGC != 2)
3414 return ERROR_COMMAND_SYNTAX_ERROR;
3416 unsigned offset;
3417 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3419 timeval_add_time(&timeout, offset, 0);
3422 * @todo: Some cores let us sample the PC without the
3423 * annoying halt/resume step; for example, ARMv7 PCSR.
3424 * Provide a way to use that more efficient mechanism.
3427 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3429 static const int maxSample = 10000;
3430 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3431 if (samples == NULL)
3432 return ERROR_OK;
3434 int numSamples = 0;
3435 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3436 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3438 int retval = ERROR_OK;
3439 for (;;)
3441 target_poll(target);
3442 if (target->state == TARGET_HALTED)
3444 uint32_t t=*((uint32_t *)reg->value);
3445 samples[numSamples++]=t;
3446 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3447 target_poll(target);
3448 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3449 } else if (target->state == TARGET_RUNNING)
3451 /* We want to quickly sample the PC. */
3452 if ((retval = target_halt(target)) != ERROR_OK)
3454 free(samples);
3455 return retval;
3457 } else
3459 command_print(CMD_CTX, "Target not halted or running");
3460 retval = ERROR_OK;
3461 break;
3463 if (retval != ERROR_OK)
3465 break;
3468 gettimeofday(&now, NULL);
3469 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3471 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3472 if ((retval = target_poll(target)) != ERROR_OK)
3474 free(samples);
3475 return retval;
3477 if (target->state == TARGET_HALTED)
3479 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3481 if ((retval = target_poll(target)) != ERROR_OK)
3483 free(samples);
3484 return retval;
3486 writeGmon(samples, numSamples, CMD_ARGV[1]);
3487 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3488 break;
3491 free(samples);
3493 return retval;
3496 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3498 char *namebuf;
3499 Jim_Obj *nameObjPtr, *valObjPtr;
3500 int result;
3502 namebuf = alloc_printf("%s(%d)", varname, idx);
3503 if (!namebuf)
3504 return JIM_ERR;
3506 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3507 valObjPtr = Jim_NewIntObj(interp, val);
3508 if (!nameObjPtr || !valObjPtr)
3510 free(namebuf);
3511 return JIM_ERR;
3514 Jim_IncrRefCount(nameObjPtr);
3515 Jim_IncrRefCount(valObjPtr);
3516 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3517 Jim_DecrRefCount(interp, nameObjPtr);
3518 Jim_DecrRefCount(interp, valObjPtr);
3519 free(namebuf);
3520 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3521 return result;
3524 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3526 struct command_context *context;
3527 struct target *target;
3529 context = current_command_context(interp);
3530 assert (context != NULL);
3532 target = get_current_target(context);
3533 if (target == NULL)
3535 LOG_ERROR("mem2array: no current target");
3536 return JIM_ERR;
3539 return target_mem2array(interp, target, argc-1, argv + 1);
3542 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3544 long l;
3545 uint32_t width;
3546 int len;
3547 uint32_t addr;
3548 uint32_t count;
3549 uint32_t v;
3550 const char *varname;
3551 int n, e, retval;
3552 uint32_t i;
3554 /* argv[1] = name of array to receive the data
3555 * argv[2] = desired width
3556 * argv[3] = memory address
3557 * argv[4] = count of times to read
3559 if (argc != 4) {
3560 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3561 return JIM_ERR;
3563 varname = Jim_GetString(argv[0], &len);
3564 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3566 e = Jim_GetLong(interp, argv[1], &l);
3567 width = l;
3568 if (e != JIM_OK) {
3569 return e;
3572 e = Jim_GetLong(interp, argv[2], &l);
3573 addr = l;
3574 if (e != JIM_OK) {
3575 return e;
3577 e = Jim_GetLong(interp, argv[3], &l);
3578 len = l;
3579 if (e != JIM_OK) {
3580 return e;
3582 switch (width) {
3583 case 8:
3584 width = 1;
3585 break;
3586 case 16:
3587 width = 2;
3588 break;
3589 case 32:
3590 width = 4;
3591 break;
3592 default:
3593 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3594 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3595 return JIM_ERR;
3597 if (len == 0) {
3598 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3599 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3600 return JIM_ERR;
3602 if ((addr + (len * width)) < addr) {
3603 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3604 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3605 return JIM_ERR;
3607 /* absurd transfer size? */
3608 if (len > 65536) {
3609 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3610 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3611 return JIM_ERR;
3614 if ((width == 1) ||
3615 ((width == 2) && ((addr & 1) == 0)) ||
3616 ((width == 4) && ((addr & 3) == 0))) {
3617 /* all is well */
3618 } else {
3619 char buf[100];
3620 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3621 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3622 addr,
3623 width);
3624 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3625 return JIM_ERR;
3628 /* Transfer loop */
3630 /* index counter */
3631 n = 0;
3633 size_t buffersize = 4096;
3634 uint8_t *buffer = malloc(buffersize);
3635 if (buffer == NULL)
3636 return JIM_ERR;
3638 /* assume ok */
3639 e = JIM_OK;
3640 while (len) {
3641 /* Slurp... in buffer size chunks */
3643 count = len; /* in objects.. */
3644 if (count > (buffersize/width)) {
3645 count = (buffersize/width);
3648 retval = target_read_memory(target, addr, width, count, buffer);
3649 if (retval != ERROR_OK) {
3650 /* BOO !*/
3651 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3652 (unsigned int)addr,
3653 (int)width,
3654 (int)count);
3655 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3656 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3657 e = JIM_ERR;
3658 break;
3659 } else {
3660 v = 0; /* shut up gcc */
3661 for (i = 0 ;i < count ;i++, n++) {
3662 switch (width) {
3663 case 4:
3664 v = target_buffer_get_u32(target, &buffer[i*width]);
3665 break;
3666 case 2:
3667 v = target_buffer_get_u16(target, &buffer[i*width]);
3668 break;
3669 case 1:
3670 v = buffer[i] & 0x0ff;
3671 break;
3673 new_int_array_element(interp, varname, n, v);
3675 len -= count;
3679 free(buffer);
3681 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3683 return e;
3686 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3688 char *namebuf;
3689 Jim_Obj *nameObjPtr, *valObjPtr;
3690 int result;
3691 long l;
3693 namebuf = alloc_printf("%s(%d)", varname, idx);
3694 if (!namebuf)
3695 return JIM_ERR;
3697 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3698 if (!nameObjPtr)
3700 free(namebuf);
3701 return JIM_ERR;
3704 Jim_IncrRefCount(nameObjPtr);
3705 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3706 Jim_DecrRefCount(interp, nameObjPtr);
3707 free(namebuf);
3708 if (valObjPtr == NULL)
3709 return JIM_ERR;
3711 result = Jim_GetLong(interp, valObjPtr, &l);
3712 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3713 *val = l;
3714 return result;
3717 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3719 struct command_context *context;
3720 struct target *target;
3722 context = current_command_context(interp);
3723 assert (context != NULL);
3725 target = get_current_target(context);
3726 if (target == NULL) {
3727 LOG_ERROR("array2mem: no current target");
3728 return JIM_ERR;
3731 return target_array2mem(interp,target, argc-1, argv + 1);
3734 static int target_array2mem(Jim_Interp *interp, struct target *target,
3735 int argc, Jim_Obj *const *argv)
3737 long l;
3738 uint32_t width;
3739 int len;
3740 uint32_t addr;
3741 uint32_t count;
3742 uint32_t v;
3743 const char *varname;
3744 int n, e, retval;
3745 uint32_t i;
3747 /* argv[1] = name of array to get the data
3748 * argv[2] = desired width
3749 * argv[3] = memory address
3750 * argv[4] = count to write
3752 if (argc != 4) {
3753 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3754 return JIM_ERR;
3756 varname = Jim_GetString(argv[0], &len);
3757 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3759 e = Jim_GetLong(interp, argv[1], &l);
3760 width = l;
3761 if (e != JIM_OK) {
3762 return e;
3765 e = Jim_GetLong(interp, argv[2], &l);
3766 addr = l;
3767 if (e != JIM_OK) {
3768 return e;
3770 e = Jim_GetLong(interp, argv[3], &l);
3771 len = l;
3772 if (e != JIM_OK) {
3773 return e;
3775 switch (width) {
3776 case 8:
3777 width = 1;
3778 break;
3779 case 16:
3780 width = 2;
3781 break;
3782 case 32:
3783 width = 4;
3784 break;
3785 default:
3786 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3787 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3788 return JIM_ERR;
3790 if (len == 0) {
3791 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3792 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3793 return JIM_ERR;
3795 if ((addr + (len * width)) < addr) {
3796 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3797 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3798 return JIM_ERR;
3800 /* absurd transfer size? */
3801 if (len > 65536) {
3802 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3803 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3804 return JIM_ERR;
3807 if ((width == 1) ||
3808 ((width == 2) && ((addr & 1) == 0)) ||
3809 ((width == 4) && ((addr & 3) == 0))) {
3810 /* all is well */
3811 } else {
3812 char buf[100];
3813 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3814 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3815 (unsigned int)addr,
3816 (int)width);
3817 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3818 return JIM_ERR;
3821 /* Transfer loop */
3823 /* index counter */
3824 n = 0;
3825 /* assume ok */
3826 e = JIM_OK;
3828 size_t buffersize = 4096;
3829 uint8_t *buffer = malloc(buffersize);
3830 if (buffer == NULL)
3831 return JIM_ERR;
3833 while (len) {
3834 /* Slurp... in buffer size chunks */
3836 count = len; /* in objects.. */
3837 if (count > (buffersize/width)) {
3838 count = (buffersize/width);
3841 v = 0; /* shut up gcc */
3842 for (i = 0 ;i < count ;i++, n++) {
3843 get_int_array_element(interp, varname, n, &v);
3844 switch (width) {
3845 case 4:
3846 target_buffer_set_u32(target, &buffer[i*width], v);
3847 break;
3848 case 2:
3849 target_buffer_set_u16(target, &buffer[i*width], v);
3850 break;
3851 case 1:
3852 buffer[i] = v & 0x0ff;
3853 break;
3856 len -= count;
3858 retval = target_write_memory(target, addr, width, count, buffer);
3859 if (retval != ERROR_OK) {
3860 /* BOO !*/
3861 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3862 (unsigned int)addr,
3863 (int)width,
3864 (int)count);
3865 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3866 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3867 e = JIM_ERR;
3868 break;
3872 free(buffer);
3874 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3876 return e;
3879 /* FIX? should we propagate errors here rather than printing them
3880 * and continuing?
3882 void target_handle_event(struct target *target, enum target_event e)
3884 struct target_event_action *teap;
3886 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3887 if (teap->event == e) {
3888 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3889 target->target_number,
3890 target_name(target),
3891 target_type_name(target),
3893 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3894 Jim_GetString(teap->body, NULL));
3895 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3897 Jim_MakeErrorMessage(teap->interp);
3898 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3905 * Returns true only if the target has a handler for the specified event.
3907 bool target_has_event_action(struct target *target, enum target_event event)
3909 struct target_event_action *teap;
3911 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3912 if (teap->event == event)
3913 return true;
3915 return false;
3918 enum target_cfg_param {
3919 TCFG_TYPE,
3920 TCFG_EVENT,
3921 TCFG_WORK_AREA_VIRT,
3922 TCFG_WORK_AREA_PHYS,
3923 TCFG_WORK_AREA_SIZE,
3924 TCFG_WORK_AREA_BACKUP,
3925 TCFG_ENDIAN,
3926 TCFG_VARIANT,
3927 TCFG_COREID,
3928 TCFG_CHAIN_POSITION,
3929 TCFG_DBGBASE,
3930 TCFG_RTOS,
3933 static Jim_Nvp nvp_config_opts[] = {
3934 { .name = "-type", .value = TCFG_TYPE },
3935 { .name = "-event", .value = TCFG_EVENT },
3936 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3937 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3938 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3939 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3940 { .name = "-endian" , .value = TCFG_ENDIAN },
3941 { .name = "-variant", .value = TCFG_VARIANT },
3942 { .name = "-coreid", .value = TCFG_COREID },
3943 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3944 { .name = "-dbgbase", .value = TCFG_DBGBASE },
3945 { .name = "-rtos", .value = TCFG_RTOS },
3946 { .name = NULL, .value = -1 }
3949 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3951 Jim_Nvp *n;
3952 Jim_Obj *o;
3953 jim_wide w;
3954 char *cp;
3955 int e;
3957 /* parse config or cget options ... */
3958 while (goi->argc > 0) {
3959 Jim_SetEmptyResult(goi->interp);
3960 /* Jim_GetOpt_Debug(goi); */
3962 if (target->type->target_jim_configure) {
3963 /* target defines a configure function */
3964 /* target gets first dibs on parameters */
3965 e = (*(target->type->target_jim_configure))(target, goi);
3966 if (e == JIM_OK) {
3967 /* more? */
3968 continue;
3970 if (e == JIM_ERR) {
3971 /* An error */
3972 return e;
3974 /* otherwise we 'continue' below */
3976 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3977 if (e != JIM_OK) {
3978 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3979 return e;
3981 switch (n->value) {
3982 case TCFG_TYPE:
3983 /* not setable */
3984 if (goi->isconfigure) {
3985 Jim_SetResultFormatted(goi->interp,
3986 "not settable: %s", n->name);
3987 return JIM_ERR;
3988 } else {
3989 no_params:
3990 if (goi->argc != 0) {
3991 Jim_WrongNumArgs(goi->interp,
3992 goi->argc, goi->argv,
3993 "NO PARAMS");
3994 return JIM_ERR;
3997 Jim_SetResultString(goi->interp,
3998 target_type_name(target), -1);
3999 /* loop for more */
4000 break;
4001 case TCFG_EVENT:
4002 if (goi->argc == 0) {
4003 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4004 return JIM_ERR;
4007 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4008 if (e != JIM_OK) {
4009 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4010 return e;
4013 if (goi->isconfigure) {
4014 if (goi->argc != 1) {
4015 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4016 return JIM_ERR;
4018 } else {
4019 if (goi->argc != 0) {
4020 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4021 return JIM_ERR;
4026 struct target_event_action *teap;
4028 teap = target->event_action;
4029 /* replace existing? */
4030 while (teap) {
4031 if (teap->event == (enum target_event)n->value) {
4032 break;
4034 teap = teap->next;
4037 if (goi->isconfigure) {
4038 bool replace = true;
4039 if (teap == NULL) {
4040 /* create new */
4041 teap = calloc(1, sizeof(*teap));
4042 replace = false;
4044 teap->event = n->value;
4045 teap->interp = goi->interp;
4046 Jim_GetOpt_Obj(goi, &o);
4047 if (teap->body) {
4048 Jim_DecrRefCount(teap->interp, teap->body);
4050 teap->body = Jim_DuplicateObj(goi->interp, o);
4052 * FIXME:
4053 * Tcl/TK - "tk events" have a nice feature.
4054 * See the "BIND" command.
4055 * We should support that here.
4056 * You can specify %X and %Y in the event code.
4057 * The idea is: %T - target name.
4058 * The idea is: %N - target number
4059 * The idea is: %E - event name.
4061 Jim_IncrRefCount(teap->body);
4063 if (!replace)
4065 /* add to head of event list */
4066 teap->next = target->event_action;
4067 target->event_action = teap;
4069 Jim_SetEmptyResult(goi->interp);
4070 } else {
4071 /* get */
4072 if (teap == NULL) {
4073 Jim_SetEmptyResult(goi->interp);
4074 } else {
4075 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4079 /* loop for more */
4080 break;
4082 case TCFG_WORK_AREA_VIRT:
4083 if (goi->isconfigure) {
4084 target_free_all_working_areas(target);
4085 e = Jim_GetOpt_Wide(goi, &w);
4086 if (e != JIM_OK) {
4087 return e;
4089 target->working_area_virt = w;
4090 target->working_area_virt_spec = true;
4091 } else {
4092 if (goi->argc != 0) {
4093 goto no_params;
4096 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4097 /* loop for more */
4098 break;
4100 case TCFG_WORK_AREA_PHYS:
4101 if (goi->isconfigure) {
4102 target_free_all_working_areas(target);
4103 e = Jim_GetOpt_Wide(goi, &w);
4104 if (e != JIM_OK) {
4105 return e;
4107 target->working_area_phys = w;
4108 target->working_area_phys_spec = true;
4109 } else {
4110 if (goi->argc != 0) {
4111 goto no_params;
4114 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4115 /* loop for more */
4116 break;
4118 case TCFG_WORK_AREA_SIZE:
4119 if (goi->isconfigure) {
4120 target_free_all_working_areas(target);
4121 e = Jim_GetOpt_Wide(goi, &w);
4122 if (e != JIM_OK) {
4123 return e;
4125 target->working_area_size = w;
4126 } else {
4127 if (goi->argc != 0) {
4128 goto no_params;
4131 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4132 /* loop for more */
4133 break;
4135 case TCFG_WORK_AREA_BACKUP:
4136 if (goi->isconfigure) {
4137 target_free_all_working_areas(target);
4138 e = Jim_GetOpt_Wide(goi, &w);
4139 if (e != JIM_OK) {
4140 return e;
4142 /* make this exactly 1 or 0 */
4143 target->backup_working_area = (!!w);
4144 } else {
4145 if (goi->argc != 0) {
4146 goto no_params;
4149 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4150 /* loop for more e*/
4151 break;
4154 case TCFG_ENDIAN:
4155 if (goi->isconfigure) {
4156 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4157 if (e != JIM_OK) {
4158 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4159 return e;
4161 target->endianness = n->value;
4162 } else {
4163 if (goi->argc != 0) {
4164 goto no_params;
4167 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4168 if (n->name == NULL) {
4169 target->endianness = TARGET_LITTLE_ENDIAN;
4170 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4172 Jim_SetResultString(goi->interp, n->name, -1);
4173 /* loop for more */
4174 break;
4176 case TCFG_VARIANT:
4177 if (goi->isconfigure) {
4178 if (goi->argc < 1) {
4179 Jim_SetResultFormatted(goi->interp,
4180 "%s ?STRING?",
4181 n->name);
4182 return JIM_ERR;
4184 if (target->variant) {
4185 free((void *)(target->variant));
4187 e = Jim_GetOpt_String(goi, &cp, NULL);
4188 if (e != JIM_OK)
4189 return e;
4190 target->variant = strdup(cp);
4191 } else {
4192 if (goi->argc != 0) {
4193 goto no_params;
4196 Jim_SetResultString(goi->interp, target->variant,-1);
4197 /* loop for more */
4198 break;
4200 case TCFG_COREID:
4201 if (goi->isconfigure) {
4202 e = Jim_GetOpt_Wide(goi, &w);
4203 if (e != JIM_OK) {
4204 return e;
4206 target->coreid = (int32_t)w;
4207 } else {
4208 if (goi->argc != 0) {
4209 goto no_params;
4212 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4213 /* loop for more */
4214 break;
4216 case TCFG_CHAIN_POSITION:
4217 if (goi->isconfigure) {
4218 Jim_Obj *o_t;
4219 struct jtag_tap *tap;
4220 target_free_all_working_areas(target);
4221 e = Jim_GetOpt_Obj(goi, &o_t);
4222 if (e != JIM_OK) {
4223 return e;
4225 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4226 if (tap == NULL) {
4227 return JIM_ERR;
4229 /* make this exactly 1 or 0 */
4230 target->tap = tap;
4231 } else {
4232 if (goi->argc != 0) {
4233 goto no_params;
4236 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4237 /* loop for more e*/
4238 break;
4239 case TCFG_DBGBASE:
4240 if (goi->isconfigure) {
4241 e = Jim_GetOpt_Wide(goi, &w);
4242 if (e != JIM_OK) {
4243 return e;
4245 target->dbgbase = (uint32_t)w;
4246 target->dbgbase_set = true;
4247 } else {
4248 if (goi->argc != 0) {
4249 goto no_params;
4252 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4253 /* loop for more */
4254 break;
4256 case TCFG_RTOS:
4257 /* RTOS */
4259 int result = rtos_create( goi, target );
4260 if ( result != JIM_OK )
4262 return result;
4265 /* loop for more */
4266 break;
4268 } /* while (goi->argc) */
4271 /* done - we return */
4272 return JIM_OK;
4275 static int
4276 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4278 Jim_GetOptInfo goi;
4280 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4281 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4282 int need_args = 1 + goi.isconfigure;
4283 if (goi.argc < need_args)
4285 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4286 goi.isconfigure
4287 ? "missing: -option VALUE ..."
4288 : "missing: -option ...");
4289 return JIM_ERR;
4291 struct target *target = Jim_CmdPrivData(goi.interp);
4292 return target_configure(&goi, target);
4295 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4297 const char *cmd_name = Jim_GetString(argv[0], NULL);
4299 Jim_GetOptInfo goi;
4300 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4302 if (goi.argc < 2 || goi.argc > 4)
4304 Jim_SetResultFormatted(goi.interp,
4305 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4306 return JIM_ERR;
4309 target_write_fn fn;
4310 fn = target_write_memory_fast;
4312 int e;
4313 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4315 /* consume it */
4316 struct Jim_Obj *obj;
4317 e = Jim_GetOpt_Obj(&goi, &obj);
4318 if (e != JIM_OK)
4319 return e;
4321 fn = target_write_phys_memory;
4324 jim_wide a;
4325 e = Jim_GetOpt_Wide(&goi, &a);
4326 if (e != JIM_OK)
4327 return e;
4329 jim_wide b;
4330 e = Jim_GetOpt_Wide(&goi, &b);
4331 if (e != JIM_OK)
4332 return e;
4334 jim_wide c = 1;
4335 if (goi.argc == 1)
4337 e = Jim_GetOpt_Wide(&goi, &c);
4338 if (e != JIM_OK)
4339 return e;
4342 /* all args must be consumed */
4343 if (goi.argc != 0)
4345 return JIM_ERR;
4348 struct target *target = Jim_CmdPrivData(goi.interp);
4349 unsigned data_size;
4350 if (strcasecmp(cmd_name, "mww") == 0) {
4351 data_size = 4;
4353 else if (strcasecmp(cmd_name, "mwh") == 0) {
4354 data_size = 2;
4356 else if (strcasecmp(cmd_name, "mwb") == 0) {
4357 data_size = 1;
4358 } else {
4359 LOG_ERROR("command '%s' unknown: ", cmd_name);
4360 return JIM_ERR;
4363 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4366 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4368 const char *cmd_name = Jim_GetString(argv[0], NULL);
4370 Jim_GetOptInfo goi;
4371 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4373 if ((goi.argc < 1) || (goi.argc > 3))
4375 Jim_SetResultFormatted(goi.interp,
4376 "usage: %s [phys] <address> [<count>]", cmd_name);
4377 return JIM_ERR;
4380 int (*fn)(struct target *target,
4381 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4382 fn=target_read_memory;
4384 int e;
4385 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4387 /* consume it */
4388 struct Jim_Obj *obj;
4389 e = Jim_GetOpt_Obj(&goi, &obj);
4390 if (e != JIM_OK)
4391 return e;
4393 fn=target_read_phys_memory;
4396 jim_wide a;
4397 e = Jim_GetOpt_Wide(&goi, &a);
4398 if (e != JIM_OK) {
4399 return JIM_ERR;
4401 jim_wide c;
4402 if (goi.argc == 1) {
4403 e = Jim_GetOpt_Wide(&goi, &c);
4404 if (e != JIM_OK) {
4405 return JIM_ERR;
4407 } else {
4408 c = 1;
4411 /* all args must be consumed */
4412 if (goi.argc != 0)
4414 return JIM_ERR;
4417 jim_wide b = 1; /* shut up gcc */
4418 if (strcasecmp(cmd_name, "mdw") == 0)
4419 b = 4;
4420 else if (strcasecmp(cmd_name, "mdh") == 0)
4421 b = 2;
4422 else if (strcasecmp(cmd_name, "mdb") == 0)
4423 b = 1;
4424 else {
4425 LOG_ERROR("command '%s' unknown: ", cmd_name);
4426 return JIM_ERR;
4429 /* convert count to "bytes" */
4430 c = c * b;
4432 struct target *target = Jim_CmdPrivData(goi.interp);
4433 uint8_t target_buf[32];
4434 jim_wide x, y, z;
4435 while (c > 0) {
4436 y = c;
4437 if (y > 16) {
4438 y = 16;
4440 e = fn(target, a, b, y / b, target_buf);
4441 if (e != ERROR_OK) {
4442 char tmp[10];
4443 snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
4444 Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
4445 return JIM_ERR;
4448 command_print(NULL, "0x%08x ", (int)(a));
4449 switch (b) {
4450 case 4:
4451 for (x = 0; x < 16 && x < y; x += 4)
4453 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4454 command_print(NULL, "%08x ", (int)(z));
4456 for (; (x < 16) ; x += 4) {
4457 command_print(NULL, " ");
4459 break;
4460 case 2:
4461 for (x = 0; x < 16 && x < y; x += 2)
4463 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4464 command_print(NULL, "%04x ", (int)(z));
4466 for (; (x < 16) ; x += 2) {
4467 command_print(NULL, " ");
4469 break;
4470 case 1:
4471 default:
4472 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4473 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4474 command_print(NULL, "%02x ", (int)(z));
4476 for (; (x < 16) ; x += 1) {
4477 command_print(NULL, " ");
4479 break;
4481 /* ascii-ify the bytes */
4482 for (x = 0 ; x < y ; x++) {
4483 if ((target_buf[x] >= 0x20) &&
4484 (target_buf[x] <= 0x7e)) {
4485 /* good */
4486 } else {
4487 /* smack it */
4488 target_buf[x] = '.';
4491 /* space pad */
4492 while (x < 16) {
4493 target_buf[x] = ' ';
4494 x++;
4496 /* terminate */
4497 target_buf[16] = 0;
4498 /* print - with a newline */
4499 command_print(NULL, "%s\n", target_buf);
4500 /* NEXT... */
4501 c -= 16;
4502 a += 16;
4504 return JIM_OK;
4507 static int jim_target_mem2array(Jim_Interp *interp,
4508 int argc, Jim_Obj *const *argv)
4510 struct target *target = Jim_CmdPrivData(interp);
4511 return target_mem2array(interp, target, argc - 1, argv + 1);
4514 static int jim_target_array2mem(Jim_Interp *interp,
4515 int argc, Jim_Obj *const *argv)
4517 struct target *target = Jim_CmdPrivData(interp);
4518 return target_array2mem(interp, target, argc - 1, argv + 1);
4521 static int jim_target_tap_disabled(Jim_Interp *interp)
4523 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4524 return JIM_ERR;
4527 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4529 if (argc != 1)
4531 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4532 return JIM_ERR;
4534 struct target *target = Jim_CmdPrivData(interp);
4535 if (!target->tap->enabled)
4536 return jim_target_tap_disabled(interp);
4538 int e = target->type->examine(target);
4539 if (e != ERROR_OK)
4541 return JIM_ERR;
4543 return JIM_OK;
4546 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4548 if (argc != 1)
4550 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4551 return JIM_ERR;
4553 struct target *target = Jim_CmdPrivData(interp);
4555 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4556 return JIM_ERR;
4558 return JIM_OK;
4561 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4563 if (argc != 1)
4565 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4566 return JIM_ERR;
4568 struct target *target = Jim_CmdPrivData(interp);
4569 if (!target->tap->enabled)
4570 return jim_target_tap_disabled(interp);
4572 int e;
4573 if (!(target_was_examined(target))) {
4574 e = ERROR_TARGET_NOT_EXAMINED;
4575 } else {
4576 e = target->type->poll(target);
4578 if (e != ERROR_OK)
4580 return JIM_ERR;
4582 return JIM_OK;
4585 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4587 Jim_GetOptInfo goi;
4588 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4590 if (goi.argc != 2)
4592 Jim_WrongNumArgs(interp, 0, argv,
4593 "([tT]|[fF]|assert|deassert) BOOL");
4594 return JIM_ERR;
4597 Jim_Nvp *n;
4598 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4599 if (e != JIM_OK)
4601 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4602 return e;
4604 /* the halt or not param */
4605 jim_wide a;
4606 e = Jim_GetOpt_Wide(&goi, &a);
4607 if (e != JIM_OK)
4608 return e;
4610 struct target *target = Jim_CmdPrivData(goi.interp);
4611 if (!target->tap->enabled)
4612 return jim_target_tap_disabled(interp);
4613 if (!(target_was_examined(target)))
4615 LOG_ERROR("Target not examined yet");
4616 return ERROR_TARGET_NOT_EXAMINED;
4618 if (!target->type->assert_reset || !target->type->deassert_reset)
4620 Jim_SetResultFormatted(interp,
4621 "No target-specific reset for %s",
4622 target_name(target));
4623 return JIM_ERR;
4625 /* determine if we should halt or not. */
4626 target->reset_halt = !!a;
4627 /* When this happens - all workareas are invalid. */
4628 target_free_all_working_areas_restore(target, 0);
4630 /* do the assert */
4631 if (n->value == NVP_ASSERT) {
4632 e = target->type->assert_reset(target);
4633 } else {
4634 e = target->type->deassert_reset(target);
4636 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4639 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4641 if (argc != 1) {
4642 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4643 return JIM_ERR;
4645 struct target *target = Jim_CmdPrivData(interp);
4646 if (!target->tap->enabled)
4647 return jim_target_tap_disabled(interp);
4648 int e = target->type->halt(target);
4649 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4652 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4654 Jim_GetOptInfo goi;
4655 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4657 /* params: <name> statename timeoutmsecs */
4658 if (goi.argc != 2)
4660 const char *cmd_name = Jim_GetString(argv[0], NULL);
4661 Jim_SetResultFormatted(goi.interp,
4662 "%s <state_name> <timeout_in_msec>", cmd_name);
4663 return JIM_ERR;
4666 Jim_Nvp *n;
4667 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4668 if (e != JIM_OK) {
4669 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4670 return e;
4672 jim_wide a;
4673 e = Jim_GetOpt_Wide(&goi, &a);
4674 if (e != JIM_OK) {
4675 return e;
4677 struct target *target = Jim_CmdPrivData(interp);
4678 if (!target->tap->enabled)
4679 return jim_target_tap_disabled(interp);
4681 e = target_wait_state(target, n->value, a);
4682 if (e != ERROR_OK)
4684 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4685 Jim_SetResultFormatted(goi.interp,
4686 "target: %s wait %s fails (%#s) %s",
4687 target_name(target), n->name,
4688 eObj, target_strerror_safe(e));
4689 Jim_FreeNewObj(interp, eObj);
4690 return JIM_ERR;
4692 return JIM_OK;
4694 /* List for human, Events defined for this target.
4695 * scripts/programs should use 'name cget -event NAME'
4697 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4699 struct command_context *cmd_ctx = current_command_context(interp);
4700 assert (cmd_ctx != NULL);
4702 struct target *target = Jim_CmdPrivData(interp);
4703 struct target_event_action *teap = target->event_action;
4704 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4705 target->target_number,
4706 target_name(target));
4707 command_print(cmd_ctx, "%-25s | Body", "Event");
4708 command_print(cmd_ctx, "------------------------- | "
4709 "----------------------------------------");
4710 while (teap)
4712 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4713 command_print(cmd_ctx, "%-25s | %s",
4714 opt->name, Jim_GetString(teap->body, NULL));
4715 teap = teap->next;
4717 command_print(cmd_ctx, "***END***");
4718 return JIM_OK;
4720 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4722 if (argc != 1)
4724 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4725 return JIM_ERR;
4727 struct target *target = Jim_CmdPrivData(interp);
4728 Jim_SetResultString(interp, target_state_name(target), -1);
4729 return JIM_OK;
4731 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4733 Jim_GetOptInfo goi;
4734 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4735 if (goi.argc != 1)
4737 const char *cmd_name = Jim_GetString(argv[0], NULL);
4738 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4739 return JIM_ERR;
4741 Jim_Nvp *n;
4742 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4743 if (e != JIM_OK)
4745 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4746 return e;
4748 struct target *target = Jim_CmdPrivData(interp);
4749 target_handle_event(target, n->value);
4750 return JIM_OK;
4753 static const struct command_registration target_instance_command_handlers[] = {
4755 .name = "configure",
4756 .mode = COMMAND_CONFIG,
4757 .jim_handler = jim_target_configure,
4758 .help = "configure a new target for use",
4759 .usage = "[target_attribute ...]",
4762 .name = "cget",
4763 .mode = COMMAND_ANY,
4764 .jim_handler = jim_target_configure,
4765 .help = "returns the specified target attribute",
4766 .usage = "target_attribute",
4769 .name = "mww",
4770 .mode = COMMAND_EXEC,
4771 .jim_handler = jim_target_mw,
4772 .help = "Write 32-bit word(s) to target memory",
4773 .usage = "address data [count]",
4776 .name = "mwh",
4777 .mode = COMMAND_EXEC,
4778 .jim_handler = jim_target_mw,
4779 .help = "Write 16-bit half-word(s) to target memory",
4780 .usage = "address data [count]",
4783 .name = "mwb",
4784 .mode = COMMAND_EXEC,
4785 .jim_handler = jim_target_mw,
4786 .help = "Write byte(s) to target memory",
4787 .usage = "address data [count]",
4790 .name = "mdw",
4791 .mode = COMMAND_EXEC,
4792 .jim_handler = jim_target_md,
4793 .help = "Display target memory as 32-bit words",
4794 .usage = "address [count]",
4797 .name = "mdh",
4798 .mode = COMMAND_EXEC,
4799 .jim_handler = jim_target_md,
4800 .help = "Display target memory as 16-bit half-words",
4801 .usage = "address [count]",
4804 .name = "mdb",
4805 .mode = COMMAND_EXEC,
4806 .jim_handler = jim_target_md,
4807 .help = "Display target memory as 8-bit bytes",
4808 .usage = "address [count]",
4811 .name = "array2mem",
4812 .mode = COMMAND_EXEC,
4813 .jim_handler = jim_target_array2mem,
4814 .help = "Writes Tcl array of 8/16/32 bit numbers "
4815 "to target memory",
4816 .usage = "arrayname bitwidth address count",
4819 .name = "mem2array",
4820 .mode = COMMAND_EXEC,
4821 .jim_handler = jim_target_mem2array,
4822 .help = "Loads Tcl array of 8/16/32 bit numbers "
4823 "from target memory",
4824 .usage = "arrayname bitwidth address count",
4827 .name = "eventlist",
4828 .mode = COMMAND_EXEC,
4829 .jim_handler = jim_target_event_list,
4830 .help = "displays a table of events defined for this target",
4833 .name = "curstate",
4834 .mode = COMMAND_EXEC,
4835 .jim_handler = jim_target_current_state,
4836 .help = "displays the current state of this target",
4839 .name = "arp_examine",
4840 .mode = COMMAND_EXEC,
4841 .jim_handler = jim_target_examine,
4842 .help = "used internally for reset processing",
4845 .name = "arp_halt_gdb",
4846 .mode = COMMAND_EXEC,
4847 .jim_handler = jim_target_halt_gdb,
4848 .help = "used internally for reset processing to halt GDB",
4851 .name = "arp_poll",
4852 .mode = COMMAND_EXEC,
4853 .jim_handler = jim_target_poll,
4854 .help = "used internally for reset processing",
4857 .name = "arp_reset",
4858 .mode = COMMAND_EXEC,
4859 .jim_handler = jim_target_reset,
4860 .help = "used internally for reset processing",
4863 .name = "arp_halt",
4864 .mode = COMMAND_EXEC,
4865 .jim_handler = jim_target_halt,
4866 .help = "used internally for reset processing",
4869 .name = "arp_waitstate",
4870 .mode = COMMAND_EXEC,
4871 .jim_handler = jim_target_wait_state,
4872 .help = "used internally for reset processing",
4875 .name = "invoke-event",
4876 .mode = COMMAND_EXEC,
4877 .jim_handler = jim_target_invoke_event,
4878 .help = "invoke handler for specified event",
4879 .usage = "event_name",
4881 COMMAND_REGISTRATION_DONE
4884 static int target_create(Jim_GetOptInfo *goi)
4886 Jim_Obj *new_cmd;
4887 Jim_Cmd *cmd;
4888 const char *cp;
4889 char *cp2;
4890 int e;
4891 int x;
4892 struct target *target;
4893 struct command_context *cmd_ctx;
4895 cmd_ctx = current_command_context(goi->interp);
4896 assert (cmd_ctx != NULL);
4898 if (goi->argc < 3) {
4899 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4900 return JIM_ERR;
4903 /* COMMAND */
4904 Jim_GetOpt_Obj(goi, &new_cmd);
4905 /* does this command exist? */
4906 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4907 if (cmd) {
4908 cp = Jim_GetString(new_cmd, NULL);
4909 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4910 return JIM_ERR;
4913 /* TYPE */
4914 e = Jim_GetOpt_String(goi, &cp2, NULL);
4915 if (e != JIM_OK)
4916 return e;
4917 cp = cp2;
4918 /* now does target type exist */
4919 for (x = 0 ; target_types[x] ; x++) {
4920 if (0 == strcmp(cp, target_types[x]->name)) {
4921 /* found */
4922 break;
4925 if (target_types[x] == NULL) {
4926 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4927 for (x = 0 ; target_types[x] ; x++) {
4928 if (target_types[x + 1]) {
4929 Jim_AppendStrings(goi->interp,
4930 Jim_GetResult(goi->interp),
4931 target_types[x]->name,
4932 ", ", NULL);
4933 } else {
4934 Jim_AppendStrings(goi->interp,
4935 Jim_GetResult(goi->interp),
4936 " or ",
4937 target_types[x]->name,NULL);
4940 return JIM_ERR;
4943 /* Create it */
4944 target = calloc(1,sizeof(struct target));
4945 /* set target number */
4946 target->target_number = new_target_number();
4948 /* allocate memory for each unique target type */
4949 target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4951 memcpy(target->type, target_types[x], sizeof(struct target_type));
4953 /* will be set by "-endian" */
4954 target->endianness = TARGET_ENDIAN_UNKNOWN;
4956 /* default to first core, override with -coreid */
4957 target->coreid = 0;
4959 target->working_area = 0x0;
4960 target->working_area_size = 0x0;
4961 target->working_areas = NULL;
4962 target->backup_working_area = 0;
4964 target->state = TARGET_UNKNOWN;
4965 target->debug_reason = DBG_REASON_UNDEFINED;
4966 target->reg_cache = NULL;
4967 target->breakpoints = NULL;
4968 target->watchpoints = NULL;
4969 target->next = NULL;
4970 target->arch_info = NULL;
4972 target->display = 1;
4974 target->halt_issued = false;
4976 /* initialize trace information */
4977 target->trace_info = malloc(sizeof(struct trace));
4978 target->trace_info->num_trace_points = 0;
4979 target->trace_info->trace_points_size = 0;
4980 target->trace_info->trace_points = NULL;
4981 target->trace_info->trace_history_size = 0;
4982 target->trace_info->trace_history = NULL;
4983 target->trace_info->trace_history_pos = 0;
4984 target->trace_info->trace_history_overflowed = 0;
4986 target->dbgmsg = NULL;
4987 target->dbg_msg_enabled = 0;
4989 target->endianness = TARGET_ENDIAN_UNKNOWN;
4991 target->rtos = NULL;
4992 target->rtos_auto_detect = false;
4994 /* Do the rest as "configure" options */
4995 goi->isconfigure = 1;
4996 e = target_configure(goi, target);
4998 if (target->tap == NULL)
5000 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5001 e = JIM_ERR;
5004 if (e != JIM_OK) {
5005 free(target->type);
5006 free(target);
5007 return e;
5010 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5011 /* default endian to little if not specified */
5012 target->endianness = TARGET_LITTLE_ENDIAN;
5015 /* incase variant is not set */
5016 if (!target->variant)
5017 target->variant = strdup("");
5019 cp = Jim_GetString(new_cmd, NULL);
5020 target->cmd_name = strdup(cp);
5022 /* create the target specific commands */
5023 if (target->type->commands) {
5024 e = register_commands(cmd_ctx, NULL, target->type->commands);
5025 if (ERROR_OK != e)
5026 LOG_ERROR("unable to register '%s' commands", cp);
5028 if (target->type->target_create) {
5029 (*(target->type->target_create))(target, goi->interp);
5032 /* append to end of list */
5034 struct target **tpp;
5035 tpp = &(all_targets);
5036 while (*tpp) {
5037 tpp = &((*tpp)->next);
5039 *tpp = target;
5042 /* now - create the new target name command */
5043 const const struct command_registration target_subcommands[] = {
5045 .chain = target_instance_command_handlers,
5048 .chain = target->type->commands,
5050 COMMAND_REGISTRATION_DONE
5052 const const struct command_registration target_commands[] = {
5054 .name = cp,
5055 .mode = COMMAND_ANY,
5056 .help = "target command group",
5057 .chain = target_subcommands,
5059 COMMAND_REGISTRATION_DONE
5061 e = register_commands(cmd_ctx, NULL, target_commands);
5062 if (ERROR_OK != e)
5063 return JIM_ERR;
5065 struct command *c = command_find_in_context(cmd_ctx, cp);
5066 assert(c);
5067 command_set_handler_data(c, target);
5069 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5072 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5074 if (argc != 1)
5076 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5077 return JIM_ERR;
5079 struct command_context *cmd_ctx = current_command_context(interp);
5080 assert (cmd_ctx != NULL);
5082 Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
5083 return JIM_OK;
5086 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5088 if (argc != 1)
5090 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5091 return JIM_ERR;
5093 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5094 for (unsigned x = 0; NULL != target_types[x]; x++)
5096 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5097 Jim_NewStringObj(interp, target_types[x]->name, -1));
5099 return JIM_OK;
5102 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5104 if (argc != 1)
5106 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5107 return JIM_ERR;
5109 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5110 struct target *target = all_targets;
5111 while (target)
5113 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5114 Jim_NewStringObj(interp, target_name(target), -1));
5115 target = target->next;
5117 return JIM_OK;
5120 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5122 int i;
5123 const char *targetname;
5124 int retval,len;
5125 struct target *target;
5126 struct target_list *head, *curr;
5127 curr = (struct target_list*) NULL;
5128 head = (struct target_list*) NULL;
5130 retval = 0;
5131 LOG_DEBUG("%d",argc);
5132 /* argv[1] = target to associate in smp
5133 * argv[2] = target to assoicate in smp
5134 * argv[3] ...
5137 for(i=1;i<argc;i++)
5140 targetname = Jim_GetString(argv[i], &len);
5141 target = get_target(targetname);
5142 LOG_DEBUG("%s ",targetname);
5143 if (target)
5145 struct target_list *new;
5146 new=malloc(sizeof(struct target_list));
5147 new->target = target;
5148 new->next = (struct target_list*)NULL;
5149 if (head == (struct target_list*)NULL)
5151 head = new;
5152 curr = head;
5154 else
5156 curr->next = new;
5157 curr = new;
5161 /* now parse the list of cpu and put the target in smp mode*/
5162 curr=head;
5164 while(curr!=(struct target_list *)NULL)
5166 target=curr->target;
5167 target->smp = 1;
5168 target->head = head;
5169 curr=curr->next;
5171 return retval;
5175 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5177 Jim_GetOptInfo goi;
5178 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5179 if (goi.argc < 3)
5181 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5182 "<name> <target_type> [<target_options> ...]");
5183 return JIM_ERR;
5185 return target_create(&goi);
5188 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5190 Jim_GetOptInfo goi;
5191 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5193 /* It's OK to remove this mechanism sometime after August 2010 or so */
5194 LOG_WARNING("don't use numbers as target identifiers; use names");
5195 if (goi.argc != 1)
5197 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5198 return JIM_ERR;
5200 jim_wide w;
5201 int e = Jim_GetOpt_Wide(&goi, &w);
5202 if (e != JIM_OK)
5203 return JIM_ERR;
5205 struct target *target;
5206 for (target = all_targets; NULL != target; target = target->next)
5208 if (target->target_number != w)
5209 continue;
5211 Jim_SetResultString(goi.interp, target_name(target), -1);
5212 return JIM_OK;
5215 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5216 Jim_SetResultFormatted(goi.interp,
5217 "Target: number %#s does not exist", wObj);
5218 Jim_FreeNewObj(interp, wObj);
5220 return JIM_ERR;
5223 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5225 if (argc != 1)
5227 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5228 return JIM_ERR;
5230 unsigned count = 0;
5231 struct target *target = all_targets;
5232 while (NULL != target)
5234 target = target->next;
5235 count++;
5237 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5238 return JIM_OK;
5241 static const struct command_registration target_subcommand_handlers[] = {
5243 .name = "init",
5244 .mode = COMMAND_CONFIG,
5245 .handler = handle_target_init_command,
5246 .help = "initialize targets",
5249 .name = "create",
5250 /* REVISIT this should be COMMAND_CONFIG ... */
5251 .mode = COMMAND_ANY,
5252 .jim_handler = jim_target_create,
5253 .usage = "name type '-chain-position' name [options ...]",
5254 .help = "Creates and selects a new target",
5257 .name = "current",
5258 .mode = COMMAND_ANY,
5259 .jim_handler = jim_target_current,
5260 .help = "Returns the currently selected target",
5263 .name = "types",
5264 .mode = COMMAND_ANY,
5265 .jim_handler = jim_target_types,
5266 .help = "Returns the available target types as "
5267 "a list of strings",
5270 .name = "names",
5271 .mode = COMMAND_ANY,
5272 .jim_handler = jim_target_names,
5273 .help = "Returns the names of all targets as a list of strings",
5276 .name = "number",
5277 .mode = COMMAND_ANY,
5278 .jim_handler = jim_target_number,
5279 .usage = "number",
5280 .help = "Returns the name of the numbered target "
5281 "(DEPRECATED)",
5284 .name = "count",
5285 .mode = COMMAND_ANY,
5286 .jim_handler = jim_target_count,
5287 .help = "Returns the number of targets as an integer "
5288 "(DEPRECATED)",
5291 .name = "smp",
5292 .mode = COMMAND_ANY,
5293 .jim_handler = jim_target_smp,
5294 .usage = "targetname1 targetname2 ...",
5295 .help = "gather several target in a smp list"
5298 COMMAND_REGISTRATION_DONE
5301 struct FastLoad
5303 uint32_t address;
5304 uint8_t *data;
5305 int length;
5309 static int fastload_num;
5310 static struct FastLoad *fastload;
5312 static void free_fastload(void)
5314 if (fastload != NULL)
5316 int i;
5317 for (i = 0; i < fastload_num; i++)
5319 if (fastload[i].data)
5320 free(fastload[i].data);
5322 free(fastload);
5323 fastload = NULL;
5330 COMMAND_HANDLER(handle_fast_load_image_command)
5332 uint8_t *buffer;
5333 size_t buf_cnt;
5334 uint32_t image_size;
5335 uint32_t min_address = 0;
5336 uint32_t max_address = 0xffffffff;
5337 int i;
5339 struct image image;
5341 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5342 &image, &min_address, &max_address);
5343 if (ERROR_OK != retval)
5344 return retval;
5346 struct duration bench;
5347 duration_start(&bench);
5349 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5350 if (retval != ERROR_OK)
5352 return retval;
5355 image_size = 0x0;
5356 retval = ERROR_OK;
5357 fastload_num = image.num_sections;
5358 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5359 if (fastload == NULL)
5361 command_print(CMD_CTX, "out of memory");
5362 image_close(&image);
5363 return ERROR_FAIL;
5365 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5366 for (i = 0; i < image.num_sections; i++)
5368 buffer = malloc(image.sections[i].size);
5369 if (buffer == NULL)
5371 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5372 (int)(image.sections[i].size));
5373 retval = ERROR_FAIL;
5374 break;
5377 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
5379 free(buffer);
5380 break;
5383 uint32_t offset = 0;
5384 uint32_t length = buf_cnt;
5387 /* DANGER!!! beware of unsigned comparision here!!! */
5389 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
5390 (image.sections[i].base_address < max_address))
5392 if (image.sections[i].base_address < min_address)
5394 /* clip addresses below */
5395 offset += min_address-image.sections[i].base_address;
5396 length -= offset;
5399 if (image.sections[i].base_address + buf_cnt > max_address)
5401 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5404 fastload[i].address = image.sections[i].base_address + offset;
5405 fastload[i].data = malloc(length);
5406 if (fastload[i].data == NULL)
5408 free(buffer);
5409 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5410 length);
5411 retval = ERROR_FAIL;
5412 break;
5414 memcpy(fastload[i].data, buffer + offset, length);
5415 fastload[i].length = length;
5417 image_size += length;
5418 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5419 (unsigned int)length,
5420 ((unsigned int)(image.sections[i].base_address + offset)));
5423 free(buffer);
5426 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
5428 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5429 "in %fs (%0.3f KiB/s)", image_size,
5430 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5432 command_print(CMD_CTX,
5433 "WARNING: image has not been loaded to target!"
5434 "You can issue a 'fast_load' to finish loading.");
5437 image_close(&image);
5439 if (retval != ERROR_OK)
5441 free_fastload();
5444 return retval;
5447 COMMAND_HANDLER(handle_fast_load_command)
5449 if (CMD_ARGC > 0)
5450 return ERROR_COMMAND_SYNTAX_ERROR;
5451 if (fastload == NULL)
5453 LOG_ERROR("No image in memory");
5454 return ERROR_FAIL;
5456 int i;
5457 int ms = timeval_ms();
5458 int size = 0;
5459 int retval = ERROR_OK;
5460 for (i = 0; i < fastload_num;i++)
5462 struct target *target = get_current_target(CMD_CTX);
5463 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5464 (unsigned int)(fastload[i].address),
5465 (unsigned int)(fastload[i].length));
5466 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5467 if (retval != ERROR_OK)
5469 break;
5471 size += fastload[i].length;
5473 if (retval == ERROR_OK)
5475 int after = timeval_ms();
5476 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5478 return retval;
5481 static const struct command_registration target_command_handlers[] = {
5483 .name = "targets",
5484 .handler = handle_targets_command,
5485 .mode = COMMAND_ANY,
5486 .help = "change current default target (one parameter) "
5487 "or prints table of all targets (no parameters)",
5488 .usage = "[target]",
5491 .name = "target",
5492 .mode = COMMAND_CONFIG,
5493 .help = "configure target",
5495 .chain = target_subcommand_handlers,
5497 COMMAND_REGISTRATION_DONE
5500 int target_register_commands(struct command_context *cmd_ctx)
5502 return register_commands(cmd_ctx, NULL, target_command_handlers);
5505 static bool target_reset_nag = true;
5507 bool get_target_reset_nag(void)
5509 return target_reset_nag;
5512 COMMAND_HANDLER(handle_target_reset_nag)
5514 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5515 &target_reset_nag, "Nag after each reset about options to improve "
5516 "performance");
5519 static const struct command_registration target_exec_command_handlers[] = {
5521 .name = "fast_load_image",
5522 .handler = handle_fast_load_image_command,
5523 .mode = COMMAND_ANY,
5524 .help = "Load image into server memory for later use by "
5525 "fast_load; primarily for profiling",
5526 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5527 "[min_address [max_length]]",
5530 .name = "fast_load",
5531 .handler = handle_fast_load_command,
5532 .mode = COMMAND_EXEC,
5533 .help = "loads active fast load image to current target "
5534 "- mainly for profiling purposes",
5537 .name = "profile",
5538 .handler = handle_profile_command,
5539 .mode = COMMAND_EXEC,
5540 .help = "profiling samples the CPU PC",
5542 /** @todo don't register virt2phys() unless target supports it */
5544 .name = "virt2phys",
5545 .handler = handle_virt2phys_command,
5546 .mode = COMMAND_ANY,
5547 .help = "translate a virtual address into a physical address",
5548 .usage = "virtual_address",
5551 .name = "reg",
5552 .handler = handle_reg_command,
5553 .mode = COMMAND_EXEC,
5554 .help = "display or set a register; with no arguments, "
5555 "displays all registers and their values",
5556 .usage = "[(register_name|register_number) [value]]",
5559 .name = "poll",
5560 .handler = handle_poll_command,
5561 .mode = COMMAND_EXEC,
5562 .help = "poll target state; or reconfigure background polling",
5563 .usage = "['on'|'off']",
5566 .name = "wait_halt",
5567 .handler = handle_wait_halt_command,
5568 .mode = COMMAND_EXEC,
5569 .help = "wait up to the specified number of milliseconds "
5570 "(default 5) for a previously requested halt",
5571 .usage = "[milliseconds]",
5574 .name = "halt",
5575 .handler = handle_halt_command,
5576 .mode = COMMAND_EXEC,
5577 .help = "request target to halt, then wait up to the specified"
5578 "number of milliseconds (default 5) for it to complete",
5579 .usage = "[milliseconds]",
5582 .name = "resume",
5583 .handler = handle_resume_command,
5584 .mode = COMMAND_EXEC,
5585 .help = "resume target execution from current PC or address",
5586 .usage = "[address]",
5589 .name = "reset",
5590 .handler = handle_reset_command,
5591 .mode = COMMAND_EXEC,
5592 .usage = "[run|halt|init]",
5593 .help = "Reset all targets into the specified mode."
5594 "Default reset mode is run, if not given.",
5597 .name = "soft_reset_halt",
5598 .handler = handle_soft_reset_halt_command,
5599 .mode = COMMAND_EXEC,
5600 .help = "halt the target and do a soft reset",
5603 .name = "step",
5604 .handler = handle_step_command,
5605 .mode = COMMAND_EXEC,
5606 .help = "step one instruction from current PC or address",
5607 .usage = "[address]",
5610 .name = "mdw",
5611 .handler = handle_md_command,
5612 .mode = COMMAND_EXEC,
5613 .help = "display memory words",
5614 .usage = "['phys'] address [count]",
5617 .name = "mdh",
5618 .handler = handle_md_command,
5619 .mode = COMMAND_EXEC,
5620 .help = "display memory half-words",
5621 .usage = "['phys'] address [count]",
5624 .name = "mdb",
5625 .handler = handle_md_command,
5626 .mode = COMMAND_EXEC,
5627 .help = "display memory bytes",
5628 .usage = "['phys'] address [count]",
5631 .name = "mww",
5632 .handler = handle_mw_command,
5633 .mode = COMMAND_EXEC,
5634 .help = "write memory word",
5635 .usage = "['phys'] address value [count]",
5638 .name = "mwh",
5639 .handler = handle_mw_command,
5640 .mode = COMMAND_EXEC,
5641 .help = "write memory half-word",
5642 .usage = "['phys'] address value [count]",
5645 .name = "mwb",
5646 .handler = handle_mw_command,
5647 .mode = COMMAND_EXEC,
5648 .help = "write memory byte",
5649 .usage = "['phys'] address value [count]",
5652 .name = "bp",
5653 .handler = handle_bp_command,
5654 .mode = COMMAND_EXEC,
5655 .help = "list or set hardware or software breakpoint",
5656 .usage = "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']",
5659 .name = "rbp",
5660 .handler = handle_rbp_command,
5661 .mode = COMMAND_EXEC,
5662 .help = "remove breakpoint",
5663 .usage = "address",
5666 .name = "wp",
5667 .handler = handle_wp_command,
5668 .mode = COMMAND_EXEC,
5669 .help = "list (no params) or create watchpoints",
5670 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5673 .name = "rwp",
5674 .handler = handle_rwp_command,
5675 .mode = COMMAND_EXEC,
5676 .help = "remove watchpoint",
5677 .usage = "address",
5680 .name = "load_image",
5681 .handler = handle_load_image_command,
5682 .mode = COMMAND_EXEC,
5683 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5684 "[min_address] [max_length]",
5687 .name = "dump_image",
5688 .handler = handle_dump_image_command,
5689 .mode = COMMAND_EXEC,
5690 .usage = "filename address size",
5693 .name = "verify_image",
5694 .handler = handle_verify_image_command,
5695 .mode = COMMAND_EXEC,
5696 .usage = "filename [offset [type]]",
5699 .name = "test_image",
5700 .handler = handle_test_image_command,
5701 .mode = COMMAND_EXEC,
5702 .usage = "filename [offset [type]]",
5705 .name = "mem2array",
5706 .mode = COMMAND_EXEC,
5707 .jim_handler = jim_mem2array,
5708 .help = "read 8/16/32 bit memory and return as a TCL array "
5709 "for script processing",
5710 .usage = "arrayname bitwidth address count",
5713 .name = "array2mem",
5714 .mode = COMMAND_EXEC,
5715 .jim_handler = jim_array2mem,
5716 .help = "convert a TCL array to memory locations "
5717 "and write the 8/16/32 bit values",
5718 .usage = "arrayname bitwidth address count",
5721 .name = "reset_nag",
5722 .handler = handle_target_reset_nag,
5723 .mode = COMMAND_ANY,
5724 .help = "Nag after each reset about options that could have been "
5725 "enabled to improve performance. ",
5726 .usage = "['enable'|'disable']",
5728 COMMAND_REGISTRATION_DONE
5730 static int target_register_user_commands(struct command_context *cmd_ctx)
5732 int retval = ERROR_OK;
5733 if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5734 return retval;
5736 if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5737 return retval;
5740 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);