flash/nor/stm32l4x: Remove redundant error messages
[openocd.git] / src / target / armv7m.c
blobd508af7bf0c18d47b52a136c0f09427bc36c73d7
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 /***************************************************************************
4 * Copyright (C) 2005 by Dominic Rath *
5 * Dominic.Rath@gmx.de *
6 * *
7 * Copyright (C) 2006 by Magnus Lundin *
8 * lundin@mlu.mine.nu *
9 * *
10 * Copyright (C) 2008 by Spencer Oliver *
11 * spen@spen-soft.co.uk *
12 * *
13 * Copyright (C) 2007,2008 Øyvind Harboe *
14 * oyvind.harboe@zylin.com *
15 * *
16 * Copyright (C) 2018 by Liviu Ionescu *
17 * <ilg@livius.net> *
18 * *
19 * Copyright (C) 2019 by Tomas Vanek *
20 * vanekt@fbl.cz *
21 * *
22 * ARMv7-M Architecture, Application Level Reference Manual *
23 * ARM DDI 0405C (September 2008) *
24 * *
25 ***************************************************************************/
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
31 #include "breakpoints.h"
32 #include "armv7m.h"
33 #include "algorithm.h"
34 #include "register.h"
35 #include "semihosting_common.h"
36 #include <helper/log.h>
37 #include <helper/binarybuffer.h>
39 #if 0
40 #define _DEBUG_INSTRUCTION_EXECUTION_
41 #endif
43 static const char * const armv7m_exception_strings[] = {
44 "", "Reset", "NMI", "HardFault",
45 "MemManage", "BusFault", "UsageFault", "SecureFault",
46 "RESERVED", "RESERVED", "RESERVED", "SVCall",
47 "DebugMonitor", "RESERVED", "PendSV", "SysTick"
50 /* PSP is used in some thread modes */
51 const int armv7m_psp_reg_map[ARMV7M_NUM_CORE_REGS] = {
52 ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
53 ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
54 ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
55 ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
56 ARMV7M_XPSR,
59 /* MSP is used in handler and some thread modes */
60 const int armv7m_msp_reg_map[ARMV7M_NUM_CORE_REGS] = {
61 ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
62 ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
63 ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
64 ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
65 ARMV7M_XPSR,
69 * These registers are not memory-mapped. The ARMv7-M profile includes
70 * memory mapped registers too, such as for the NVIC (interrupt controller)
71 * and SysTick (timer) modules; those can mostly be treated as peripherals.
73 * The ARMv6-M profile is almost identical in this respect, except that it
74 * doesn't include basepri or faultmask registers.
76 static const struct {
77 unsigned id;
78 const char *name;
79 unsigned bits;
80 enum reg_type type;
81 const char *group;
82 const char *feature;
83 } armv7m_regs[] = {
84 { ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
85 { ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
86 { ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
87 { ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
88 { ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
89 { ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
90 { ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
91 { ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
92 { ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
93 { ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
94 { ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
95 { ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
96 { ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
97 { ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" },
98 { ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
99 { ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" },
100 { ARMV7M_XPSR, "xpsr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
102 { ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
103 { ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
105 /* A working register for packing/unpacking special regs, hidden from gdb */
106 { ARMV7M_PMSK_BPRI_FLTMSK_CTRL, "pmsk_bpri_fltmsk_ctrl", 32, REG_TYPE_INT, NULL, NULL },
108 /* WARNING: If you use armv7m_write_core_reg() on one of 4 following
109 * special registers, the new data go to ARMV7M_PMSK_BPRI_FLTMSK_CTRL
110 * cache only and are not flushed to CPU HW register.
111 * To trigger write to CPU HW register, add
112 * armv7m_write_core_reg(,,ARMV7M_PMSK_BPRI_FLTMSK_CTRL,);
114 { ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
115 { ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
116 { ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
117 { ARMV7M_CONTROL, "control", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
119 /* ARMv8-M security extension (TrustZone) specific registers */
120 { ARMV8M_MSP_NS, "msp_ns", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
121 { ARMV8M_PSP_NS, "psp_ns", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
122 { ARMV8M_MSP_S, "msp_s", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
123 { ARMV8M_PSP_S, "psp_s", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
124 { ARMV8M_MSPLIM_S, "msplim_s", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
125 { ARMV8M_PSPLIM_S, "psplim_s", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
126 { ARMV8M_MSPLIM_NS, "msplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
127 { ARMV8M_PSPLIM_NS, "psplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
129 { ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S, "pmsk_bpri_fltmsk_ctrl_s", 32, REG_TYPE_INT, NULL, NULL },
130 { ARMV8M_PRIMASK_S, "primask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
131 { ARMV8M_BASEPRI_S, "basepri_s", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
132 { ARMV8M_FAULTMASK_S, "faultmask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
133 { ARMV8M_CONTROL_S, "control_s", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
135 { ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS, "pmsk_bpri_fltmsk_ctrl_ns", 32, REG_TYPE_INT, NULL, NULL },
136 { ARMV8M_PRIMASK_NS, "primask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
137 { ARMV8M_BASEPRI_NS, "basepri_ns", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
138 { ARMV8M_FAULTMASK_NS, "faultmask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
139 { ARMV8M_CONTROL_NS, "control_ns", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
141 /* FPU registers */
142 { ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
143 { ARMV7M_D1, "d1", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
144 { ARMV7M_D2, "d2", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
145 { ARMV7M_D3, "d3", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
146 { ARMV7M_D4, "d4", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
147 { ARMV7M_D5, "d5", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
148 { ARMV7M_D6, "d6", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
149 { ARMV7M_D7, "d7", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
150 { ARMV7M_D8, "d8", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
151 { ARMV7M_D9, "d9", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
152 { ARMV7M_D10, "d10", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
153 { ARMV7M_D11, "d11", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
154 { ARMV7M_D12, "d12", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
155 { ARMV7M_D13, "d13", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
156 { ARMV7M_D14, "d14", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
157 { ARMV7M_D15, "d15", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
159 { ARMV7M_FPSCR, "fpscr", 32, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp" },
162 #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
165 * Restores target context using the cache of core registers set up
166 * by armv7m_build_reg_cache(), calling optional core-specific hooks.
168 int armv7m_restore_context(struct target *target)
170 int i;
171 struct armv7m_common *armv7m = target_to_armv7m(target);
172 struct reg_cache *cache = armv7m->arm.core_cache;
174 LOG_DEBUG(" ");
176 if (armv7m->pre_restore_context)
177 armv7m->pre_restore_context(target);
179 /* The descending order of register writes is crucial for correct
180 * packing of ARMV7M_PMSK_BPRI_FLTMSK_CTRL!
181 * See also comments in the register table above */
182 for (i = cache->num_regs - 1; i >= 0; i--) {
183 struct reg *r = &cache->reg_list[i];
185 if (r->exist && r->dirty) {
186 int retval = armv7m->arm.write_core_reg(target, r, i, ARM_MODE_ANY, r->value);
187 if (retval != ERROR_OK)
188 return retval;
192 return ERROR_OK;
195 /* Core state functions */
198 * Maps ISR number (from xPSR) to name.
199 * Note that while names and meanings for the first sixteen are standardized
200 * (with zero not a true exception), external interrupts are only numbered.
201 * They are assigned by vendors, which generally assign different numbers to
202 * peripherals (such as UART0 or a USB peripheral controller).
204 const char *armv7m_exception_string(int number)
206 static char enamebuf[32];
208 if ((number < 0) | (number > 511))
209 return "Invalid exception";
210 if (number < 16)
211 return armv7m_exception_strings[number];
212 sprintf(enamebuf, "External Interrupt(%i)", number - 16);
213 return enamebuf;
216 static int armv7m_get_core_reg(struct reg *reg)
218 int retval;
219 struct arm_reg *armv7m_reg = reg->arch_info;
220 struct target *target = armv7m_reg->target;
221 struct arm *arm = target_to_arm(target);
223 if (target->state != TARGET_HALTED)
224 return ERROR_TARGET_NOT_HALTED;
226 retval = arm->read_core_reg(target, reg, reg->number, arm->core_mode);
228 return retval;
231 static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
233 struct arm_reg *armv7m_reg = reg->arch_info;
234 struct target *target = armv7m_reg->target;
236 if (target->state != TARGET_HALTED)
237 return ERROR_TARGET_NOT_HALTED;
239 buf_cpy(buf, reg->value, reg->size);
240 reg->dirty = true;
241 reg->valid = true;
243 return ERROR_OK;
246 uint32_t armv7m_map_id_to_regsel(unsigned int arm_reg_id)
248 switch (arm_reg_id) {
249 case ARMV7M_R0 ... ARMV7M_R14:
250 case ARMV7M_PC:
251 case ARMV7M_XPSR:
252 case ARMV7M_MSP:
253 case ARMV7M_PSP:
254 /* NOTE: we "know" here that the register identifiers
255 * match the Cortex-M DCRSR.REGSEL selectors values
256 * for R0..R14, PC, xPSR, MSP, and PSP.
258 return arm_reg_id;
260 case ARMV7M_PMSK_BPRI_FLTMSK_CTRL:
261 return ARMV7M_REGSEL_PMSK_BPRI_FLTMSK_CTRL;
263 case ARMV8M_MSP_NS...ARMV8M_PSPLIM_NS:
264 return arm_reg_id - ARMV8M_MSP_NS + ARMV8M_REGSEL_MSP_NS;
266 case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S:
267 return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_S;
269 case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS:
270 return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_NS;
272 case ARMV7M_FPSCR:
273 return ARMV7M_REGSEL_FPSCR;
275 case ARMV7M_D0 ... ARMV7M_D15:
276 return ARMV7M_REGSEL_S0 + 2 * (arm_reg_id - ARMV7M_D0);
278 default:
279 LOG_ERROR("Bad register ID %u", arm_reg_id);
280 return arm_reg_id;
284 bool armv7m_map_reg_packing(unsigned int arm_reg_id,
285 unsigned int *reg32_id, uint32_t *offset)
288 switch (arm_reg_id) {
290 case ARMV7M_PRIMASK...ARMV7M_CONTROL:
291 *reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
292 *offset = arm_reg_id - ARMV7M_PRIMASK;
293 return true;
294 case ARMV8M_PRIMASK_S...ARMV8M_CONTROL_S:
295 *reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S;
296 *offset = arm_reg_id - ARMV8M_PRIMASK_S;
297 return true;
298 case ARMV8M_PRIMASK_NS...ARMV8M_CONTROL_NS:
299 *reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS;
300 *offset = arm_reg_id - ARMV8M_PRIMASK_NS;
301 return true;
303 default:
304 return false;
309 static int armv7m_read_core_reg(struct target *target, struct reg *r,
310 int num, enum arm_mode mode)
312 uint32_t reg_value;
313 int retval;
314 struct armv7m_common *armv7m = target_to_armv7m(target);
316 assert(num < (int)armv7m->arm.core_cache->num_regs);
317 assert(num == (int)r->number);
319 /* If a code calls read_reg, it expects the cache is no more dirty.
320 * Clear the dirty flag regardless of the later read succeeds or not
321 * to prevent unwanted cache flush after a read error */
322 r->dirty = false;
324 if (r->size <= 8) {
325 /* any 8-bit or shorter register is packed */
326 uint32_t offset;
327 unsigned int reg32_id;
329 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
330 if (!is_packed) {
331 /* We should not get here as all 8-bit or shorter registers
332 * are packed */
333 assert(false);
334 /* assert() does nothing if NDEBUG is defined */
335 return ERROR_FAIL;
337 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
339 /* Read 32-bit container register if not cached */
340 if (!r32->valid) {
341 retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
342 if (retval != ERROR_OK)
343 return retval;
346 /* Copy required bits of 32-bit container register */
347 buf_cpy(r32->value + offset, r->value, r->size);
349 } else {
350 assert(r->size == 32 || r->size == 64);
352 struct arm_reg *armv7m_core_reg = r->arch_info;
353 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
355 retval = armv7m->load_core_reg_u32(target, regsel, &reg_value);
356 if (retval != ERROR_OK)
357 return retval;
358 buf_set_u32(r->value, 0, 32, reg_value);
360 if (r->size == 64) {
361 retval = armv7m->load_core_reg_u32(target, regsel + 1, &reg_value);
362 if (retval != ERROR_OK) {
363 r->valid = false;
364 return retval;
366 buf_set_u32(r->value + 4, 0, 32, reg_value);
368 uint64_t q = buf_get_u64(r->value, 0, 64);
369 LOG_DEBUG("read %s value 0x%016" PRIx64, r->name, q);
370 } else {
371 LOG_DEBUG("read %s value 0x%08" PRIx32, r->name, reg_value);
375 r->valid = true;
377 return ERROR_OK;
380 static int armv7m_write_core_reg(struct target *target, struct reg *r,
381 int num, enum arm_mode mode, uint8_t *value)
383 int retval;
384 uint32_t t;
385 struct armv7m_common *armv7m = target_to_armv7m(target);
387 assert(num < (int)armv7m->arm.core_cache->num_regs);
388 assert(num == (int)r->number);
390 if (value != r->value) {
391 /* If we are not flushing the cache, store the new value to the cache */
392 buf_cpy(value, r->value, r->size);
395 if (r->size <= 8) {
396 /* any 8-bit or shorter register is packed */
397 uint32_t offset;
398 unsigned int reg32_id;
400 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
401 if (!is_packed) {
402 /* We should not get here as all 8-bit or shorter registers
403 * are packed */
404 assert(false);
405 /* assert() does nothing if NDEBUG is defined */
406 return ERROR_FAIL;
408 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
410 if (!r32->valid) {
411 /* Before merging with other parts ensure the 32-bit register is valid */
412 retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
413 if (retval != ERROR_OK)
414 return retval;
417 /* Write a part to the 32-bit container register */
418 buf_cpy(value, r32->value + offset, r->size);
419 r32->dirty = true;
421 } else {
422 assert(r->size == 32 || r->size == 64);
424 struct arm_reg *armv7m_core_reg = r->arch_info;
425 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
427 t = buf_get_u32(value, 0, 32);
428 retval = armv7m->store_core_reg_u32(target, regsel, t);
429 if (retval != ERROR_OK)
430 goto out_error;
432 if (r->size == 64) {
433 t = buf_get_u32(value + 4, 0, 32);
434 retval = armv7m->store_core_reg_u32(target, regsel + 1, t);
435 if (retval != ERROR_OK)
436 goto out_error;
438 uint64_t q = buf_get_u64(value, 0, 64);
439 LOG_DEBUG("write %s value 0x%016" PRIx64, r->name, q);
440 } else {
441 LOG_DEBUG("write %s value 0x%08" PRIx32, r->name, t);
445 r->valid = true;
446 r->dirty = false;
448 return ERROR_OK;
450 out_error:
451 r->dirty = true;
452 LOG_ERROR("Error setting register %s", r->name);
453 return retval;
457 * Returns generic ARM userspace registers to GDB.
459 int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
460 int *reg_list_size, enum target_register_class reg_class)
462 struct armv7m_common *armv7m = target_to_armv7m(target);
463 int i, size;
465 if (reg_class == REG_CLASS_ALL)
466 size = armv7m->arm.core_cache->num_regs;
467 else
468 size = ARMV7M_NUM_CORE_REGS;
470 *reg_list = malloc(sizeof(struct reg *) * size);
471 if (!*reg_list)
472 return ERROR_FAIL;
474 for (i = 0; i < size; i++)
475 (*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
477 *reg_list_size = size;
479 return ERROR_OK;
482 /** Runs a Thumb algorithm in the target. */
483 int armv7m_run_algorithm(struct target *target,
484 int num_mem_params, struct mem_param *mem_params,
485 int num_reg_params, struct reg_param *reg_params,
486 target_addr_t entry_point, target_addr_t exit_point,
487 unsigned int timeout_ms, void *arch_info)
489 int retval;
491 retval = armv7m_start_algorithm(target,
492 num_mem_params, mem_params,
493 num_reg_params, reg_params,
494 entry_point, exit_point,
495 arch_info);
497 if (retval == ERROR_OK)
498 retval = armv7m_wait_algorithm(target,
499 num_mem_params, mem_params,
500 num_reg_params, reg_params,
501 exit_point, timeout_ms,
502 arch_info);
504 return retval;
507 /** Starts a Thumb algorithm in the target. */
508 int armv7m_start_algorithm(struct target *target,
509 int num_mem_params, struct mem_param *mem_params,
510 int num_reg_params, struct reg_param *reg_params,
511 target_addr_t entry_point, target_addr_t exit_point,
512 void *arch_info)
514 struct armv7m_common *armv7m = target_to_armv7m(target);
515 struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
516 enum arm_mode core_mode = armv7m->arm.core_mode;
517 int retval = ERROR_OK;
519 /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
520 * at the exit point */
522 if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
523 LOG_ERROR("current target isn't an ARMV7M target");
524 return ERROR_TARGET_INVALID;
527 if (target->state != TARGET_HALTED) {
528 LOG_TARGET_ERROR(target, "not halted (start target algo)");
529 return ERROR_TARGET_NOT_HALTED;
532 /* Store all non-debug execution registers to armv7m_algorithm_info context */
533 for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) {
534 struct reg *reg = &armv7m->arm.core_cache->reg_list[i];
535 if (!reg->exist)
536 continue;
538 if (!reg->valid)
539 armv7m_get_core_reg(reg);
541 if (!reg->valid)
542 LOG_TARGET_WARNING(target, "Storing invalid register %s", reg->name);
544 armv7m_algorithm_info->context[i] = buf_get_u32(reg->value, 0, 32);
547 for (int i = 0; i < num_mem_params; i++) {
548 if (mem_params[i].direction == PARAM_IN)
549 continue;
550 retval = target_write_buffer(target, mem_params[i].address,
551 mem_params[i].size,
552 mem_params[i].value);
553 if (retval != ERROR_OK)
554 return retval;
557 for (int i = 0; i < num_reg_params; i++) {
558 if (reg_params[i].direction == PARAM_IN)
559 continue;
561 struct reg *reg =
562 register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, false);
563 /* uint32_t regvalue; */
565 if (!reg) {
566 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
567 return ERROR_COMMAND_SYNTAX_ERROR;
570 if (reg->size != reg_params[i].size) {
571 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
572 reg_params[i].reg_name);
573 return ERROR_COMMAND_SYNTAX_ERROR;
576 /* regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
577 armv7m_set_core_reg(reg, reg_params[i].value);
582 * Ensure xPSR.T is set to avoid trying to run things in arm
583 * (non-thumb) mode, which armv7m does not support.
585 * We do this by setting the entirety of xPSR, which should
586 * remove all the unknowns about xPSR state.
588 * Because xPSR.T is populated on reset from the vector table,
589 * it might be 0 if the vector table has "bad" data in it.
591 struct reg *reg = &armv7m->arm.core_cache->reg_list[ARMV7M_XPSR];
592 buf_set_u32(reg->value, 0, 32, 0x01000000);
593 reg->valid = true;
594 reg->dirty = true;
597 if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
598 armv7m_algorithm_info->core_mode != core_mode) {
600 /* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
601 if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
602 armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
603 LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
606 LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
607 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
608 0, 1, armv7m_algorithm_info->core_mode);
609 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
610 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
613 /* save previous core mode */
614 armv7m_algorithm_info->core_mode = core_mode;
616 retval = target_resume(target, 0, entry_point, 1, 1);
618 return retval;
621 /** Waits for an algorithm in the target. */
622 int armv7m_wait_algorithm(struct target *target,
623 int num_mem_params, struct mem_param *mem_params,
624 int num_reg_params, struct reg_param *reg_params,
625 target_addr_t exit_point, unsigned int timeout_ms,
626 void *arch_info)
628 struct armv7m_common *armv7m = target_to_armv7m(target);
629 struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
630 int retval = ERROR_OK;
632 /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
633 * at the exit point */
635 if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
636 LOG_ERROR("current target isn't an ARMV7M target");
637 return ERROR_TARGET_INVALID;
640 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
641 /* If the target fails to halt due to the breakpoint, force a halt */
642 if (retval != ERROR_OK || target->state != TARGET_HALTED) {
643 retval = target_halt(target);
644 if (retval != ERROR_OK)
645 return retval;
646 retval = target_wait_state(target, TARGET_HALTED, 500);
647 if (retval != ERROR_OK)
648 return retval;
649 return ERROR_TARGET_TIMEOUT;
652 if (exit_point) {
653 /* PC value has been cached in cortex_m_debug_entry() */
654 uint32_t pc = buf_get_u32(armv7m->arm.pc->value, 0, 32);
655 if (pc != exit_point) {
656 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" TARGET_PRIxADDR,
657 pc, exit_point);
658 return ERROR_TARGET_ALGO_EXIT;
662 /* Read memory values to mem_params[] */
663 for (int i = 0; i < num_mem_params; i++) {
664 if (mem_params[i].direction != PARAM_OUT) {
665 retval = target_read_buffer(target, mem_params[i].address,
666 mem_params[i].size,
667 mem_params[i].value);
668 if (retval != ERROR_OK)
669 return retval;
673 /* Copy core register values to reg_params[] */
674 for (int i = 0; i < num_reg_params; i++) {
675 if (reg_params[i].direction != PARAM_OUT) {
676 struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
677 reg_params[i].reg_name,
678 false);
680 if (!reg) {
681 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
682 return ERROR_COMMAND_SYNTAX_ERROR;
685 if (reg->size != reg_params[i].size) {
686 LOG_ERROR(
687 "BUG: register '%s' size doesn't match reg_params[i].size",
688 reg_params[i].reg_name);
689 return ERROR_COMMAND_SYNTAX_ERROR;
692 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
696 for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) {
697 struct reg *reg = &armv7m->arm.core_cache->reg_list[i];
698 if (!reg->exist)
699 continue;
701 uint32_t regvalue;
702 regvalue = buf_get_u32(reg->value, 0, 32);
703 if (regvalue != armv7m_algorithm_info->context[i]) {
704 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
705 reg->name, armv7m_algorithm_info->context[i]);
706 buf_set_u32(reg->value,
707 0, 32, armv7m_algorithm_info->context[i]);
708 reg->valid = true;
709 reg->dirty = true;
713 /* restore previous core mode */
714 if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
715 LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
716 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
717 0, 1, armv7m_algorithm_info->core_mode);
718 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
719 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
722 armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
724 return retval;
727 /** Logs summary of ARMv7-M state for a halted target. */
728 int armv7m_arch_state(struct target *target)
730 struct armv7m_common *armv7m = target_to_armv7m(target);
731 struct arm *arm = &armv7m->arm;
732 uint32_t ctrl, sp;
734 /* avoid filling log waiting for fileio reply */
735 if (target->semihosting && target->semihosting->hit_fileio)
736 return ERROR_OK;
738 ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
739 sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
741 LOG_USER("[%s] halted due to %s, current mode: %s %s\n"
742 "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s",
743 target_name(target),
744 debug_reason_name(target),
745 arm_mode_name(arm->core_mode),
746 armv7m_exception_string(armv7m->exception_number),
747 buf_get_u32(arm->cpsr->value, 0, 32),
748 buf_get_u32(arm->pc->value, 0, 32),
749 (ctrl & 0x02) ? 'p' : 'm',
751 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
752 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
754 return ERROR_OK;
757 static const struct reg_arch_type armv7m_reg_type = {
758 .get = armv7m_get_core_reg,
759 .set = armv7m_set_core_reg,
762 /** Builds cache of architecturally defined registers. */
763 struct reg_cache *armv7m_build_reg_cache(struct target *target)
765 struct armv7m_common *armv7m = target_to_armv7m(target);
766 struct arm *arm = &armv7m->arm;
767 int num_regs = ARMV7M_NUM_REGS;
768 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
769 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
770 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
771 struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
772 struct reg_feature *feature;
773 int i;
775 /* Build the process context cache */
776 cache->name = "arm v7m registers";
777 cache->next = NULL;
778 cache->reg_list = reg_list;
779 cache->num_regs = num_regs;
780 (*cache_p) = cache;
782 for (i = 0; i < num_regs; i++) {
783 arch_info[i].num = armv7m_regs[i].id;
784 arch_info[i].target = target;
785 arch_info[i].arm = arm;
787 reg_list[i].name = armv7m_regs[i].name;
788 reg_list[i].size = armv7m_regs[i].bits;
789 reg_list[i].value = arch_info[i].value;
790 reg_list[i].dirty = false;
791 reg_list[i].valid = false;
792 reg_list[i].hidden = (i == ARMV7M_PMSK_BPRI_FLTMSK_CTRL ||
793 i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS || i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S);
794 reg_list[i].type = &armv7m_reg_type;
795 reg_list[i].arch_info = &arch_info[i];
797 reg_list[i].group = armv7m_regs[i].group;
798 reg_list[i].number = i;
799 reg_list[i].exist = true;
800 reg_list[i].caller_save = true; /* gdb defaults to true */
802 if (reg_list[i].hidden)
803 continue;
805 feature = calloc(1, sizeof(struct reg_feature));
806 if (feature) {
807 feature->name = armv7m_regs[i].feature;
808 reg_list[i].feature = feature;
809 } else
810 LOG_ERROR("unable to allocate feature list");
812 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
813 if (reg_list[i].reg_data_type)
814 reg_list[i].reg_data_type->type = armv7m_regs[i].type;
815 else
816 LOG_ERROR("unable to allocate reg type list");
819 arm->cpsr = reg_list + ARMV7M_XPSR;
820 arm->pc = reg_list + ARMV7M_PC;
821 arm->core_cache = cache;
823 return cache;
826 void armv7m_free_reg_cache(struct target *target)
828 struct armv7m_common *armv7m = target_to_armv7m(target);
829 struct arm *arm = &armv7m->arm;
830 struct reg_cache *cache;
831 struct reg *reg;
832 unsigned int i;
834 cache = arm->core_cache;
836 if (!cache)
837 return;
839 for (i = 0; i < cache->num_regs; i++) {
840 reg = &cache->reg_list[i];
842 free(reg->feature);
843 free(reg->reg_data_type);
846 free(cache->reg_list[0].arch_info);
847 free(cache->reg_list);
848 free(cache);
850 arm->core_cache = NULL;
853 static int armv7m_setup_semihosting(struct target *target, int enable)
855 /* nothing todo for armv7m */
856 return ERROR_OK;
859 /** Sets up target as a generic ARMv7-M core */
860 int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
862 struct arm *arm = &armv7m->arm;
864 armv7m->common_magic = ARMV7M_COMMON_MAGIC;
865 armv7m->fp_feature = FP_NONE;
866 armv7m->trace_config.trace_bus_id = 1;
867 /* Enable stimulus port #0 by default */
868 armv7m->trace_config.itm_ter[0] = 1;
870 arm->core_state = ARM_STATE_THUMB;
871 arm->core_type = ARM_CORE_TYPE_M_PROFILE;
872 arm->arch_info = armv7m;
873 arm->setup_semihosting = armv7m_setup_semihosting;
875 arm->read_core_reg = armv7m_read_core_reg;
876 arm->write_core_reg = armv7m_write_core_reg;
878 return arm_init_arch_info(target, arm);
881 /** Generates a CRC32 checksum of a memory region. */
882 int armv7m_checksum_memory(struct target *target,
883 target_addr_t address, uint32_t count, uint32_t *checksum)
885 struct working_area *crc_algorithm;
886 struct armv7m_algorithm armv7m_info;
887 struct reg_param reg_params[2];
888 int retval;
890 static const uint8_t cortex_m_crc_code[] = {
891 #include "../../contrib/loaders/checksum/armv7m_crc.inc"
894 retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm);
895 if (retval != ERROR_OK)
896 return retval;
898 retval = target_write_buffer(target, crc_algorithm->address,
899 sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code);
900 if (retval != ERROR_OK)
901 goto cleanup;
903 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
904 armv7m_info.core_mode = ARM_MODE_THREAD;
906 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
907 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
909 buf_set_u32(reg_params[0].value, 0, 32, address);
910 buf_set_u32(reg_params[1].value, 0, 32, count);
912 unsigned int timeout = 20000 * (1 + (count / (1024 * 1024)));
914 retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
915 crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6),
916 timeout, &armv7m_info);
918 if (retval == ERROR_OK)
919 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
920 else
921 LOG_ERROR("error executing cortex_m crc algorithm");
923 destroy_reg_param(&reg_params[0]);
924 destroy_reg_param(&reg_params[1]);
926 cleanup:
927 target_free_working_area(target, crc_algorithm);
929 return retval;
932 /** Checks an array of memory regions whether they are erased. */
933 int armv7m_blank_check_memory(struct target *target,
934 struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
936 struct working_area *erase_check_algorithm;
937 struct working_area *erase_check_params;
938 struct reg_param reg_params[2];
939 struct armv7m_algorithm armv7m_info;
940 int retval;
942 static bool timed_out;
944 static const uint8_t erase_check_code[] = {
945 #include "../../contrib/loaders/erase_check/armv7m_erase_check.inc"
948 const uint32_t code_size = sizeof(erase_check_code);
950 /* make sure we have a working area */
951 if (target_alloc_working_area(target, code_size,
952 &erase_check_algorithm) != ERROR_OK)
953 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
955 retval = target_write_buffer(target, erase_check_algorithm->address,
956 code_size, erase_check_code);
957 if (retval != ERROR_OK)
958 goto cleanup1;
960 /* prepare blocks array for algo */
961 struct algo_block {
962 union {
963 uint32_t size;
964 uint32_t result;
966 uint32_t address;
969 uint32_t avail = target_get_working_area_avail(target);
970 int blocks_to_check = avail / sizeof(struct algo_block) - 1;
971 if (num_blocks < blocks_to_check)
972 blocks_to_check = num_blocks;
974 struct algo_block *params = malloc((blocks_to_check+1)*sizeof(struct algo_block));
975 if (!params) {
976 retval = ERROR_FAIL;
977 goto cleanup1;
980 int i;
981 uint32_t total_size = 0;
982 for (i = 0; i < blocks_to_check; i++) {
983 total_size += blocks[i].size;
984 target_buffer_set_u32(target, (uint8_t *)&(params[i].size),
985 blocks[i].size / sizeof(uint32_t));
986 target_buffer_set_u32(target, (uint8_t *)&(params[i].address),
987 blocks[i].address);
989 target_buffer_set_u32(target, (uint8_t *)&(params[blocks_to_check].size), 0);
991 uint32_t param_size = (blocks_to_check + 1) * sizeof(struct algo_block);
992 if (target_alloc_working_area(target, param_size,
993 &erase_check_params) != ERROR_OK) {
994 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
995 goto cleanup2;
998 retval = target_write_buffer(target, erase_check_params->address,
999 param_size, (uint8_t *)params);
1000 if (retval != ERROR_OK)
1001 goto cleanup3;
1003 uint32_t erased_word = erased_value | (erased_value << 8)
1004 | (erased_value << 16) | (erased_value << 24);
1006 LOG_DEBUG("Starting erase check of %d blocks, parameters@"
1007 TARGET_ADDR_FMT, blocks_to_check, erase_check_params->address);
1009 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1010 armv7m_info.core_mode = ARM_MODE_THREAD;
1012 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1013 buf_set_u32(reg_params[0].value, 0, 32, erase_check_params->address);
1015 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1016 buf_set_u32(reg_params[1].value, 0, 32, erased_word);
1018 /* assume CPU clk at least 1 MHz */
1019 unsigned int timeout = (timed_out ? 30000 : 2000) + total_size * 3 / 1000;
1021 retval = target_run_algorithm(target,
1022 0, NULL,
1023 ARRAY_SIZE(reg_params), reg_params,
1024 erase_check_algorithm->address,
1025 erase_check_algorithm->address + (code_size - 2),
1026 timeout,
1027 &armv7m_info);
1029 timed_out = retval == ERROR_TARGET_TIMEOUT;
1030 if (retval != ERROR_OK && !timed_out)
1031 goto cleanup4;
1033 retval = target_read_buffer(target, erase_check_params->address,
1034 param_size, (uint8_t *)params);
1035 if (retval != ERROR_OK)
1036 goto cleanup4;
1038 for (i = 0; i < blocks_to_check; i++) {
1039 uint32_t result = target_buffer_get_u32(target,
1040 (uint8_t *)&(params[i].result));
1041 if (result != 0 && result != 1)
1042 break;
1044 blocks[i].result = result;
1046 if (i && timed_out)
1047 LOG_INFO("Slow CPU clock: %d blocks checked, %d remain. Continuing...", i, num_blocks-i);
1049 retval = i; /* return number of blocks really checked */
1051 cleanup4:
1052 destroy_reg_param(&reg_params[0]);
1053 destroy_reg_param(&reg_params[1]);
1055 cleanup3:
1056 target_free_working_area(target, erase_check_params);
1057 cleanup2:
1058 free(params);
1059 cleanup1:
1060 target_free_working_area(target, erase_check_algorithm);
1062 return retval;
1065 int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
1067 struct armv7m_common *armv7m = target_to_armv7m(target);
1068 struct reg *r = armv7m->arm.pc;
1069 bool result = false;
1072 /* if we halted last time due to a bkpt instruction
1073 * then we have to manually step over it, otherwise
1074 * the core will break again */
1076 if (target->debug_reason == DBG_REASON_BREAKPOINT) {
1077 uint16_t op;
1078 uint32_t pc = buf_get_u32(r->value, 0, 32);
1080 pc &= ~1;
1081 if (target_read_u16(target, pc, &op) == ERROR_OK) {
1082 if ((op & 0xFF00) == 0xBE00) {
1083 pc = buf_get_u32(r->value, 0, 32) + 2;
1084 buf_set_u32(r->value, 0, 32, pc);
1085 r->dirty = true;
1086 r->valid = true;
1087 result = true;
1088 LOG_DEBUG("Skipping over BKPT instruction");
1093 if (inst_found)
1094 *inst_found = result;
1096 return ERROR_OK;
1099 const struct command_registration armv7m_command_handlers[] = {
1101 .name = "arm",
1102 .mode = COMMAND_ANY,
1103 .help = "ARM command group",
1104 .usage = "",
1105 .chain = arm_all_profiles_command_handlers,
1107 COMMAND_REGISTRATION_DONE