Expand target_run_flash_async_algorithm() doc comment.
[openocd.git] / src / target / target.c
blob055658ea6199819caef683e6943ff552b0926aaa
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
61 static int target_read_buffer_default(struct target *target, target_addr_t address,
62 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, target_addr_t address,
64 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type aarch64_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type ls1_sap_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
110 static struct target_type *target_types[] = {
111 &arm7tdmi_target,
112 &arm9tdmi_target,
113 &arm920t_target,
114 &arm720t_target,
115 &arm966e_target,
116 &arm946e_target,
117 &arm926ejs_target,
118 &fa526_target,
119 &feroceon_target,
120 &dragonite_target,
121 &xscale_target,
122 &cortexm_target,
123 &cortexa_target,
124 &cortexr4_target,
125 &arm11_target,
126 &ls1_sap_target,
127 &mips_m4k_target,
128 &avr_target,
129 &dsp563xx_target,
130 &dsp5680xx_target,
131 &testee_target,
132 &avr32_ap7k_target,
133 &hla_target,
134 &nds32_v2_target,
135 &nds32_v3_target,
136 &nds32_v3m_target,
137 &or1k_target,
138 &quark_x10xx_target,
139 &quark_d20xx_target,
140 &stm8_target,
141 #if BUILD_TARGET64
142 &aarch64_target,
143 #endif
144 NULL,
147 struct target *all_targets;
148 static struct target_event_callback *target_event_callbacks;
149 static struct target_timer_callback *target_timer_callbacks;
150 LIST_HEAD(target_reset_callback_list);
151 LIST_HEAD(target_trace_callback_list);
152 static const int polling_interval = 100;
154 static const Jim_Nvp nvp_assert[] = {
155 { .name = "assert", NVP_ASSERT },
156 { .name = "deassert", NVP_DEASSERT },
157 { .name = "T", NVP_ASSERT },
158 { .name = "F", NVP_DEASSERT },
159 { .name = "t", NVP_ASSERT },
160 { .name = "f", NVP_DEASSERT },
161 { .name = NULL, .value = -1 }
164 static const Jim_Nvp nvp_error_target[] = {
165 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
166 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
167 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
168 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
169 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
170 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
171 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
172 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
173 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
174 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
175 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
176 { .value = -1, .name = NULL }
179 static const char *target_strerror_safe(int err)
181 const Jim_Nvp *n;
183 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
184 if (n->name == NULL)
185 return "unknown";
186 else
187 return n->name;
190 static const Jim_Nvp nvp_target_event[] = {
192 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
193 { .value = TARGET_EVENT_HALTED, .name = "halted" },
194 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
195 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
198 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
199 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
201 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
202 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
203 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
204 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
205 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
206 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
207 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
208 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
210 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
211 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
213 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
214 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
216 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
217 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
219 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
220 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
222 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
223 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
225 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
227 { .name = NULL, .value = -1 }
230 static const Jim_Nvp nvp_target_state[] = {
231 { .name = "unknown", .value = TARGET_UNKNOWN },
232 { .name = "running", .value = TARGET_RUNNING },
233 { .name = "halted", .value = TARGET_HALTED },
234 { .name = "reset", .value = TARGET_RESET },
235 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
236 { .name = NULL, .value = -1 },
239 static const Jim_Nvp nvp_target_debug_reason[] = {
240 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
241 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
242 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
243 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
244 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
245 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
246 { .name = "program-exit" , .value = DBG_REASON_EXIT },
247 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
248 { .name = NULL, .value = -1 },
251 static const Jim_Nvp nvp_target_endian[] = {
252 { .name = "big", .value = TARGET_BIG_ENDIAN },
253 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
254 { .name = "be", .value = TARGET_BIG_ENDIAN },
255 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
256 { .name = NULL, .value = -1 },
259 static const Jim_Nvp nvp_reset_modes[] = {
260 { .name = "unknown", .value = RESET_UNKNOWN },
261 { .name = "run" , .value = RESET_RUN },
262 { .name = "halt" , .value = RESET_HALT },
263 { .name = "init" , .value = RESET_INIT },
264 { .name = NULL , .value = -1 },
267 const char *debug_reason_name(struct target *t)
269 const char *cp;
271 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
272 t->debug_reason)->name;
273 if (!cp) {
274 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
275 cp = "(*BUG*unknown*BUG*)";
277 return cp;
280 const char *target_state_name(struct target *t)
282 const char *cp;
283 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
284 if (!cp) {
285 LOG_ERROR("Invalid target state: %d", (int)(t->state));
286 cp = "(*BUG*unknown*BUG*)";
289 if (!target_was_examined(t) && t->defer_examine)
290 cp = "examine deferred";
292 return cp;
295 const char *target_event_name(enum target_event event)
297 const char *cp;
298 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
299 if (!cp) {
300 LOG_ERROR("Invalid target event: %d", (int)(event));
301 cp = "(*BUG*unknown*BUG*)";
303 return cp;
306 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
308 const char *cp;
309 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
310 if (!cp) {
311 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
312 cp = "(*BUG*unknown*BUG*)";
314 return cp;
317 /* determine the number of the new target */
318 static int new_target_number(void)
320 struct target *t;
321 int x;
323 /* number is 0 based */
324 x = -1;
325 t = all_targets;
326 while (t) {
327 if (x < t->target_number)
328 x = t->target_number;
329 t = t->next;
331 return x + 1;
334 /* read a uint64_t from a buffer in target memory endianness */
335 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
337 if (target->endianness == TARGET_LITTLE_ENDIAN)
338 return le_to_h_u64(buffer);
339 else
340 return be_to_h_u64(buffer);
343 /* read a uint32_t from a buffer in target memory endianness */
344 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
346 if (target->endianness == TARGET_LITTLE_ENDIAN)
347 return le_to_h_u32(buffer);
348 else
349 return be_to_h_u32(buffer);
352 /* read a uint24_t from a buffer in target memory endianness */
353 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
355 if (target->endianness == TARGET_LITTLE_ENDIAN)
356 return le_to_h_u24(buffer);
357 else
358 return be_to_h_u24(buffer);
361 /* read a uint16_t from a buffer in target memory endianness */
362 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
364 if (target->endianness == TARGET_LITTLE_ENDIAN)
365 return le_to_h_u16(buffer);
366 else
367 return be_to_h_u16(buffer);
370 /* read a uint8_t from a buffer in target memory endianness */
371 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
373 return *buffer & 0x0ff;
376 /* write a uint64_t to a buffer in target memory endianness */
377 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
379 if (target->endianness == TARGET_LITTLE_ENDIAN)
380 h_u64_to_le(buffer, value);
381 else
382 h_u64_to_be(buffer, value);
385 /* write a uint32_t to a buffer in target memory endianness */
386 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
388 if (target->endianness == TARGET_LITTLE_ENDIAN)
389 h_u32_to_le(buffer, value);
390 else
391 h_u32_to_be(buffer, value);
394 /* write a uint24_t to a buffer in target memory endianness */
395 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
397 if (target->endianness == TARGET_LITTLE_ENDIAN)
398 h_u24_to_le(buffer, value);
399 else
400 h_u24_to_be(buffer, value);
403 /* write a uint16_t to a buffer in target memory endianness */
404 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
406 if (target->endianness == TARGET_LITTLE_ENDIAN)
407 h_u16_to_le(buffer, value);
408 else
409 h_u16_to_be(buffer, value);
412 /* write a uint8_t to a buffer in target memory endianness */
413 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
415 *buffer = value;
418 /* write a uint64_t array to a buffer in target memory endianness */
419 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
421 uint32_t i;
422 for (i = 0; i < count; i++)
423 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
426 /* write a uint32_t array to a buffer in target memory endianness */
427 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
429 uint32_t i;
430 for (i = 0; i < count; i++)
431 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
434 /* write a uint16_t array to a buffer in target memory endianness */
435 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
437 uint32_t i;
438 for (i = 0; i < count; i++)
439 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
442 /* write a uint64_t array to a buffer in target memory endianness */
443 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
445 uint32_t i;
446 for (i = 0; i < count; i++)
447 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
450 /* write a uint32_t array to a buffer in target memory endianness */
451 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
453 uint32_t i;
454 for (i = 0; i < count; i++)
455 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
458 /* write a uint16_t array to a buffer in target memory endianness */
459 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
461 uint32_t i;
462 for (i = 0; i < count; i++)
463 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
466 /* return a pointer to a configured target; id is name or number */
467 struct target *get_target(const char *id)
469 struct target *target;
471 /* try as tcltarget name */
472 for (target = all_targets; target; target = target->next) {
473 if (target_name(target) == NULL)
474 continue;
475 if (strcmp(id, target_name(target)) == 0)
476 return target;
479 /* It's OK to remove this fallback sometime after August 2010 or so */
481 /* no match, try as number */
482 unsigned num;
483 if (parse_uint(id, &num) != ERROR_OK)
484 return NULL;
486 for (target = all_targets; target; target = target->next) {
487 if (target->target_number == (int)num) {
488 LOG_WARNING("use '%s' as target identifier, not '%u'",
489 target_name(target), num);
490 return target;
494 return NULL;
497 /* returns a pointer to the n-th configured target */
498 struct target *get_target_by_num(int num)
500 struct target *target = all_targets;
502 while (target) {
503 if (target->target_number == num)
504 return target;
505 target = target->next;
508 return NULL;
511 struct target *get_current_target(struct command_context *cmd_ctx)
513 struct target *target = get_target_by_num(cmd_ctx->current_target);
515 if (target == NULL) {
516 LOG_ERROR("BUG: current_target out of bounds");
517 exit(-1);
520 return target;
523 int target_poll(struct target *target)
525 int retval;
527 /* We can't poll until after examine */
528 if (!target_was_examined(target)) {
529 /* Fail silently lest we pollute the log */
530 return ERROR_FAIL;
533 retval = target->type->poll(target);
534 if (retval != ERROR_OK)
535 return retval;
537 if (target->halt_issued) {
538 if (target->state == TARGET_HALTED)
539 target->halt_issued = false;
540 else {
541 int64_t t = timeval_ms() - target->halt_issued_time;
542 if (t > DEFAULT_HALT_TIMEOUT) {
543 target->halt_issued = false;
544 LOG_INFO("Halt timed out, wake up GDB.");
545 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
550 return ERROR_OK;
553 int target_halt(struct target *target)
555 int retval;
556 /* We can't poll until after examine */
557 if (!target_was_examined(target)) {
558 LOG_ERROR("Target not examined yet");
559 return ERROR_FAIL;
562 retval = target->type->halt(target);
563 if (retval != ERROR_OK)
564 return retval;
566 target->halt_issued = true;
567 target->halt_issued_time = timeval_ms();
569 return ERROR_OK;
573 * Make the target (re)start executing using its saved execution
574 * context (possibly with some modifications).
576 * @param target Which target should start executing.
577 * @param current True to use the target's saved program counter instead
578 * of the address parameter
579 * @param address Optionally used as the program counter.
580 * @param handle_breakpoints True iff breakpoints at the resumption PC
581 * should be skipped. (For example, maybe execution was stopped by
582 * such a breakpoint, in which case it would be counterprodutive to
583 * let it re-trigger.
584 * @param debug_execution False if all working areas allocated by OpenOCD
585 * should be released and/or restored to their original contents.
586 * (This would for example be true to run some downloaded "helper"
587 * algorithm code, which resides in one such working buffer and uses
588 * another for data storage.)
590 * @todo Resolve the ambiguity about what the "debug_execution" flag
591 * signifies. For example, Target implementations don't agree on how
592 * it relates to invalidation of the register cache, or to whether
593 * breakpoints and watchpoints should be enabled. (It would seem wrong
594 * to enable breakpoints when running downloaded "helper" algorithms
595 * (debug_execution true), since the breakpoints would be set to match
596 * target firmware being debugged, not the helper algorithm.... and
597 * enabling them could cause such helpers to malfunction (for example,
598 * by overwriting data with a breakpoint instruction. On the other
599 * hand the infrastructure for running such helpers might use this
600 * procedure but rely on hardware breakpoint to detect termination.)
602 int target_resume(struct target *target, int current, target_addr_t address,
603 int handle_breakpoints, int debug_execution)
605 int retval;
607 /* We can't poll until after examine */
608 if (!target_was_examined(target)) {
609 LOG_ERROR("Target not examined yet");
610 return ERROR_FAIL;
613 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
615 /* note that resume *must* be asynchronous. The CPU can halt before
616 * we poll. The CPU can even halt at the current PC as a result of
617 * a software breakpoint being inserted by (a bug?) the application.
619 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
620 if (retval != ERROR_OK)
621 return retval;
623 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
625 return retval;
628 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
630 char buf[100];
631 int retval;
632 Jim_Nvp *n;
633 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
634 if (n->name == NULL) {
635 LOG_ERROR("invalid reset mode");
636 return ERROR_FAIL;
639 struct target *target;
640 for (target = all_targets; target; target = target->next)
641 target_call_reset_callbacks(target, reset_mode);
643 /* disable polling during reset to make reset event scripts
644 * more predictable, i.e. dr/irscan & pathmove in events will
645 * not have JTAG operations injected into the middle of a sequence.
647 bool save_poll = jtag_poll_get_enabled();
649 jtag_poll_set_enabled(false);
651 sprintf(buf, "ocd_process_reset %s", n->name);
652 retval = Jim_Eval(cmd_ctx->interp, buf);
654 jtag_poll_set_enabled(save_poll);
656 if (retval != JIM_OK) {
657 Jim_MakeErrorMessage(cmd_ctx->interp);
658 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
659 return ERROR_FAIL;
662 /* We want any events to be processed before the prompt */
663 retval = target_call_timer_callbacks_now();
665 for (target = all_targets; target; target = target->next) {
666 target->type->check_reset(target);
667 target->running_alg = false;
670 return retval;
673 static int identity_virt2phys(struct target *target,
674 target_addr_t virtual, target_addr_t *physical)
676 *physical = virtual;
677 return ERROR_OK;
680 static int no_mmu(struct target *target, int *enabled)
682 *enabled = 0;
683 return ERROR_OK;
686 static int default_examine(struct target *target)
688 target_set_examined(target);
689 return ERROR_OK;
692 /* no check by default */
693 static int default_check_reset(struct target *target)
695 return ERROR_OK;
698 int target_examine_one(struct target *target)
700 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
702 int retval = target->type->examine(target);
703 if (retval != ERROR_OK)
704 return retval;
706 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
708 return ERROR_OK;
711 static int jtag_enable_callback(enum jtag_event event, void *priv)
713 struct target *target = priv;
715 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
716 return ERROR_OK;
718 jtag_unregister_event_callback(jtag_enable_callback, target);
720 return target_examine_one(target);
723 /* Targets that correctly implement init + examine, i.e.
724 * no communication with target during init:
726 * XScale
728 int target_examine(void)
730 int retval = ERROR_OK;
731 struct target *target;
733 for (target = all_targets; target; target = target->next) {
734 /* defer examination, but don't skip it */
735 if (!target->tap->enabled) {
736 jtag_register_event_callback(jtag_enable_callback,
737 target);
738 continue;
741 if (target->defer_examine)
742 continue;
744 retval = target_examine_one(target);
745 if (retval != ERROR_OK)
746 return retval;
748 return retval;
751 const char *target_type_name(struct target *target)
753 return target->type->name;
756 static int target_soft_reset_halt(struct target *target)
758 if (!target_was_examined(target)) {
759 LOG_ERROR("Target not examined yet");
760 return ERROR_FAIL;
762 if (!target->type->soft_reset_halt) {
763 LOG_ERROR("Target %s does not support soft_reset_halt",
764 target_name(target));
765 return ERROR_FAIL;
767 return target->type->soft_reset_halt(target);
771 * Downloads a target-specific native code algorithm to the target,
772 * and executes it. * Note that some targets may need to set up, enable,
773 * and tear down a breakpoint (hard or * soft) to detect algorithm
774 * termination, while others may support lower overhead schemes where
775 * soft breakpoints embedded in the algorithm automatically terminate the
776 * algorithm.
778 * @param target used to run the algorithm
779 * @param arch_info target-specific description of the algorithm.
781 int target_run_algorithm(struct target *target,
782 int num_mem_params, struct mem_param *mem_params,
783 int num_reg_params, struct reg_param *reg_param,
784 uint32_t entry_point, uint32_t exit_point,
785 int timeout_ms, void *arch_info)
787 int retval = ERROR_FAIL;
789 if (!target_was_examined(target)) {
790 LOG_ERROR("Target not examined yet");
791 goto done;
793 if (!target->type->run_algorithm) {
794 LOG_ERROR("Target type '%s' does not support %s",
795 target_type_name(target), __func__);
796 goto done;
799 target->running_alg = true;
800 retval = target->type->run_algorithm(target,
801 num_mem_params, mem_params,
802 num_reg_params, reg_param,
803 entry_point, exit_point, timeout_ms, arch_info);
804 target->running_alg = false;
806 done:
807 return retval;
811 * Downloads a target-specific native code algorithm to the target,
812 * executes and leaves it running.
814 * @param target used to run the algorithm
815 * @param arch_info target-specific description of the algorithm.
817 int target_start_algorithm(struct target *target,
818 int num_mem_params, struct mem_param *mem_params,
819 int num_reg_params, struct reg_param *reg_params,
820 uint32_t entry_point, uint32_t exit_point,
821 void *arch_info)
823 int retval = ERROR_FAIL;
825 if (!target_was_examined(target)) {
826 LOG_ERROR("Target not examined yet");
827 goto done;
829 if (!target->type->start_algorithm) {
830 LOG_ERROR("Target type '%s' does not support %s",
831 target_type_name(target), __func__);
832 goto done;
834 if (target->running_alg) {
835 LOG_ERROR("Target is already running an algorithm");
836 goto done;
839 target->running_alg = true;
840 retval = target->type->start_algorithm(target,
841 num_mem_params, mem_params,
842 num_reg_params, reg_params,
843 entry_point, exit_point, arch_info);
845 done:
846 return retval;
850 * Waits for an algorithm started with target_start_algorithm() to complete.
852 * @param target used to run the algorithm
853 * @param arch_info target-specific description of the algorithm.
855 int target_wait_algorithm(struct target *target,
856 int num_mem_params, struct mem_param *mem_params,
857 int num_reg_params, struct reg_param *reg_params,
858 uint32_t exit_point, int timeout_ms,
859 void *arch_info)
861 int retval = ERROR_FAIL;
863 if (!target->type->wait_algorithm) {
864 LOG_ERROR("Target type '%s' does not support %s",
865 target_type_name(target), __func__);
866 goto done;
868 if (!target->running_alg) {
869 LOG_ERROR("Target is not running an algorithm");
870 goto done;
873 retval = target->type->wait_algorithm(target,
874 num_mem_params, mem_params,
875 num_reg_params, reg_params,
876 exit_point, timeout_ms, arch_info);
877 if (retval != ERROR_TARGET_TIMEOUT)
878 target->running_alg = false;
880 done:
881 return retval;
885 * Streams data to a circular buffer on target intended for consumption by code
886 * running asynchronously on target.
888 * This is intended for applications where target-specific native code runs
889 * on the target, receives data from the circular buffer, does something with
890 * it (most likely writing it to a flash memory), and advances the circular
891 * buffer pointer.
893 * This assumes that the helper algorithm has already been loaded to the target,
894 * but has not been started yet. Given memory and register parameters are passed
895 * to the algorithm.
897 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
898 * following format:
900 * [buffer_start + 0, buffer_start + 4):
901 * Write Pointer address (aka head). Written and updated by this
902 * routine when new data is written to the circular buffer.
903 * [buffer_start + 4, buffer_start + 8):
904 * Read Pointer address (aka tail). Updated by code running on the
905 * target after it consumes data.
906 * [buffer_start + 8, buffer_start + buffer_size):
907 * Circular buffer contents.
909 * See contrib/loaders/flash/stm32f1x.S for an example.
911 * @param target used to run the algorithm
912 * @param buffer address on the host where data to be sent is located
913 * @param count number of blocks to send
914 * @param block_size size in bytes of each block
915 * @param num_mem_params count of memory-based params to pass to algorithm
916 * @param mem_params memory-based params to pass to algorithm
917 * @param num_reg_params count of register-based params to pass to algorithm
918 * @param reg_params memory-based params to pass to algorithm
919 * @param buffer_start address on the target of the circular buffer structure
920 * @param buffer_size size of the circular buffer structure
921 * @param entry_point address on the target to execute to start the algorithm
922 * @param exit_point address at which to set a breakpoint to catch the
923 * end of the algorithm; can be 0 if target triggers a breakpoint itself
926 int target_run_flash_async_algorithm(struct target *target,
927 const uint8_t *buffer, uint32_t count, int block_size,
928 int num_mem_params, struct mem_param *mem_params,
929 int num_reg_params, struct reg_param *reg_params,
930 uint32_t buffer_start, uint32_t buffer_size,
931 uint32_t entry_point, uint32_t exit_point, void *arch_info)
933 int retval;
934 int timeout = 0;
936 const uint8_t *buffer_orig = buffer;
938 /* Set up working area. First word is write pointer, second word is read pointer,
939 * rest is fifo data area. */
940 uint32_t wp_addr = buffer_start;
941 uint32_t rp_addr = buffer_start + 4;
942 uint32_t fifo_start_addr = buffer_start + 8;
943 uint32_t fifo_end_addr = buffer_start + buffer_size;
945 uint32_t wp = fifo_start_addr;
946 uint32_t rp = fifo_start_addr;
948 /* validate block_size is 2^n */
949 assert(!block_size || !(block_size & (block_size - 1)));
951 retval = target_write_u32(target, wp_addr, wp);
952 if (retval != ERROR_OK)
953 return retval;
954 retval = target_write_u32(target, rp_addr, rp);
955 if (retval != ERROR_OK)
956 return retval;
958 /* Start up algorithm on target and let it idle while writing the first chunk */
959 retval = target_start_algorithm(target, num_mem_params, mem_params,
960 num_reg_params, reg_params,
961 entry_point,
962 exit_point,
963 arch_info);
965 if (retval != ERROR_OK) {
966 LOG_ERROR("error starting target flash write algorithm");
967 return retval;
970 while (count > 0) {
972 retval = target_read_u32(target, rp_addr, &rp);
973 if (retval != ERROR_OK) {
974 LOG_ERROR("failed to get read pointer");
975 break;
978 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
979 (size_t) (buffer - buffer_orig), count, wp, rp);
981 if (rp == 0) {
982 LOG_ERROR("flash write algorithm aborted by target");
983 retval = ERROR_FLASH_OPERATION_FAILED;
984 break;
987 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
988 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
989 break;
992 /* Count the number of bytes available in the fifo without
993 * crossing the wrap around. Make sure to not fill it completely,
994 * because that would make wp == rp and that's the empty condition. */
995 uint32_t thisrun_bytes;
996 if (rp > wp)
997 thisrun_bytes = rp - wp - block_size;
998 else if (rp > fifo_start_addr)
999 thisrun_bytes = fifo_end_addr - wp;
1000 else
1001 thisrun_bytes = fifo_end_addr - wp - block_size;
1003 if (thisrun_bytes == 0) {
1004 /* Throttle polling a bit if transfer is (much) faster than flash
1005 * programming. The exact delay shouldn't matter as long as it's
1006 * less than buffer size / flash speed. This is very unlikely to
1007 * run when using high latency connections such as USB. */
1008 alive_sleep(10);
1010 /* to stop an infinite loop on some targets check and increment a timeout
1011 * this issue was observed on a stellaris using the new ICDI interface */
1012 if (timeout++ >= 500) {
1013 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1014 return ERROR_FLASH_OPERATION_FAILED;
1016 continue;
1019 /* reset our timeout */
1020 timeout = 0;
1022 /* Limit to the amount of data we actually want to write */
1023 if (thisrun_bytes > count * block_size)
1024 thisrun_bytes = count * block_size;
1026 /* Write data to fifo */
1027 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1028 if (retval != ERROR_OK)
1029 break;
1031 /* Update counters and wrap write pointer */
1032 buffer += thisrun_bytes;
1033 count -= thisrun_bytes / block_size;
1034 wp += thisrun_bytes;
1035 if (wp >= fifo_end_addr)
1036 wp = fifo_start_addr;
1038 /* Store updated write pointer to target */
1039 retval = target_write_u32(target, wp_addr, wp);
1040 if (retval != ERROR_OK)
1041 break;
1044 if (retval != ERROR_OK) {
1045 /* abort flash write algorithm on target */
1046 target_write_u32(target, wp_addr, 0);
1049 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1050 num_reg_params, reg_params,
1051 exit_point,
1052 10000,
1053 arch_info);
1055 if (retval2 != ERROR_OK) {
1056 LOG_ERROR("error waiting for target flash write algorithm");
1057 retval = retval2;
1060 if (retval == ERROR_OK) {
1061 /* check if algorithm set rp = 0 after fifo writer loop finished */
1062 retval = target_read_u32(target, rp_addr, &rp);
1063 if (retval == ERROR_OK && rp == 0) {
1064 LOG_ERROR("flash write algorithm aborted by target");
1065 retval = ERROR_FLASH_OPERATION_FAILED;
1069 return retval;
1072 int target_read_memory(struct target *target,
1073 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1075 if (!target_was_examined(target)) {
1076 LOG_ERROR("Target not examined yet");
1077 return ERROR_FAIL;
1079 if (!target->type->read_memory) {
1080 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1081 return ERROR_FAIL;
1083 return target->type->read_memory(target, address, size, count, buffer);
1086 int target_read_phys_memory(struct target *target,
1087 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1089 if (!target_was_examined(target)) {
1090 LOG_ERROR("Target not examined yet");
1091 return ERROR_FAIL;
1093 if (!target->type->read_phys_memory) {
1094 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1095 return ERROR_FAIL;
1097 return target->type->read_phys_memory(target, address, size, count, buffer);
1100 int target_write_memory(struct target *target,
1101 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1103 if (!target_was_examined(target)) {
1104 LOG_ERROR("Target not examined yet");
1105 return ERROR_FAIL;
1107 if (!target->type->write_memory) {
1108 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1109 return ERROR_FAIL;
1111 return target->type->write_memory(target, address, size, count, buffer);
1114 int target_write_phys_memory(struct target *target,
1115 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1117 if (!target_was_examined(target)) {
1118 LOG_ERROR("Target not examined yet");
1119 return ERROR_FAIL;
1121 if (!target->type->write_phys_memory) {
1122 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1123 return ERROR_FAIL;
1125 return target->type->write_phys_memory(target, address, size, count, buffer);
1128 int target_add_breakpoint(struct target *target,
1129 struct breakpoint *breakpoint)
1131 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1132 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1133 return ERROR_TARGET_NOT_HALTED;
1135 return target->type->add_breakpoint(target, breakpoint);
1138 int target_add_context_breakpoint(struct target *target,
1139 struct breakpoint *breakpoint)
1141 if (target->state != TARGET_HALTED) {
1142 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1143 return ERROR_TARGET_NOT_HALTED;
1145 return target->type->add_context_breakpoint(target, breakpoint);
1148 int target_add_hybrid_breakpoint(struct target *target,
1149 struct breakpoint *breakpoint)
1151 if (target->state != TARGET_HALTED) {
1152 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1153 return ERROR_TARGET_NOT_HALTED;
1155 return target->type->add_hybrid_breakpoint(target, breakpoint);
1158 int target_remove_breakpoint(struct target *target,
1159 struct breakpoint *breakpoint)
1161 return target->type->remove_breakpoint(target, breakpoint);
1164 int target_add_watchpoint(struct target *target,
1165 struct watchpoint *watchpoint)
1167 if (target->state != TARGET_HALTED) {
1168 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1169 return ERROR_TARGET_NOT_HALTED;
1171 return target->type->add_watchpoint(target, watchpoint);
1173 int target_remove_watchpoint(struct target *target,
1174 struct watchpoint *watchpoint)
1176 return target->type->remove_watchpoint(target, watchpoint);
1178 int target_hit_watchpoint(struct target *target,
1179 struct watchpoint **hit_watchpoint)
1181 if (target->state != TARGET_HALTED) {
1182 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1183 return ERROR_TARGET_NOT_HALTED;
1186 if (target->type->hit_watchpoint == NULL) {
1187 /* For backward compatible, if hit_watchpoint is not implemented,
1188 * return ERROR_FAIL such that gdb_server will not take the nonsense
1189 * information. */
1190 return ERROR_FAIL;
1193 return target->type->hit_watchpoint(target, hit_watchpoint);
1196 int target_get_gdb_reg_list(struct target *target,
1197 struct reg **reg_list[], int *reg_list_size,
1198 enum target_register_class reg_class)
1200 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1202 int target_step(struct target *target,
1203 int current, target_addr_t address, int handle_breakpoints)
1205 return target->type->step(target, current, address, handle_breakpoints);
1208 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1210 if (target->state != TARGET_HALTED) {
1211 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1212 return ERROR_TARGET_NOT_HALTED;
1214 return target->type->get_gdb_fileio_info(target, fileio_info);
1217 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1219 if (target->state != TARGET_HALTED) {
1220 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1221 return ERROR_TARGET_NOT_HALTED;
1223 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1226 int target_profiling(struct target *target, uint32_t *samples,
1227 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1229 if (target->state != TARGET_HALTED) {
1230 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1231 return ERROR_TARGET_NOT_HALTED;
1233 return target->type->profiling(target, samples, max_num_samples,
1234 num_samples, seconds);
1238 * Reset the @c examined flag for the given target.
1239 * Pure paranoia -- targets are zeroed on allocation.
1241 static void target_reset_examined(struct target *target)
1243 target->examined = false;
1246 static int handle_target(void *priv);
1248 static int target_init_one(struct command_context *cmd_ctx,
1249 struct target *target)
1251 target_reset_examined(target);
1253 struct target_type *type = target->type;
1254 if (type->examine == NULL)
1255 type->examine = default_examine;
1257 if (type->check_reset == NULL)
1258 type->check_reset = default_check_reset;
1260 assert(type->init_target != NULL);
1262 int retval = type->init_target(cmd_ctx, target);
1263 if (ERROR_OK != retval) {
1264 LOG_ERROR("target '%s' init failed", target_name(target));
1265 return retval;
1268 /* Sanity-check MMU support ... stub in what we must, to help
1269 * implement it in stages, but warn if we need to do so.
1271 if (type->mmu) {
1272 if (type->virt2phys == NULL) {
1273 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1274 type->virt2phys = identity_virt2phys;
1276 } else {
1277 /* Make sure no-MMU targets all behave the same: make no
1278 * distinction between physical and virtual addresses, and
1279 * ensure that virt2phys() is always an identity mapping.
1281 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1282 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1284 type->mmu = no_mmu;
1285 type->write_phys_memory = type->write_memory;
1286 type->read_phys_memory = type->read_memory;
1287 type->virt2phys = identity_virt2phys;
1290 if (target->type->read_buffer == NULL)
1291 target->type->read_buffer = target_read_buffer_default;
1293 if (target->type->write_buffer == NULL)
1294 target->type->write_buffer = target_write_buffer_default;
1296 if (target->type->get_gdb_fileio_info == NULL)
1297 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1299 if (target->type->gdb_fileio_end == NULL)
1300 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1302 if (target->type->profiling == NULL)
1303 target->type->profiling = target_profiling_default;
1305 return ERROR_OK;
1308 static int target_init(struct command_context *cmd_ctx)
1310 struct target *target;
1311 int retval;
1313 for (target = all_targets; target; target = target->next) {
1314 retval = target_init_one(cmd_ctx, target);
1315 if (ERROR_OK != retval)
1316 return retval;
1319 if (!all_targets)
1320 return ERROR_OK;
1322 retval = target_register_user_commands(cmd_ctx);
1323 if (ERROR_OK != retval)
1324 return retval;
1326 retval = target_register_timer_callback(&handle_target,
1327 polling_interval, 1, cmd_ctx->interp);
1328 if (ERROR_OK != retval)
1329 return retval;
1331 return ERROR_OK;
1334 COMMAND_HANDLER(handle_target_init_command)
1336 int retval;
1338 if (CMD_ARGC != 0)
1339 return ERROR_COMMAND_SYNTAX_ERROR;
1341 static bool target_initialized;
1342 if (target_initialized) {
1343 LOG_INFO("'target init' has already been called");
1344 return ERROR_OK;
1346 target_initialized = true;
1348 retval = command_run_line(CMD_CTX, "init_targets");
1349 if (ERROR_OK != retval)
1350 return retval;
1352 retval = command_run_line(CMD_CTX, "init_target_events");
1353 if (ERROR_OK != retval)
1354 return retval;
1356 retval = command_run_line(CMD_CTX, "init_board");
1357 if (ERROR_OK != retval)
1358 return retval;
1360 LOG_DEBUG("Initializing targets...");
1361 return target_init(CMD_CTX);
1364 int target_register_event_callback(int (*callback)(struct target *target,
1365 enum target_event event, void *priv), void *priv)
1367 struct target_event_callback **callbacks_p = &target_event_callbacks;
1369 if (callback == NULL)
1370 return ERROR_COMMAND_SYNTAX_ERROR;
1372 if (*callbacks_p) {
1373 while ((*callbacks_p)->next)
1374 callbacks_p = &((*callbacks_p)->next);
1375 callbacks_p = &((*callbacks_p)->next);
1378 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1379 (*callbacks_p)->callback = callback;
1380 (*callbacks_p)->priv = priv;
1381 (*callbacks_p)->next = NULL;
1383 return ERROR_OK;
1386 int target_register_reset_callback(int (*callback)(struct target *target,
1387 enum target_reset_mode reset_mode, void *priv), void *priv)
1389 struct target_reset_callback *entry;
1391 if (callback == NULL)
1392 return ERROR_COMMAND_SYNTAX_ERROR;
1394 entry = malloc(sizeof(struct target_reset_callback));
1395 if (entry == NULL) {
1396 LOG_ERROR("error allocating buffer for reset callback entry");
1397 return ERROR_COMMAND_SYNTAX_ERROR;
1400 entry->callback = callback;
1401 entry->priv = priv;
1402 list_add(&entry->list, &target_reset_callback_list);
1405 return ERROR_OK;
1408 int target_register_trace_callback(int (*callback)(struct target *target,
1409 size_t len, uint8_t *data, void *priv), void *priv)
1411 struct target_trace_callback *entry;
1413 if (callback == NULL)
1414 return ERROR_COMMAND_SYNTAX_ERROR;
1416 entry = malloc(sizeof(struct target_trace_callback));
1417 if (entry == NULL) {
1418 LOG_ERROR("error allocating buffer for trace callback entry");
1419 return ERROR_COMMAND_SYNTAX_ERROR;
1422 entry->callback = callback;
1423 entry->priv = priv;
1424 list_add(&entry->list, &target_trace_callback_list);
1427 return ERROR_OK;
1430 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1432 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1434 if (callback == NULL)
1435 return ERROR_COMMAND_SYNTAX_ERROR;
1437 if (*callbacks_p) {
1438 while ((*callbacks_p)->next)
1439 callbacks_p = &((*callbacks_p)->next);
1440 callbacks_p = &((*callbacks_p)->next);
1443 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1444 (*callbacks_p)->callback = callback;
1445 (*callbacks_p)->periodic = periodic;
1446 (*callbacks_p)->time_ms = time_ms;
1447 (*callbacks_p)->removed = false;
1449 gettimeofday(&(*callbacks_p)->when, NULL);
1450 timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1452 (*callbacks_p)->priv = priv;
1453 (*callbacks_p)->next = NULL;
1455 return ERROR_OK;
1458 int target_unregister_event_callback(int (*callback)(struct target *target,
1459 enum target_event event, void *priv), void *priv)
1461 struct target_event_callback **p = &target_event_callbacks;
1462 struct target_event_callback *c = target_event_callbacks;
1464 if (callback == NULL)
1465 return ERROR_COMMAND_SYNTAX_ERROR;
1467 while (c) {
1468 struct target_event_callback *next = c->next;
1469 if ((c->callback == callback) && (c->priv == priv)) {
1470 *p = next;
1471 free(c);
1472 return ERROR_OK;
1473 } else
1474 p = &(c->next);
1475 c = next;
1478 return ERROR_OK;
1481 int target_unregister_reset_callback(int (*callback)(struct target *target,
1482 enum target_reset_mode reset_mode, void *priv), void *priv)
1484 struct target_reset_callback *entry;
1486 if (callback == NULL)
1487 return ERROR_COMMAND_SYNTAX_ERROR;
1489 list_for_each_entry(entry, &target_reset_callback_list, list) {
1490 if (entry->callback == callback && entry->priv == priv) {
1491 list_del(&entry->list);
1492 free(entry);
1493 break;
1497 return ERROR_OK;
1500 int target_unregister_trace_callback(int (*callback)(struct target *target,
1501 size_t len, uint8_t *data, void *priv), void *priv)
1503 struct target_trace_callback *entry;
1505 if (callback == NULL)
1506 return ERROR_COMMAND_SYNTAX_ERROR;
1508 list_for_each_entry(entry, &target_trace_callback_list, list) {
1509 if (entry->callback == callback && entry->priv == priv) {
1510 list_del(&entry->list);
1511 free(entry);
1512 break;
1516 return ERROR_OK;
1519 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1521 if (callback == NULL)
1522 return ERROR_COMMAND_SYNTAX_ERROR;
1524 for (struct target_timer_callback *c = target_timer_callbacks;
1525 c; c = c->next) {
1526 if ((c->callback == callback) && (c->priv == priv)) {
1527 c->removed = true;
1528 return ERROR_OK;
1532 return ERROR_FAIL;
1535 int target_call_event_callbacks(struct target *target, enum target_event event)
1537 struct target_event_callback *callback = target_event_callbacks;
1538 struct target_event_callback *next_callback;
1540 if (event == TARGET_EVENT_HALTED) {
1541 /* execute early halted first */
1542 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1545 LOG_DEBUG("target event %i (%s)", event,
1546 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1548 target_handle_event(target, event);
1550 while (callback) {
1551 next_callback = callback->next;
1552 callback->callback(target, event, callback->priv);
1553 callback = next_callback;
1556 return ERROR_OK;
1559 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1561 struct target_reset_callback *callback;
1563 LOG_DEBUG("target reset %i (%s)", reset_mode,
1564 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1566 list_for_each_entry(callback, &target_reset_callback_list, list)
1567 callback->callback(target, reset_mode, callback->priv);
1569 return ERROR_OK;
1572 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1574 struct target_trace_callback *callback;
1576 list_for_each_entry(callback, &target_trace_callback_list, list)
1577 callback->callback(target, len, data, callback->priv);
1579 return ERROR_OK;
1582 static int target_timer_callback_periodic_restart(
1583 struct target_timer_callback *cb, struct timeval *now)
1585 cb->when = *now;
1586 timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1587 return ERROR_OK;
1590 static int target_call_timer_callback(struct target_timer_callback *cb,
1591 struct timeval *now)
1593 cb->callback(cb->priv);
1595 if (cb->periodic)
1596 return target_timer_callback_periodic_restart(cb, now);
1598 return target_unregister_timer_callback(cb->callback, cb->priv);
1601 static int target_call_timer_callbacks_check_time(int checktime)
1603 static bool callback_processing;
1605 /* Do not allow nesting */
1606 if (callback_processing)
1607 return ERROR_OK;
1609 callback_processing = true;
1611 keep_alive();
1613 struct timeval now;
1614 gettimeofday(&now, NULL);
1616 /* Store an address of the place containing a pointer to the
1617 * next item; initially, that's a standalone "root of the
1618 * list" variable. */
1619 struct target_timer_callback **callback = &target_timer_callbacks;
1620 while (*callback) {
1621 if ((*callback)->removed) {
1622 struct target_timer_callback *p = *callback;
1623 *callback = (*callback)->next;
1624 free(p);
1625 continue;
1628 bool call_it = (*callback)->callback &&
1629 ((!checktime && (*callback)->periodic) ||
1630 timeval_compare(&now, &(*callback)->when) >= 0);
1632 if (call_it)
1633 target_call_timer_callback(*callback, &now);
1635 callback = &(*callback)->next;
1638 callback_processing = false;
1639 return ERROR_OK;
1642 int target_call_timer_callbacks(void)
1644 return target_call_timer_callbacks_check_time(1);
1647 /* invoke periodic callbacks immediately */
1648 int target_call_timer_callbacks_now(void)
1650 return target_call_timer_callbacks_check_time(0);
1653 /* Prints the working area layout for debug purposes */
1654 static void print_wa_layout(struct target *target)
1656 struct working_area *c = target->working_areas;
1658 while (c) {
1659 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1660 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1661 c->address, c->address + c->size - 1, c->size);
1662 c = c->next;
1666 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1667 static void target_split_working_area(struct working_area *area, uint32_t size)
1669 assert(area->free); /* Shouldn't split an allocated area */
1670 assert(size <= area->size); /* Caller should guarantee this */
1672 /* Split only if not already the right size */
1673 if (size < area->size) {
1674 struct working_area *new_wa = malloc(sizeof(*new_wa));
1676 if (new_wa == NULL)
1677 return;
1679 new_wa->next = area->next;
1680 new_wa->size = area->size - size;
1681 new_wa->address = area->address + size;
1682 new_wa->backup = NULL;
1683 new_wa->user = NULL;
1684 new_wa->free = true;
1686 area->next = new_wa;
1687 area->size = size;
1689 /* If backup memory was allocated to this area, it has the wrong size
1690 * now so free it and it will be reallocated if/when needed */
1691 if (area->backup) {
1692 free(area->backup);
1693 area->backup = NULL;
1698 /* Merge all adjacent free areas into one */
1699 static void target_merge_working_areas(struct target *target)
1701 struct working_area *c = target->working_areas;
1703 while (c && c->next) {
1704 assert(c->next->address == c->address + c->size); /* This is an invariant */
1706 /* Find two adjacent free areas */
1707 if (c->free && c->next->free) {
1708 /* Merge the last into the first */
1709 c->size += c->next->size;
1711 /* Remove the last */
1712 struct working_area *to_be_freed = c->next;
1713 c->next = c->next->next;
1714 if (to_be_freed->backup)
1715 free(to_be_freed->backup);
1716 free(to_be_freed);
1718 /* If backup memory was allocated to the remaining area, it's has
1719 * the wrong size now */
1720 if (c->backup) {
1721 free(c->backup);
1722 c->backup = NULL;
1724 } else {
1725 c = c->next;
1730 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1732 /* Reevaluate working area address based on MMU state*/
1733 if (target->working_areas == NULL) {
1734 int retval;
1735 int enabled;
1737 retval = target->type->mmu(target, &enabled);
1738 if (retval != ERROR_OK)
1739 return retval;
1741 if (!enabled) {
1742 if (target->working_area_phys_spec) {
1743 LOG_DEBUG("MMU disabled, using physical "
1744 "address for working memory " TARGET_ADDR_FMT,
1745 target->working_area_phys);
1746 target->working_area = target->working_area_phys;
1747 } else {
1748 LOG_ERROR("No working memory available. "
1749 "Specify -work-area-phys to target.");
1750 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1752 } else {
1753 if (target->working_area_virt_spec) {
1754 LOG_DEBUG("MMU enabled, using virtual "
1755 "address for working memory " TARGET_ADDR_FMT,
1756 target->working_area_virt);
1757 target->working_area = target->working_area_virt;
1758 } else {
1759 LOG_ERROR("No working memory available. "
1760 "Specify -work-area-virt to target.");
1761 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1765 /* Set up initial working area on first call */
1766 struct working_area *new_wa = malloc(sizeof(*new_wa));
1767 if (new_wa) {
1768 new_wa->next = NULL;
1769 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1770 new_wa->address = target->working_area;
1771 new_wa->backup = NULL;
1772 new_wa->user = NULL;
1773 new_wa->free = true;
1776 target->working_areas = new_wa;
1779 /* only allocate multiples of 4 byte */
1780 if (size % 4)
1781 size = (size + 3) & (~3UL);
1783 struct working_area *c = target->working_areas;
1785 /* Find the first large enough working area */
1786 while (c) {
1787 if (c->free && c->size >= size)
1788 break;
1789 c = c->next;
1792 if (c == NULL)
1793 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1795 /* Split the working area into the requested size */
1796 target_split_working_area(c, size);
1798 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1799 size, c->address);
1801 if (target->backup_working_area) {
1802 if (c->backup == NULL) {
1803 c->backup = malloc(c->size);
1804 if (c->backup == NULL)
1805 return ERROR_FAIL;
1808 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1809 if (retval != ERROR_OK)
1810 return retval;
1813 /* mark as used, and return the new (reused) area */
1814 c->free = false;
1815 *area = c;
1817 /* user pointer */
1818 c->user = area;
1820 print_wa_layout(target);
1822 return ERROR_OK;
1825 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1827 int retval;
1829 retval = target_alloc_working_area_try(target, size, area);
1830 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1831 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1832 return retval;
1836 static int target_restore_working_area(struct target *target, struct working_area *area)
1838 int retval = ERROR_OK;
1840 if (target->backup_working_area && area->backup != NULL) {
1841 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1842 if (retval != ERROR_OK)
1843 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1844 area->size, area->address);
1847 return retval;
1850 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1851 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1853 int retval = ERROR_OK;
1855 if (area->free)
1856 return retval;
1858 if (restore) {
1859 retval = target_restore_working_area(target, area);
1860 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1861 if (retval != ERROR_OK)
1862 return retval;
1865 area->free = true;
1867 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1868 area->size, area->address);
1870 /* mark user pointer invalid */
1871 /* TODO: Is this really safe? It points to some previous caller's memory.
1872 * How could we know that the area pointer is still in that place and not
1873 * some other vital data? What's the purpose of this, anyway? */
1874 *area->user = NULL;
1875 area->user = NULL;
1877 target_merge_working_areas(target);
1879 print_wa_layout(target);
1881 return retval;
1884 int target_free_working_area(struct target *target, struct working_area *area)
1886 return target_free_working_area_restore(target, area, 1);
1889 static void target_destroy(struct target *target)
1891 if (target->type->deinit_target)
1892 target->type->deinit_target(target);
1894 free(target->type);
1895 free(target->trace_info);
1896 free(target->cmd_name);
1897 free(target);
1900 void target_quit(void)
1902 struct target_event_callback *pe = target_event_callbacks;
1903 while (pe) {
1904 struct target_event_callback *t = pe->next;
1905 free(pe);
1906 pe = t;
1908 target_event_callbacks = NULL;
1910 struct target_timer_callback *pt = target_timer_callbacks;
1911 while (pt) {
1912 struct target_timer_callback *t = pt->next;
1913 free(pt);
1914 pt = t;
1916 target_timer_callbacks = NULL;
1918 for (struct target *target = all_targets; target;) {
1919 struct target *tmp;
1921 tmp = target->next;
1922 target_destroy(target);
1923 target = tmp;
1926 all_targets = NULL;
1929 /* free resources and restore memory, if restoring memory fails,
1930 * free up resources anyway
1932 static void target_free_all_working_areas_restore(struct target *target, int restore)
1934 struct working_area *c = target->working_areas;
1936 LOG_DEBUG("freeing all working areas");
1938 /* Loop through all areas, restoring the allocated ones and marking them as free */
1939 while (c) {
1940 if (!c->free) {
1941 if (restore)
1942 target_restore_working_area(target, c);
1943 c->free = true;
1944 *c->user = NULL; /* Same as above */
1945 c->user = NULL;
1947 c = c->next;
1950 /* Run a merge pass to combine all areas into one */
1951 target_merge_working_areas(target);
1953 print_wa_layout(target);
1956 void target_free_all_working_areas(struct target *target)
1958 target_free_all_working_areas_restore(target, 1);
1961 /* Find the largest number of bytes that can be allocated */
1962 uint32_t target_get_working_area_avail(struct target *target)
1964 struct working_area *c = target->working_areas;
1965 uint32_t max_size = 0;
1967 if (c == NULL)
1968 return target->working_area_size;
1970 while (c) {
1971 if (c->free && max_size < c->size)
1972 max_size = c->size;
1974 c = c->next;
1977 return max_size;
1980 int target_arch_state(struct target *target)
1982 int retval;
1983 if (target == NULL) {
1984 LOG_WARNING("No target has been configured");
1985 return ERROR_OK;
1988 if (target->state != TARGET_HALTED)
1989 return ERROR_OK;
1991 retval = target->type->arch_state(target);
1992 return retval;
1995 static int target_get_gdb_fileio_info_default(struct target *target,
1996 struct gdb_fileio_info *fileio_info)
1998 /* If target does not support semi-hosting function, target
1999 has no need to provide .get_gdb_fileio_info callback.
2000 It just return ERROR_FAIL and gdb_server will return "Txx"
2001 as target halted every time. */
2002 return ERROR_FAIL;
2005 static int target_gdb_fileio_end_default(struct target *target,
2006 int retcode, int fileio_errno, bool ctrl_c)
2008 return ERROR_OK;
2011 static int target_profiling_default(struct target *target, uint32_t *samples,
2012 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2014 struct timeval timeout, now;
2016 gettimeofday(&timeout, NULL);
2017 timeval_add_time(&timeout, seconds, 0);
2019 LOG_INFO("Starting profiling. Halting and resuming the"
2020 " target as often as we can...");
2022 uint32_t sample_count = 0;
2023 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2024 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2026 int retval = ERROR_OK;
2027 for (;;) {
2028 target_poll(target);
2029 if (target->state == TARGET_HALTED) {
2030 uint32_t t = buf_get_u32(reg->value, 0, 32);
2031 samples[sample_count++] = t;
2032 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2033 retval = target_resume(target, 1, 0, 0, 0);
2034 target_poll(target);
2035 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2036 } else if (target->state == TARGET_RUNNING) {
2037 /* We want to quickly sample the PC. */
2038 retval = target_halt(target);
2039 } else {
2040 LOG_INFO("Target not halted or running");
2041 retval = ERROR_OK;
2042 break;
2045 if (retval != ERROR_OK)
2046 break;
2048 gettimeofday(&now, NULL);
2049 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2050 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2051 break;
2055 *num_samples = sample_count;
2056 return retval;
2059 /* Single aligned words are guaranteed to use 16 or 32 bit access
2060 * mode respectively, otherwise data is handled as quickly as
2061 * possible
2063 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2065 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2066 size, address);
2068 if (!target_was_examined(target)) {
2069 LOG_ERROR("Target not examined yet");
2070 return ERROR_FAIL;
2073 if (size == 0)
2074 return ERROR_OK;
2076 if ((address + size - 1) < address) {
2077 /* GDB can request this when e.g. PC is 0xfffffffc */
2078 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2079 address,
2080 size);
2081 return ERROR_FAIL;
2084 return target->type->write_buffer(target, address, size, buffer);
2087 static int target_write_buffer_default(struct target *target,
2088 target_addr_t address, uint32_t count, const uint8_t *buffer)
2090 uint32_t size;
2092 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2093 * will have something to do with the size we leave to it. */
2094 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2095 if (address & size) {
2096 int retval = target_write_memory(target, address, size, 1, buffer);
2097 if (retval != ERROR_OK)
2098 return retval;
2099 address += size;
2100 count -= size;
2101 buffer += size;
2105 /* Write the data with as large access size as possible. */
2106 for (; size > 0; size /= 2) {
2107 uint32_t aligned = count - count % size;
2108 if (aligned > 0) {
2109 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2110 if (retval != ERROR_OK)
2111 return retval;
2112 address += aligned;
2113 count -= aligned;
2114 buffer += aligned;
2118 return ERROR_OK;
2121 /* Single aligned words are guaranteed to use 16 or 32 bit access
2122 * mode respectively, otherwise data is handled as quickly as
2123 * possible
2125 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2127 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2128 size, address);
2130 if (!target_was_examined(target)) {
2131 LOG_ERROR("Target not examined yet");
2132 return ERROR_FAIL;
2135 if (size == 0)
2136 return ERROR_OK;
2138 if ((address + size - 1) < address) {
2139 /* GDB can request this when e.g. PC is 0xfffffffc */
2140 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2141 address,
2142 size);
2143 return ERROR_FAIL;
2146 return target->type->read_buffer(target, address, size, buffer);
2149 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2151 uint32_t size;
2153 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2154 * will have something to do with the size we leave to it. */
2155 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2156 if (address & size) {
2157 int retval = target_read_memory(target, address, size, 1, buffer);
2158 if (retval != ERROR_OK)
2159 return retval;
2160 address += size;
2161 count -= size;
2162 buffer += size;
2166 /* Read the data with as large access size as possible. */
2167 for (; size > 0; size /= 2) {
2168 uint32_t aligned = count - count % size;
2169 if (aligned > 0) {
2170 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2171 if (retval != ERROR_OK)
2172 return retval;
2173 address += aligned;
2174 count -= aligned;
2175 buffer += aligned;
2179 return ERROR_OK;
2182 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2184 uint8_t *buffer;
2185 int retval;
2186 uint32_t i;
2187 uint32_t checksum = 0;
2188 if (!target_was_examined(target)) {
2189 LOG_ERROR("Target not examined yet");
2190 return ERROR_FAIL;
2193 retval = target->type->checksum_memory(target, address, size, &checksum);
2194 if (retval != ERROR_OK) {
2195 buffer = malloc(size);
2196 if (buffer == NULL) {
2197 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2198 return ERROR_COMMAND_SYNTAX_ERROR;
2200 retval = target_read_buffer(target, address, size, buffer);
2201 if (retval != ERROR_OK) {
2202 free(buffer);
2203 return retval;
2206 /* convert to target endianness */
2207 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2208 uint32_t target_data;
2209 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2210 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2213 retval = image_calculate_checksum(buffer, size, &checksum);
2214 free(buffer);
2217 *crc = checksum;
2219 return retval;
2222 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2223 uint8_t erased_value)
2225 int retval;
2226 if (!target_was_examined(target)) {
2227 LOG_ERROR("Target not examined yet");
2228 return ERROR_FAIL;
2231 if (target->type->blank_check_memory == 0)
2232 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2234 retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2236 return retval;
2239 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2241 uint8_t value_buf[8];
2242 if (!target_was_examined(target)) {
2243 LOG_ERROR("Target not examined yet");
2244 return ERROR_FAIL;
2247 int retval = target_read_memory(target, address, 8, 1, value_buf);
2249 if (retval == ERROR_OK) {
2250 *value = target_buffer_get_u64(target, value_buf);
2251 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2252 address,
2253 *value);
2254 } else {
2255 *value = 0x0;
2256 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2257 address);
2260 return retval;
2263 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2265 uint8_t value_buf[4];
2266 if (!target_was_examined(target)) {
2267 LOG_ERROR("Target not examined yet");
2268 return ERROR_FAIL;
2271 int retval = target_read_memory(target, address, 4, 1, value_buf);
2273 if (retval == ERROR_OK) {
2274 *value = target_buffer_get_u32(target, value_buf);
2275 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2276 address,
2277 *value);
2278 } else {
2279 *value = 0x0;
2280 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2281 address);
2284 return retval;
2287 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2289 uint8_t value_buf[2];
2290 if (!target_was_examined(target)) {
2291 LOG_ERROR("Target not examined yet");
2292 return ERROR_FAIL;
2295 int retval = target_read_memory(target, address, 2, 1, value_buf);
2297 if (retval == ERROR_OK) {
2298 *value = target_buffer_get_u16(target, value_buf);
2299 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2300 address,
2301 *value);
2302 } else {
2303 *value = 0x0;
2304 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2305 address);
2308 return retval;
2311 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2313 if (!target_was_examined(target)) {
2314 LOG_ERROR("Target not examined yet");
2315 return ERROR_FAIL;
2318 int retval = target_read_memory(target, address, 1, 1, value);
2320 if (retval == ERROR_OK) {
2321 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2322 address,
2323 *value);
2324 } else {
2325 *value = 0x0;
2326 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2327 address);
2330 return retval;
2333 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2335 int retval;
2336 uint8_t value_buf[8];
2337 if (!target_was_examined(target)) {
2338 LOG_ERROR("Target not examined yet");
2339 return ERROR_FAIL;
2342 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2343 address,
2344 value);
2346 target_buffer_set_u64(target, value_buf, value);
2347 retval = target_write_memory(target, address, 8, 1, value_buf);
2348 if (retval != ERROR_OK)
2349 LOG_DEBUG("failed: %i", retval);
2351 return retval;
2354 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2356 int retval;
2357 uint8_t value_buf[4];
2358 if (!target_was_examined(target)) {
2359 LOG_ERROR("Target not examined yet");
2360 return ERROR_FAIL;
2363 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2364 address,
2365 value);
2367 target_buffer_set_u32(target, value_buf, value);
2368 retval = target_write_memory(target, address, 4, 1, value_buf);
2369 if (retval != ERROR_OK)
2370 LOG_DEBUG("failed: %i", retval);
2372 return retval;
2375 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2377 int retval;
2378 uint8_t value_buf[2];
2379 if (!target_was_examined(target)) {
2380 LOG_ERROR("Target not examined yet");
2381 return ERROR_FAIL;
2384 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2385 address,
2386 value);
2388 target_buffer_set_u16(target, value_buf, value);
2389 retval = target_write_memory(target, address, 2, 1, value_buf);
2390 if (retval != ERROR_OK)
2391 LOG_DEBUG("failed: %i", retval);
2393 return retval;
2396 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2398 int retval;
2399 if (!target_was_examined(target)) {
2400 LOG_ERROR("Target not examined yet");
2401 return ERROR_FAIL;
2404 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2405 address, value);
2407 retval = target_write_memory(target, address, 1, 1, &value);
2408 if (retval != ERROR_OK)
2409 LOG_DEBUG("failed: %i", retval);
2411 return retval;
2414 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2416 int retval;
2417 uint8_t value_buf[8];
2418 if (!target_was_examined(target)) {
2419 LOG_ERROR("Target not examined yet");
2420 return ERROR_FAIL;
2423 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2424 address,
2425 value);
2427 target_buffer_set_u64(target, value_buf, value);
2428 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2429 if (retval != ERROR_OK)
2430 LOG_DEBUG("failed: %i", retval);
2432 return retval;
2435 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2437 int retval;
2438 uint8_t value_buf[4];
2439 if (!target_was_examined(target)) {
2440 LOG_ERROR("Target not examined yet");
2441 return ERROR_FAIL;
2444 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2445 address,
2446 value);
2448 target_buffer_set_u32(target, value_buf, value);
2449 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2450 if (retval != ERROR_OK)
2451 LOG_DEBUG("failed: %i", retval);
2453 return retval;
2456 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2458 int retval;
2459 uint8_t value_buf[2];
2460 if (!target_was_examined(target)) {
2461 LOG_ERROR("Target not examined yet");
2462 return ERROR_FAIL;
2465 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2466 address,
2467 value);
2469 target_buffer_set_u16(target, value_buf, value);
2470 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2471 if (retval != ERROR_OK)
2472 LOG_DEBUG("failed: %i", retval);
2474 return retval;
2477 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2479 int retval;
2480 if (!target_was_examined(target)) {
2481 LOG_ERROR("Target not examined yet");
2482 return ERROR_FAIL;
2485 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2486 address, value);
2488 retval = target_write_phys_memory(target, address, 1, 1, &value);
2489 if (retval != ERROR_OK)
2490 LOG_DEBUG("failed: %i", retval);
2492 return retval;
2495 static int find_target(struct command_context *cmd_ctx, const char *name)
2497 struct target *target = get_target(name);
2498 if (target == NULL) {
2499 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2500 return ERROR_FAIL;
2502 if (!target->tap->enabled) {
2503 LOG_USER("Target: TAP %s is disabled, "
2504 "can't be the current target\n",
2505 target->tap->dotted_name);
2506 return ERROR_FAIL;
2509 cmd_ctx->current_target = target->target_number;
2510 return ERROR_OK;
2514 COMMAND_HANDLER(handle_targets_command)
2516 int retval = ERROR_OK;
2517 if (CMD_ARGC == 1) {
2518 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2519 if (retval == ERROR_OK) {
2520 /* we're done! */
2521 return retval;
2525 struct target *target = all_targets;
2526 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2527 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2528 while (target) {
2529 const char *state;
2530 char marker = ' ';
2532 if (target->tap->enabled)
2533 state = target_state_name(target);
2534 else
2535 state = "tap-disabled";
2537 if (CMD_CTX->current_target == target->target_number)
2538 marker = '*';
2540 /* keep columns lined up to match the headers above */
2541 command_print(CMD_CTX,
2542 "%2d%c %-18s %-10s %-6s %-18s %s",
2543 target->target_number,
2544 marker,
2545 target_name(target),
2546 target_type_name(target),
2547 Jim_Nvp_value2name_simple(nvp_target_endian,
2548 target->endianness)->name,
2549 target->tap->dotted_name,
2550 state);
2551 target = target->next;
2554 return retval;
2557 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2559 static int powerDropout;
2560 static int srstAsserted;
2562 static int runPowerRestore;
2563 static int runPowerDropout;
2564 static int runSrstAsserted;
2565 static int runSrstDeasserted;
2567 static int sense_handler(void)
2569 static int prevSrstAsserted;
2570 static int prevPowerdropout;
2572 int retval = jtag_power_dropout(&powerDropout);
2573 if (retval != ERROR_OK)
2574 return retval;
2576 int powerRestored;
2577 powerRestored = prevPowerdropout && !powerDropout;
2578 if (powerRestored)
2579 runPowerRestore = 1;
2581 int64_t current = timeval_ms();
2582 static int64_t lastPower;
2583 bool waitMore = lastPower + 2000 > current;
2584 if (powerDropout && !waitMore) {
2585 runPowerDropout = 1;
2586 lastPower = current;
2589 retval = jtag_srst_asserted(&srstAsserted);
2590 if (retval != ERROR_OK)
2591 return retval;
2593 int srstDeasserted;
2594 srstDeasserted = prevSrstAsserted && !srstAsserted;
2596 static int64_t lastSrst;
2597 waitMore = lastSrst + 2000 > current;
2598 if (srstDeasserted && !waitMore) {
2599 runSrstDeasserted = 1;
2600 lastSrst = current;
2603 if (!prevSrstAsserted && srstAsserted)
2604 runSrstAsserted = 1;
2606 prevSrstAsserted = srstAsserted;
2607 prevPowerdropout = powerDropout;
2609 if (srstDeasserted || powerRestored) {
2610 /* Other than logging the event we can't do anything here.
2611 * Issuing a reset is a particularly bad idea as we might
2612 * be inside a reset already.
2616 return ERROR_OK;
2619 /* process target state changes */
2620 static int handle_target(void *priv)
2622 Jim_Interp *interp = (Jim_Interp *)priv;
2623 int retval = ERROR_OK;
2625 if (!is_jtag_poll_safe()) {
2626 /* polling is disabled currently */
2627 return ERROR_OK;
2630 /* we do not want to recurse here... */
2631 static int recursive;
2632 if (!recursive) {
2633 recursive = 1;
2634 sense_handler();
2635 /* danger! running these procedures can trigger srst assertions and power dropouts.
2636 * We need to avoid an infinite loop/recursion here and we do that by
2637 * clearing the flags after running these events.
2639 int did_something = 0;
2640 if (runSrstAsserted) {
2641 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2642 Jim_Eval(interp, "srst_asserted");
2643 did_something = 1;
2645 if (runSrstDeasserted) {
2646 Jim_Eval(interp, "srst_deasserted");
2647 did_something = 1;
2649 if (runPowerDropout) {
2650 LOG_INFO("Power dropout detected, running power_dropout proc.");
2651 Jim_Eval(interp, "power_dropout");
2652 did_something = 1;
2654 if (runPowerRestore) {
2655 Jim_Eval(interp, "power_restore");
2656 did_something = 1;
2659 if (did_something) {
2660 /* clear detect flags */
2661 sense_handler();
2664 /* clear action flags */
2666 runSrstAsserted = 0;
2667 runSrstDeasserted = 0;
2668 runPowerRestore = 0;
2669 runPowerDropout = 0;
2671 recursive = 0;
2674 /* Poll targets for state changes unless that's globally disabled.
2675 * Skip targets that are currently disabled.
2677 for (struct target *target = all_targets;
2678 is_jtag_poll_safe() && target;
2679 target = target->next) {
2681 if (!target_was_examined(target))
2682 continue;
2684 if (!target->tap->enabled)
2685 continue;
2687 if (target->backoff.times > target->backoff.count) {
2688 /* do not poll this time as we failed previously */
2689 target->backoff.count++;
2690 continue;
2692 target->backoff.count = 0;
2694 /* only poll target if we've got power and srst isn't asserted */
2695 if (!powerDropout && !srstAsserted) {
2696 /* polling may fail silently until the target has been examined */
2697 retval = target_poll(target);
2698 if (retval != ERROR_OK) {
2699 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2700 if (target->backoff.times * polling_interval < 5000) {
2701 target->backoff.times *= 2;
2702 target->backoff.times++;
2705 /* Tell GDB to halt the debugger. This allows the user to
2706 * run monitor commands to handle the situation.
2708 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2710 if (target->backoff.times > 0) {
2711 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2712 target_reset_examined(target);
2713 retval = target_examine_one(target);
2714 /* Target examination could have failed due to unstable connection,
2715 * but we set the examined flag anyway to repoll it later */
2716 if (retval != ERROR_OK) {
2717 target->examined = true;
2718 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2719 target->backoff.times * polling_interval);
2720 return retval;
2724 /* Since we succeeded, we reset backoff count */
2725 target->backoff.times = 0;
2729 return retval;
2732 COMMAND_HANDLER(handle_reg_command)
2734 struct target *target;
2735 struct reg *reg = NULL;
2736 unsigned count = 0;
2737 char *value;
2739 LOG_DEBUG("-");
2741 target = get_current_target(CMD_CTX);
2743 /* list all available registers for the current target */
2744 if (CMD_ARGC == 0) {
2745 struct reg_cache *cache = target->reg_cache;
2747 count = 0;
2748 while (cache) {
2749 unsigned i;
2751 command_print(CMD_CTX, "===== %s", cache->name);
2753 for (i = 0, reg = cache->reg_list;
2754 i < cache->num_regs;
2755 i++, reg++, count++) {
2756 /* only print cached values if they are valid */
2757 if (reg->valid) {
2758 value = buf_to_str(reg->value,
2759 reg->size, 16);
2760 command_print(CMD_CTX,
2761 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2762 count, reg->name,
2763 reg->size, value,
2764 reg->dirty
2765 ? " (dirty)"
2766 : "");
2767 free(value);
2768 } else {
2769 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2770 count, reg->name,
2771 reg->size) ;
2774 cache = cache->next;
2777 return ERROR_OK;
2780 /* access a single register by its ordinal number */
2781 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2782 unsigned num;
2783 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2785 struct reg_cache *cache = target->reg_cache;
2786 count = 0;
2787 while (cache) {
2788 unsigned i;
2789 for (i = 0; i < cache->num_regs; i++) {
2790 if (count++ == num) {
2791 reg = &cache->reg_list[i];
2792 break;
2795 if (reg)
2796 break;
2797 cache = cache->next;
2800 if (!reg) {
2801 command_print(CMD_CTX, "%i is out of bounds, the current target "
2802 "has only %i registers (0 - %i)", num, count, count - 1);
2803 return ERROR_OK;
2805 } else {
2806 /* access a single register by its name */
2807 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2809 if (!reg) {
2810 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2811 return ERROR_OK;
2815 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2817 /* display a register */
2818 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2819 && (CMD_ARGV[1][0] <= '9')))) {
2820 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2821 reg->valid = 0;
2823 if (reg->valid == 0)
2824 reg->type->get(reg);
2825 value = buf_to_str(reg->value, reg->size, 16);
2826 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2827 free(value);
2828 return ERROR_OK;
2831 /* set register value */
2832 if (CMD_ARGC == 2) {
2833 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2834 if (buf == NULL)
2835 return ERROR_FAIL;
2836 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2838 reg->type->set(reg, buf);
2840 value = buf_to_str(reg->value, reg->size, 16);
2841 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2842 free(value);
2844 free(buf);
2846 return ERROR_OK;
2849 return ERROR_COMMAND_SYNTAX_ERROR;
2852 COMMAND_HANDLER(handle_poll_command)
2854 int retval = ERROR_OK;
2855 struct target *target = get_current_target(CMD_CTX);
2857 if (CMD_ARGC == 0) {
2858 command_print(CMD_CTX, "background polling: %s",
2859 jtag_poll_get_enabled() ? "on" : "off");
2860 command_print(CMD_CTX, "TAP: %s (%s)",
2861 target->tap->dotted_name,
2862 target->tap->enabled ? "enabled" : "disabled");
2863 if (!target->tap->enabled)
2864 return ERROR_OK;
2865 retval = target_poll(target);
2866 if (retval != ERROR_OK)
2867 return retval;
2868 retval = target_arch_state(target);
2869 if (retval != ERROR_OK)
2870 return retval;
2871 } else if (CMD_ARGC == 1) {
2872 bool enable;
2873 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2874 jtag_poll_set_enabled(enable);
2875 } else
2876 return ERROR_COMMAND_SYNTAX_ERROR;
2878 return retval;
2881 COMMAND_HANDLER(handle_wait_halt_command)
2883 if (CMD_ARGC > 1)
2884 return ERROR_COMMAND_SYNTAX_ERROR;
2886 unsigned ms = DEFAULT_HALT_TIMEOUT;
2887 if (1 == CMD_ARGC) {
2888 int retval = parse_uint(CMD_ARGV[0], &ms);
2889 if (ERROR_OK != retval)
2890 return ERROR_COMMAND_SYNTAX_ERROR;
2893 struct target *target = get_current_target(CMD_CTX);
2894 return target_wait_state(target, TARGET_HALTED, ms);
2897 /* wait for target state to change. The trick here is to have a low
2898 * latency for short waits and not to suck up all the CPU time
2899 * on longer waits.
2901 * After 500ms, keep_alive() is invoked
2903 int target_wait_state(struct target *target, enum target_state state, int ms)
2905 int retval;
2906 int64_t then = 0, cur;
2907 bool once = true;
2909 for (;;) {
2910 retval = target_poll(target);
2911 if (retval != ERROR_OK)
2912 return retval;
2913 if (target->state == state)
2914 break;
2915 cur = timeval_ms();
2916 if (once) {
2917 once = false;
2918 then = timeval_ms();
2919 LOG_DEBUG("waiting for target %s...",
2920 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2923 if (cur-then > 500)
2924 keep_alive();
2926 if ((cur-then) > ms) {
2927 LOG_ERROR("timed out while waiting for target %s",
2928 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2929 return ERROR_FAIL;
2933 return ERROR_OK;
2936 COMMAND_HANDLER(handle_halt_command)
2938 LOG_DEBUG("-");
2940 struct target *target = get_current_target(CMD_CTX);
2941 int retval = target_halt(target);
2942 if (ERROR_OK != retval)
2943 return retval;
2945 if (CMD_ARGC == 1) {
2946 unsigned wait_local;
2947 retval = parse_uint(CMD_ARGV[0], &wait_local);
2948 if (ERROR_OK != retval)
2949 return ERROR_COMMAND_SYNTAX_ERROR;
2950 if (!wait_local)
2951 return ERROR_OK;
2954 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2957 COMMAND_HANDLER(handle_soft_reset_halt_command)
2959 struct target *target = get_current_target(CMD_CTX);
2961 LOG_USER("requesting target halt and executing a soft reset");
2963 target_soft_reset_halt(target);
2965 return ERROR_OK;
2968 COMMAND_HANDLER(handle_reset_command)
2970 if (CMD_ARGC > 1)
2971 return ERROR_COMMAND_SYNTAX_ERROR;
2973 enum target_reset_mode reset_mode = RESET_RUN;
2974 if (CMD_ARGC == 1) {
2975 const Jim_Nvp *n;
2976 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2977 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2978 return ERROR_COMMAND_SYNTAX_ERROR;
2979 reset_mode = n->value;
2982 /* reset *all* targets */
2983 return target_process_reset(CMD_CTX, reset_mode);
2987 COMMAND_HANDLER(handle_resume_command)
2989 int current = 1;
2990 if (CMD_ARGC > 1)
2991 return ERROR_COMMAND_SYNTAX_ERROR;
2993 struct target *target = get_current_target(CMD_CTX);
2995 /* with no CMD_ARGV, resume from current pc, addr = 0,
2996 * with one arguments, addr = CMD_ARGV[0],
2997 * handle breakpoints, not debugging */
2998 target_addr_t addr = 0;
2999 if (CMD_ARGC == 1) {
3000 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3001 current = 0;
3004 return target_resume(target, current, addr, 1, 0);
3007 COMMAND_HANDLER(handle_step_command)
3009 if (CMD_ARGC > 1)
3010 return ERROR_COMMAND_SYNTAX_ERROR;
3012 LOG_DEBUG("-");
3014 /* with no CMD_ARGV, step from current pc, addr = 0,
3015 * with one argument addr = CMD_ARGV[0],
3016 * handle breakpoints, debugging */
3017 target_addr_t addr = 0;
3018 int current_pc = 1;
3019 if (CMD_ARGC == 1) {
3020 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3021 current_pc = 0;
3024 struct target *target = get_current_target(CMD_CTX);
3026 return target->type->step(target, current_pc, addr, 1);
3029 static void handle_md_output(struct command_context *cmd_ctx,
3030 struct target *target, target_addr_t address, unsigned size,
3031 unsigned count, const uint8_t *buffer)
3033 const unsigned line_bytecnt = 32;
3034 unsigned line_modulo = line_bytecnt / size;
3036 char output[line_bytecnt * 4 + 1];
3037 unsigned output_len = 0;
3039 const char *value_fmt;
3040 switch (size) {
3041 case 8:
3042 value_fmt = "%16.16"PRIx64" ";
3043 break;
3044 case 4:
3045 value_fmt = "%8.8"PRIx64" ";
3046 break;
3047 case 2:
3048 value_fmt = "%4.4"PRIx64" ";
3049 break;
3050 case 1:
3051 value_fmt = "%2.2"PRIx64" ";
3052 break;
3053 default:
3054 /* "can't happen", caller checked */
3055 LOG_ERROR("invalid memory read size: %u", size);
3056 return;
3059 for (unsigned i = 0; i < count; i++) {
3060 if (i % line_modulo == 0) {
3061 output_len += snprintf(output + output_len,
3062 sizeof(output) - output_len,
3063 TARGET_ADDR_FMT ": ",
3064 (address + (i * size)));
3067 uint64_t value = 0;
3068 const uint8_t *value_ptr = buffer + i * size;
3069 switch (size) {
3070 case 8:
3071 value = target_buffer_get_u64(target, value_ptr);
3072 break;
3073 case 4:
3074 value = target_buffer_get_u32(target, value_ptr);
3075 break;
3076 case 2:
3077 value = target_buffer_get_u16(target, value_ptr);
3078 break;
3079 case 1:
3080 value = *value_ptr;
3082 output_len += snprintf(output + output_len,
3083 sizeof(output) - output_len,
3084 value_fmt, value);
3086 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3087 command_print(cmd_ctx, "%s", output);
3088 output_len = 0;
3093 COMMAND_HANDLER(handle_md_command)
3095 if (CMD_ARGC < 1)
3096 return ERROR_COMMAND_SYNTAX_ERROR;
3098 unsigned size = 0;
3099 switch (CMD_NAME[2]) {
3100 case 'd':
3101 size = 8;
3102 break;
3103 case 'w':
3104 size = 4;
3105 break;
3106 case 'h':
3107 size = 2;
3108 break;
3109 case 'b':
3110 size = 1;
3111 break;
3112 default:
3113 return ERROR_COMMAND_SYNTAX_ERROR;
3116 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3117 int (*fn)(struct target *target,
3118 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3119 if (physical) {
3120 CMD_ARGC--;
3121 CMD_ARGV++;
3122 fn = target_read_phys_memory;
3123 } else
3124 fn = target_read_memory;
3125 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3126 return ERROR_COMMAND_SYNTAX_ERROR;
3128 target_addr_t address;
3129 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3131 unsigned count = 1;
3132 if (CMD_ARGC == 2)
3133 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3135 uint8_t *buffer = calloc(count, size);
3136 if (buffer == NULL) {
3137 LOG_ERROR("Failed to allocate md read buffer");
3138 return ERROR_FAIL;
3141 struct target *target = get_current_target(CMD_CTX);
3142 int retval = fn(target, address, size, count, buffer);
3143 if (ERROR_OK == retval)
3144 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3146 free(buffer);
3148 return retval;
3151 typedef int (*target_write_fn)(struct target *target,
3152 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3154 static int target_fill_mem(struct target *target,
3155 target_addr_t address,
3156 target_write_fn fn,
3157 unsigned data_size,
3158 /* value */
3159 uint64_t b,
3160 /* count */
3161 unsigned c)
3163 /* We have to write in reasonably large chunks to be able
3164 * to fill large memory areas with any sane speed */
3165 const unsigned chunk_size = 16384;
3166 uint8_t *target_buf = malloc(chunk_size * data_size);
3167 if (target_buf == NULL) {
3168 LOG_ERROR("Out of memory");
3169 return ERROR_FAIL;
3172 for (unsigned i = 0; i < chunk_size; i++) {
3173 switch (data_size) {
3174 case 8:
3175 target_buffer_set_u64(target, target_buf + i * data_size, b);
3176 break;
3177 case 4:
3178 target_buffer_set_u32(target, target_buf + i * data_size, b);
3179 break;
3180 case 2:
3181 target_buffer_set_u16(target, target_buf + i * data_size, b);
3182 break;
3183 case 1:
3184 target_buffer_set_u8(target, target_buf + i * data_size, b);
3185 break;
3186 default:
3187 exit(-1);
3191 int retval = ERROR_OK;
3193 for (unsigned x = 0; x < c; x += chunk_size) {
3194 unsigned current;
3195 current = c - x;
3196 if (current > chunk_size)
3197 current = chunk_size;
3198 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3199 if (retval != ERROR_OK)
3200 break;
3201 /* avoid GDB timeouts */
3202 keep_alive();
3204 free(target_buf);
3206 return retval;
3210 COMMAND_HANDLER(handle_mw_command)
3212 if (CMD_ARGC < 2)
3213 return ERROR_COMMAND_SYNTAX_ERROR;
3214 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3215 target_write_fn fn;
3216 if (physical) {
3217 CMD_ARGC--;
3218 CMD_ARGV++;
3219 fn = target_write_phys_memory;
3220 } else
3221 fn = target_write_memory;
3222 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3223 return ERROR_COMMAND_SYNTAX_ERROR;
3225 target_addr_t address;
3226 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3228 target_addr_t value;
3229 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3231 unsigned count = 1;
3232 if (CMD_ARGC == 3)
3233 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3235 struct target *target = get_current_target(CMD_CTX);
3236 unsigned wordsize;
3237 switch (CMD_NAME[2]) {
3238 case 'd':
3239 wordsize = 8;
3240 break;
3241 case 'w':
3242 wordsize = 4;
3243 break;
3244 case 'h':
3245 wordsize = 2;
3246 break;
3247 case 'b':
3248 wordsize = 1;
3249 break;
3250 default:
3251 return ERROR_COMMAND_SYNTAX_ERROR;
3254 return target_fill_mem(target, address, fn, wordsize, value, count);
3257 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3258 target_addr_t *min_address, target_addr_t *max_address)
3260 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3261 return ERROR_COMMAND_SYNTAX_ERROR;
3263 /* a base address isn't always necessary,
3264 * default to 0x0 (i.e. don't relocate) */
3265 if (CMD_ARGC >= 2) {
3266 target_addr_t addr;
3267 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3268 image->base_address = addr;
3269 image->base_address_set = 1;
3270 } else
3271 image->base_address_set = 0;
3273 image->start_address_set = 0;
3275 if (CMD_ARGC >= 4)
3276 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3277 if (CMD_ARGC == 5) {
3278 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3279 /* use size (given) to find max (required) */
3280 *max_address += *min_address;
3283 if (*min_address > *max_address)
3284 return ERROR_COMMAND_SYNTAX_ERROR;
3286 return ERROR_OK;
3289 COMMAND_HANDLER(handle_load_image_command)
3291 uint8_t *buffer;
3292 size_t buf_cnt;
3293 uint32_t image_size;
3294 target_addr_t min_address = 0;
3295 target_addr_t max_address = -1;
3296 int i;
3297 struct image image;
3299 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3300 &image, &min_address, &max_address);
3301 if (ERROR_OK != retval)
3302 return retval;
3304 struct target *target = get_current_target(CMD_CTX);
3306 struct duration bench;
3307 duration_start(&bench);
3309 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3310 return ERROR_FAIL;
3312 image_size = 0x0;
3313 retval = ERROR_OK;
3314 for (i = 0; i < image.num_sections; i++) {
3315 buffer = malloc(image.sections[i].size);
3316 if (buffer == NULL) {
3317 command_print(CMD_CTX,
3318 "error allocating buffer for section (%d bytes)",
3319 (int)(image.sections[i].size));
3320 retval = ERROR_FAIL;
3321 break;
3324 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3325 if (retval != ERROR_OK) {
3326 free(buffer);
3327 break;
3330 uint32_t offset = 0;
3331 uint32_t length = buf_cnt;
3333 /* DANGER!!! beware of unsigned comparision here!!! */
3335 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3336 (image.sections[i].base_address < max_address)) {
3338 if (image.sections[i].base_address < min_address) {
3339 /* clip addresses below */
3340 offset += min_address-image.sections[i].base_address;
3341 length -= offset;
3344 if (image.sections[i].base_address + buf_cnt > max_address)
3345 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3347 retval = target_write_buffer(target,
3348 image.sections[i].base_address + offset, length, buffer + offset);
3349 if (retval != ERROR_OK) {
3350 free(buffer);
3351 break;
3353 image_size += length;
3354 command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3355 (unsigned int)length,
3356 image.sections[i].base_address + offset);
3359 free(buffer);
3362 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3363 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3364 "in %fs (%0.3f KiB/s)", image_size,
3365 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3368 image_close(&image);
3370 return retval;
3374 COMMAND_HANDLER(handle_dump_image_command)
3376 struct fileio *fileio;
3377 uint8_t *buffer;
3378 int retval, retvaltemp;
3379 target_addr_t address, size;
3380 struct duration bench;
3381 struct target *target = get_current_target(CMD_CTX);
3383 if (CMD_ARGC != 3)
3384 return ERROR_COMMAND_SYNTAX_ERROR;
3386 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3387 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3389 uint32_t buf_size = (size > 4096) ? 4096 : size;
3390 buffer = malloc(buf_size);
3391 if (!buffer)
3392 return ERROR_FAIL;
3394 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3395 if (retval != ERROR_OK) {
3396 free(buffer);
3397 return retval;
3400 duration_start(&bench);
3402 while (size > 0) {
3403 size_t size_written;
3404 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3405 retval = target_read_buffer(target, address, this_run_size, buffer);
3406 if (retval != ERROR_OK)
3407 break;
3409 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3410 if (retval != ERROR_OK)
3411 break;
3413 size -= this_run_size;
3414 address += this_run_size;
3417 free(buffer);
3419 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3420 size_t filesize;
3421 retval = fileio_size(fileio, &filesize);
3422 if (retval != ERROR_OK)
3423 return retval;
3424 command_print(CMD_CTX,
3425 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3426 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3429 retvaltemp = fileio_close(fileio);
3430 if (retvaltemp != ERROR_OK)
3431 return retvaltemp;
3433 return retval;
3436 enum verify_mode {
3437 IMAGE_TEST = 0,
3438 IMAGE_VERIFY = 1,
3439 IMAGE_CHECKSUM_ONLY = 2
3442 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3444 uint8_t *buffer;
3445 size_t buf_cnt;
3446 uint32_t image_size;
3447 int i;
3448 int retval;
3449 uint32_t checksum = 0;
3450 uint32_t mem_checksum = 0;
3452 struct image image;
3454 struct target *target = get_current_target(CMD_CTX);
3456 if (CMD_ARGC < 1)
3457 return ERROR_COMMAND_SYNTAX_ERROR;
3459 if (!target) {
3460 LOG_ERROR("no target selected");
3461 return ERROR_FAIL;
3464 struct duration bench;
3465 duration_start(&bench);
3467 if (CMD_ARGC >= 2) {
3468 target_addr_t addr;
3469 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3470 image.base_address = addr;
3471 image.base_address_set = 1;
3472 } else {
3473 image.base_address_set = 0;
3474 image.base_address = 0x0;
3477 image.start_address_set = 0;
3479 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3480 if (retval != ERROR_OK)
3481 return retval;
3483 image_size = 0x0;
3484 int diffs = 0;
3485 retval = ERROR_OK;
3486 for (i = 0; i < image.num_sections; i++) {
3487 buffer = malloc(image.sections[i].size);
3488 if (buffer == NULL) {
3489 command_print(CMD_CTX,
3490 "error allocating buffer for section (%d bytes)",
3491 (int)(image.sections[i].size));
3492 break;
3494 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3495 if (retval != ERROR_OK) {
3496 free(buffer);
3497 break;
3500 if (verify >= IMAGE_VERIFY) {
3501 /* calculate checksum of image */
3502 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3503 if (retval != ERROR_OK) {
3504 free(buffer);
3505 break;
3508 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3509 if (retval != ERROR_OK) {
3510 free(buffer);
3511 break;
3513 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3514 LOG_ERROR("checksum mismatch");
3515 free(buffer);
3516 retval = ERROR_FAIL;
3517 goto done;
3519 if (checksum != mem_checksum) {
3520 /* failed crc checksum, fall back to a binary compare */
3521 uint8_t *data;
3523 if (diffs == 0)
3524 LOG_ERROR("checksum mismatch - attempting binary compare");
3526 data = malloc(buf_cnt);
3528 /* Can we use 32bit word accesses? */
3529 int size = 1;
3530 int count = buf_cnt;
3531 if ((count % 4) == 0) {
3532 size *= 4;
3533 count /= 4;
3535 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3536 if (retval == ERROR_OK) {
3537 uint32_t t;
3538 for (t = 0; t < buf_cnt; t++) {
3539 if (data[t] != buffer[t]) {
3540 command_print(CMD_CTX,
3541 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3542 diffs,
3543 (unsigned)(t + image.sections[i].base_address),
3544 data[t],
3545 buffer[t]);
3546 if (diffs++ >= 127) {
3547 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3548 free(data);
3549 free(buffer);
3550 goto done;
3553 keep_alive();
3556 free(data);
3558 } else {
3559 command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3560 image.sections[i].base_address,
3561 buf_cnt);
3564 free(buffer);
3565 image_size += buf_cnt;
3567 if (diffs > 0)
3568 command_print(CMD_CTX, "No more differences found.");
3569 done:
3570 if (diffs > 0)
3571 retval = ERROR_FAIL;
3572 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3573 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3574 "in %fs (%0.3f KiB/s)", image_size,
3575 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3578 image_close(&image);
3580 return retval;
3583 COMMAND_HANDLER(handle_verify_image_checksum_command)
3585 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3588 COMMAND_HANDLER(handle_verify_image_command)
3590 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3593 COMMAND_HANDLER(handle_test_image_command)
3595 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3598 static int handle_bp_command_list(struct command_context *cmd_ctx)
3600 struct target *target = get_current_target(cmd_ctx);
3601 struct breakpoint *breakpoint = target->breakpoints;
3602 while (breakpoint) {
3603 if (breakpoint->type == BKPT_SOFT) {
3604 char *buf = buf_to_str(breakpoint->orig_instr,
3605 breakpoint->length, 16);
3606 command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3607 breakpoint->address,
3608 breakpoint->length,
3609 breakpoint->set, buf);
3610 free(buf);
3611 } else {
3612 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3613 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3614 breakpoint->asid,
3615 breakpoint->length, breakpoint->set);
3616 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3617 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3618 breakpoint->address,
3619 breakpoint->length, breakpoint->set);
3620 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3621 breakpoint->asid);
3622 } else
3623 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3624 breakpoint->address,
3625 breakpoint->length, breakpoint->set);
3628 breakpoint = breakpoint->next;
3630 return ERROR_OK;
3633 static int handle_bp_command_set(struct command_context *cmd_ctx,
3634 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3636 struct target *target = get_current_target(cmd_ctx);
3637 int retval;
3639 if (asid == 0) {
3640 retval = breakpoint_add(target, addr, length, hw);
3641 if (ERROR_OK == retval)
3642 command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3643 else {
3644 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3645 return retval;
3647 } else if (addr == 0) {
3648 if (target->type->add_context_breakpoint == NULL) {
3649 LOG_WARNING("Context breakpoint not available");
3650 return ERROR_OK;
3652 retval = context_breakpoint_add(target, asid, length, hw);
3653 if (ERROR_OK == retval)
3654 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3655 else {
3656 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3657 return retval;
3659 } else {
3660 if (target->type->add_hybrid_breakpoint == NULL) {
3661 LOG_WARNING("Hybrid breakpoint not available");
3662 return ERROR_OK;
3664 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3665 if (ERROR_OK == retval)
3666 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3667 else {
3668 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3669 return retval;
3672 return ERROR_OK;
3675 COMMAND_HANDLER(handle_bp_command)
3677 target_addr_t addr;
3678 uint32_t asid;
3679 uint32_t length;
3680 int hw = BKPT_SOFT;
3682 switch (CMD_ARGC) {
3683 case 0:
3684 return handle_bp_command_list(CMD_CTX);
3686 case 2:
3687 asid = 0;
3688 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3689 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3690 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3692 case 3:
3693 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3694 hw = BKPT_HARD;
3695 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3696 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3697 asid = 0;
3698 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3699 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3700 hw = BKPT_HARD;
3701 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3702 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3703 addr = 0;
3704 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3706 /* fallthrough */
3707 case 4:
3708 hw = BKPT_HARD;
3709 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3710 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3711 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3712 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3714 default:
3715 return ERROR_COMMAND_SYNTAX_ERROR;
3719 COMMAND_HANDLER(handle_rbp_command)
3721 if (CMD_ARGC != 1)
3722 return ERROR_COMMAND_SYNTAX_ERROR;
3724 target_addr_t addr;
3725 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3727 struct target *target = get_current_target(CMD_CTX);
3728 breakpoint_remove(target, addr);
3730 return ERROR_OK;
3733 COMMAND_HANDLER(handle_wp_command)
3735 struct target *target = get_current_target(CMD_CTX);
3737 if (CMD_ARGC == 0) {
3738 struct watchpoint *watchpoint = target->watchpoints;
3740 while (watchpoint) {
3741 command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3742 ", len: 0x%8.8" PRIx32
3743 ", r/w/a: %i, value: 0x%8.8" PRIx32
3744 ", mask: 0x%8.8" PRIx32,
3745 watchpoint->address,
3746 watchpoint->length,
3747 (int)watchpoint->rw,
3748 watchpoint->value,
3749 watchpoint->mask);
3750 watchpoint = watchpoint->next;
3752 return ERROR_OK;
3755 enum watchpoint_rw type = WPT_ACCESS;
3756 uint32_t addr = 0;
3757 uint32_t length = 0;
3758 uint32_t data_value = 0x0;
3759 uint32_t data_mask = 0xffffffff;
3761 switch (CMD_ARGC) {
3762 case 5:
3763 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3764 /* fall through */
3765 case 4:
3766 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3767 /* fall through */
3768 case 3:
3769 switch (CMD_ARGV[2][0]) {
3770 case 'r':
3771 type = WPT_READ;
3772 break;
3773 case 'w':
3774 type = WPT_WRITE;
3775 break;
3776 case 'a':
3777 type = WPT_ACCESS;
3778 break;
3779 default:
3780 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3781 return ERROR_COMMAND_SYNTAX_ERROR;
3783 /* fall through */
3784 case 2:
3785 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3786 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3787 break;
3789 default:
3790 return ERROR_COMMAND_SYNTAX_ERROR;
3793 int retval = watchpoint_add(target, addr, length, type,
3794 data_value, data_mask);
3795 if (ERROR_OK != retval)
3796 LOG_ERROR("Failure setting watchpoints");
3798 return retval;
3801 COMMAND_HANDLER(handle_rwp_command)
3803 if (CMD_ARGC != 1)
3804 return ERROR_COMMAND_SYNTAX_ERROR;
3806 uint32_t addr;
3807 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3809 struct target *target = get_current_target(CMD_CTX);
3810 watchpoint_remove(target, addr);
3812 return ERROR_OK;
3816 * Translate a virtual address to a physical address.
3818 * The low-level target implementation must have logged a detailed error
3819 * which is forwarded to telnet/GDB session.
3821 COMMAND_HANDLER(handle_virt2phys_command)
3823 if (CMD_ARGC != 1)
3824 return ERROR_COMMAND_SYNTAX_ERROR;
3826 target_addr_t va;
3827 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3828 target_addr_t pa;
3830 struct target *target = get_current_target(CMD_CTX);
3831 int retval = target->type->virt2phys(target, va, &pa);
3832 if (retval == ERROR_OK)
3833 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3835 return retval;
3838 static void writeData(FILE *f, const void *data, size_t len)
3840 size_t written = fwrite(data, 1, len, f);
3841 if (written != len)
3842 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3845 static void writeLong(FILE *f, int l, struct target *target)
3847 uint8_t val[4];
3849 target_buffer_set_u32(target, val, l);
3850 writeData(f, val, 4);
3853 static void writeString(FILE *f, char *s)
3855 writeData(f, s, strlen(s));
3858 typedef unsigned char UNIT[2]; /* unit of profiling */
3860 /* Dump a gmon.out histogram file. */
3861 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3862 uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3864 uint32_t i;
3865 FILE *f = fopen(filename, "w");
3866 if (f == NULL)
3867 return;
3868 writeString(f, "gmon");
3869 writeLong(f, 0x00000001, target); /* Version */
3870 writeLong(f, 0, target); /* padding */
3871 writeLong(f, 0, target); /* padding */
3872 writeLong(f, 0, target); /* padding */
3874 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3875 writeData(f, &zero, 1);
3877 /* figure out bucket size */
3878 uint32_t min;
3879 uint32_t max;
3880 if (with_range) {
3881 min = start_address;
3882 max = end_address;
3883 } else {
3884 min = samples[0];
3885 max = samples[0];
3886 for (i = 0; i < sampleNum; i++) {
3887 if (min > samples[i])
3888 min = samples[i];
3889 if (max < samples[i])
3890 max = samples[i];
3893 /* max should be (largest sample + 1)
3894 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3895 max++;
3898 int addressSpace = max - min;
3899 assert(addressSpace >= 2);
3901 /* FIXME: What is the reasonable number of buckets?
3902 * The profiling result will be more accurate if there are enough buckets. */
3903 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3904 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3905 if (numBuckets > maxBuckets)
3906 numBuckets = maxBuckets;
3907 int *buckets = malloc(sizeof(int) * numBuckets);
3908 if (buckets == NULL) {
3909 fclose(f);
3910 return;
3912 memset(buckets, 0, sizeof(int) * numBuckets);
3913 for (i = 0; i < sampleNum; i++) {
3914 uint32_t address = samples[i];
3916 if ((address < min) || (max <= address))
3917 continue;
3919 long long a = address - min;
3920 long long b = numBuckets;
3921 long long c = addressSpace;
3922 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3923 buckets[index_t]++;
3926 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3927 writeLong(f, min, target); /* low_pc */
3928 writeLong(f, max, target); /* high_pc */
3929 writeLong(f, numBuckets, target); /* # of buckets */
3930 float sample_rate = sampleNum / (duration_ms / 1000.0);
3931 writeLong(f, sample_rate, target);
3932 writeString(f, "seconds");
3933 for (i = 0; i < (15-strlen("seconds")); i++)
3934 writeData(f, &zero, 1);
3935 writeString(f, "s");
3937 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3939 char *data = malloc(2 * numBuckets);
3940 if (data != NULL) {
3941 for (i = 0; i < numBuckets; i++) {
3942 int val;
3943 val = buckets[i];
3944 if (val > 65535)
3945 val = 65535;
3946 data[i * 2] = val&0xff;
3947 data[i * 2 + 1] = (val >> 8) & 0xff;
3949 free(buckets);
3950 writeData(f, data, numBuckets * 2);
3951 free(data);
3952 } else
3953 free(buckets);
3955 fclose(f);
3958 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3959 * which will be used as a random sampling of PC */
3960 COMMAND_HANDLER(handle_profile_command)
3962 struct target *target = get_current_target(CMD_CTX);
3964 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3965 return ERROR_COMMAND_SYNTAX_ERROR;
3967 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3968 uint32_t offset;
3969 uint32_t num_of_samples;
3970 int retval = ERROR_OK;
3972 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3974 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3975 if (samples == NULL) {
3976 LOG_ERROR("No memory to store samples.");
3977 return ERROR_FAIL;
3980 uint64_t timestart_ms = timeval_ms();
3982 * Some cores let us sample the PC without the
3983 * annoying halt/resume step; for example, ARMv7 PCSR.
3984 * Provide a way to use that more efficient mechanism.
3986 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3987 &num_of_samples, offset);
3988 if (retval != ERROR_OK) {
3989 free(samples);
3990 return retval;
3992 uint32_t duration_ms = timeval_ms() - timestart_ms;
3994 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3996 retval = target_poll(target);
3997 if (retval != ERROR_OK) {
3998 free(samples);
3999 return retval;
4001 if (target->state == TARGET_RUNNING) {
4002 retval = target_halt(target);
4003 if (retval != ERROR_OK) {
4004 free(samples);
4005 return retval;
4009 retval = target_poll(target);
4010 if (retval != ERROR_OK) {
4011 free(samples);
4012 return retval;
4015 uint32_t start_address = 0;
4016 uint32_t end_address = 0;
4017 bool with_range = false;
4018 if (CMD_ARGC == 4) {
4019 with_range = true;
4020 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4021 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4024 write_gmon(samples, num_of_samples, CMD_ARGV[1],
4025 with_range, start_address, end_address, target, duration_ms);
4026 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4028 free(samples);
4029 return retval;
4032 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4034 char *namebuf;
4035 Jim_Obj *nameObjPtr, *valObjPtr;
4036 int result;
4038 namebuf = alloc_printf("%s(%d)", varname, idx);
4039 if (!namebuf)
4040 return JIM_ERR;
4042 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4043 valObjPtr = Jim_NewIntObj(interp, val);
4044 if (!nameObjPtr || !valObjPtr) {
4045 free(namebuf);
4046 return JIM_ERR;
4049 Jim_IncrRefCount(nameObjPtr);
4050 Jim_IncrRefCount(valObjPtr);
4051 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4052 Jim_DecrRefCount(interp, nameObjPtr);
4053 Jim_DecrRefCount(interp, valObjPtr);
4054 free(namebuf);
4055 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4056 return result;
4059 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4061 struct command_context *context;
4062 struct target *target;
4064 context = current_command_context(interp);
4065 assert(context != NULL);
4067 target = get_current_target(context);
4068 if (target == NULL) {
4069 LOG_ERROR("mem2array: no current target");
4070 return JIM_ERR;
4073 return target_mem2array(interp, target, argc - 1, argv + 1);
4076 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4078 long l;
4079 uint32_t width;
4080 int len;
4081 uint32_t addr;
4082 uint32_t count;
4083 uint32_t v;
4084 const char *varname;
4085 const char *phys;
4086 bool is_phys;
4087 int n, e, retval;
4088 uint32_t i;
4090 /* argv[1] = name of array to receive the data
4091 * argv[2] = desired width
4092 * argv[3] = memory address
4093 * argv[4] = count of times to read
4095 if (argc < 4 || argc > 5) {
4096 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
4097 return JIM_ERR;
4099 varname = Jim_GetString(argv[0], &len);
4100 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4102 e = Jim_GetLong(interp, argv[1], &l);
4103 width = l;
4104 if (e != JIM_OK)
4105 return e;
4107 e = Jim_GetLong(interp, argv[2], &l);
4108 addr = l;
4109 if (e != JIM_OK)
4110 return e;
4111 e = Jim_GetLong(interp, argv[3], &l);
4112 len = l;
4113 if (e != JIM_OK)
4114 return e;
4115 is_phys = false;
4116 if (argc > 4) {
4117 phys = Jim_GetString(argv[4], &n);
4118 if (!strncmp(phys, "phys", n))
4119 is_phys = true;
4120 else
4121 return JIM_ERR;
4123 switch (width) {
4124 case 8:
4125 width = 1;
4126 break;
4127 case 16:
4128 width = 2;
4129 break;
4130 case 32:
4131 width = 4;
4132 break;
4133 default:
4134 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4135 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4136 return JIM_ERR;
4138 if (len == 0) {
4139 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4140 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4141 return JIM_ERR;
4143 if ((addr + (len * width)) < addr) {
4144 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4145 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4146 return JIM_ERR;
4148 /* absurd transfer size? */
4149 if (len > 65536) {
4150 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4151 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4152 return JIM_ERR;
4155 if ((width == 1) ||
4156 ((width == 2) && ((addr & 1) == 0)) ||
4157 ((width == 4) && ((addr & 3) == 0))) {
4158 /* all is well */
4159 } else {
4160 char buf[100];
4161 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4162 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4163 addr,
4164 width);
4165 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4166 return JIM_ERR;
4169 /* Transfer loop */
4171 /* index counter */
4172 n = 0;
4174 size_t buffersize = 4096;
4175 uint8_t *buffer = malloc(buffersize);
4176 if (buffer == NULL)
4177 return JIM_ERR;
4179 /* assume ok */
4180 e = JIM_OK;
4181 while (len) {
4182 /* Slurp... in buffer size chunks */
4184 count = len; /* in objects.. */
4185 if (count > (buffersize / width))
4186 count = (buffersize / width);
4188 if (is_phys)
4189 retval = target_read_phys_memory(target, addr, width, count, buffer);
4190 else
4191 retval = target_read_memory(target, addr, width, count, buffer);
4192 if (retval != ERROR_OK) {
4193 /* BOO !*/
4194 LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4195 addr,
4196 width,
4197 count);
4198 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4199 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4200 e = JIM_ERR;
4201 break;
4202 } else {
4203 v = 0; /* shut up gcc */
4204 for (i = 0; i < count ; i++, n++) {
4205 switch (width) {
4206 case 4:
4207 v = target_buffer_get_u32(target, &buffer[i*width]);
4208 break;
4209 case 2:
4210 v = target_buffer_get_u16(target, &buffer[i*width]);
4211 break;
4212 case 1:
4213 v = buffer[i] & 0x0ff;
4214 break;
4216 new_int_array_element(interp, varname, n, v);
4218 len -= count;
4219 addr += count * width;
4223 free(buffer);
4225 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4227 return e;
4230 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4232 char *namebuf;
4233 Jim_Obj *nameObjPtr, *valObjPtr;
4234 int result;
4235 long l;
4237 namebuf = alloc_printf("%s(%d)", varname, idx);
4238 if (!namebuf)
4239 return JIM_ERR;
4241 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4242 if (!nameObjPtr) {
4243 free(namebuf);
4244 return JIM_ERR;
4247 Jim_IncrRefCount(nameObjPtr);
4248 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4249 Jim_DecrRefCount(interp, nameObjPtr);
4250 free(namebuf);
4251 if (valObjPtr == NULL)
4252 return JIM_ERR;
4254 result = Jim_GetLong(interp, valObjPtr, &l);
4255 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4256 *val = l;
4257 return result;
4260 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4262 struct command_context *context;
4263 struct target *target;
4265 context = current_command_context(interp);
4266 assert(context != NULL);
4268 target = get_current_target(context);
4269 if (target == NULL) {
4270 LOG_ERROR("array2mem: no current target");
4271 return JIM_ERR;
4274 return target_array2mem(interp, target, argc-1, argv + 1);
4277 static int target_array2mem(Jim_Interp *interp, struct target *target,
4278 int argc, Jim_Obj *const *argv)
4280 long l;
4281 uint32_t width;
4282 int len;
4283 uint32_t addr;
4284 uint32_t count;
4285 uint32_t v;
4286 const char *varname;
4287 const char *phys;
4288 bool is_phys;
4289 int n, e, retval;
4290 uint32_t i;
4292 /* argv[1] = name of array to get the data
4293 * argv[2] = desired width
4294 * argv[3] = memory address
4295 * argv[4] = count to write
4297 if (argc < 4 || argc > 5) {
4298 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4299 return JIM_ERR;
4301 varname = Jim_GetString(argv[0], &len);
4302 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4304 e = Jim_GetLong(interp, argv[1], &l);
4305 width = l;
4306 if (e != JIM_OK)
4307 return e;
4309 e = Jim_GetLong(interp, argv[2], &l);
4310 addr = l;
4311 if (e != JIM_OK)
4312 return e;
4313 e = Jim_GetLong(interp, argv[3], &l);
4314 len = l;
4315 if (e != JIM_OK)
4316 return e;
4317 is_phys = false;
4318 if (argc > 4) {
4319 phys = Jim_GetString(argv[4], &n);
4320 if (!strncmp(phys, "phys", n))
4321 is_phys = true;
4322 else
4323 return JIM_ERR;
4325 switch (width) {
4326 case 8:
4327 width = 1;
4328 break;
4329 case 16:
4330 width = 2;
4331 break;
4332 case 32:
4333 width = 4;
4334 break;
4335 default:
4336 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4337 Jim_AppendStrings(interp, Jim_GetResult(interp),
4338 "Invalid width param, must be 8/16/32", NULL);
4339 return JIM_ERR;
4341 if (len == 0) {
4342 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4343 Jim_AppendStrings(interp, Jim_GetResult(interp),
4344 "array2mem: zero width read?", NULL);
4345 return JIM_ERR;
4347 if ((addr + (len * width)) < addr) {
4348 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4349 Jim_AppendStrings(interp, Jim_GetResult(interp),
4350 "array2mem: addr + len - wraps to zero?", NULL);
4351 return JIM_ERR;
4353 /* absurd transfer size? */
4354 if (len > 65536) {
4355 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4356 Jim_AppendStrings(interp, Jim_GetResult(interp),
4357 "array2mem: absurd > 64K item request", NULL);
4358 return JIM_ERR;
4361 if ((width == 1) ||
4362 ((width == 2) && ((addr & 1) == 0)) ||
4363 ((width == 4) && ((addr & 3) == 0))) {
4364 /* all is well */
4365 } else {
4366 char buf[100];
4367 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4368 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4369 addr,
4370 width);
4371 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4372 return JIM_ERR;
4375 /* Transfer loop */
4377 /* index counter */
4378 n = 0;
4379 /* assume ok */
4380 e = JIM_OK;
4382 size_t buffersize = 4096;
4383 uint8_t *buffer = malloc(buffersize);
4384 if (buffer == NULL)
4385 return JIM_ERR;
4387 while (len) {
4388 /* Slurp... in buffer size chunks */
4390 count = len; /* in objects.. */
4391 if (count > (buffersize / width))
4392 count = (buffersize / width);
4394 v = 0; /* shut up gcc */
4395 for (i = 0; i < count; i++, n++) {
4396 get_int_array_element(interp, varname, n, &v);
4397 switch (width) {
4398 case 4:
4399 target_buffer_set_u32(target, &buffer[i * width], v);
4400 break;
4401 case 2:
4402 target_buffer_set_u16(target, &buffer[i * width], v);
4403 break;
4404 case 1:
4405 buffer[i] = v & 0x0ff;
4406 break;
4409 len -= count;
4411 if (is_phys)
4412 retval = target_write_phys_memory(target, addr, width, count, buffer);
4413 else
4414 retval = target_write_memory(target, addr, width, count, buffer);
4415 if (retval != ERROR_OK) {
4416 /* BOO !*/
4417 LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4418 addr,
4419 width,
4420 count);
4421 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4422 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4423 e = JIM_ERR;
4424 break;
4426 addr += count * width;
4429 free(buffer);
4431 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4433 return e;
4436 /* FIX? should we propagate errors here rather than printing them
4437 * and continuing?
4439 void target_handle_event(struct target *target, enum target_event e)
4441 struct target_event_action *teap;
4443 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4444 if (teap->event == e) {
4445 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4446 target->target_number,
4447 target_name(target),
4448 target_type_name(target),
4450 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4451 Jim_GetString(teap->body, NULL));
4452 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4453 Jim_MakeErrorMessage(teap->interp);
4454 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4461 * Returns true only if the target has a handler for the specified event.
4463 bool target_has_event_action(struct target *target, enum target_event event)
4465 struct target_event_action *teap;
4467 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4468 if (teap->event == event)
4469 return true;
4471 return false;
4474 enum target_cfg_param {
4475 TCFG_TYPE,
4476 TCFG_EVENT,
4477 TCFG_WORK_AREA_VIRT,
4478 TCFG_WORK_AREA_PHYS,
4479 TCFG_WORK_AREA_SIZE,
4480 TCFG_WORK_AREA_BACKUP,
4481 TCFG_ENDIAN,
4482 TCFG_COREID,
4483 TCFG_CHAIN_POSITION,
4484 TCFG_DBGBASE,
4485 TCFG_CTIBASE,
4486 TCFG_RTOS,
4487 TCFG_DEFER_EXAMINE,
4490 static Jim_Nvp nvp_config_opts[] = {
4491 { .name = "-type", .value = TCFG_TYPE },
4492 { .name = "-event", .value = TCFG_EVENT },
4493 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4494 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4495 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4496 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4497 { .name = "-endian" , .value = TCFG_ENDIAN },
4498 { .name = "-coreid", .value = TCFG_COREID },
4499 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4500 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4501 { .name = "-ctibase", .value = TCFG_CTIBASE },
4502 { .name = "-rtos", .value = TCFG_RTOS },
4503 { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4504 { .name = NULL, .value = -1 }
4507 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4509 Jim_Nvp *n;
4510 Jim_Obj *o;
4511 jim_wide w;
4512 int e;
4514 /* parse config or cget options ... */
4515 while (goi->argc > 0) {
4516 Jim_SetEmptyResult(goi->interp);
4517 /* Jim_GetOpt_Debug(goi); */
4519 if (target->type->target_jim_configure) {
4520 /* target defines a configure function */
4521 /* target gets first dibs on parameters */
4522 e = (*(target->type->target_jim_configure))(target, goi);
4523 if (e == JIM_OK) {
4524 /* more? */
4525 continue;
4527 if (e == JIM_ERR) {
4528 /* An error */
4529 return e;
4531 /* otherwise we 'continue' below */
4533 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4534 if (e != JIM_OK) {
4535 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4536 return e;
4538 switch (n->value) {
4539 case TCFG_TYPE:
4540 /* not setable */
4541 if (goi->isconfigure) {
4542 Jim_SetResultFormatted(goi->interp,
4543 "not settable: %s", n->name);
4544 return JIM_ERR;
4545 } else {
4546 no_params:
4547 if (goi->argc != 0) {
4548 Jim_WrongNumArgs(goi->interp,
4549 goi->argc, goi->argv,
4550 "NO PARAMS");
4551 return JIM_ERR;
4554 Jim_SetResultString(goi->interp,
4555 target_type_name(target), -1);
4556 /* loop for more */
4557 break;
4558 case TCFG_EVENT:
4559 if (goi->argc == 0) {
4560 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4561 return JIM_ERR;
4564 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4565 if (e != JIM_OK) {
4566 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4567 return e;
4570 if (goi->isconfigure) {
4571 if (goi->argc != 1) {
4572 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4573 return JIM_ERR;
4575 } else {
4576 if (goi->argc != 0) {
4577 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4578 return JIM_ERR;
4583 struct target_event_action *teap;
4585 teap = target->event_action;
4586 /* replace existing? */
4587 while (teap) {
4588 if (teap->event == (enum target_event)n->value)
4589 break;
4590 teap = teap->next;
4593 if (goi->isconfigure) {
4594 bool replace = true;
4595 if (teap == NULL) {
4596 /* create new */
4597 teap = calloc(1, sizeof(*teap));
4598 replace = false;
4600 teap->event = n->value;
4601 teap->interp = goi->interp;
4602 Jim_GetOpt_Obj(goi, &o);
4603 if (teap->body)
4604 Jim_DecrRefCount(teap->interp, teap->body);
4605 teap->body = Jim_DuplicateObj(goi->interp, o);
4607 * FIXME:
4608 * Tcl/TK - "tk events" have a nice feature.
4609 * See the "BIND" command.
4610 * We should support that here.
4611 * You can specify %X and %Y in the event code.
4612 * The idea is: %T - target name.
4613 * The idea is: %N - target number
4614 * The idea is: %E - event name.
4616 Jim_IncrRefCount(teap->body);
4618 if (!replace) {
4619 /* add to head of event list */
4620 teap->next = target->event_action;
4621 target->event_action = teap;
4623 Jim_SetEmptyResult(goi->interp);
4624 } else {
4625 /* get */
4626 if (teap == NULL)
4627 Jim_SetEmptyResult(goi->interp);
4628 else
4629 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4632 /* loop for more */
4633 break;
4635 case TCFG_WORK_AREA_VIRT:
4636 if (goi->isconfigure) {
4637 target_free_all_working_areas(target);
4638 e = Jim_GetOpt_Wide(goi, &w);
4639 if (e != JIM_OK)
4640 return e;
4641 target->working_area_virt = w;
4642 target->working_area_virt_spec = true;
4643 } else {
4644 if (goi->argc != 0)
4645 goto no_params;
4647 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4648 /* loop for more */
4649 break;
4651 case TCFG_WORK_AREA_PHYS:
4652 if (goi->isconfigure) {
4653 target_free_all_working_areas(target);
4654 e = Jim_GetOpt_Wide(goi, &w);
4655 if (e != JIM_OK)
4656 return e;
4657 target->working_area_phys = w;
4658 target->working_area_phys_spec = true;
4659 } else {
4660 if (goi->argc != 0)
4661 goto no_params;
4663 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4664 /* loop for more */
4665 break;
4667 case TCFG_WORK_AREA_SIZE:
4668 if (goi->isconfigure) {
4669 target_free_all_working_areas(target);
4670 e = Jim_GetOpt_Wide(goi, &w);
4671 if (e != JIM_OK)
4672 return e;
4673 target->working_area_size = w;
4674 } else {
4675 if (goi->argc != 0)
4676 goto no_params;
4678 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4679 /* loop for more */
4680 break;
4682 case TCFG_WORK_AREA_BACKUP:
4683 if (goi->isconfigure) {
4684 target_free_all_working_areas(target);
4685 e = Jim_GetOpt_Wide(goi, &w);
4686 if (e != JIM_OK)
4687 return e;
4688 /* make this exactly 1 or 0 */
4689 target->backup_working_area = (!!w);
4690 } else {
4691 if (goi->argc != 0)
4692 goto no_params;
4694 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4695 /* loop for more e*/
4696 break;
4699 case TCFG_ENDIAN:
4700 if (goi->isconfigure) {
4701 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4702 if (e != JIM_OK) {
4703 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4704 return e;
4706 target->endianness = n->value;
4707 } else {
4708 if (goi->argc != 0)
4709 goto no_params;
4711 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4712 if (n->name == NULL) {
4713 target->endianness = TARGET_LITTLE_ENDIAN;
4714 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4716 Jim_SetResultString(goi->interp, n->name, -1);
4717 /* loop for more */
4718 break;
4720 case TCFG_COREID:
4721 if (goi->isconfigure) {
4722 e = Jim_GetOpt_Wide(goi, &w);
4723 if (e != JIM_OK)
4724 return e;
4725 target->coreid = (int32_t)w;
4726 } else {
4727 if (goi->argc != 0)
4728 goto no_params;
4730 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4731 /* loop for more */
4732 break;
4734 case TCFG_CHAIN_POSITION:
4735 if (goi->isconfigure) {
4736 Jim_Obj *o_t;
4737 struct jtag_tap *tap;
4738 target_free_all_working_areas(target);
4739 e = Jim_GetOpt_Obj(goi, &o_t);
4740 if (e != JIM_OK)
4741 return e;
4742 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4743 if (tap == NULL)
4744 return JIM_ERR;
4745 /* make this exactly 1 or 0 */
4746 target->tap = tap;
4747 } else {
4748 if (goi->argc != 0)
4749 goto no_params;
4751 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4752 /* loop for more e*/
4753 break;
4754 case TCFG_DBGBASE:
4755 if (goi->isconfigure) {
4756 e = Jim_GetOpt_Wide(goi, &w);
4757 if (e != JIM_OK)
4758 return e;
4759 target->dbgbase = (uint32_t)w;
4760 target->dbgbase_set = true;
4761 } else {
4762 if (goi->argc != 0)
4763 goto no_params;
4765 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4766 /* loop for more */
4767 break;
4768 case TCFG_CTIBASE:
4769 if (goi->isconfigure) {
4770 e = Jim_GetOpt_Wide(goi, &w);
4771 if (e != JIM_OK)
4772 return e;
4773 target->ctibase = (uint32_t)w;
4774 target->ctibase_set = true;
4775 } else {
4776 if (goi->argc != 0)
4777 goto no_params;
4779 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->ctibase));
4780 /* loop for more */
4781 break;
4782 case TCFG_RTOS:
4783 /* RTOS */
4785 int result = rtos_create(goi, target);
4786 if (result != JIM_OK)
4787 return result;
4789 /* loop for more */
4790 break;
4792 case TCFG_DEFER_EXAMINE:
4793 /* DEFER_EXAMINE */
4794 target->defer_examine = true;
4795 /* loop for more */
4796 break;
4799 } /* while (goi->argc) */
4802 /* done - we return */
4803 return JIM_OK;
4806 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4808 Jim_GetOptInfo goi;
4810 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4811 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4812 if (goi.argc < 1) {
4813 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4814 "missing: -option ...");
4815 return JIM_ERR;
4817 struct target *target = Jim_CmdPrivData(goi.interp);
4818 return target_configure(&goi, target);
4821 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4823 const char *cmd_name = Jim_GetString(argv[0], NULL);
4825 Jim_GetOptInfo goi;
4826 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4828 if (goi.argc < 2 || goi.argc > 4) {
4829 Jim_SetResultFormatted(goi.interp,
4830 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4831 return JIM_ERR;
4834 target_write_fn fn;
4835 fn = target_write_memory;
4837 int e;
4838 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4839 /* consume it */
4840 struct Jim_Obj *obj;
4841 e = Jim_GetOpt_Obj(&goi, &obj);
4842 if (e != JIM_OK)
4843 return e;
4845 fn = target_write_phys_memory;
4848 jim_wide a;
4849 e = Jim_GetOpt_Wide(&goi, &a);
4850 if (e != JIM_OK)
4851 return e;
4853 jim_wide b;
4854 e = Jim_GetOpt_Wide(&goi, &b);
4855 if (e != JIM_OK)
4856 return e;
4858 jim_wide c = 1;
4859 if (goi.argc == 1) {
4860 e = Jim_GetOpt_Wide(&goi, &c);
4861 if (e != JIM_OK)
4862 return e;
4865 /* all args must be consumed */
4866 if (goi.argc != 0)
4867 return JIM_ERR;
4869 struct target *target = Jim_CmdPrivData(goi.interp);
4870 unsigned data_size;
4871 if (strcasecmp(cmd_name, "mww") == 0)
4872 data_size = 4;
4873 else if (strcasecmp(cmd_name, "mwh") == 0)
4874 data_size = 2;
4875 else if (strcasecmp(cmd_name, "mwb") == 0)
4876 data_size = 1;
4877 else {
4878 LOG_ERROR("command '%s' unknown: ", cmd_name);
4879 return JIM_ERR;
4882 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4886 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4888 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4889 * mdh [phys] <address> [<count>] - for 16 bit reads
4890 * mdb [phys] <address> [<count>] - for 8 bit reads
4892 * Count defaults to 1.
4894 * Calls target_read_memory or target_read_phys_memory depending on
4895 * the presence of the "phys" argument
4896 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4897 * to int representation in base16.
4898 * Also outputs read data in a human readable form using command_print
4900 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4901 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4902 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4903 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4904 * on success, with [<count>] number of elements.
4906 * In case of little endian target:
4907 * Example1: "mdw 0x00000000" returns "10123456"
4908 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4909 * Example3: "mdb 0x00000000" returns "56"
4910 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4911 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4913 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4915 const char *cmd_name = Jim_GetString(argv[0], NULL);
4917 Jim_GetOptInfo goi;
4918 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4920 if ((goi.argc < 1) || (goi.argc > 3)) {
4921 Jim_SetResultFormatted(goi.interp,
4922 "usage: %s [phys] <address> [<count>]", cmd_name);
4923 return JIM_ERR;
4926 int (*fn)(struct target *target,
4927 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4928 fn = target_read_memory;
4930 int e;
4931 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4932 /* consume it */
4933 struct Jim_Obj *obj;
4934 e = Jim_GetOpt_Obj(&goi, &obj);
4935 if (e != JIM_OK)
4936 return e;
4938 fn = target_read_phys_memory;
4941 /* Read address parameter */
4942 jim_wide addr;
4943 e = Jim_GetOpt_Wide(&goi, &addr);
4944 if (e != JIM_OK)
4945 return JIM_ERR;
4947 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4948 jim_wide count;
4949 if (goi.argc == 1) {
4950 e = Jim_GetOpt_Wide(&goi, &count);
4951 if (e != JIM_OK)
4952 return JIM_ERR;
4953 } else
4954 count = 1;
4956 /* all args must be consumed */
4957 if (goi.argc != 0)
4958 return JIM_ERR;
4960 jim_wide dwidth = 1; /* shut up gcc */
4961 if (strcasecmp(cmd_name, "mdw") == 0)
4962 dwidth = 4;
4963 else if (strcasecmp(cmd_name, "mdh") == 0)
4964 dwidth = 2;
4965 else if (strcasecmp(cmd_name, "mdb") == 0)
4966 dwidth = 1;
4967 else {
4968 LOG_ERROR("command '%s' unknown: ", cmd_name);
4969 return JIM_ERR;
4972 /* convert count to "bytes" */
4973 int bytes = count * dwidth;
4975 struct target *target = Jim_CmdPrivData(goi.interp);
4976 uint8_t target_buf[32];
4977 jim_wide x, y, z;
4978 while (bytes > 0) {
4979 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4981 /* Try to read out next block */
4982 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4984 if (e != ERROR_OK) {
4985 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4986 return JIM_ERR;
4989 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4990 switch (dwidth) {
4991 case 4:
4992 for (x = 0; x < 16 && x < y; x += 4) {
4993 z = target_buffer_get_u32(target, &(target_buf[x]));
4994 command_print_sameline(NULL, "%08x ", (int)(z));
4996 for (; (x < 16) ; x += 4)
4997 command_print_sameline(NULL, " ");
4998 break;
4999 case 2:
5000 for (x = 0; x < 16 && x < y; x += 2) {
5001 z = target_buffer_get_u16(target, &(target_buf[x]));
5002 command_print_sameline(NULL, "%04x ", (int)(z));
5004 for (; (x < 16) ; x += 2)
5005 command_print_sameline(NULL, " ");
5006 break;
5007 case 1:
5008 default:
5009 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
5010 z = target_buffer_get_u8(target, &(target_buf[x]));
5011 command_print_sameline(NULL, "%02x ", (int)(z));
5013 for (; (x < 16) ; x += 1)
5014 command_print_sameline(NULL, " ");
5015 break;
5017 /* ascii-ify the bytes */
5018 for (x = 0 ; x < y ; x++) {
5019 if ((target_buf[x] >= 0x20) &&
5020 (target_buf[x] <= 0x7e)) {
5021 /* good */
5022 } else {
5023 /* smack it */
5024 target_buf[x] = '.';
5027 /* space pad */
5028 while (x < 16) {
5029 target_buf[x] = ' ';
5030 x++;
5032 /* terminate */
5033 target_buf[16] = 0;
5034 /* print - with a newline */
5035 command_print_sameline(NULL, "%s\n", target_buf);
5036 /* NEXT... */
5037 bytes -= 16;
5038 addr += 16;
5040 return JIM_OK;
5043 static int jim_target_mem2array(Jim_Interp *interp,
5044 int argc, Jim_Obj *const *argv)
5046 struct target *target = Jim_CmdPrivData(interp);
5047 return target_mem2array(interp, target, argc - 1, argv + 1);
5050 static int jim_target_array2mem(Jim_Interp *interp,
5051 int argc, Jim_Obj *const *argv)
5053 struct target *target = Jim_CmdPrivData(interp);
5054 return target_array2mem(interp, target, argc - 1, argv + 1);
5057 static int jim_target_tap_disabled(Jim_Interp *interp)
5059 Jim_SetResultFormatted(interp, "[TAP is disabled]");
5060 return JIM_ERR;
5063 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5065 bool allow_defer = false;
5067 Jim_GetOptInfo goi;
5068 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5069 if (goi.argc > 1) {
5070 const char *cmd_name = Jim_GetString(argv[0], NULL);
5071 Jim_SetResultFormatted(goi.interp,
5072 "usage: %s ['allow-defer']", cmd_name);
5073 return JIM_ERR;
5075 if (goi.argc > 0 &&
5076 strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5077 /* consume it */
5078 struct Jim_Obj *obj;
5079 int e = Jim_GetOpt_Obj(&goi, &obj);
5080 if (e != JIM_OK)
5081 return e;
5082 allow_defer = true;
5085 struct target *target = Jim_CmdPrivData(interp);
5086 if (!target->tap->enabled)
5087 return jim_target_tap_disabled(interp);
5089 if (allow_defer && target->defer_examine) {
5090 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5091 LOG_INFO("Use arp_examine command to examine it manually!");
5092 return JIM_OK;
5095 int e = target->type->examine(target);
5096 if (e != ERROR_OK)
5097 return JIM_ERR;
5098 return JIM_OK;
5101 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5103 struct target *target = Jim_CmdPrivData(interp);
5105 Jim_SetResultBool(interp, target_was_examined(target));
5106 return JIM_OK;
5109 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5111 struct target *target = Jim_CmdPrivData(interp);
5113 Jim_SetResultBool(interp, target->defer_examine);
5114 return JIM_OK;
5117 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5119 if (argc != 1) {
5120 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5121 return JIM_ERR;
5123 struct target *target = Jim_CmdPrivData(interp);
5125 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5126 return JIM_ERR;
5128 return JIM_OK;
5131 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5133 if (argc != 1) {
5134 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5135 return JIM_ERR;
5137 struct target *target = Jim_CmdPrivData(interp);
5138 if (!target->tap->enabled)
5139 return jim_target_tap_disabled(interp);
5141 int e;
5142 if (!(target_was_examined(target)))
5143 e = ERROR_TARGET_NOT_EXAMINED;
5144 else
5145 e = target->type->poll(target);
5146 if (e != ERROR_OK)
5147 return JIM_ERR;
5148 return JIM_OK;
5151 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5153 Jim_GetOptInfo goi;
5154 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5156 if (goi.argc != 2) {
5157 Jim_WrongNumArgs(interp, 0, argv,
5158 "([tT]|[fF]|assert|deassert) BOOL");
5159 return JIM_ERR;
5162 Jim_Nvp *n;
5163 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5164 if (e != JIM_OK) {
5165 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5166 return e;
5168 /* the halt or not param */
5169 jim_wide a;
5170 e = Jim_GetOpt_Wide(&goi, &a);
5171 if (e != JIM_OK)
5172 return e;
5174 struct target *target = Jim_CmdPrivData(goi.interp);
5175 if (!target->tap->enabled)
5176 return jim_target_tap_disabled(interp);
5178 if (!target->type->assert_reset || !target->type->deassert_reset) {
5179 Jim_SetResultFormatted(interp,
5180 "No target-specific reset for %s",
5181 target_name(target));
5182 return JIM_ERR;
5185 if (target->defer_examine)
5186 target_reset_examined(target);
5188 /* determine if we should halt or not. */
5189 target->reset_halt = !!a;
5190 /* When this happens - all workareas are invalid. */
5191 target_free_all_working_areas_restore(target, 0);
5193 /* do the assert */
5194 if (n->value == NVP_ASSERT)
5195 e = target->type->assert_reset(target);
5196 else
5197 e = target->type->deassert_reset(target);
5198 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5201 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5203 if (argc != 1) {
5204 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5205 return JIM_ERR;
5207 struct target *target = Jim_CmdPrivData(interp);
5208 if (!target->tap->enabled)
5209 return jim_target_tap_disabled(interp);
5210 int e = target->type->halt(target);
5211 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5214 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5216 Jim_GetOptInfo goi;
5217 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5219 /* params: <name> statename timeoutmsecs */
5220 if (goi.argc != 2) {
5221 const char *cmd_name = Jim_GetString(argv[0], NULL);
5222 Jim_SetResultFormatted(goi.interp,
5223 "%s <state_name> <timeout_in_msec>", cmd_name);
5224 return JIM_ERR;
5227 Jim_Nvp *n;
5228 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5229 if (e != JIM_OK) {
5230 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5231 return e;
5233 jim_wide a;
5234 e = Jim_GetOpt_Wide(&goi, &a);
5235 if (e != JIM_OK)
5236 return e;
5237 struct target *target = Jim_CmdPrivData(interp);
5238 if (!target->tap->enabled)
5239 return jim_target_tap_disabled(interp);
5241 e = target_wait_state(target, n->value, a);
5242 if (e != ERROR_OK) {
5243 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5244 Jim_SetResultFormatted(goi.interp,
5245 "target: %s wait %s fails (%#s) %s",
5246 target_name(target), n->name,
5247 eObj, target_strerror_safe(e));
5248 Jim_FreeNewObj(interp, eObj);
5249 return JIM_ERR;
5251 return JIM_OK;
5253 /* List for human, Events defined for this target.
5254 * scripts/programs should use 'name cget -event NAME'
5256 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5258 struct command_context *cmd_ctx = current_command_context(interp);
5259 assert(cmd_ctx != NULL);
5261 struct target *target = Jim_CmdPrivData(interp);
5262 struct target_event_action *teap = target->event_action;
5263 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5264 target->target_number,
5265 target_name(target));
5266 command_print(cmd_ctx, "%-25s | Body", "Event");
5267 command_print(cmd_ctx, "------------------------- | "
5268 "----------------------------------------");
5269 while (teap) {
5270 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5271 command_print(cmd_ctx, "%-25s | %s",
5272 opt->name, Jim_GetString(teap->body, NULL));
5273 teap = teap->next;
5275 command_print(cmd_ctx, "***END***");
5276 return JIM_OK;
5278 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5280 if (argc != 1) {
5281 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5282 return JIM_ERR;
5284 struct target *target = Jim_CmdPrivData(interp);
5285 Jim_SetResultString(interp, target_state_name(target), -1);
5286 return JIM_OK;
5288 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5290 Jim_GetOptInfo goi;
5291 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5292 if (goi.argc != 1) {
5293 const char *cmd_name = Jim_GetString(argv[0], NULL);
5294 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5295 return JIM_ERR;
5297 Jim_Nvp *n;
5298 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5299 if (e != JIM_OK) {
5300 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5301 return e;
5303 struct target *target = Jim_CmdPrivData(interp);
5304 target_handle_event(target, n->value);
5305 return JIM_OK;
5308 static const struct command_registration target_instance_command_handlers[] = {
5310 .name = "configure",
5311 .mode = COMMAND_CONFIG,
5312 .jim_handler = jim_target_configure,
5313 .help = "configure a new target for use",
5314 .usage = "[target_attribute ...]",
5317 .name = "cget",
5318 .mode = COMMAND_ANY,
5319 .jim_handler = jim_target_configure,
5320 .help = "returns the specified target attribute",
5321 .usage = "target_attribute",
5324 .name = "mww",
5325 .mode = COMMAND_EXEC,
5326 .jim_handler = jim_target_mw,
5327 .help = "Write 32-bit word(s) to target memory",
5328 .usage = "address data [count]",
5331 .name = "mwh",
5332 .mode = COMMAND_EXEC,
5333 .jim_handler = jim_target_mw,
5334 .help = "Write 16-bit half-word(s) to target memory",
5335 .usage = "address data [count]",
5338 .name = "mwb",
5339 .mode = COMMAND_EXEC,
5340 .jim_handler = jim_target_mw,
5341 .help = "Write byte(s) to target memory",
5342 .usage = "address data [count]",
5345 .name = "mdw",
5346 .mode = COMMAND_EXEC,
5347 .jim_handler = jim_target_md,
5348 .help = "Display target memory as 32-bit words",
5349 .usage = "address [count]",
5352 .name = "mdh",
5353 .mode = COMMAND_EXEC,
5354 .jim_handler = jim_target_md,
5355 .help = "Display target memory as 16-bit half-words",
5356 .usage = "address [count]",
5359 .name = "mdb",
5360 .mode = COMMAND_EXEC,
5361 .jim_handler = jim_target_md,
5362 .help = "Display target memory as 8-bit bytes",
5363 .usage = "address [count]",
5366 .name = "array2mem",
5367 .mode = COMMAND_EXEC,
5368 .jim_handler = jim_target_array2mem,
5369 .help = "Writes Tcl array of 8/16/32 bit numbers "
5370 "to target memory",
5371 .usage = "arrayname bitwidth address count",
5374 .name = "mem2array",
5375 .mode = COMMAND_EXEC,
5376 .jim_handler = jim_target_mem2array,
5377 .help = "Loads Tcl array of 8/16/32 bit numbers "
5378 "from target memory",
5379 .usage = "arrayname bitwidth address count",
5382 .name = "eventlist",
5383 .mode = COMMAND_EXEC,
5384 .jim_handler = jim_target_event_list,
5385 .help = "displays a table of events defined for this target",
5388 .name = "curstate",
5389 .mode = COMMAND_EXEC,
5390 .jim_handler = jim_target_current_state,
5391 .help = "displays the current state of this target",
5394 .name = "arp_examine",
5395 .mode = COMMAND_EXEC,
5396 .jim_handler = jim_target_examine,
5397 .help = "used internally for reset processing",
5398 .usage = "arp_examine ['allow-defer']",
5401 .name = "was_examined",
5402 .mode = COMMAND_EXEC,
5403 .jim_handler = jim_target_was_examined,
5404 .help = "used internally for reset processing",
5405 .usage = "was_examined",
5408 .name = "examine_deferred",
5409 .mode = COMMAND_EXEC,
5410 .jim_handler = jim_target_examine_deferred,
5411 .help = "used internally for reset processing",
5412 .usage = "examine_deferred",
5415 .name = "arp_halt_gdb",
5416 .mode = COMMAND_EXEC,
5417 .jim_handler = jim_target_halt_gdb,
5418 .help = "used internally for reset processing to halt GDB",
5421 .name = "arp_poll",
5422 .mode = COMMAND_EXEC,
5423 .jim_handler = jim_target_poll,
5424 .help = "used internally for reset processing",
5427 .name = "arp_reset",
5428 .mode = COMMAND_EXEC,
5429 .jim_handler = jim_target_reset,
5430 .help = "used internally for reset processing",
5433 .name = "arp_halt",
5434 .mode = COMMAND_EXEC,
5435 .jim_handler = jim_target_halt,
5436 .help = "used internally for reset processing",
5439 .name = "arp_waitstate",
5440 .mode = COMMAND_EXEC,
5441 .jim_handler = jim_target_wait_state,
5442 .help = "used internally for reset processing",
5445 .name = "invoke-event",
5446 .mode = COMMAND_EXEC,
5447 .jim_handler = jim_target_invoke_event,
5448 .help = "invoke handler for specified event",
5449 .usage = "event_name",
5451 COMMAND_REGISTRATION_DONE
5454 static int target_create(Jim_GetOptInfo *goi)
5456 Jim_Obj *new_cmd;
5457 Jim_Cmd *cmd;
5458 const char *cp;
5459 int e;
5460 int x;
5461 struct target *target;
5462 struct command_context *cmd_ctx;
5464 cmd_ctx = current_command_context(goi->interp);
5465 assert(cmd_ctx != NULL);
5467 if (goi->argc < 3) {
5468 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5469 return JIM_ERR;
5472 /* COMMAND */
5473 Jim_GetOpt_Obj(goi, &new_cmd);
5474 /* does this command exist? */
5475 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5476 if (cmd) {
5477 cp = Jim_GetString(new_cmd, NULL);
5478 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5479 return JIM_ERR;
5482 /* TYPE */
5483 e = Jim_GetOpt_String(goi, &cp, NULL);
5484 if (e != JIM_OK)
5485 return e;
5486 struct transport *tr = get_current_transport();
5487 if (tr->override_target) {
5488 e = tr->override_target(&cp);
5489 if (e != ERROR_OK) {
5490 LOG_ERROR("The selected transport doesn't support this target");
5491 return JIM_ERR;
5493 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5495 /* now does target type exist */
5496 for (x = 0 ; target_types[x] ; x++) {
5497 if (0 == strcmp(cp, target_types[x]->name)) {
5498 /* found */
5499 break;
5502 /* check for deprecated name */
5503 if (target_types[x]->deprecated_name) {
5504 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5505 /* found */
5506 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5507 break;
5511 if (target_types[x] == NULL) {
5512 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5513 for (x = 0 ; target_types[x] ; x++) {
5514 if (target_types[x + 1]) {
5515 Jim_AppendStrings(goi->interp,
5516 Jim_GetResult(goi->interp),
5517 target_types[x]->name,
5518 ", ", NULL);
5519 } else {
5520 Jim_AppendStrings(goi->interp,
5521 Jim_GetResult(goi->interp),
5522 " or ",
5523 target_types[x]->name, NULL);
5526 return JIM_ERR;
5529 /* Create it */
5530 target = calloc(1, sizeof(struct target));
5531 /* set target number */
5532 target->target_number = new_target_number();
5533 cmd_ctx->current_target = target->target_number;
5535 /* allocate memory for each unique target type */
5536 target->type = calloc(1, sizeof(struct target_type));
5538 memcpy(target->type, target_types[x], sizeof(struct target_type));
5540 /* will be set by "-endian" */
5541 target->endianness = TARGET_ENDIAN_UNKNOWN;
5543 /* default to first core, override with -coreid */
5544 target->coreid = 0;
5546 target->working_area = 0x0;
5547 target->working_area_size = 0x0;
5548 target->working_areas = NULL;
5549 target->backup_working_area = 0;
5551 target->state = TARGET_UNKNOWN;
5552 target->debug_reason = DBG_REASON_UNDEFINED;
5553 target->reg_cache = NULL;
5554 target->breakpoints = NULL;
5555 target->watchpoints = NULL;
5556 target->next = NULL;
5557 target->arch_info = NULL;
5559 target->display = 1;
5561 target->halt_issued = false;
5563 /* initialize trace information */
5564 target->trace_info = calloc(1, sizeof(struct trace));
5566 target->dbgmsg = NULL;
5567 target->dbg_msg_enabled = 0;
5569 target->endianness = TARGET_ENDIAN_UNKNOWN;
5571 target->rtos = NULL;
5572 target->rtos_auto_detect = false;
5574 /* Do the rest as "configure" options */
5575 goi->isconfigure = 1;
5576 e = target_configure(goi, target);
5578 if (target->tap == NULL) {
5579 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5580 e = JIM_ERR;
5583 if (e != JIM_OK) {
5584 free(target->type);
5585 free(target);
5586 return e;
5589 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5590 /* default endian to little if not specified */
5591 target->endianness = TARGET_LITTLE_ENDIAN;
5594 cp = Jim_GetString(new_cmd, NULL);
5595 target->cmd_name = strdup(cp);
5597 /* create the target specific commands */
5598 if (target->type->commands) {
5599 e = register_commands(cmd_ctx, NULL, target->type->commands);
5600 if (ERROR_OK != e)
5601 LOG_ERROR("unable to register '%s' commands", cp);
5603 if (target->type->target_create)
5604 (*(target->type->target_create))(target, goi->interp);
5606 /* append to end of list */
5608 struct target **tpp;
5609 tpp = &(all_targets);
5610 while (*tpp)
5611 tpp = &((*tpp)->next);
5612 *tpp = target;
5615 /* now - create the new target name command */
5616 const struct command_registration target_subcommands[] = {
5618 .chain = target_instance_command_handlers,
5621 .chain = target->type->commands,
5623 COMMAND_REGISTRATION_DONE
5625 const struct command_registration target_commands[] = {
5627 .name = cp,
5628 .mode = COMMAND_ANY,
5629 .help = "target command group",
5630 .usage = "",
5631 .chain = target_subcommands,
5633 COMMAND_REGISTRATION_DONE
5635 e = register_commands(cmd_ctx, NULL, target_commands);
5636 if (ERROR_OK != e)
5637 return JIM_ERR;
5639 struct command *c = command_find_in_context(cmd_ctx, cp);
5640 assert(c);
5641 command_set_handler_data(c, target);
5643 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5646 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5648 if (argc != 1) {
5649 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5650 return JIM_ERR;
5652 struct command_context *cmd_ctx = current_command_context(interp);
5653 assert(cmd_ctx != NULL);
5655 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5656 return JIM_OK;
5659 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5661 if (argc != 1) {
5662 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5663 return JIM_ERR;
5665 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5666 for (unsigned x = 0; NULL != target_types[x]; x++) {
5667 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5668 Jim_NewStringObj(interp, target_types[x]->name, -1));
5670 return JIM_OK;
5673 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5675 if (argc != 1) {
5676 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5677 return JIM_ERR;
5679 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5680 struct target *target = all_targets;
5681 while (target) {
5682 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5683 Jim_NewStringObj(interp, target_name(target), -1));
5684 target = target->next;
5686 return JIM_OK;
5689 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5691 int i;
5692 const char *targetname;
5693 int retval, len;
5694 struct target *target = (struct target *) NULL;
5695 struct target_list *head, *curr, *new;
5696 curr = (struct target_list *) NULL;
5697 head = (struct target_list *) NULL;
5699 retval = 0;
5700 LOG_DEBUG("%d", argc);
5701 /* argv[1] = target to associate in smp
5702 * argv[2] = target to assoicate in smp
5703 * argv[3] ...
5706 for (i = 1; i < argc; i++) {
5708 targetname = Jim_GetString(argv[i], &len);
5709 target = get_target(targetname);
5710 LOG_DEBUG("%s ", targetname);
5711 if (target) {
5712 new = malloc(sizeof(struct target_list));
5713 new->target = target;
5714 new->next = (struct target_list *)NULL;
5715 if (head == (struct target_list *)NULL) {
5716 head = new;
5717 curr = head;
5718 } else {
5719 curr->next = new;
5720 curr = new;
5724 /* now parse the list of cpu and put the target in smp mode*/
5725 curr = head;
5727 while (curr != (struct target_list *)NULL) {
5728 target = curr->target;
5729 target->smp = 1;
5730 target->head = head;
5731 curr = curr->next;
5734 if (target && target->rtos)
5735 retval = rtos_smp_init(head->target);
5737 return retval;
5741 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5743 Jim_GetOptInfo goi;
5744 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5745 if (goi.argc < 3) {
5746 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5747 "<name> <target_type> [<target_options> ...]");
5748 return JIM_ERR;
5750 return target_create(&goi);
5753 static const struct command_registration target_subcommand_handlers[] = {
5755 .name = "init",
5756 .mode = COMMAND_CONFIG,
5757 .handler = handle_target_init_command,
5758 .help = "initialize targets",
5761 .name = "create",
5762 /* REVISIT this should be COMMAND_CONFIG ... */
5763 .mode = COMMAND_ANY,
5764 .jim_handler = jim_target_create,
5765 .usage = "name type '-chain-position' name [options ...]",
5766 .help = "Creates and selects a new target",
5769 .name = "current",
5770 .mode = COMMAND_ANY,
5771 .jim_handler = jim_target_current,
5772 .help = "Returns the currently selected target",
5775 .name = "types",
5776 .mode = COMMAND_ANY,
5777 .jim_handler = jim_target_types,
5778 .help = "Returns the available target types as "
5779 "a list of strings",
5782 .name = "names",
5783 .mode = COMMAND_ANY,
5784 .jim_handler = jim_target_names,
5785 .help = "Returns the names of all targets as a list of strings",
5788 .name = "smp",
5789 .mode = COMMAND_ANY,
5790 .jim_handler = jim_target_smp,
5791 .usage = "targetname1 targetname2 ...",
5792 .help = "gather several target in a smp list"
5795 COMMAND_REGISTRATION_DONE
5798 struct FastLoad {
5799 target_addr_t address;
5800 uint8_t *data;
5801 int length;
5805 static int fastload_num;
5806 static struct FastLoad *fastload;
5808 static void free_fastload(void)
5810 if (fastload != NULL) {
5811 int i;
5812 for (i = 0; i < fastload_num; i++) {
5813 if (fastload[i].data)
5814 free(fastload[i].data);
5816 free(fastload);
5817 fastload = NULL;
5821 COMMAND_HANDLER(handle_fast_load_image_command)
5823 uint8_t *buffer;
5824 size_t buf_cnt;
5825 uint32_t image_size;
5826 target_addr_t min_address = 0;
5827 target_addr_t max_address = -1;
5828 int i;
5830 struct image image;
5832 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5833 &image, &min_address, &max_address);
5834 if (ERROR_OK != retval)
5835 return retval;
5837 struct duration bench;
5838 duration_start(&bench);
5840 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5841 if (retval != ERROR_OK)
5842 return retval;
5844 image_size = 0x0;
5845 retval = ERROR_OK;
5846 fastload_num = image.num_sections;
5847 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5848 if (fastload == NULL) {
5849 command_print(CMD_CTX, "out of memory");
5850 image_close(&image);
5851 return ERROR_FAIL;
5853 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5854 for (i = 0; i < image.num_sections; i++) {
5855 buffer = malloc(image.sections[i].size);
5856 if (buffer == NULL) {
5857 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5858 (int)(image.sections[i].size));
5859 retval = ERROR_FAIL;
5860 break;
5863 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5864 if (retval != ERROR_OK) {
5865 free(buffer);
5866 break;
5869 uint32_t offset = 0;
5870 uint32_t length = buf_cnt;
5872 /* DANGER!!! beware of unsigned comparision here!!! */
5874 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5875 (image.sections[i].base_address < max_address)) {
5876 if (image.sections[i].base_address < min_address) {
5877 /* clip addresses below */
5878 offset += min_address-image.sections[i].base_address;
5879 length -= offset;
5882 if (image.sections[i].base_address + buf_cnt > max_address)
5883 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5885 fastload[i].address = image.sections[i].base_address + offset;
5886 fastload[i].data = malloc(length);
5887 if (fastload[i].data == NULL) {
5888 free(buffer);
5889 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5890 length);
5891 retval = ERROR_FAIL;
5892 break;
5894 memcpy(fastload[i].data, buffer + offset, length);
5895 fastload[i].length = length;
5897 image_size += length;
5898 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5899 (unsigned int)length,
5900 ((unsigned int)(image.sections[i].base_address + offset)));
5903 free(buffer);
5906 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5907 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5908 "in %fs (%0.3f KiB/s)", image_size,
5909 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5911 command_print(CMD_CTX,
5912 "WARNING: image has not been loaded to target!"
5913 "You can issue a 'fast_load' to finish loading.");
5916 image_close(&image);
5918 if (retval != ERROR_OK)
5919 free_fastload();
5921 return retval;
5924 COMMAND_HANDLER(handle_fast_load_command)
5926 if (CMD_ARGC > 0)
5927 return ERROR_COMMAND_SYNTAX_ERROR;
5928 if (fastload == NULL) {
5929 LOG_ERROR("No image in memory");
5930 return ERROR_FAIL;
5932 int i;
5933 int64_t ms = timeval_ms();
5934 int size = 0;
5935 int retval = ERROR_OK;
5936 for (i = 0; i < fastload_num; i++) {
5937 struct target *target = get_current_target(CMD_CTX);
5938 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5939 (unsigned int)(fastload[i].address),
5940 (unsigned int)(fastload[i].length));
5941 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5942 if (retval != ERROR_OK)
5943 break;
5944 size += fastload[i].length;
5946 if (retval == ERROR_OK) {
5947 int64_t after = timeval_ms();
5948 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5950 return retval;
5953 static const struct command_registration target_command_handlers[] = {
5955 .name = "targets",
5956 .handler = handle_targets_command,
5957 .mode = COMMAND_ANY,
5958 .help = "change current default target (one parameter) "
5959 "or prints table of all targets (no parameters)",
5960 .usage = "[target]",
5963 .name = "target",
5964 .mode = COMMAND_CONFIG,
5965 .help = "configure target",
5967 .chain = target_subcommand_handlers,
5969 COMMAND_REGISTRATION_DONE
5972 int target_register_commands(struct command_context *cmd_ctx)
5974 return register_commands(cmd_ctx, NULL, target_command_handlers);
5977 static bool target_reset_nag = true;
5979 bool get_target_reset_nag(void)
5981 return target_reset_nag;
5984 COMMAND_HANDLER(handle_target_reset_nag)
5986 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5987 &target_reset_nag, "Nag after each reset about options to improve "
5988 "performance");
5991 COMMAND_HANDLER(handle_ps_command)
5993 struct target *target = get_current_target(CMD_CTX);
5994 char *display;
5995 if (target->state != TARGET_HALTED) {
5996 LOG_INFO("target not halted !!");
5997 return ERROR_OK;
6000 if ((target->rtos) && (target->rtos->type)
6001 && (target->rtos->type->ps_command)) {
6002 display = target->rtos->type->ps_command(target);
6003 command_print(CMD_CTX, "%s", display);
6004 free(display);
6005 return ERROR_OK;
6006 } else {
6007 LOG_INFO("failed");
6008 return ERROR_TARGET_FAILURE;
6012 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
6014 if (text != NULL)
6015 command_print_sameline(cmd_ctx, "%s", text);
6016 for (int i = 0; i < size; i++)
6017 command_print_sameline(cmd_ctx, " %02x", buf[i]);
6018 command_print(cmd_ctx, " ");
6021 COMMAND_HANDLER(handle_test_mem_access_command)
6023 struct target *target = get_current_target(CMD_CTX);
6024 uint32_t test_size;
6025 int retval = ERROR_OK;
6027 if (target->state != TARGET_HALTED) {
6028 LOG_INFO("target not halted !!");
6029 return ERROR_FAIL;
6032 if (CMD_ARGC != 1)
6033 return ERROR_COMMAND_SYNTAX_ERROR;
6035 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6037 /* Test reads */
6038 size_t num_bytes = test_size + 4;
6040 struct working_area *wa = NULL;
6041 retval = target_alloc_working_area(target, num_bytes, &wa);
6042 if (retval != ERROR_OK) {
6043 LOG_ERROR("Not enough working area");
6044 return ERROR_FAIL;
6047 uint8_t *test_pattern = malloc(num_bytes);
6049 for (size_t i = 0; i < num_bytes; i++)
6050 test_pattern[i] = rand();
6052 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6053 if (retval != ERROR_OK) {
6054 LOG_ERROR("Test pattern write failed");
6055 goto out;
6058 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6059 for (int size = 1; size <= 4; size *= 2) {
6060 for (int offset = 0; offset < 4; offset++) {
6061 uint32_t count = test_size / size;
6062 size_t host_bufsiz = (count + 2) * size + host_offset;
6063 uint8_t *read_ref = malloc(host_bufsiz);
6064 uint8_t *read_buf = malloc(host_bufsiz);
6066 for (size_t i = 0; i < host_bufsiz; i++) {
6067 read_ref[i] = rand();
6068 read_buf[i] = read_ref[i];
6070 command_print_sameline(CMD_CTX,
6071 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6072 size, offset, host_offset ? "un" : "");
6074 struct duration bench;
6075 duration_start(&bench);
6077 retval = target_read_memory(target, wa->address + offset, size, count,
6078 read_buf + size + host_offset);
6080 duration_measure(&bench);
6082 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6083 command_print(CMD_CTX, "Unsupported alignment");
6084 goto next;
6085 } else if (retval != ERROR_OK) {
6086 command_print(CMD_CTX, "Memory read failed");
6087 goto next;
6090 /* replay on host */
6091 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6093 /* check result */
6094 int result = memcmp(read_ref, read_buf, host_bufsiz);
6095 if (result == 0) {
6096 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6097 duration_elapsed(&bench),
6098 duration_kbps(&bench, count * size));
6099 } else {
6100 command_print(CMD_CTX, "Compare failed");
6101 binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6102 binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6104 next:
6105 free(read_ref);
6106 free(read_buf);
6111 out:
6112 free(test_pattern);
6114 if (wa != NULL)
6115 target_free_working_area(target, wa);
6117 /* Test writes */
6118 num_bytes = test_size + 4 + 4 + 4;
6120 retval = target_alloc_working_area(target, num_bytes, &wa);
6121 if (retval != ERROR_OK) {
6122 LOG_ERROR("Not enough working area");
6123 return ERROR_FAIL;
6126 test_pattern = malloc(num_bytes);
6128 for (size_t i = 0; i < num_bytes; i++)
6129 test_pattern[i] = rand();
6131 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6132 for (int size = 1; size <= 4; size *= 2) {
6133 for (int offset = 0; offset < 4; offset++) {
6134 uint32_t count = test_size / size;
6135 size_t host_bufsiz = count * size + host_offset;
6136 uint8_t *read_ref = malloc(num_bytes);
6137 uint8_t *read_buf = malloc(num_bytes);
6138 uint8_t *write_buf = malloc(host_bufsiz);
6140 for (size_t i = 0; i < host_bufsiz; i++)
6141 write_buf[i] = rand();
6142 command_print_sameline(CMD_CTX,
6143 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6144 size, offset, host_offset ? "un" : "");
6146 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6147 if (retval != ERROR_OK) {
6148 command_print(CMD_CTX, "Test pattern write failed");
6149 goto nextw;
6152 /* replay on host */
6153 memcpy(read_ref, test_pattern, num_bytes);
6154 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6156 struct duration bench;
6157 duration_start(&bench);
6159 retval = target_write_memory(target, wa->address + size + offset, size, count,
6160 write_buf + host_offset);
6162 duration_measure(&bench);
6164 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6165 command_print(CMD_CTX, "Unsupported alignment");
6166 goto nextw;
6167 } else if (retval != ERROR_OK) {
6168 command_print(CMD_CTX, "Memory write failed");
6169 goto nextw;
6172 /* read back */
6173 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6174 if (retval != ERROR_OK) {
6175 command_print(CMD_CTX, "Test pattern write failed");
6176 goto nextw;
6179 /* check result */
6180 int result = memcmp(read_ref, read_buf, num_bytes);
6181 if (result == 0) {
6182 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6183 duration_elapsed(&bench),
6184 duration_kbps(&bench, count * size));
6185 } else {
6186 command_print(CMD_CTX, "Compare failed");
6187 binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6188 binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6190 nextw:
6191 free(read_ref);
6192 free(read_buf);
6197 free(test_pattern);
6199 if (wa != NULL)
6200 target_free_working_area(target, wa);
6201 return retval;
6204 static const struct command_registration target_exec_command_handlers[] = {
6206 .name = "fast_load_image",
6207 .handler = handle_fast_load_image_command,
6208 .mode = COMMAND_ANY,
6209 .help = "Load image into server memory for later use by "
6210 "fast_load; primarily for profiling",
6211 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6212 "[min_address [max_length]]",
6215 .name = "fast_load",
6216 .handler = handle_fast_load_command,
6217 .mode = COMMAND_EXEC,
6218 .help = "loads active fast load image to current target "
6219 "- mainly for profiling purposes",
6220 .usage = "",
6223 .name = "profile",
6224 .handler = handle_profile_command,
6225 .mode = COMMAND_EXEC,
6226 .usage = "seconds filename [start end]",
6227 .help = "profiling samples the CPU PC",
6229 /** @todo don't register virt2phys() unless target supports it */
6231 .name = "virt2phys",
6232 .handler = handle_virt2phys_command,
6233 .mode = COMMAND_ANY,
6234 .help = "translate a virtual address into a physical address",
6235 .usage = "virtual_address",
6238 .name = "reg",
6239 .handler = handle_reg_command,
6240 .mode = COMMAND_EXEC,
6241 .help = "display (reread from target with \"force\") or set a register; "
6242 "with no arguments, displays all registers and their values",
6243 .usage = "[(register_number|register_name) [(value|'force')]]",
6246 .name = "poll",
6247 .handler = handle_poll_command,
6248 .mode = COMMAND_EXEC,
6249 .help = "poll target state; or reconfigure background polling",
6250 .usage = "['on'|'off']",
6253 .name = "wait_halt",
6254 .handler = handle_wait_halt_command,
6255 .mode = COMMAND_EXEC,
6256 .help = "wait up to the specified number of milliseconds "
6257 "(default 5000) for a previously requested halt",
6258 .usage = "[milliseconds]",
6261 .name = "halt",
6262 .handler = handle_halt_command,
6263 .mode = COMMAND_EXEC,
6264 .help = "request target to halt, then wait up to the specified"
6265 "number of milliseconds (default 5000) for it to complete",
6266 .usage = "[milliseconds]",
6269 .name = "resume",
6270 .handler = handle_resume_command,
6271 .mode = COMMAND_EXEC,
6272 .help = "resume target execution from current PC or address",
6273 .usage = "[address]",
6276 .name = "reset",
6277 .handler = handle_reset_command,
6278 .mode = COMMAND_EXEC,
6279 .usage = "[run|halt|init]",
6280 .help = "Reset all targets into the specified mode."
6281 "Default reset mode is run, if not given.",
6284 .name = "soft_reset_halt",
6285 .handler = handle_soft_reset_halt_command,
6286 .mode = COMMAND_EXEC,
6287 .usage = "",
6288 .help = "halt the target and do a soft reset",
6291 .name = "step",
6292 .handler = handle_step_command,
6293 .mode = COMMAND_EXEC,
6294 .help = "step one instruction from current PC or address",
6295 .usage = "[address]",
6298 .name = "mdd",
6299 .handler = handle_md_command,
6300 .mode = COMMAND_EXEC,
6301 .help = "display memory words",
6302 .usage = "['phys'] address [count]",
6305 .name = "mdw",
6306 .handler = handle_md_command,
6307 .mode = COMMAND_EXEC,
6308 .help = "display memory words",
6309 .usage = "['phys'] address [count]",
6312 .name = "mdh",
6313 .handler = handle_md_command,
6314 .mode = COMMAND_EXEC,
6315 .help = "display memory half-words",
6316 .usage = "['phys'] address [count]",
6319 .name = "mdb",
6320 .handler = handle_md_command,
6321 .mode = COMMAND_EXEC,
6322 .help = "display memory bytes",
6323 .usage = "['phys'] address [count]",
6326 .name = "mwd",
6327 .handler = handle_mw_command,
6328 .mode = COMMAND_EXEC,
6329 .help = "write memory word",
6330 .usage = "['phys'] address value [count]",
6333 .name = "mww",
6334 .handler = handle_mw_command,
6335 .mode = COMMAND_EXEC,
6336 .help = "write memory word",
6337 .usage = "['phys'] address value [count]",
6340 .name = "mwh",
6341 .handler = handle_mw_command,
6342 .mode = COMMAND_EXEC,
6343 .help = "write memory half-word",
6344 .usage = "['phys'] address value [count]",
6347 .name = "mwb",
6348 .handler = handle_mw_command,
6349 .mode = COMMAND_EXEC,
6350 .help = "write memory byte",
6351 .usage = "['phys'] address value [count]",
6354 .name = "bp",
6355 .handler = handle_bp_command,
6356 .mode = COMMAND_EXEC,
6357 .help = "list or set hardware or software breakpoint",
6358 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6361 .name = "rbp",
6362 .handler = handle_rbp_command,
6363 .mode = COMMAND_EXEC,
6364 .help = "remove breakpoint",
6365 .usage = "address",
6368 .name = "wp",
6369 .handler = handle_wp_command,
6370 .mode = COMMAND_EXEC,
6371 .help = "list (no params) or create watchpoints",
6372 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6375 .name = "rwp",
6376 .handler = handle_rwp_command,
6377 .mode = COMMAND_EXEC,
6378 .help = "remove watchpoint",
6379 .usage = "address",
6382 .name = "load_image",
6383 .handler = handle_load_image_command,
6384 .mode = COMMAND_EXEC,
6385 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6386 "[min_address] [max_length]",
6389 .name = "dump_image",
6390 .handler = handle_dump_image_command,
6391 .mode = COMMAND_EXEC,
6392 .usage = "filename address size",
6395 .name = "verify_image_checksum",
6396 .handler = handle_verify_image_checksum_command,
6397 .mode = COMMAND_EXEC,
6398 .usage = "filename [offset [type]]",
6401 .name = "verify_image",
6402 .handler = handle_verify_image_command,
6403 .mode = COMMAND_EXEC,
6404 .usage = "filename [offset [type]]",
6407 .name = "test_image",
6408 .handler = handle_test_image_command,
6409 .mode = COMMAND_EXEC,
6410 .usage = "filename [offset [type]]",
6413 .name = "mem2array",
6414 .mode = COMMAND_EXEC,
6415 .jim_handler = jim_mem2array,
6416 .help = "read 8/16/32 bit memory and return as a TCL array "
6417 "for script processing",
6418 .usage = "arrayname bitwidth address count",
6421 .name = "array2mem",
6422 .mode = COMMAND_EXEC,
6423 .jim_handler = jim_array2mem,
6424 .help = "convert a TCL array to memory locations "
6425 "and write the 8/16/32 bit values",
6426 .usage = "arrayname bitwidth address count",
6429 .name = "reset_nag",
6430 .handler = handle_target_reset_nag,
6431 .mode = COMMAND_ANY,
6432 .help = "Nag after each reset about options that could have been "
6433 "enabled to improve performance. ",
6434 .usage = "['enable'|'disable']",
6437 .name = "ps",
6438 .handler = handle_ps_command,
6439 .mode = COMMAND_EXEC,
6440 .help = "list all tasks ",
6441 .usage = " ",
6444 .name = "test_mem_access",
6445 .handler = handle_test_mem_access_command,
6446 .mode = COMMAND_EXEC,
6447 .help = "Test the target's memory access functions",
6448 .usage = "size",
6451 COMMAND_REGISTRATION_DONE
6453 static int target_register_user_commands(struct command_context *cmd_ctx)
6455 int retval = ERROR_OK;
6456 retval = target_request_register_commands(cmd_ctx);
6457 if (retval != ERROR_OK)
6458 return retval;
6460 retval = trace_register_commands(cmd_ctx);
6461 if (retval != ERROR_OK)
6462 return retval;
6465 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);