target/aarch64: Call aarch64_init_debug_access() earlier in aarch64_deassert_reset()
[openocd.git] / src / target / target.c
blob591b9ea2c8ee04bee0962a827aef685e55c5f149
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
111 static struct target_type *target_types[] = {
112 &arm7tdmi_target,
113 &arm9tdmi_target,
114 &arm920t_target,
115 &arm720t_target,
116 &arm966e_target,
117 &arm946e_target,
118 &arm926ejs_target,
119 &fa526_target,
120 &feroceon_target,
121 &dragonite_target,
122 &xscale_target,
123 &cortexm_target,
124 &cortexa_target,
125 &cortexr4_target,
126 &arm11_target,
127 &ls1_sap_target,
128 &mips_m4k_target,
129 &avr_target,
130 &dsp563xx_target,
131 &dsp5680xx_target,
132 &testee_target,
133 &avr32_ap7k_target,
134 &hla_target,
135 &nds32_v2_target,
136 &nds32_v3_target,
137 &nds32_v3m_target,
138 &or1k_target,
139 &quark_x10xx_target,
140 &quark_d20xx_target,
141 &stm8_target,
142 #if BUILD_TARGET64
143 &aarch64_target,
144 #endif
145 NULL,
148 struct target *all_targets;
149 static struct target_event_callback *target_event_callbacks;
150 static struct target_timer_callback *target_timer_callbacks;
151 LIST_HEAD(target_reset_callback_list);
152 LIST_HEAD(target_trace_callback_list);
153 static const int polling_interval = 100;
155 static const Jim_Nvp nvp_assert[] = {
156 { .name = "assert", NVP_ASSERT },
157 { .name = "deassert", NVP_DEASSERT },
158 { .name = "T", NVP_ASSERT },
159 { .name = "F", NVP_DEASSERT },
160 { .name = "t", NVP_ASSERT },
161 { .name = "f", NVP_DEASSERT },
162 { .name = NULL, .value = -1 }
165 static const Jim_Nvp nvp_error_target[] = {
166 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
167 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
168 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
169 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
170 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
171 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
172 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
173 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
174 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
175 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
176 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
177 { .value = -1, .name = NULL }
180 static const char *target_strerror_safe(int err)
182 const Jim_Nvp *n;
184 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
185 if (n->name == NULL)
186 return "unknown";
187 else
188 return n->name;
191 static const Jim_Nvp nvp_target_event[] = {
193 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
194 { .value = TARGET_EVENT_HALTED, .name = "halted" },
195 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
196 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
199 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
200 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
202 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
203 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
204 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
205 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
206 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
207 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
208 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
209 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
211 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
212 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
214 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
215 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
217 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
218 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
220 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
221 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
223 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
224 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
226 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
228 { .name = NULL, .value = -1 }
231 static const Jim_Nvp nvp_target_state[] = {
232 { .name = "unknown", .value = TARGET_UNKNOWN },
233 { .name = "running", .value = TARGET_RUNNING },
234 { .name = "halted", .value = TARGET_HALTED },
235 { .name = "reset", .value = TARGET_RESET },
236 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
237 { .name = NULL, .value = -1 },
240 static const Jim_Nvp nvp_target_debug_reason[] = {
241 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
242 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
243 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
244 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
245 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
246 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
247 { .name = "program-exit" , .value = DBG_REASON_EXIT },
248 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
249 { .name = NULL, .value = -1 },
252 static const Jim_Nvp nvp_target_endian[] = {
253 { .name = "big", .value = TARGET_BIG_ENDIAN },
254 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
255 { .name = "be", .value = TARGET_BIG_ENDIAN },
256 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
257 { .name = NULL, .value = -1 },
260 static const Jim_Nvp nvp_reset_modes[] = {
261 { .name = "unknown", .value = RESET_UNKNOWN },
262 { .name = "run" , .value = RESET_RUN },
263 { .name = "halt" , .value = RESET_HALT },
264 { .name = "init" , .value = RESET_INIT },
265 { .name = NULL , .value = -1 },
268 const char *debug_reason_name(struct target *t)
270 const char *cp;
272 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
273 t->debug_reason)->name;
274 if (!cp) {
275 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
276 cp = "(*BUG*unknown*BUG*)";
278 return cp;
281 const char *target_state_name(struct target *t)
283 const char *cp;
284 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
285 if (!cp) {
286 LOG_ERROR("Invalid target state: %d", (int)(t->state));
287 cp = "(*BUG*unknown*BUG*)";
290 if (!target_was_examined(t) && t->defer_examine)
291 cp = "examine deferred";
293 return cp;
296 const char *target_event_name(enum target_event event)
298 const char *cp;
299 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
300 if (!cp) {
301 LOG_ERROR("Invalid target event: %d", (int)(event));
302 cp = "(*BUG*unknown*BUG*)";
304 return cp;
307 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
309 const char *cp;
310 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
311 if (!cp) {
312 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
313 cp = "(*BUG*unknown*BUG*)";
315 return cp;
318 /* determine the number of the new target */
319 static int new_target_number(void)
321 struct target *t;
322 int x;
324 /* number is 0 based */
325 x = -1;
326 t = all_targets;
327 while (t) {
328 if (x < t->target_number)
329 x = t->target_number;
330 t = t->next;
332 return x + 1;
335 /* read a uint64_t from a buffer in target memory endianness */
336 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
338 if (target->endianness == TARGET_LITTLE_ENDIAN)
339 return le_to_h_u64(buffer);
340 else
341 return be_to_h_u64(buffer);
344 /* read a uint32_t from a buffer in target memory endianness */
345 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
347 if (target->endianness == TARGET_LITTLE_ENDIAN)
348 return le_to_h_u32(buffer);
349 else
350 return be_to_h_u32(buffer);
353 /* read a uint24_t from a buffer in target memory endianness */
354 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
356 if (target->endianness == TARGET_LITTLE_ENDIAN)
357 return le_to_h_u24(buffer);
358 else
359 return be_to_h_u24(buffer);
362 /* read a uint16_t from a buffer in target memory endianness */
363 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
365 if (target->endianness == TARGET_LITTLE_ENDIAN)
366 return le_to_h_u16(buffer);
367 else
368 return be_to_h_u16(buffer);
371 /* read a uint8_t from a buffer in target memory endianness */
372 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
374 return *buffer & 0x0ff;
377 /* write a uint64_t to a buffer in target memory endianness */
378 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
380 if (target->endianness == TARGET_LITTLE_ENDIAN)
381 h_u64_to_le(buffer, value);
382 else
383 h_u64_to_be(buffer, value);
386 /* write a uint32_t to a buffer in target memory endianness */
387 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
389 if (target->endianness == TARGET_LITTLE_ENDIAN)
390 h_u32_to_le(buffer, value);
391 else
392 h_u32_to_be(buffer, value);
395 /* write a uint24_t to a buffer in target memory endianness */
396 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
398 if (target->endianness == TARGET_LITTLE_ENDIAN)
399 h_u24_to_le(buffer, value);
400 else
401 h_u24_to_be(buffer, value);
404 /* write a uint16_t to a buffer in target memory endianness */
405 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
407 if (target->endianness == TARGET_LITTLE_ENDIAN)
408 h_u16_to_le(buffer, value);
409 else
410 h_u16_to_be(buffer, value);
413 /* write a uint8_t to a buffer in target memory endianness */
414 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
416 *buffer = value;
419 /* write a uint64_t array to a buffer in target memory endianness */
420 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
422 uint32_t i;
423 for (i = 0; i < count; i++)
424 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
427 /* write a uint32_t array to a buffer in target memory endianness */
428 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
430 uint32_t i;
431 for (i = 0; i < count; i++)
432 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
435 /* write a uint16_t array to a buffer in target memory endianness */
436 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
438 uint32_t i;
439 for (i = 0; i < count; i++)
440 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
443 /* write a uint64_t array to a buffer in target memory endianness */
444 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
446 uint32_t i;
447 for (i = 0; i < count; i++)
448 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
451 /* write a uint32_t array to a buffer in target memory endianness */
452 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
454 uint32_t i;
455 for (i = 0; i < count; i++)
456 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
459 /* write a uint16_t array to a buffer in target memory endianness */
460 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
462 uint32_t i;
463 for (i = 0; i < count; i++)
464 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
467 /* return a pointer to a configured target; id is name or number */
468 struct target *get_target(const char *id)
470 struct target *target;
472 /* try as tcltarget name */
473 for (target = all_targets; target; target = target->next) {
474 if (target_name(target) == NULL)
475 continue;
476 if (strcmp(id, target_name(target)) == 0)
477 return target;
480 /* It's OK to remove this fallback sometime after August 2010 or so */
482 /* no match, try as number */
483 unsigned num;
484 if (parse_uint(id, &num) != ERROR_OK)
485 return NULL;
487 for (target = all_targets; target; target = target->next) {
488 if (target->target_number == (int)num) {
489 LOG_WARNING("use '%s' as target identifier, not '%u'",
490 target_name(target), num);
491 return target;
495 return NULL;
498 /* returns a pointer to the n-th configured target */
499 struct target *get_target_by_num(int num)
501 struct target *target = all_targets;
503 while (target) {
504 if (target->target_number == num)
505 return target;
506 target = target->next;
509 return NULL;
512 struct target *get_current_target(struct command_context *cmd_ctx)
514 struct target *target = cmd_ctx->current_target_override
515 ? cmd_ctx->current_target_override
516 : cmd_ctx->current_target;
518 if (target == NULL) {
519 LOG_ERROR("BUG: current_target out of bounds");
520 exit(-1);
523 return target;
526 int target_poll(struct target *target)
528 int retval;
530 /* We can't poll until after examine */
531 if (!target_was_examined(target)) {
532 /* Fail silently lest we pollute the log */
533 return ERROR_FAIL;
536 retval = target->type->poll(target);
537 if (retval != ERROR_OK)
538 return retval;
540 if (target->halt_issued) {
541 if (target->state == TARGET_HALTED)
542 target->halt_issued = false;
543 else {
544 int64_t t = timeval_ms() - target->halt_issued_time;
545 if (t > DEFAULT_HALT_TIMEOUT) {
546 target->halt_issued = false;
547 LOG_INFO("Halt timed out, wake up GDB.");
548 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
553 return ERROR_OK;
556 int target_halt(struct target *target)
558 int retval;
559 /* We can't poll until after examine */
560 if (!target_was_examined(target)) {
561 LOG_ERROR("Target not examined yet");
562 return ERROR_FAIL;
565 retval = target->type->halt(target);
566 if (retval != ERROR_OK)
567 return retval;
569 target->halt_issued = true;
570 target->halt_issued_time = timeval_ms();
572 return ERROR_OK;
576 * Make the target (re)start executing using its saved execution
577 * context (possibly with some modifications).
579 * @param target Which target should start executing.
580 * @param current True to use the target's saved program counter instead
581 * of the address parameter
582 * @param address Optionally used as the program counter.
583 * @param handle_breakpoints True iff breakpoints at the resumption PC
584 * should be skipped. (For example, maybe execution was stopped by
585 * such a breakpoint, in which case it would be counterprodutive to
586 * let it re-trigger.
587 * @param debug_execution False if all working areas allocated by OpenOCD
588 * should be released and/or restored to their original contents.
589 * (This would for example be true to run some downloaded "helper"
590 * algorithm code, which resides in one such working buffer and uses
591 * another for data storage.)
593 * @todo Resolve the ambiguity about what the "debug_execution" flag
594 * signifies. For example, Target implementations don't agree on how
595 * it relates to invalidation of the register cache, or to whether
596 * breakpoints and watchpoints should be enabled. (It would seem wrong
597 * to enable breakpoints when running downloaded "helper" algorithms
598 * (debug_execution true), since the breakpoints would be set to match
599 * target firmware being debugged, not the helper algorithm.... and
600 * enabling them could cause such helpers to malfunction (for example,
601 * by overwriting data with a breakpoint instruction. On the other
602 * hand the infrastructure for running such helpers might use this
603 * procedure but rely on hardware breakpoint to detect termination.)
605 int target_resume(struct target *target, int current, target_addr_t address,
606 int handle_breakpoints, int debug_execution)
608 int retval;
610 /* We can't poll until after examine */
611 if (!target_was_examined(target)) {
612 LOG_ERROR("Target not examined yet");
613 return ERROR_FAIL;
616 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
618 /* note that resume *must* be asynchronous. The CPU can halt before
619 * we poll. The CPU can even halt at the current PC as a result of
620 * a software breakpoint being inserted by (a bug?) the application.
622 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
623 if (retval != ERROR_OK)
624 return retval;
626 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
628 return retval;
631 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
633 char buf[100];
634 int retval;
635 Jim_Nvp *n;
636 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
637 if (n->name == NULL) {
638 LOG_ERROR("invalid reset mode");
639 return ERROR_FAIL;
642 struct target *target;
643 for (target = all_targets; target; target = target->next)
644 target_call_reset_callbacks(target, reset_mode);
646 /* disable polling during reset to make reset event scripts
647 * more predictable, i.e. dr/irscan & pathmove in events will
648 * not have JTAG operations injected into the middle of a sequence.
650 bool save_poll = jtag_poll_get_enabled();
652 jtag_poll_set_enabled(false);
654 sprintf(buf, "ocd_process_reset %s", n->name);
655 retval = Jim_Eval(cmd_ctx->interp, buf);
657 jtag_poll_set_enabled(save_poll);
659 if (retval != JIM_OK) {
660 Jim_MakeErrorMessage(cmd_ctx->interp);
661 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
662 return ERROR_FAIL;
665 /* We want any events to be processed before the prompt */
666 retval = target_call_timer_callbacks_now();
668 for (target = all_targets; target; target = target->next) {
669 target->type->check_reset(target);
670 target->running_alg = false;
673 return retval;
676 static int identity_virt2phys(struct target *target,
677 target_addr_t virtual, target_addr_t *physical)
679 *physical = virtual;
680 return ERROR_OK;
683 static int no_mmu(struct target *target, int *enabled)
685 *enabled = 0;
686 return ERROR_OK;
689 static int default_examine(struct target *target)
691 target_set_examined(target);
692 return ERROR_OK;
695 /* no check by default */
696 static int default_check_reset(struct target *target)
698 return ERROR_OK;
701 int target_examine_one(struct target *target)
703 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
705 int retval = target->type->examine(target);
706 if (retval != ERROR_OK)
707 return retval;
709 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
711 return ERROR_OK;
714 static int jtag_enable_callback(enum jtag_event event, void *priv)
716 struct target *target = priv;
718 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
719 return ERROR_OK;
721 jtag_unregister_event_callback(jtag_enable_callback, target);
723 return target_examine_one(target);
726 /* Targets that correctly implement init + examine, i.e.
727 * no communication with target during init:
729 * XScale
731 int target_examine(void)
733 int retval = ERROR_OK;
734 struct target *target;
736 for (target = all_targets; target; target = target->next) {
737 /* defer examination, but don't skip it */
738 if (!target->tap->enabled) {
739 jtag_register_event_callback(jtag_enable_callback,
740 target);
741 continue;
744 if (target->defer_examine)
745 continue;
747 retval = target_examine_one(target);
748 if (retval != ERROR_OK)
749 return retval;
751 return retval;
754 const char *target_type_name(struct target *target)
756 return target->type->name;
759 static int target_soft_reset_halt(struct target *target)
761 if (!target_was_examined(target)) {
762 LOG_ERROR("Target not examined yet");
763 return ERROR_FAIL;
765 if (!target->type->soft_reset_halt) {
766 LOG_ERROR("Target %s does not support soft_reset_halt",
767 target_name(target));
768 return ERROR_FAIL;
770 return target->type->soft_reset_halt(target);
774 * Downloads a target-specific native code algorithm to the target,
775 * and executes it. * Note that some targets may need to set up, enable,
776 * and tear down a breakpoint (hard or * soft) to detect algorithm
777 * termination, while others may support lower overhead schemes where
778 * soft breakpoints embedded in the algorithm automatically terminate the
779 * algorithm.
781 * @param target used to run the algorithm
782 * @param arch_info target-specific description of the algorithm.
784 int target_run_algorithm(struct target *target,
785 int num_mem_params, struct mem_param *mem_params,
786 int num_reg_params, struct reg_param *reg_param,
787 uint32_t entry_point, uint32_t exit_point,
788 int timeout_ms, void *arch_info)
790 int retval = ERROR_FAIL;
792 if (!target_was_examined(target)) {
793 LOG_ERROR("Target not examined yet");
794 goto done;
796 if (!target->type->run_algorithm) {
797 LOG_ERROR("Target type '%s' does not support %s",
798 target_type_name(target), __func__);
799 goto done;
802 target->running_alg = true;
803 retval = target->type->run_algorithm(target,
804 num_mem_params, mem_params,
805 num_reg_params, reg_param,
806 entry_point, exit_point, timeout_ms, arch_info);
807 target->running_alg = false;
809 done:
810 return retval;
814 * Executes a target-specific native code algorithm and leaves it running.
816 * @param target used to run the algorithm
817 * @param arch_info target-specific description of the algorithm.
819 int target_start_algorithm(struct target *target,
820 int num_mem_params, struct mem_param *mem_params,
821 int num_reg_params, struct reg_param *reg_params,
822 uint32_t entry_point, uint32_t exit_point,
823 void *arch_info)
825 int retval = ERROR_FAIL;
827 if (!target_was_examined(target)) {
828 LOG_ERROR("Target not examined yet");
829 goto done;
831 if (!target->type->start_algorithm) {
832 LOG_ERROR("Target type '%s' does not support %s",
833 target_type_name(target), __func__);
834 goto done;
836 if (target->running_alg) {
837 LOG_ERROR("Target is already running an algorithm");
838 goto done;
841 target->running_alg = true;
842 retval = target->type->start_algorithm(target,
843 num_mem_params, mem_params,
844 num_reg_params, reg_params,
845 entry_point, exit_point, arch_info);
847 done:
848 return retval;
852 * Waits for an algorithm started with target_start_algorithm() to complete.
854 * @param target used to run the algorithm
855 * @param arch_info target-specific description of the algorithm.
857 int target_wait_algorithm(struct target *target,
858 int num_mem_params, struct mem_param *mem_params,
859 int num_reg_params, struct reg_param *reg_params,
860 uint32_t exit_point, int timeout_ms,
861 void *arch_info)
863 int retval = ERROR_FAIL;
865 if (!target->type->wait_algorithm) {
866 LOG_ERROR("Target type '%s' does not support %s",
867 target_type_name(target), __func__);
868 goto done;
870 if (!target->running_alg) {
871 LOG_ERROR("Target is not running an algorithm");
872 goto done;
875 retval = target->type->wait_algorithm(target,
876 num_mem_params, mem_params,
877 num_reg_params, reg_params,
878 exit_point, timeout_ms, arch_info);
879 if (retval != ERROR_TARGET_TIMEOUT)
880 target->running_alg = false;
882 done:
883 return retval;
887 * Streams data to a circular buffer on target intended for consumption by code
888 * running asynchronously on target.
890 * This is intended for applications where target-specific native code runs
891 * on the target, receives data from the circular buffer, does something with
892 * it (most likely writing it to a flash memory), and advances the circular
893 * buffer pointer.
895 * This assumes that the helper algorithm has already been loaded to the target,
896 * but has not been started yet. Given memory and register parameters are passed
897 * to the algorithm.
899 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
900 * following format:
902 * [buffer_start + 0, buffer_start + 4):
903 * Write Pointer address (aka head). Written and updated by this
904 * routine when new data is written to the circular buffer.
905 * [buffer_start + 4, buffer_start + 8):
906 * Read Pointer address (aka tail). Updated by code running on the
907 * target after it consumes data.
908 * [buffer_start + 8, buffer_start + buffer_size):
909 * Circular buffer contents.
911 * See contrib/loaders/flash/stm32f1x.S for an example.
913 * @param target used to run the algorithm
914 * @param buffer address on the host where data to be sent is located
915 * @param count number of blocks to send
916 * @param block_size size in bytes of each block
917 * @param num_mem_params count of memory-based params to pass to algorithm
918 * @param mem_params memory-based params to pass to algorithm
919 * @param num_reg_params count of register-based params to pass to algorithm
920 * @param reg_params memory-based params to pass to algorithm
921 * @param buffer_start address on the target of the circular buffer structure
922 * @param buffer_size size of the circular buffer structure
923 * @param entry_point address on the target to execute to start the algorithm
924 * @param exit_point address at which to set a breakpoint to catch the
925 * end of the algorithm; can be 0 if target triggers a breakpoint itself
928 int target_run_flash_async_algorithm(struct target *target,
929 const uint8_t *buffer, uint32_t count, int block_size,
930 int num_mem_params, struct mem_param *mem_params,
931 int num_reg_params, struct reg_param *reg_params,
932 uint32_t buffer_start, uint32_t buffer_size,
933 uint32_t entry_point, uint32_t exit_point, void *arch_info)
935 int retval;
936 int timeout = 0;
938 const uint8_t *buffer_orig = buffer;
940 /* Set up working area. First word is write pointer, second word is read pointer,
941 * rest is fifo data area. */
942 uint32_t wp_addr = buffer_start;
943 uint32_t rp_addr = buffer_start + 4;
944 uint32_t fifo_start_addr = buffer_start + 8;
945 uint32_t fifo_end_addr = buffer_start + buffer_size;
947 uint32_t wp = fifo_start_addr;
948 uint32_t rp = fifo_start_addr;
950 /* validate block_size is 2^n */
951 assert(!block_size || !(block_size & (block_size - 1)));
953 retval = target_write_u32(target, wp_addr, wp);
954 if (retval != ERROR_OK)
955 return retval;
956 retval = target_write_u32(target, rp_addr, rp);
957 if (retval != ERROR_OK)
958 return retval;
960 /* Start up algorithm on target and let it idle while writing the first chunk */
961 retval = target_start_algorithm(target, num_mem_params, mem_params,
962 num_reg_params, reg_params,
963 entry_point,
964 exit_point,
965 arch_info);
967 if (retval != ERROR_OK) {
968 LOG_ERROR("error starting target flash write algorithm");
969 return retval;
972 while (count > 0) {
974 retval = target_read_u32(target, rp_addr, &rp);
975 if (retval != ERROR_OK) {
976 LOG_ERROR("failed to get read pointer");
977 break;
980 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
981 (size_t) (buffer - buffer_orig), count, wp, rp);
983 if (rp == 0) {
984 LOG_ERROR("flash write algorithm aborted by target");
985 retval = ERROR_FLASH_OPERATION_FAILED;
986 break;
989 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
990 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
991 break;
994 /* Count the number of bytes available in the fifo without
995 * crossing the wrap around. Make sure to not fill it completely,
996 * because that would make wp == rp and that's the empty condition. */
997 uint32_t thisrun_bytes;
998 if (rp > wp)
999 thisrun_bytes = rp - wp - block_size;
1000 else if (rp > fifo_start_addr)
1001 thisrun_bytes = fifo_end_addr - wp;
1002 else
1003 thisrun_bytes = fifo_end_addr - wp - block_size;
1005 if (thisrun_bytes == 0) {
1006 /* Throttle polling a bit if transfer is (much) faster than flash
1007 * programming. The exact delay shouldn't matter as long as it's
1008 * less than buffer size / flash speed. This is very unlikely to
1009 * run when using high latency connections such as USB. */
1010 alive_sleep(10);
1012 /* to stop an infinite loop on some targets check and increment a timeout
1013 * this issue was observed on a stellaris using the new ICDI interface */
1014 if (timeout++ >= 500) {
1015 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1016 return ERROR_FLASH_OPERATION_FAILED;
1018 continue;
1021 /* reset our timeout */
1022 timeout = 0;
1024 /* Limit to the amount of data we actually want to write */
1025 if (thisrun_bytes > count * block_size)
1026 thisrun_bytes = count * block_size;
1028 /* Write data to fifo */
1029 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1030 if (retval != ERROR_OK)
1031 break;
1033 /* Update counters and wrap write pointer */
1034 buffer += thisrun_bytes;
1035 count -= thisrun_bytes / block_size;
1036 wp += thisrun_bytes;
1037 if (wp >= fifo_end_addr)
1038 wp = fifo_start_addr;
1040 /* Store updated write pointer to target */
1041 retval = target_write_u32(target, wp_addr, wp);
1042 if (retval != ERROR_OK)
1043 break;
1046 if (retval != ERROR_OK) {
1047 /* abort flash write algorithm on target */
1048 target_write_u32(target, wp_addr, 0);
1051 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1052 num_reg_params, reg_params,
1053 exit_point,
1054 10000,
1055 arch_info);
1057 if (retval2 != ERROR_OK) {
1058 LOG_ERROR("error waiting for target flash write algorithm");
1059 retval = retval2;
1062 if (retval == ERROR_OK) {
1063 /* check if algorithm set rp = 0 after fifo writer loop finished */
1064 retval = target_read_u32(target, rp_addr, &rp);
1065 if (retval == ERROR_OK && rp == 0) {
1066 LOG_ERROR("flash write algorithm aborted by target");
1067 retval = ERROR_FLASH_OPERATION_FAILED;
1071 return retval;
1074 int target_read_memory(struct target *target,
1075 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1077 if (!target_was_examined(target)) {
1078 LOG_ERROR("Target not examined yet");
1079 return ERROR_FAIL;
1081 if (!target->type->read_memory) {
1082 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1083 return ERROR_FAIL;
1085 return target->type->read_memory(target, address, size, count, buffer);
1088 int target_read_phys_memory(struct target *target,
1089 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1091 if (!target_was_examined(target)) {
1092 LOG_ERROR("Target not examined yet");
1093 return ERROR_FAIL;
1095 if (!target->type->read_phys_memory) {
1096 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1097 return ERROR_FAIL;
1099 return target->type->read_phys_memory(target, address, size, count, buffer);
1102 int target_write_memory(struct target *target,
1103 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1105 if (!target_was_examined(target)) {
1106 LOG_ERROR("Target not examined yet");
1107 return ERROR_FAIL;
1109 if (!target->type->write_memory) {
1110 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1111 return ERROR_FAIL;
1113 return target->type->write_memory(target, address, size, count, buffer);
1116 int target_write_phys_memory(struct target *target,
1117 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1119 if (!target_was_examined(target)) {
1120 LOG_ERROR("Target not examined yet");
1121 return ERROR_FAIL;
1123 if (!target->type->write_phys_memory) {
1124 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1125 return ERROR_FAIL;
1127 return target->type->write_phys_memory(target, address, size, count, buffer);
1130 int target_add_breakpoint(struct target *target,
1131 struct breakpoint *breakpoint)
1133 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1134 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1135 return ERROR_TARGET_NOT_HALTED;
1137 return target->type->add_breakpoint(target, breakpoint);
1140 int target_add_context_breakpoint(struct target *target,
1141 struct breakpoint *breakpoint)
1143 if (target->state != TARGET_HALTED) {
1144 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1145 return ERROR_TARGET_NOT_HALTED;
1147 return target->type->add_context_breakpoint(target, breakpoint);
1150 int target_add_hybrid_breakpoint(struct target *target,
1151 struct breakpoint *breakpoint)
1153 if (target->state != TARGET_HALTED) {
1154 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1155 return ERROR_TARGET_NOT_HALTED;
1157 return target->type->add_hybrid_breakpoint(target, breakpoint);
1160 int target_remove_breakpoint(struct target *target,
1161 struct breakpoint *breakpoint)
1163 return target->type->remove_breakpoint(target, breakpoint);
1166 int target_add_watchpoint(struct target *target,
1167 struct watchpoint *watchpoint)
1169 if (target->state != TARGET_HALTED) {
1170 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1171 return ERROR_TARGET_NOT_HALTED;
1173 return target->type->add_watchpoint(target, watchpoint);
1175 int target_remove_watchpoint(struct target *target,
1176 struct watchpoint *watchpoint)
1178 return target->type->remove_watchpoint(target, watchpoint);
1180 int target_hit_watchpoint(struct target *target,
1181 struct watchpoint **hit_watchpoint)
1183 if (target->state != TARGET_HALTED) {
1184 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1185 return ERROR_TARGET_NOT_HALTED;
1188 if (target->type->hit_watchpoint == NULL) {
1189 /* For backward compatible, if hit_watchpoint is not implemented,
1190 * return ERROR_FAIL such that gdb_server will not take the nonsense
1191 * information. */
1192 return ERROR_FAIL;
1195 return target->type->hit_watchpoint(target, hit_watchpoint);
1198 int target_get_gdb_reg_list(struct target *target,
1199 struct reg **reg_list[], int *reg_list_size,
1200 enum target_register_class reg_class)
1202 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1204 int target_step(struct target *target,
1205 int current, target_addr_t address, int handle_breakpoints)
1207 return target->type->step(target, current, address, handle_breakpoints);
1210 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1212 if (target->state != TARGET_HALTED) {
1213 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1214 return ERROR_TARGET_NOT_HALTED;
1216 return target->type->get_gdb_fileio_info(target, fileio_info);
1219 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1221 if (target->state != TARGET_HALTED) {
1222 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1223 return ERROR_TARGET_NOT_HALTED;
1225 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1228 int target_profiling(struct target *target, uint32_t *samples,
1229 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1231 if (target->state != TARGET_HALTED) {
1232 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1233 return ERROR_TARGET_NOT_HALTED;
1235 return target->type->profiling(target, samples, max_num_samples,
1236 num_samples, seconds);
1240 * Reset the @c examined flag for the given target.
1241 * Pure paranoia -- targets are zeroed on allocation.
1243 static void target_reset_examined(struct target *target)
1245 target->examined = false;
1248 static int handle_target(void *priv);
1250 static int target_init_one(struct command_context *cmd_ctx,
1251 struct target *target)
1253 target_reset_examined(target);
1255 struct target_type *type = target->type;
1256 if (type->examine == NULL)
1257 type->examine = default_examine;
1259 if (type->check_reset == NULL)
1260 type->check_reset = default_check_reset;
1262 assert(type->init_target != NULL);
1264 int retval = type->init_target(cmd_ctx, target);
1265 if (ERROR_OK != retval) {
1266 LOG_ERROR("target '%s' init failed", target_name(target));
1267 return retval;
1270 /* Sanity-check MMU support ... stub in what we must, to help
1271 * implement it in stages, but warn if we need to do so.
1273 if (type->mmu) {
1274 if (type->virt2phys == NULL) {
1275 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1276 type->virt2phys = identity_virt2phys;
1278 } else {
1279 /* Make sure no-MMU targets all behave the same: make no
1280 * distinction between physical and virtual addresses, and
1281 * ensure that virt2phys() is always an identity mapping.
1283 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1284 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1286 type->mmu = no_mmu;
1287 type->write_phys_memory = type->write_memory;
1288 type->read_phys_memory = type->read_memory;
1289 type->virt2phys = identity_virt2phys;
1292 if (target->type->read_buffer == NULL)
1293 target->type->read_buffer = target_read_buffer_default;
1295 if (target->type->write_buffer == NULL)
1296 target->type->write_buffer = target_write_buffer_default;
1298 if (target->type->get_gdb_fileio_info == NULL)
1299 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1301 if (target->type->gdb_fileio_end == NULL)
1302 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1304 if (target->type->profiling == NULL)
1305 target->type->profiling = target_profiling_default;
1307 return ERROR_OK;
1310 static int target_init(struct command_context *cmd_ctx)
1312 struct target *target;
1313 int retval;
1315 for (target = all_targets; target; target = target->next) {
1316 retval = target_init_one(cmd_ctx, target);
1317 if (ERROR_OK != retval)
1318 return retval;
1321 if (!all_targets)
1322 return ERROR_OK;
1324 retval = target_register_user_commands(cmd_ctx);
1325 if (ERROR_OK != retval)
1326 return retval;
1328 retval = target_register_timer_callback(&handle_target,
1329 polling_interval, 1, cmd_ctx->interp);
1330 if (ERROR_OK != retval)
1331 return retval;
1333 return ERROR_OK;
1336 COMMAND_HANDLER(handle_target_init_command)
1338 int retval;
1340 if (CMD_ARGC != 0)
1341 return ERROR_COMMAND_SYNTAX_ERROR;
1343 static bool target_initialized;
1344 if (target_initialized) {
1345 LOG_INFO("'target init' has already been called");
1346 return ERROR_OK;
1348 target_initialized = true;
1350 retval = command_run_line(CMD_CTX, "init_targets");
1351 if (ERROR_OK != retval)
1352 return retval;
1354 retval = command_run_line(CMD_CTX, "init_target_events");
1355 if (ERROR_OK != retval)
1356 return retval;
1358 retval = command_run_line(CMD_CTX, "init_board");
1359 if (ERROR_OK != retval)
1360 return retval;
1362 LOG_DEBUG("Initializing targets...");
1363 return target_init(CMD_CTX);
1366 int target_register_event_callback(int (*callback)(struct target *target,
1367 enum target_event event, void *priv), void *priv)
1369 struct target_event_callback **callbacks_p = &target_event_callbacks;
1371 if (callback == NULL)
1372 return ERROR_COMMAND_SYNTAX_ERROR;
1374 if (*callbacks_p) {
1375 while ((*callbacks_p)->next)
1376 callbacks_p = &((*callbacks_p)->next);
1377 callbacks_p = &((*callbacks_p)->next);
1380 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1381 (*callbacks_p)->callback = callback;
1382 (*callbacks_p)->priv = priv;
1383 (*callbacks_p)->next = NULL;
1385 return ERROR_OK;
1388 int target_register_reset_callback(int (*callback)(struct target *target,
1389 enum target_reset_mode reset_mode, void *priv), void *priv)
1391 struct target_reset_callback *entry;
1393 if (callback == NULL)
1394 return ERROR_COMMAND_SYNTAX_ERROR;
1396 entry = malloc(sizeof(struct target_reset_callback));
1397 if (entry == NULL) {
1398 LOG_ERROR("error allocating buffer for reset callback entry");
1399 return ERROR_COMMAND_SYNTAX_ERROR;
1402 entry->callback = callback;
1403 entry->priv = priv;
1404 list_add(&entry->list, &target_reset_callback_list);
1407 return ERROR_OK;
1410 int target_register_trace_callback(int (*callback)(struct target *target,
1411 size_t len, uint8_t *data, void *priv), void *priv)
1413 struct target_trace_callback *entry;
1415 if (callback == NULL)
1416 return ERROR_COMMAND_SYNTAX_ERROR;
1418 entry = malloc(sizeof(struct target_trace_callback));
1419 if (entry == NULL) {
1420 LOG_ERROR("error allocating buffer for trace callback entry");
1421 return ERROR_COMMAND_SYNTAX_ERROR;
1424 entry->callback = callback;
1425 entry->priv = priv;
1426 list_add(&entry->list, &target_trace_callback_list);
1429 return ERROR_OK;
1432 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1434 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1436 if (callback == NULL)
1437 return ERROR_COMMAND_SYNTAX_ERROR;
1439 if (*callbacks_p) {
1440 while ((*callbacks_p)->next)
1441 callbacks_p = &((*callbacks_p)->next);
1442 callbacks_p = &((*callbacks_p)->next);
1445 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1446 (*callbacks_p)->callback = callback;
1447 (*callbacks_p)->periodic = periodic;
1448 (*callbacks_p)->time_ms = time_ms;
1449 (*callbacks_p)->removed = false;
1451 gettimeofday(&(*callbacks_p)->when, NULL);
1452 timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1454 (*callbacks_p)->priv = priv;
1455 (*callbacks_p)->next = NULL;
1457 return ERROR_OK;
1460 int target_unregister_event_callback(int (*callback)(struct target *target,
1461 enum target_event event, void *priv), void *priv)
1463 struct target_event_callback **p = &target_event_callbacks;
1464 struct target_event_callback *c = target_event_callbacks;
1466 if (callback == NULL)
1467 return ERROR_COMMAND_SYNTAX_ERROR;
1469 while (c) {
1470 struct target_event_callback *next = c->next;
1471 if ((c->callback == callback) && (c->priv == priv)) {
1472 *p = next;
1473 free(c);
1474 return ERROR_OK;
1475 } else
1476 p = &(c->next);
1477 c = next;
1480 return ERROR_OK;
1483 int target_unregister_reset_callback(int (*callback)(struct target *target,
1484 enum target_reset_mode reset_mode, void *priv), void *priv)
1486 struct target_reset_callback *entry;
1488 if (callback == NULL)
1489 return ERROR_COMMAND_SYNTAX_ERROR;
1491 list_for_each_entry(entry, &target_reset_callback_list, list) {
1492 if (entry->callback == callback && entry->priv == priv) {
1493 list_del(&entry->list);
1494 free(entry);
1495 break;
1499 return ERROR_OK;
1502 int target_unregister_trace_callback(int (*callback)(struct target *target,
1503 size_t len, uint8_t *data, void *priv), void *priv)
1505 struct target_trace_callback *entry;
1507 if (callback == NULL)
1508 return ERROR_COMMAND_SYNTAX_ERROR;
1510 list_for_each_entry(entry, &target_trace_callback_list, list) {
1511 if (entry->callback == callback && entry->priv == priv) {
1512 list_del(&entry->list);
1513 free(entry);
1514 break;
1518 return ERROR_OK;
1521 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1523 if (callback == NULL)
1524 return ERROR_COMMAND_SYNTAX_ERROR;
1526 for (struct target_timer_callback *c = target_timer_callbacks;
1527 c; c = c->next) {
1528 if ((c->callback == callback) && (c->priv == priv)) {
1529 c->removed = true;
1530 return ERROR_OK;
1534 return ERROR_FAIL;
1537 int target_call_event_callbacks(struct target *target, enum target_event event)
1539 struct target_event_callback *callback = target_event_callbacks;
1540 struct target_event_callback *next_callback;
1542 if (event == TARGET_EVENT_HALTED) {
1543 /* execute early halted first */
1544 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1547 LOG_DEBUG("target event %i (%s)", event,
1548 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1550 target_handle_event(target, event);
1552 while (callback) {
1553 next_callback = callback->next;
1554 callback->callback(target, event, callback->priv);
1555 callback = next_callback;
1558 return ERROR_OK;
1561 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1563 struct target_reset_callback *callback;
1565 LOG_DEBUG("target reset %i (%s)", reset_mode,
1566 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1568 list_for_each_entry(callback, &target_reset_callback_list, list)
1569 callback->callback(target, reset_mode, callback->priv);
1571 return ERROR_OK;
1574 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1576 struct target_trace_callback *callback;
1578 list_for_each_entry(callback, &target_trace_callback_list, list)
1579 callback->callback(target, len, data, callback->priv);
1581 return ERROR_OK;
1584 static int target_timer_callback_periodic_restart(
1585 struct target_timer_callback *cb, struct timeval *now)
1587 cb->when = *now;
1588 timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1589 return ERROR_OK;
1592 static int target_call_timer_callback(struct target_timer_callback *cb,
1593 struct timeval *now)
1595 cb->callback(cb->priv);
1597 if (cb->periodic)
1598 return target_timer_callback_periodic_restart(cb, now);
1600 return target_unregister_timer_callback(cb->callback, cb->priv);
1603 static int target_call_timer_callbacks_check_time(int checktime)
1605 static bool callback_processing;
1607 /* Do not allow nesting */
1608 if (callback_processing)
1609 return ERROR_OK;
1611 callback_processing = true;
1613 keep_alive();
1615 struct timeval now;
1616 gettimeofday(&now, NULL);
1618 /* Store an address of the place containing a pointer to the
1619 * next item; initially, that's a standalone "root of the
1620 * list" variable. */
1621 struct target_timer_callback **callback = &target_timer_callbacks;
1622 while (*callback) {
1623 if ((*callback)->removed) {
1624 struct target_timer_callback *p = *callback;
1625 *callback = (*callback)->next;
1626 free(p);
1627 continue;
1630 bool call_it = (*callback)->callback &&
1631 ((!checktime && (*callback)->periodic) ||
1632 timeval_compare(&now, &(*callback)->when) >= 0);
1634 if (call_it)
1635 target_call_timer_callback(*callback, &now);
1637 callback = &(*callback)->next;
1640 callback_processing = false;
1641 return ERROR_OK;
1644 int target_call_timer_callbacks(void)
1646 return target_call_timer_callbacks_check_time(1);
1649 /* invoke periodic callbacks immediately */
1650 int target_call_timer_callbacks_now(void)
1652 return target_call_timer_callbacks_check_time(0);
1655 /* Prints the working area layout for debug purposes */
1656 static void print_wa_layout(struct target *target)
1658 struct working_area *c = target->working_areas;
1660 while (c) {
1661 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1662 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1663 c->address, c->address + c->size - 1, c->size);
1664 c = c->next;
1668 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1669 static void target_split_working_area(struct working_area *area, uint32_t size)
1671 assert(area->free); /* Shouldn't split an allocated area */
1672 assert(size <= area->size); /* Caller should guarantee this */
1674 /* Split only if not already the right size */
1675 if (size < area->size) {
1676 struct working_area *new_wa = malloc(sizeof(*new_wa));
1678 if (new_wa == NULL)
1679 return;
1681 new_wa->next = area->next;
1682 new_wa->size = area->size - size;
1683 new_wa->address = area->address + size;
1684 new_wa->backup = NULL;
1685 new_wa->user = NULL;
1686 new_wa->free = true;
1688 area->next = new_wa;
1689 area->size = size;
1691 /* If backup memory was allocated to this area, it has the wrong size
1692 * now so free it and it will be reallocated if/when needed */
1693 if (area->backup) {
1694 free(area->backup);
1695 area->backup = NULL;
1700 /* Merge all adjacent free areas into one */
1701 static void target_merge_working_areas(struct target *target)
1703 struct working_area *c = target->working_areas;
1705 while (c && c->next) {
1706 assert(c->next->address == c->address + c->size); /* This is an invariant */
1708 /* Find two adjacent free areas */
1709 if (c->free && c->next->free) {
1710 /* Merge the last into the first */
1711 c->size += c->next->size;
1713 /* Remove the last */
1714 struct working_area *to_be_freed = c->next;
1715 c->next = c->next->next;
1716 if (to_be_freed->backup)
1717 free(to_be_freed->backup);
1718 free(to_be_freed);
1720 /* If backup memory was allocated to the remaining area, it's has
1721 * the wrong size now */
1722 if (c->backup) {
1723 free(c->backup);
1724 c->backup = NULL;
1726 } else {
1727 c = c->next;
1732 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1734 /* Reevaluate working area address based on MMU state*/
1735 if (target->working_areas == NULL) {
1736 int retval;
1737 int enabled;
1739 retval = target->type->mmu(target, &enabled);
1740 if (retval != ERROR_OK)
1741 return retval;
1743 if (!enabled) {
1744 if (target->working_area_phys_spec) {
1745 LOG_DEBUG("MMU disabled, using physical "
1746 "address for working memory " TARGET_ADDR_FMT,
1747 target->working_area_phys);
1748 target->working_area = target->working_area_phys;
1749 } else {
1750 LOG_ERROR("No working memory available. "
1751 "Specify -work-area-phys to target.");
1752 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1754 } else {
1755 if (target->working_area_virt_spec) {
1756 LOG_DEBUG("MMU enabled, using virtual "
1757 "address for working memory " TARGET_ADDR_FMT,
1758 target->working_area_virt);
1759 target->working_area = target->working_area_virt;
1760 } else {
1761 LOG_ERROR("No working memory available. "
1762 "Specify -work-area-virt to target.");
1763 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1767 /* Set up initial working area on first call */
1768 struct working_area *new_wa = malloc(sizeof(*new_wa));
1769 if (new_wa) {
1770 new_wa->next = NULL;
1771 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1772 new_wa->address = target->working_area;
1773 new_wa->backup = NULL;
1774 new_wa->user = NULL;
1775 new_wa->free = true;
1778 target->working_areas = new_wa;
1781 /* only allocate multiples of 4 byte */
1782 if (size % 4)
1783 size = (size + 3) & (~3UL);
1785 struct working_area *c = target->working_areas;
1787 /* Find the first large enough working area */
1788 while (c) {
1789 if (c->free && c->size >= size)
1790 break;
1791 c = c->next;
1794 if (c == NULL)
1795 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1797 /* Split the working area into the requested size */
1798 target_split_working_area(c, size);
1800 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1801 size, c->address);
1803 if (target->backup_working_area) {
1804 if (c->backup == NULL) {
1805 c->backup = malloc(c->size);
1806 if (c->backup == NULL)
1807 return ERROR_FAIL;
1810 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1811 if (retval != ERROR_OK)
1812 return retval;
1815 /* mark as used, and return the new (reused) area */
1816 c->free = false;
1817 *area = c;
1819 /* user pointer */
1820 c->user = area;
1822 print_wa_layout(target);
1824 return ERROR_OK;
1827 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1829 int retval;
1831 retval = target_alloc_working_area_try(target, size, area);
1832 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1833 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1834 return retval;
1838 static int target_restore_working_area(struct target *target, struct working_area *area)
1840 int retval = ERROR_OK;
1842 if (target->backup_working_area && area->backup != NULL) {
1843 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1844 if (retval != ERROR_OK)
1845 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1846 area->size, area->address);
1849 return retval;
1852 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1853 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1855 int retval = ERROR_OK;
1857 if (area->free)
1858 return retval;
1860 if (restore) {
1861 retval = target_restore_working_area(target, area);
1862 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1863 if (retval != ERROR_OK)
1864 return retval;
1867 area->free = true;
1869 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1870 area->size, area->address);
1872 /* mark user pointer invalid */
1873 /* TODO: Is this really safe? It points to some previous caller's memory.
1874 * How could we know that the area pointer is still in that place and not
1875 * some other vital data? What's the purpose of this, anyway? */
1876 *area->user = NULL;
1877 area->user = NULL;
1879 target_merge_working_areas(target);
1881 print_wa_layout(target);
1883 return retval;
1886 int target_free_working_area(struct target *target, struct working_area *area)
1888 return target_free_working_area_restore(target, area, 1);
1891 static void target_destroy(struct target *target)
1893 if (target->type->deinit_target)
1894 target->type->deinit_target(target);
1896 if (target->semihosting)
1897 free(target->semihosting);
1899 jtag_unregister_event_callback(jtag_enable_callback, target);
1901 struct target_event_action *teap = target->event_action;
1902 while (teap) {
1903 struct target_event_action *next = teap->next;
1904 Jim_DecrRefCount(teap->interp, teap->body);
1905 free(teap);
1906 teap = next;
1909 target_free_all_working_areas(target);
1910 /* Now we have none or only one working area marked as free */
1911 if (target->working_areas) {
1912 free(target->working_areas->backup);
1913 free(target->working_areas);
1916 /* release the targets SMP list */
1917 if (target->smp) {
1918 struct target_list *head = target->head;
1919 while (head != NULL) {
1920 struct target_list *pos = head->next;
1921 head->target->smp = 0;
1922 free(head);
1923 head = pos;
1925 target->smp = 0;
1928 free(target->type);
1929 free(target->trace_info);
1930 free(target->fileio_info);
1931 free(target->cmd_name);
1932 free(target);
1935 void target_quit(void)
1937 struct target_event_callback *pe = target_event_callbacks;
1938 while (pe) {
1939 struct target_event_callback *t = pe->next;
1940 free(pe);
1941 pe = t;
1943 target_event_callbacks = NULL;
1945 struct target_timer_callback *pt = target_timer_callbacks;
1946 while (pt) {
1947 struct target_timer_callback *t = pt->next;
1948 free(pt);
1949 pt = t;
1951 target_timer_callbacks = NULL;
1953 for (struct target *target = all_targets; target;) {
1954 struct target *tmp;
1956 tmp = target->next;
1957 target_destroy(target);
1958 target = tmp;
1961 all_targets = NULL;
1964 /* free resources and restore memory, if restoring memory fails,
1965 * free up resources anyway
1967 static void target_free_all_working_areas_restore(struct target *target, int restore)
1969 struct working_area *c = target->working_areas;
1971 LOG_DEBUG("freeing all working areas");
1973 /* Loop through all areas, restoring the allocated ones and marking them as free */
1974 while (c) {
1975 if (!c->free) {
1976 if (restore)
1977 target_restore_working_area(target, c);
1978 c->free = true;
1979 *c->user = NULL; /* Same as above */
1980 c->user = NULL;
1982 c = c->next;
1985 /* Run a merge pass to combine all areas into one */
1986 target_merge_working_areas(target);
1988 print_wa_layout(target);
1991 void target_free_all_working_areas(struct target *target)
1993 target_free_all_working_areas_restore(target, 1);
1996 /* Find the largest number of bytes that can be allocated */
1997 uint32_t target_get_working_area_avail(struct target *target)
1999 struct working_area *c = target->working_areas;
2000 uint32_t max_size = 0;
2002 if (c == NULL)
2003 return target->working_area_size;
2005 while (c) {
2006 if (c->free && max_size < c->size)
2007 max_size = c->size;
2009 c = c->next;
2012 return max_size;
2015 int target_arch_state(struct target *target)
2017 int retval;
2018 if (target == NULL) {
2019 LOG_WARNING("No target has been configured");
2020 return ERROR_OK;
2023 if (target->state != TARGET_HALTED)
2024 return ERROR_OK;
2026 retval = target->type->arch_state(target);
2027 return retval;
2030 static int target_get_gdb_fileio_info_default(struct target *target,
2031 struct gdb_fileio_info *fileio_info)
2033 /* If target does not support semi-hosting function, target
2034 has no need to provide .get_gdb_fileio_info callback.
2035 It just return ERROR_FAIL and gdb_server will return "Txx"
2036 as target halted every time. */
2037 return ERROR_FAIL;
2040 static int target_gdb_fileio_end_default(struct target *target,
2041 int retcode, int fileio_errno, bool ctrl_c)
2043 return ERROR_OK;
2046 static int target_profiling_default(struct target *target, uint32_t *samples,
2047 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2049 struct timeval timeout, now;
2051 gettimeofday(&timeout, NULL);
2052 timeval_add_time(&timeout, seconds, 0);
2054 LOG_INFO("Starting profiling. Halting and resuming the"
2055 " target as often as we can...");
2057 uint32_t sample_count = 0;
2058 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2059 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2061 int retval = ERROR_OK;
2062 for (;;) {
2063 target_poll(target);
2064 if (target->state == TARGET_HALTED) {
2065 uint32_t t = buf_get_u32(reg->value, 0, 32);
2066 samples[sample_count++] = t;
2067 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2068 retval = target_resume(target, 1, 0, 0, 0);
2069 target_poll(target);
2070 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2071 } else if (target->state == TARGET_RUNNING) {
2072 /* We want to quickly sample the PC. */
2073 retval = target_halt(target);
2074 } else {
2075 LOG_INFO("Target not halted or running");
2076 retval = ERROR_OK;
2077 break;
2080 if (retval != ERROR_OK)
2081 break;
2083 gettimeofday(&now, NULL);
2084 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2085 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2086 break;
2090 *num_samples = sample_count;
2091 return retval;
2094 /* Single aligned words are guaranteed to use 16 or 32 bit access
2095 * mode respectively, otherwise data is handled as quickly as
2096 * possible
2098 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2100 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2101 size, address);
2103 if (!target_was_examined(target)) {
2104 LOG_ERROR("Target not examined yet");
2105 return ERROR_FAIL;
2108 if (size == 0)
2109 return ERROR_OK;
2111 if ((address + size - 1) < address) {
2112 /* GDB can request this when e.g. PC is 0xfffffffc */
2113 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2114 address,
2115 size);
2116 return ERROR_FAIL;
2119 return target->type->write_buffer(target, address, size, buffer);
2122 static int target_write_buffer_default(struct target *target,
2123 target_addr_t address, uint32_t count, const uint8_t *buffer)
2125 uint32_t size;
2127 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2128 * will have something to do with the size we leave to it. */
2129 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2130 if (address & size) {
2131 int retval = target_write_memory(target, address, size, 1, buffer);
2132 if (retval != ERROR_OK)
2133 return retval;
2134 address += size;
2135 count -= size;
2136 buffer += size;
2140 /* Write the data with as large access size as possible. */
2141 for (; size > 0; size /= 2) {
2142 uint32_t aligned = count - count % size;
2143 if (aligned > 0) {
2144 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2145 if (retval != ERROR_OK)
2146 return retval;
2147 address += aligned;
2148 count -= aligned;
2149 buffer += aligned;
2153 return ERROR_OK;
2156 /* Single aligned words are guaranteed to use 16 or 32 bit access
2157 * mode respectively, otherwise data is handled as quickly as
2158 * possible
2160 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2162 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2163 size, address);
2165 if (!target_was_examined(target)) {
2166 LOG_ERROR("Target not examined yet");
2167 return ERROR_FAIL;
2170 if (size == 0)
2171 return ERROR_OK;
2173 if ((address + size - 1) < address) {
2174 /* GDB can request this when e.g. PC is 0xfffffffc */
2175 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2176 address,
2177 size);
2178 return ERROR_FAIL;
2181 return target->type->read_buffer(target, address, size, buffer);
2184 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2186 uint32_t size;
2188 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2189 * will have something to do with the size we leave to it. */
2190 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2191 if (address & size) {
2192 int retval = target_read_memory(target, address, size, 1, buffer);
2193 if (retval != ERROR_OK)
2194 return retval;
2195 address += size;
2196 count -= size;
2197 buffer += size;
2201 /* Read the data with as large access size as possible. */
2202 for (; size > 0; size /= 2) {
2203 uint32_t aligned = count - count % size;
2204 if (aligned > 0) {
2205 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2206 if (retval != ERROR_OK)
2207 return retval;
2208 address += aligned;
2209 count -= aligned;
2210 buffer += aligned;
2214 return ERROR_OK;
2217 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2219 uint8_t *buffer;
2220 int retval;
2221 uint32_t i;
2222 uint32_t checksum = 0;
2223 if (!target_was_examined(target)) {
2224 LOG_ERROR("Target not examined yet");
2225 return ERROR_FAIL;
2228 retval = target->type->checksum_memory(target, address, size, &checksum);
2229 if (retval != ERROR_OK) {
2230 buffer = malloc(size);
2231 if (buffer == NULL) {
2232 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2233 return ERROR_COMMAND_SYNTAX_ERROR;
2235 retval = target_read_buffer(target, address, size, buffer);
2236 if (retval != ERROR_OK) {
2237 free(buffer);
2238 return retval;
2241 /* convert to target endianness */
2242 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2243 uint32_t target_data;
2244 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2245 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2248 retval = image_calculate_checksum(buffer, size, &checksum);
2249 free(buffer);
2252 *crc = checksum;
2254 return retval;
2257 int target_blank_check_memory(struct target *target,
2258 struct target_memory_check_block *blocks, int num_blocks,
2259 uint8_t erased_value)
2261 if (!target_was_examined(target)) {
2262 LOG_ERROR("Target not examined yet");
2263 return ERROR_FAIL;
2266 if (target->type->blank_check_memory == NULL)
2267 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2269 return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2272 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2274 uint8_t value_buf[8];
2275 if (!target_was_examined(target)) {
2276 LOG_ERROR("Target not examined yet");
2277 return ERROR_FAIL;
2280 int retval = target_read_memory(target, address, 8, 1, value_buf);
2282 if (retval == ERROR_OK) {
2283 *value = target_buffer_get_u64(target, value_buf);
2284 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2285 address,
2286 *value);
2287 } else {
2288 *value = 0x0;
2289 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2290 address);
2293 return retval;
2296 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2298 uint8_t value_buf[4];
2299 if (!target_was_examined(target)) {
2300 LOG_ERROR("Target not examined yet");
2301 return ERROR_FAIL;
2304 int retval = target_read_memory(target, address, 4, 1, value_buf);
2306 if (retval == ERROR_OK) {
2307 *value = target_buffer_get_u32(target, value_buf);
2308 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2309 address,
2310 *value);
2311 } else {
2312 *value = 0x0;
2313 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2314 address);
2317 return retval;
2320 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2322 uint8_t value_buf[2];
2323 if (!target_was_examined(target)) {
2324 LOG_ERROR("Target not examined yet");
2325 return ERROR_FAIL;
2328 int retval = target_read_memory(target, address, 2, 1, value_buf);
2330 if (retval == ERROR_OK) {
2331 *value = target_buffer_get_u16(target, value_buf);
2332 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2333 address,
2334 *value);
2335 } else {
2336 *value = 0x0;
2337 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2338 address);
2341 return retval;
2344 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2346 if (!target_was_examined(target)) {
2347 LOG_ERROR("Target not examined yet");
2348 return ERROR_FAIL;
2351 int retval = target_read_memory(target, address, 1, 1, value);
2353 if (retval == ERROR_OK) {
2354 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2355 address,
2356 *value);
2357 } else {
2358 *value = 0x0;
2359 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2360 address);
2363 return retval;
2366 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2368 int retval;
2369 uint8_t value_buf[8];
2370 if (!target_was_examined(target)) {
2371 LOG_ERROR("Target not examined yet");
2372 return ERROR_FAIL;
2375 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2376 address,
2377 value);
2379 target_buffer_set_u64(target, value_buf, value);
2380 retval = target_write_memory(target, address, 8, 1, value_buf);
2381 if (retval != ERROR_OK)
2382 LOG_DEBUG("failed: %i", retval);
2384 return retval;
2387 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2389 int retval;
2390 uint8_t value_buf[4];
2391 if (!target_was_examined(target)) {
2392 LOG_ERROR("Target not examined yet");
2393 return ERROR_FAIL;
2396 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2397 address,
2398 value);
2400 target_buffer_set_u32(target, value_buf, value);
2401 retval = target_write_memory(target, address, 4, 1, value_buf);
2402 if (retval != ERROR_OK)
2403 LOG_DEBUG("failed: %i", retval);
2405 return retval;
2408 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2410 int retval;
2411 uint8_t value_buf[2];
2412 if (!target_was_examined(target)) {
2413 LOG_ERROR("Target not examined yet");
2414 return ERROR_FAIL;
2417 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2418 address,
2419 value);
2421 target_buffer_set_u16(target, value_buf, value);
2422 retval = target_write_memory(target, address, 2, 1, value_buf);
2423 if (retval != ERROR_OK)
2424 LOG_DEBUG("failed: %i", retval);
2426 return retval;
2429 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2431 int retval;
2432 if (!target_was_examined(target)) {
2433 LOG_ERROR("Target not examined yet");
2434 return ERROR_FAIL;
2437 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2438 address, value);
2440 retval = target_write_memory(target, address, 1, 1, &value);
2441 if (retval != ERROR_OK)
2442 LOG_DEBUG("failed: %i", retval);
2444 return retval;
2447 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2449 int retval;
2450 uint8_t value_buf[8];
2451 if (!target_was_examined(target)) {
2452 LOG_ERROR("Target not examined yet");
2453 return ERROR_FAIL;
2456 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2457 address,
2458 value);
2460 target_buffer_set_u64(target, value_buf, value);
2461 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2462 if (retval != ERROR_OK)
2463 LOG_DEBUG("failed: %i", retval);
2465 return retval;
2468 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2470 int retval;
2471 uint8_t value_buf[4];
2472 if (!target_was_examined(target)) {
2473 LOG_ERROR("Target not examined yet");
2474 return ERROR_FAIL;
2477 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2478 address,
2479 value);
2481 target_buffer_set_u32(target, value_buf, value);
2482 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2483 if (retval != ERROR_OK)
2484 LOG_DEBUG("failed: %i", retval);
2486 return retval;
2489 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2491 int retval;
2492 uint8_t value_buf[2];
2493 if (!target_was_examined(target)) {
2494 LOG_ERROR("Target not examined yet");
2495 return ERROR_FAIL;
2498 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2499 address,
2500 value);
2502 target_buffer_set_u16(target, value_buf, value);
2503 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2504 if (retval != ERROR_OK)
2505 LOG_DEBUG("failed: %i", retval);
2507 return retval;
2510 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2512 int retval;
2513 if (!target_was_examined(target)) {
2514 LOG_ERROR("Target not examined yet");
2515 return ERROR_FAIL;
2518 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2519 address, value);
2521 retval = target_write_phys_memory(target, address, 1, 1, &value);
2522 if (retval != ERROR_OK)
2523 LOG_DEBUG("failed: %i", retval);
2525 return retval;
2528 static int find_target(struct command_context *cmd_ctx, const char *name)
2530 struct target *target = get_target(name);
2531 if (target == NULL) {
2532 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2533 return ERROR_FAIL;
2535 if (!target->tap->enabled) {
2536 LOG_USER("Target: TAP %s is disabled, "
2537 "can't be the current target\n",
2538 target->tap->dotted_name);
2539 return ERROR_FAIL;
2542 cmd_ctx->current_target = target;
2543 if (cmd_ctx->current_target_override)
2544 cmd_ctx->current_target_override = target;
2546 return ERROR_OK;
2550 COMMAND_HANDLER(handle_targets_command)
2552 int retval = ERROR_OK;
2553 if (CMD_ARGC == 1) {
2554 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2555 if (retval == ERROR_OK) {
2556 /* we're done! */
2557 return retval;
2561 struct target *target = all_targets;
2562 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2563 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2564 while (target) {
2565 const char *state;
2566 char marker = ' ';
2568 if (target->tap->enabled)
2569 state = target_state_name(target);
2570 else
2571 state = "tap-disabled";
2573 if (CMD_CTX->current_target == target)
2574 marker = '*';
2576 /* keep columns lined up to match the headers above */
2577 command_print(CMD_CTX,
2578 "%2d%c %-18s %-10s %-6s %-18s %s",
2579 target->target_number,
2580 marker,
2581 target_name(target),
2582 target_type_name(target),
2583 Jim_Nvp_value2name_simple(nvp_target_endian,
2584 target->endianness)->name,
2585 target->tap->dotted_name,
2586 state);
2587 target = target->next;
2590 return retval;
2593 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2595 static int powerDropout;
2596 static int srstAsserted;
2598 static int runPowerRestore;
2599 static int runPowerDropout;
2600 static int runSrstAsserted;
2601 static int runSrstDeasserted;
2603 static int sense_handler(void)
2605 static int prevSrstAsserted;
2606 static int prevPowerdropout;
2608 int retval = jtag_power_dropout(&powerDropout);
2609 if (retval != ERROR_OK)
2610 return retval;
2612 int powerRestored;
2613 powerRestored = prevPowerdropout && !powerDropout;
2614 if (powerRestored)
2615 runPowerRestore = 1;
2617 int64_t current = timeval_ms();
2618 static int64_t lastPower;
2619 bool waitMore = lastPower + 2000 > current;
2620 if (powerDropout && !waitMore) {
2621 runPowerDropout = 1;
2622 lastPower = current;
2625 retval = jtag_srst_asserted(&srstAsserted);
2626 if (retval != ERROR_OK)
2627 return retval;
2629 int srstDeasserted;
2630 srstDeasserted = prevSrstAsserted && !srstAsserted;
2632 static int64_t lastSrst;
2633 waitMore = lastSrst + 2000 > current;
2634 if (srstDeasserted && !waitMore) {
2635 runSrstDeasserted = 1;
2636 lastSrst = current;
2639 if (!prevSrstAsserted && srstAsserted)
2640 runSrstAsserted = 1;
2642 prevSrstAsserted = srstAsserted;
2643 prevPowerdropout = powerDropout;
2645 if (srstDeasserted || powerRestored) {
2646 /* Other than logging the event we can't do anything here.
2647 * Issuing a reset is a particularly bad idea as we might
2648 * be inside a reset already.
2652 return ERROR_OK;
2655 /* process target state changes */
2656 static int handle_target(void *priv)
2658 Jim_Interp *interp = (Jim_Interp *)priv;
2659 int retval = ERROR_OK;
2661 if (!is_jtag_poll_safe()) {
2662 /* polling is disabled currently */
2663 return ERROR_OK;
2666 /* we do not want to recurse here... */
2667 static int recursive;
2668 if (!recursive) {
2669 recursive = 1;
2670 sense_handler();
2671 /* danger! running these procedures can trigger srst assertions and power dropouts.
2672 * We need to avoid an infinite loop/recursion here and we do that by
2673 * clearing the flags after running these events.
2675 int did_something = 0;
2676 if (runSrstAsserted) {
2677 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2678 Jim_Eval(interp, "srst_asserted");
2679 did_something = 1;
2681 if (runSrstDeasserted) {
2682 Jim_Eval(interp, "srst_deasserted");
2683 did_something = 1;
2685 if (runPowerDropout) {
2686 LOG_INFO("Power dropout detected, running power_dropout proc.");
2687 Jim_Eval(interp, "power_dropout");
2688 did_something = 1;
2690 if (runPowerRestore) {
2691 Jim_Eval(interp, "power_restore");
2692 did_something = 1;
2695 if (did_something) {
2696 /* clear detect flags */
2697 sense_handler();
2700 /* clear action flags */
2702 runSrstAsserted = 0;
2703 runSrstDeasserted = 0;
2704 runPowerRestore = 0;
2705 runPowerDropout = 0;
2707 recursive = 0;
2710 /* Poll targets for state changes unless that's globally disabled.
2711 * Skip targets that are currently disabled.
2713 for (struct target *target = all_targets;
2714 is_jtag_poll_safe() && target;
2715 target = target->next) {
2717 if (!target_was_examined(target))
2718 continue;
2720 if (!target->tap->enabled)
2721 continue;
2723 if (target->backoff.times > target->backoff.count) {
2724 /* do not poll this time as we failed previously */
2725 target->backoff.count++;
2726 continue;
2728 target->backoff.count = 0;
2730 /* only poll target if we've got power and srst isn't asserted */
2731 if (!powerDropout && !srstAsserted) {
2732 /* polling may fail silently until the target has been examined */
2733 retval = target_poll(target);
2734 if (retval != ERROR_OK) {
2735 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2736 if (target->backoff.times * polling_interval < 5000) {
2737 target->backoff.times *= 2;
2738 target->backoff.times++;
2741 /* Tell GDB to halt the debugger. This allows the user to
2742 * run monitor commands to handle the situation.
2744 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2746 if (target->backoff.times > 0) {
2747 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2748 target_reset_examined(target);
2749 retval = target_examine_one(target);
2750 /* Target examination could have failed due to unstable connection,
2751 * but we set the examined flag anyway to repoll it later */
2752 if (retval != ERROR_OK) {
2753 target->examined = true;
2754 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2755 target->backoff.times * polling_interval);
2756 return retval;
2760 /* Since we succeeded, we reset backoff count */
2761 target->backoff.times = 0;
2765 return retval;
2768 COMMAND_HANDLER(handle_reg_command)
2770 struct target *target;
2771 struct reg *reg = NULL;
2772 unsigned count = 0;
2773 char *value;
2775 LOG_DEBUG("-");
2777 target = get_current_target(CMD_CTX);
2779 /* list all available registers for the current target */
2780 if (CMD_ARGC == 0) {
2781 struct reg_cache *cache = target->reg_cache;
2783 count = 0;
2784 while (cache) {
2785 unsigned i;
2787 command_print(CMD_CTX, "===== %s", cache->name);
2789 for (i = 0, reg = cache->reg_list;
2790 i < cache->num_regs;
2791 i++, reg++, count++) {
2792 /* only print cached values if they are valid */
2793 if (reg->valid) {
2794 value = buf_to_str(reg->value,
2795 reg->size, 16);
2796 command_print(CMD_CTX,
2797 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2798 count, reg->name,
2799 reg->size, value,
2800 reg->dirty
2801 ? " (dirty)"
2802 : "");
2803 free(value);
2804 } else {
2805 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2806 count, reg->name,
2807 reg->size) ;
2810 cache = cache->next;
2813 return ERROR_OK;
2816 /* access a single register by its ordinal number */
2817 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2818 unsigned num;
2819 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2821 struct reg_cache *cache = target->reg_cache;
2822 count = 0;
2823 while (cache) {
2824 unsigned i;
2825 for (i = 0; i < cache->num_regs; i++) {
2826 if (count++ == num) {
2827 reg = &cache->reg_list[i];
2828 break;
2831 if (reg)
2832 break;
2833 cache = cache->next;
2836 if (!reg) {
2837 command_print(CMD_CTX, "%i is out of bounds, the current target "
2838 "has only %i registers (0 - %i)", num, count, count - 1);
2839 return ERROR_OK;
2841 } else {
2842 /* access a single register by its name */
2843 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2845 if (!reg) {
2846 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2847 return ERROR_OK;
2851 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2853 /* display a register */
2854 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2855 && (CMD_ARGV[1][0] <= '9')))) {
2856 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2857 reg->valid = 0;
2859 if (reg->valid == 0)
2860 reg->type->get(reg);
2861 value = buf_to_str(reg->value, reg->size, 16);
2862 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2863 free(value);
2864 return ERROR_OK;
2867 /* set register value */
2868 if (CMD_ARGC == 2) {
2869 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2870 if (buf == NULL)
2871 return ERROR_FAIL;
2872 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2874 reg->type->set(reg, buf);
2876 value = buf_to_str(reg->value, reg->size, 16);
2877 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2878 free(value);
2880 free(buf);
2882 return ERROR_OK;
2885 return ERROR_COMMAND_SYNTAX_ERROR;
2888 COMMAND_HANDLER(handle_poll_command)
2890 int retval = ERROR_OK;
2891 struct target *target = get_current_target(CMD_CTX);
2893 if (CMD_ARGC == 0) {
2894 command_print(CMD_CTX, "background polling: %s",
2895 jtag_poll_get_enabled() ? "on" : "off");
2896 command_print(CMD_CTX, "TAP: %s (%s)",
2897 target->tap->dotted_name,
2898 target->tap->enabled ? "enabled" : "disabled");
2899 if (!target->tap->enabled)
2900 return ERROR_OK;
2901 retval = target_poll(target);
2902 if (retval != ERROR_OK)
2903 return retval;
2904 retval = target_arch_state(target);
2905 if (retval != ERROR_OK)
2906 return retval;
2907 } else if (CMD_ARGC == 1) {
2908 bool enable;
2909 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2910 jtag_poll_set_enabled(enable);
2911 } else
2912 return ERROR_COMMAND_SYNTAX_ERROR;
2914 return retval;
2917 COMMAND_HANDLER(handle_wait_halt_command)
2919 if (CMD_ARGC > 1)
2920 return ERROR_COMMAND_SYNTAX_ERROR;
2922 unsigned ms = DEFAULT_HALT_TIMEOUT;
2923 if (1 == CMD_ARGC) {
2924 int retval = parse_uint(CMD_ARGV[0], &ms);
2925 if (ERROR_OK != retval)
2926 return ERROR_COMMAND_SYNTAX_ERROR;
2929 struct target *target = get_current_target(CMD_CTX);
2930 return target_wait_state(target, TARGET_HALTED, ms);
2933 /* wait for target state to change. The trick here is to have a low
2934 * latency for short waits and not to suck up all the CPU time
2935 * on longer waits.
2937 * After 500ms, keep_alive() is invoked
2939 int target_wait_state(struct target *target, enum target_state state, int ms)
2941 int retval;
2942 int64_t then = 0, cur;
2943 bool once = true;
2945 for (;;) {
2946 retval = target_poll(target);
2947 if (retval != ERROR_OK)
2948 return retval;
2949 if (target->state == state)
2950 break;
2951 cur = timeval_ms();
2952 if (once) {
2953 once = false;
2954 then = timeval_ms();
2955 LOG_DEBUG("waiting for target %s...",
2956 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2959 if (cur-then > 500)
2960 keep_alive();
2962 if ((cur-then) > ms) {
2963 LOG_ERROR("timed out while waiting for target %s",
2964 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2965 return ERROR_FAIL;
2969 return ERROR_OK;
2972 COMMAND_HANDLER(handle_halt_command)
2974 LOG_DEBUG("-");
2976 struct target *target = get_current_target(CMD_CTX);
2978 target->verbose_halt_msg = true;
2980 int retval = target_halt(target);
2981 if (ERROR_OK != retval)
2982 return retval;
2984 if (CMD_ARGC == 1) {
2985 unsigned wait_local;
2986 retval = parse_uint(CMD_ARGV[0], &wait_local);
2987 if (ERROR_OK != retval)
2988 return ERROR_COMMAND_SYNTAX_ERROR;
2989 if (!wait_local)
2990 return ERROR_OK;
2993 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2996 COMMAND_HANDLER(handle_soft_reset_halt_command)
2998 struct target *target = get_current_target(CMD_CTX);
3000 LOG_USER("requesting target halt and executing a soft reset");
3002 target_soft_reset_halt(target);
3004 return ERROR_OK;
3007 COMMAND_HANDLER(handle_reset_command)
3009 if (CMD_ARGC > 1)
3010 return ERROR_COMMAND_SYNTAX_ERROR;
3012 enum target_reset_mode reset_mode = RESET_RUN;
3013 if (CMD_ARGC == 1) {
3014 const Jim_Nvp *n;
3015 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3016 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3017 return ERROR_COMMAND_SYNTAX_ERROR;
3018 reset_mode = n->value;
3021 /* reset *all* targets */
3022 return target_process_reset(CMD_CTX, reset_mode);
3026 COMMAND_HANDLER(handle_resume_command)
3028 int current = 1;
3029 if (CMD_ARGC > 1)
3030 return ERROR_COMMAND_SYNTAX_ERROR;
3032 struct target *target = get_current_target(CMD_CTX);
3034 /* with no CMD_ARGV, resume from current pc, addr = 0,
3035 * with one arguments, addr = CMD_ARGV[0],
3036 * handle breakpoints, not debugging */
3037 target_addr_t addr = 0;
3038 if (CMD_ARGC == 1) {
3039 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3040 current = 0;
3043 return target_resume(target, current, addr, 1, 0);
3046 COMMAND_HANDLER(handle_step_command)
3048 if (CMD_ARGC > 1)
3049 return ERROR_COMMAND_SYNTAX_ERROR;
3051 LOG_DEBUG("-");
3053 /* with no CMD_ARGV, step from current pc, addr = 0,
3054 * with one argument addr = CMD_ARGV[0],
3055 * handle breakpoints, debugging */
3056 target_addr_t addr = 0;
3057 int current_pc = 1;
3058 if (CMD_ARGC == 1) {
3059 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3060 current_pc = 0;
3063 struct target *target = get_current_target(CMD_CTX);
3065 return target->type->step(target, current_pc, addr, 1);
3068 static void handle_md_output(struct command_context *cmd_ctx,
3069 struct target *target, target_addr_t address, unsigned size,
3070 unsigned count, const uint8_t *buffer)
3072 const unsigned line_bytecnt = 32;
3073 unsigned line_modulo = line_bytecnt / size;
3075 char output[line_bytecnt * 4 + 1];
3076 unsigned output_len = 0;
3078 const char *value_fmt;
3079 switch (size) {
3080 case 8:
3081 value_fmt = "%16.16"PRIx64" ";
3082 break;
3083 case 4:
3084 value_fmt = "%8.8"PRIx64" ";
3085 break;
3086 case 2:
3087 value_fmt = "%4.4"PRIx64" ";
3088 break;
3089 case 1:
3090 value_fmt = "%2.2"PRIx64" ";
3091 break;
3092 default:
3093 /* "can't happen", caller checked */
3094 LOG_ERROR("invalid memory read size: %u", size);
3095 return;
3098 for (unsigned i = 0; i < count; i++) {
3099 if (i % line_modulo == 0) {
3100 output_len += snprintf(output + output_len,
3101 sizeof(output) - output_len,
3102 TARGET_ADDR_FMT ": ",
3103 (address + (i * size)));
3106 uint64_t value = 0;
3107 const uint8_t *value_ptr = buffer + i * size;
3108 switch (size) {
3109 case 8:
3110 value = target_buffer_get_u64(target, value_ptr);
3111 break;
3112 case 4:
3113 value = target_buffer_get_u32(target, value_ptr);
3114 break;
3115 case 2:
3116 value = target_buffer_get_u16(target, value_ptr);
3117 break;
3118 case 1:
3119 value = *value_ptr;
3121 output_len += snprintf(output + output_len,
3122 sizeof(output) - output_len,
3123 value_fmt, value);
3125 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3126 command_print(cmd_ctx, "%s", output);
3127 output_len = 0;
3132 COMMAND_HANDLER(handle_md_command)
3134 if (CMD_ARGC < 1)
3135 return ERROR_COMMAND_SYNTAX_ERROR;
3137 unsigned size = 0;
3138 switch (CMD_NAME[2]) {
3139 case 'd':
3140 size = 8;
3141 break;
3142 case 'w':
3143 size = 4;
3144 break;
3145 case 'h':
3146 size = 2;
3147 break;
3148 case 'b':
3149 size = 1;
3150 break;
3151 default:
3152 return ERROR_COMMAND_SYNTAX_ERROR;
3155 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3156 int (*fn)(struct target *target,
3157 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3158 if (physical) {
3159 CMD_ARGC--;
3160 CMD_ARGV++;
3161 fn = target_read_phys_memory;
3162 } else
3163 fn = target_read_memory;
3164 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3165 return ERROR_COMMAND_SYNTAX_ERROR;
3167 target_addr_t address;
3168 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3170 unsigned count = 1;
3171 if (CMD_ARGC == 2)
3172 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3174 uint8_t *buffer = calloc(count, size);
3175 if (buffer == NULL) {
3176 LOG_ERROR("Failed to allocate md read buffer");
3177 return ERROR_FAIL;
3180 struct target *target = get_current_target(CMD_CTX);
3181 int retval = fn(target, address, size, count, buffer);
3182 if (ERROR_OK == retval)
3183 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3185 free(buffer);
3187 return retval;
3190 typedef int (*target_write_fn)(struct target *target,
3191 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3193 static int target_fill_mem(struct target *target,
3194 target_addr_t address,
3195 target_write_fn fn,
3196 unsigned data_size,
3197 /* value */
3198 uint64_t b,
3199 /* count */
3200 unsigned c)
3202 /* We have to write in reasonably large chunks to be able
3203 * to fill large memory areas with any sane speed */
3204 const unsigned chunk_size = 16384;
3205 uint8_t *target_buf = malloc(chunk_size * data_size);
3206 if (target_buf == NULL) {
3207 LOG_ERROR("Out of memory");
3208 return ERROR_FAIL;
3211 for (unsigned i = 0; i < chunk_size; i++) {
3212 switch (data_size) {
3213 case 8:
3214 target_buffer_set_u64(target, target_buf + i * data_size, b);
3215 break;
3216 case 4:
3217 target_buffer_set_u32(target, target_buf + i * data_size, b);
3218 break;
3219 case 2:
3220 target_buffer_set_u16(target, target_buf + i * data_size, b);
3221 break;
3222 case 1:
3223 target_buffer_set_u8(target, target_buf + i * data_size, b);
3224 break;
3225 default:
3226 exit(-1);
3230 int retval = ERROR_OK;
3232 for (unsigned x = 0; x < c; x += chunk_size) {
3233 unsigned current;
3234 current = c - x;
3235 if (current > chunk_size)
3236 current = chunk_size;
3237 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3238 if (retval != ERROR_OK)
3239 break;
3240 /* avoid GDB timeouts */
3241 keep_alive();
3243 free(target_buf);
3245 return retval;
3249 COMMAND_HANDLER(handle_mw_command)
3251 if (CMD_ARGC < 2)
3252 return ERROR_COMMAND_SYNTAX_ERROR;
3253 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3254 target_write_fn fn;
3255 if (physical) {
3256 CMD_ARGC--;
3257 CMD_ARGV++;
3258 fn = target_write_phys_memory;
3259 } else
3260 fn = target_write_memory;
3261 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3262 return ERROR_COMMAND_SYNTAX_ERROR;
3264 target_addr_t address;
3265 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3267 target_addr_t value;
3268 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3270 unsigned count = 1;
3271 if (CMD_ARGC == 3)
3272 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3274 struct target *target = get_current_target(CMD_CTX);
3275 unsigned wordsize;
3276 switch (CMD_NAME[2]) {
3277 case 'd':
3278 wordsize = 8;
3279 break;
3280 case 'w':
3281 wordsize = 4;
3282 break;
3283 case 'h':
3284 wordsize = 2;
3285 break;
3286 case 'b':
3287 wordsize = 1;
3288 break;
3289 default:
3290 return ERROR_COMMAND_SYNTAX_ERROR;
3293 return target_fill_mem(target, address, fn, wordsize, value, count);
3296 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3297 target_addr_t *min_address, target_addr_t *max_address)
3299 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3300 return ERROR_COMMAND_SYNTAX_ERROR;
3302 /* a base address isn't always necessary,
3303 * default to 0x0 (i.e. don't relocate) */
3304 if (CMD_ARGC >= 2) {
3305 target_addr_t addr;
3306 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3307 image->base_address = addr;
3308 image->base_address_set = 1;
3309 } else
3310 image->base_address_set = 0;
3312 image->start_address_set = 0;
3314 if (CMD_ARGC >= 4)
3315 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3316 if (CMD_ARGC == 5) {
3317 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3318 /* use size (given) to find max (required) */
3319 *max_address += *min_address;
3322 if (*min_address > *max_address)
3323 return ERROR_COMMAND_SYNTAX_ERROR;
3325 return ERROR_OK;
3328 COMMAND_HANDLER(handle_load_image_command)
3330 uint8_t *buffer;
3331 size_t buf_cnt;
3332 uint32_t image_size;
3333 target_addr_t min_address = 0;
3334 target_addr_t max_address = -1;
3335 int i;
3336 struct image image;
3338 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3339 &image, &min_address, &max_address);
3340 if (ERROR_OK != retval)
3341 return retval;
3343 struct target *target = get_current_target(CMD_CTX);
3345 struct duration bench;
3346 duration_start(&bench);
3348 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3349 return ERROR_FAIL;
3351 image_size = 0x0;
3352 retval = ERROR_OK;
3353 for (i = 0; i < image.num_sections; i++) {
3354 buffer = malloc(image.sections[i].size);
3355 if (buffer == NULL) {
3356 command_print(CMD_CTX,
3357 "error allocating buffer for section (%d bytes)",
3358 (int)(image.sections[i].size));
3359 retval = ERROR_FAIL;
3360 break;
3363 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3364 if (retval != ERROR_OK) {
3365 free(buffer);
3366 break;
3369 uint32_t offset = 0;
3370 uint32_t length = buf_cnt;
3372 /* DANGER!!! beware of unsigned comparision here!!! */
3374 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3375 (image.sections[i].base_address < max_address)) {
3377 if (image.sections[i].base_address < min_address) {
3378 /* clip addresses below */
3379 offset += min_address-image.sections[i].base_address;
3380 length -= offset;
3383 if (image.sections[i].base_address + buf_cnt > max_address)
3384 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3386 retval = target_write_buffer(target,
3387 image.sections[i].base_address + offset, length, buffer + offset);
3388 if (retval != ERROR_OK) {
3389 free(buffer);
3390 break;
3392 image_size += length;
3393 command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3394 (unsigned int)length,
3395 image.sections[i].base_address + offset);
3398 free(buffer);
3401 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3402 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3403 "in %fs (%0.3f KiB/s)", image_size,
3404 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3407 image_close(&image);
3409 return retval;
3413 COMMAND_HANDLER(handle_dump_image_command)
3415 struct fileio *fileio;
3416 uint8_t *buffer;
3417 int retval, retvaltemp;
3418 target_addr_t address, size;
3419 struct duration bench;
3420 struct target *target = get_current_target(CMD_CTX);
3422 if (CMD_ARGC != 3)
3423 return ERROR_COMMAND_SYNTAX_ERROR;
3425 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3426 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3428 uint32_t buf_size = (size > 4096) ? 4096 : size;
3429 buffer = malloc(buf_size);
3430 if (!buffer)
3431 return ERROR_FAIL;
3433 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3434 if (retval != ERROR_OK) {
3435 free(buffer);
3436 return retval;
3439 duration_start(&bench);
3441 while (size > 0) {
3442 size_t size_written;
3443 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3444 retval = target_read_buffer(target, address, this_run_size, buffer);
3445 if (retval != ERROR_OK)
3446 break;
3448 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3449 if (retval != ERROR_OK)
3450 break;
3452 size -= this_run_size;
3453 address += this_run_size;
3456 free(buffer);
3458 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3459 size_t filesize;
3460 retval = fileio_size(fileio, &filesize);
3461 if (retval != ERROR_OK)
3462 return retval;
3463 command_print(CMD_CTX,
3464 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3465 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3468 retvaltemp = fileio_close(fileio);
3469 if (retvaltemp != ERROR_OK)
3470 return retvaltemp;
3472 return retval;
3475 enum verify_mode {
3476 IMAGE_TEST = 0,
3477 IMAGE_VERIFY = 1,
3478 IMAGE_CHECKSUM_ONLY = 2
3481 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3483 uint8_t *buffer;
3484 size_t buf_cnt;
3485 uint32_t image_size;
3486 int i;
3487 int retval;
3488 uint32_t checksum = 0;
3489 uint32_t mem_checksum = 0;
3491 struct image image;
3493 struct target *target = get_current_target(CMD_CTX);
3495 if (CMD_ARGC < 1)
3496 return ERROR_COMMAND_SYNTAX_ERROR;
3498 if (!target) {
3499 LOG_ERROR("no target selected");
3500 return ERROR_FAIL;
3503 struct duration bench;
3504 duration_start(&bench);
3506 if (CMD_ARGC >= 2) {
3507 target_addr_t addr;
3508 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3509 image.base_address = addr;
3510 image.base_address_set = 1;
3511 } else {
3512 image.base_address_set = 0;
3513 image.base_address = 0x0;
3516 image.start_address_set = 0;
3518 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3519 if (retval != ERROR_OK)
3520 return retval;
3522 image_size = 0x0;
3523 int diffs = 0;
3524 retval = ERROR_OK;
3525 for (i = 0; i < image.num_sections; i++) {
3526 buffer = malloc(image.sections[i].size);
3527 if (buffer == NULL) {
3528 command_print(CMD_CTX,
3529 "error allocating buffer for section (%d bytes)",
3530 (int)(image.sections[i].size));
3531 break;
3533 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3534 if (retval != ERROR_OK) {
3535 free(buffer);
3536 break;
3539 if (verify >= IMAGE_VERIFY) {
3540 /* calculate checksum of image */
3541 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3542 if (retval != ERROR_OK) {
3543 free(buffer);
3544 break;
3547 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3548 if (retval != ERROR_OK) {
3549 free(buffer);
3550 break;
3552 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3553 LOG_ERROR("checksum mismatch");
3554 free(buffer);
3555 retval = ERROR_FAIL;
3556 goto done;
3558 if (checksum != mem_checksum) {
3559 /* failed crc checksum, fall back to a binary compare */
3560 uint8_t *data;
3562 if (diffs == 0)
3563 LOG_ERROR("checksum mismatch - attempting binary compare");
3565 data = malloc(buf_cnt);
3567 /* Can we use 32bit word accesses? */
3568 int size = 1;
3569 int count = buf_cnt;
3570 if ((count % 4) == 0) {
3571 size *= 4;
3572 count /= 4;
3574 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3575 if (retval == ERROR_OK) {
3576 uint32_t t;
3577 for (t = 0; t < buf_cnt; t++) {
3578 if (data[t] != buffer[t]) {
3579 command_print(CMD_CTX,
3580 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3581 diffs,
3582 (unsigned)(t + image.sections[i].base_address),
3583 data[t],
3584 buffer[t]);
3585 if (diffs++ >= 127) {
3586 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3587 free(data);
3588 free(buffer);
3589 goto done;
3592 keep_alive();
3595 free(data);
3597 } else {
3598 command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3599 image.sections[i].base_address,
3600 buf_cnt);
3603 free(buffer);
3604 image_size += buf_cnt;
3606 if (diffs > 0)
3607 command_print(CMD_CTX, "No more differences found.");
3608 done:
3609 if (diffs > 0)
3610 retval = ERROR_FAIL;
3611 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3612 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3613 "in %fs (%0.3f KiB/s)", image_size,
3614 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3617 image_close(&image);
3619 return retval;
3622 COMMAND_HANDLER(handle_verify_image_checksum_command)
3624 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3627 COMMAND_HANDLER(handle_verify_image_command)
3629 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3632 COMMAND_HANDLER(handle_test_image_command)
3634 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3637 static int handle_bp_command_list(struct command_context *cmd_ctx)
3639 struct target *target = get_current_target(cmd_ctx);
3640 struct breakpoint *breakpoint = target->breakpoints;
3641 while (breakpoint) {
3642 if (breakpoint->type == BKPT_SOFT) {
3643 char *buf = buf_to_str(breakpoint->orig_instr,
3644 breakpoint->length, 16);
3645 command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3646 breakpoint->address,
3647 breakpoint->length,
3648 breakpoint->set, buf);
3649 free(buf);
3650 } else {
3651 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3652 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3653 breakpoint->asid,
3654 breakpoint->length, breakpoint->set);
3655 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3656 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3657 breakpoint->address,
3658 breakpoint->length, breakpoint->set);
3659 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3660 breakpoint->asid);
3661 } else
3662 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3663 breakpoint->address,
3664 breakpoint->length, breakpoint->set);
3667 breakpoint = breakpoint->next;
3669 return ERROR_OK;
3672 static int handle_bp_command_set(struct command_context *cmd_ctx,
3673 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3675 struct target *target = get_current_target(cmd_ctx);
3676 int retval;
3678 if (asid == 0) {
3679 retval = breakpoint_add(target, addr, length, hw);
3680 if (ERROR_OK == retval)
3681 command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3682 else {
3683 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3684 return retval;
3686 } else if (addr == 0) {
3687 if (target->type->add_context_breakpoint == NULL) {
3688 LOG_WARNING("Context breakpoint not available");
3689 return ERROR_OK;
3691 retval = context_breakpoint_add(target, asid, length, hw);
3692 if (ERROR_OK == retval)
3693 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3694 else {
3695 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3696 return retval;
3698 } else {
3699 if (target->type->add_hybrid_breakpoint == NULL) {
3700 LOG_WARNING("Hybrid breakpoint not available");
3701 return ERROR_OK;
3703 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3704 if (ERROR_OK == retval)
3705 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3706 else {
3707 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3708 return retval;
3711 return ERROR_OK;
3714 COMMAND_HANDLER(handle_bp_command)
3716 target_addr_t addr;
3717 uint32_t asid;
3718 uint32_t length;
3719 int hw = BKPT_SOFT;
3721 switch (CMD_ARGC) {
3722 case 0:
3723 return handle_bp_command_list(CMD_CTX);
3725 case 2:
3726 asid = 0;
3727 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3728 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3729 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3731 case 3:
3732 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3733 hw = BKPT_HARD;
3734 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3735 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3736 asid = 0;
3737 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3738 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3739 hw = BKPT_HARD;
3740 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3741 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3742 addr = 0;
3743 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3745 /* fallthrough */
3746 case 4:
3747 hw = BKPT_HARD;
3748 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3749 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3750 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3751 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3753 default:
3754 return ERROR_COMMAND_SYNTAX_ERROR;
3758 COMMAND_HANDLER(handle_rbp_command)
3760 if (CMD_ARGC != 1)
3761 return ERROR_COMMAND_SYNTAX_ERROR;
3763 target_addr_t addr;
3764 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3766 struct target *target = get_current_target(CMD_CTX);
3767 breakpoint_remove(target, addr);
3769 return ERROR_OK;
3772 COMMAND_HANDLER(handle_wp_command)
3774 struct target *target = get_current_target(CMD_CTX);
3776 if (CMD_ARGC == 0) {
3777 struct watchpoint *watchpoint = target->watchpoints;
3779 while (watchpoint) {
3780 command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3781 ", len: 0x%8.8" PRIx32
3782 ", r/w/a: %i, value: 0x%8.8" PRIx32
3783 ", mask: 0x%8.8" PRIx32,
3784 watchpoint->address,
3785 watchpoint->length,
3786 (int)watchpoint->rw,
3787 watchpoint->value,
3788 watchpoint->mask);
3789 watchpoint = watchpoint->next;
3791 return ERROR_OK;
3794 enum watchpoint_rw type = WPT_ACCESS;
3795 uint32_t addr = 0;
3796 uint32_t length = 0;
3797 uint32_t data_value = 0x0;
3798 uint32_t data_mask = 0xffffffff;
3800 switch (CMD_ARGC) {
3801 case 5:
3802 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3803 /* fall through */
3804 case 4:
3805 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3806 /* fall through */
3807 case 3:
3808 switch (CMD_ARGV[2][0]) {
3809 case 'r':
3810 type = WPT_READ;
3811 break;
3812 case 'w':
3813 type = WPT_WRITE;
3814 break;
3815 case 'a':
3816 type = WPT_ACCESS;
3817 break;
3818 default:
3819 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3820 return ERROR_COMMAND_SYNTAX_ERROR;
3822 /* fall through */
3823 case 2:
3824 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3825 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3826 break;
3828 default:
3829 return ERROR_COMMAND_SYNTAX_ERROR;
3832 int retval = watchpoint_add(target, addr, length, type,
3833 data_value, data_mask);
3834 if (ERROR_OK != retval)
3835 LOG_ERROR("Failure setting watchpoints");
3837 return retval;
3840 COMMAND_HANDLER(handle_rwp_command)
3842 if (CMD_ARGC != 1)
3843 return ERROR_COMMAND_SYNTAX_ERROR;
3845 uint32_t addr;
3846 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3848 struct target *target = get_current_target(CMD_CTX);
3849 watchpoint_remove(target, addr);
3851 return ERROR_OK;
3855 * Translate a virtual address to a physical address.
3857 * The low-level target implementation must have logged a detailed error
3858 * which is forwarded to telnet/GDB session.
3860 COMMAND_HANDLER(handle_virt2phys_command)
3862 if (CMD_ARGC != 1)
3863 return ERROR_COMMAND_SYNTAX_ERROR;
3865 target_addr_t va;
3866 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3867 target_addr_t pa;
3869 struct target *target = get_current_target(CMD_CTX);
3870 int retval = target->type->virt2phys(target, va, &pa);
3871 if (retval == ERROR_OK)
3872 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3874 return retval;
3877 static void writeData(FILE *f, const void *data, size_t len)
3879 size_t written = fwrite(data, 1, len, f);
3880 if (written != len)
3881 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3884 static void writeLong(FILE *f, int l, struct target *target)
3886 uint8_t val[4];
3888 target_buffer_set_u32(target, val, l);
3889 writeData(f, val, 4);
3892 static void writeString(FILE *f, char *s)
3894 writeData(f, s, strlen(s));
3897 typedef unsigned char UNIT[2]; /* unit of profiling */
3899 /* Dump a gmon.out histogram file. */
3900 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3901 uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3903 uint32_t i;
3904 FILE *f = fopen(filename, "w");
3905 if (f == NULL)
3906 return;
3907 writeString(f, "gmon");
3908 writeLong(f, 0x00000001, target); /* Version */
3909 writeLong(f, 0, target); /* padding */
3910 writeLong(f, 0, target); /* padding */
3911 writeLong(f, 0, target); /* padding */
3913 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3914 writeData(f, &zero, 1);
3916 /* figure out bucket size */
3917 uint32_t min;
3918 uint32_t max;
3919 if (with_range) {
3920 min = start_address;
3921 max = end_address;
3922 } else {
3923 min = samples[0];
3924 max = samples[0];
3925 for (i = 0; i < sampleNum; i++) {
3926 if (min > samples[i])
3927 min = samples[i];
3928 if (max < samples[i])
3929 max = samples[i];
3932 /* max should be (largest sample + 1)
3933 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3934 max++;
3937 int addressSpace = max - min;
3938 assert(addressSpace >= 2);
3940 /* FIXME: What is the reasonable number of buckets?
3941 * The profiling result will be more accurate if there are enough buckets. */
3942 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3943 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3944 if (numBuckets > maxBuckets)
3945 numBuckets = maxBuckets;
3946 int *buckets = malloc(sizeof(int) * numBuckets);
3947 if (buckets == NULL) {
3948 fclose(f);
3949 return;
3951 memset(buckets, 0, sizeof(int) * numBuckets);
3952 for (i = 0; i < sampleNum; i++) {
3953 uint32_t address = samples[i];
3955 if ((address < min) || (max <= address))
3956 continue;
3958 long long a = address - min;
3959 long long b = numBuckets;
3960 long long c = addressSpace;
3961 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3962 buckets[index_t]++;
3965 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3966 writeLong(f, min, target); /* low_pc */
3967 writeLong(f, max, target); /* high_pc */
3968 writeLong(f, numBuckets, target); /* # of buckets */
3969 float sample_rate = sampleNum / (duration_ms / 1000.0);
3970 writeLong(f, sample_rate, target);
3971 writeString(f, "seconds");
3972 for (i = 0; i < (15-strlen("seconds")); i++)
3973 writeData(f, &zero, 1);
3974 writeString(f, "s");
3976 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3978 char *data = malloc(2 * numBuckets);
3979 if (data != NULL) {
3980 for (i = 0; i < numBuckets; i++) {
3981 int val;
3982 val = buckets[i];
3983 if (val > 65535)
3984 val = 65535;
3985 data[i * 2] = val&0xff;
3986 data[i * 2 + 1] = (val >> 8) & 0xff;
3988 free(buckets);
3989 writeData(f, data, numBuckets * 2);
3990 free(data);
3991 } else
3992 free(buckets);
3994 fclose(f);
3997 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3998 * which will be used as a random sampling of PC */
3999 COMMAND_HANDLER(handle_profile_command)
4001 struct target *target = get_current_target(CMD_CTX);
4003 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4004 return ERROR_COMMAND_SYNTAX_ERROR;
4006 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4007 uint32_t offset;
4008 uint32_t num_of_samples;
4009 int retval = ERROR_OK;
4011 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4013 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4014 if (samples == NULL) {
4015 LOG_ERROR("No memory to store samples.");
4016 return ERROR_FAIL;
4019 uint64_t timestart_ms = timeval_ms();
4021 * Some cores let us sample the PC without the
4022 * annoying halt/resume step; for example, ARMv7 PCSR.
4023 * Provide a way to use that more efficient mechanism.
4025 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4026 &num_of_samples, offset);
4027 if (retval != ERROR_OK) {
4028 free(samples);
4029 return retval;
4031 uint32_t duration_ms = timeval_ms() - timestart_ms;
4033 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4035 retval = target_poll(target);
4036 if (retval != ERROR_OK) {
4037 free(samples);
4038 return retval;
4040 if (target->state == TARGET_RUNNING) {
4041 retval = target_halt(target);
4042 if (retval != ERROR_OK) {
4043 free(samples);
4044 return retval;
4048 retval = target_poll(target);
4049 if (retval != ERROR_OK) {
4050 free(samples);
4051 return retval;
4054 uint32_t start_address = 0;
4055 uint32_t end_address = 0;
4056 bool with_range = false;
4057 if (CMD_ARGC == 4) {
4058 with_range = true;
4059 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4060 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4063 write_gmon(samples, num_of_samples, CMD_ARGV[1],
4064 with_range, start_address, end_address, target, duration_ms);
4065 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4067 free(samples);
4068 return retval;
4071 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4073 char *namebuf;
4074 Jim_Obj *nameObjPtr, *valObjPtr;
4075 int result;
4077 namebuf = alloc_printf("%s(%d)", varname, idx);
4078 if (!namebuf)
4079 return JIM_ERR;
4081 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4082 valObjPtr = Jim_NewIntObj(interp, val);
4083 if (!nameObjPtr || !valObjPtr) {
4084 free(namebuf);
4085 return JIM_ERR;
4088 Jim_IncrRefCount(nameObjPtr);
4089 Jim_IncrRefCount(valObjPtr);
4090 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4091 Jim_DecrRefCount(interp, nameObjPtr);
4092 Jim_DecrRefCount(interp, valObjPtr);
4093 free(namebuf);
4094 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4095 return result;
4098 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4100 struct command_context *context;
4101 struct target *target;
4103 context = current_command_context(interp);
4104 assert(context != NULL);
4106 target = get_current_target(context);
4107 if (target == NULL) {
4108 LOG_ERROR("mem2array: no current target");
4109 return JIM_ERR;
4112 return target_mem2array(interp, target, argc - 1, argv + 1);
4115 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4117 long l;
4118 uint32_t width;
4119 int len;
4120 uint32_t addr;
4121 uint32_t count;
4122 uint32_t v;
4123 const char *varname;
4124 const char *phys;
4125 bool is_phys;
4126 int n, e, retval;
4127 uint32_t i;
4129 /* argv[1] = name of array to receive the data
4130 * argv[2] = desired width
4131 * argv[3] = memory address
4132 * argv[4] = count of times to read
4135 if (argc < 4 || argc > 5) {
4136 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4137 return JIM_ERR;
4139 varname = Jim_GetString(argv[0], &len);
4140 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4142 e = Jim_GetLong(interp, argv[1], &l);
4143 width = l;
4144 if (e != JIM_OK)
4145 return e;
4147 e = Jim_GetLong(interp, argv[2], &l);
4148 addr = l;
4149 if (e != JIM_OK)
4150 return e;
4151 e = Jim_GetLong(interp, argv[3], &l);
4152 len = l;
4153 if (e != JIM_OK)
4154 return e;
4155 is_phys = false;
4156 if (argc > 4) {
4157 phys = Jim_GetString(argv[4], &n);
4158 if (!strncmp(phys, "phys", n))
4159 is_phys = true;
4160 else
4161 return JIM_ERR;
4163 switch (width) {
4164 case 8:
4165 width = 1;
4166 break;
4167 case 16:
4168 width = 2;
4169 break;
4170 case 32:
4171 width = 4;
4172 break;
4173 default:
4174 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4175 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4176 return JIM_ERR;
4178 if (len == 0) {
4179 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4180 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4181 return JIM_ERR;
4183 if ((addr + (len * width)) < addr) {
4184 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4185 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4186 return JIM_ERR;
4188 /* absurd transfer size? */
4189 if (len > 65536) {
4190 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4191 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4192 return JIM_ERR;
4195 if ((width == 1) ||
4196 ((width == 2) && ((addr & 1) == 0)) ||
4197 ((width == 4) && ((addr & 3) == 0))) {
4198 /* all is well */
4199 } else {
4200 char buf[100];
4201 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4202 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4203 addr,
4204 width);
4205 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4206 return JIM_ERR;
4209 /* Transfer loop */
4211 /* index counter */
4212 n = 0;
4214 size_t buffersize = 4096;
4215 uint8_t *buffer = malloc(buffersize);
4216 if (buffer == NULL)
4217 return JIM_ERR;
4219 /* assume ok */
4220 e = JIM_OK;
4221 while (len) {
4222 /* Slurp... in buffer size chunks */
4224 count = len; /* in objects.. */
4225 if (count > (buffersize / width))
4226 count = (buffersize / width);
4228 if (is_phys)
4229 retval = target_read_phys_memory(target, addr, width, count, buffer);
4230 else
4231 retval = target_read_memory(target, addr, width, count, buffer);
4232 if (retval != ERROR_OK) {
4233 /* BOO !*/
4234 LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4235 addr,
4236 width,
4237 count);
4238 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4239 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4240 e = JIM_ERR;
4241 break;
4242 } else {
4243 v = 0; /* shut up gcc */
4244 for (i = 0; i < count ; i++, n++) {
4245 switch (width) {
4246 case 4:
4247 v = target_buffer_get_u32(target, &buffer[i*width]);
4248 break;
4249 case 2:
4250 v = target_buffer_get_u16(target, &buffer[i*width]);
4251 break;
4252 case 1:
4253 v = buffer[i] & 0x0ff;
4254 break;
4256 new_int_array_element(interp, varname, n, v);
4258 len -= count;
4259 addr += count * width;
4263 free(buffer);
4265 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4267 return e;
4270 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4272 char *namebuf;
4273 Jim_Obj *nameObjPtr, *valObjPtr;
4274 int result;
4275 long l;
4277 namebuf = alloc_printf("%s(%d)", varname, idx);
4278 if (!namebuf)
4279 return JIM_ERR;
4281 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4282 if (!nameObjPtr) {
4283 free(namebuf);
4284 return JIM_ERR;
4287 Jim_IncrRefCount(nameObjPtr);
4288 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4289 Jim_DecrRefCount(interp, nameObjPtr);
4290 free(namebuf);
4291 if (valObjPtr == NULL)
4292 return JIM_ERR;
4294 result = Jim_GetLong(interp, valObjPtr, &l);
4295 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4296 *val = l;
4297 return result;
4300 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4302 struct command_context *context;
4303 struct target *target;
4305 context = current_command_context(interp);
4306 assert(context != NULL);
4308 target = get_current_target(context);
4309 if (target == NULL) {
4310 LOG_ERROR("array2mem: no current target");
4311 return JIM_ERR;
4314 return target_array2mem(interp, target, argc-1, argv + 1);
4317 static int target_array2mem(Jim_Interp *interp, struct target *target,
4318 int argc, Jim_Obj *const *argv)
4320 long l;
4321 uint32_t width;
4322 int len;
4323 uint32_t addr;
4324 uint32_t count;
4325 uint32_t v;
4326 const char *varname;
4327 const char *phys;
4328 bool is_phys;
4329 int n, e, retval;
4330 uint32_t i;
4332 /* argv[1] = name of array to get the data
4333 * argv[2] = desired width
4334 * argv[3] = memory address
4335 * argv[4] = count to write
4337 if (argc < 4 || argc > 5) {
4338 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4339 return JIM_ERR;
4341 varname = Jim_GetString(argv[0], &len);
4342 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4344 e = Jim_GetLong(interp, argv[1], &l);
4345 width = l;
4346 if (e != JIM_OK)
4347 return e;
4349 e = Jim_GetLong(interp, argv[2], &l);
4350 addr = l;
4351 if (e != JIM_OK)
4352 return e;
4353 e = Jim_GetLong(interp, argv[3], &l);
4354 len = l;
4355 if (e != JIM_OK)
4356 return e;
4357 is_phys = false;
4358 if (argc > 4) {
4359 phys = Jim_GetString(argv[4], &n);
4360 if (!strncmp(phys, "phys", n))
4361 is_phys = true;
4362 else
4363 return JIM_ERR;
4365 switch (width) {
4366 case 8:
4367 width = 1;
4368 break;
4369 case 16:
4370 width = 2;
4371 break;
4372 case 32:
4373 width = 4;
4374 break;
4375 default:
4376 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4377 Jim_AppendStrings(interp, Jim_GetResult(interp),
4378 "Invalid width param, must be 8/16/32", NULL);
4379 return JIM_ERR;
4381 if (len == 0) {
4382 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4383 Jim_AppendStrings(interp, Jim_GetResult(interp),
4384 "array2mem: zero width read?", NULL);
4385 return JIM_ERR;
4387 if ((addr + (len * width)) < addr) {
4388 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4389 Jim_AppendStrings(interp, Jim_GetResult(interp),
4390 "array2mem: addr + len - wraps to zero?", NULL);
4391 return JIM_ERR;
4393 /* absurd transfer size? */
4394 if (len > 65536) {
4395 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4396 Jim_AppendStrings(interp, Jim_GetResult(interp),
4397 "array2mem: absurd > 64K item request", NULL);
4398 return JIM_ERR;
4401 if ((width == 1) ||
4402 ((width == 2) && ((addr & 1) == 0)) ||
4403 ((width == 4) && ((addr & 3) == 0))) {
4404 /* all is well */
4405 } else {
4406 char buf[100];
4407 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4408 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4409 addr,
4410 width);
4411 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4412 return JIM_ERR;
4415 /* Transfer loop */
4417 /* index counter */
4418 n = 0;
4419 /* assume ok */
4420 e = JIM_OK;
4422 size_t buffersize = 4096;
4423 uint8_t *buffer = malloc(buffersize);
4424 if (buffer == NULL)
4425 return JIM_ERR;
4427 while (len) {
4428 /* Slurp... in buffer size chunks */
4430 count = len; /* in objects.. */
4431 if (count > (buffersize / width))
4432 count = (buffersize / width);
4434 v = 0; /* shut up gcc */
4435 for (i = 0; i < count; i++, n++) {
4436 get_int_array_element(interp, varname, n, &v);
4437 switch (width) {
4438 case 4:
4439 target_buffer_set_u32(target, &buffer[i * width], v);
4440 break;
4441 case 2:
4442 target_buffer_set_u16(target, &buffer[i * width], v);
4443 break;
4444 case 1:
4445 buffer[i] = v & 0x0ff;
4446 break;
4449 len -= count;
4451 if (is_phys)
4452 retval = target_write_phys_memory(target, addr, width, count, buffer);
4453 else
4454 retval = target_write_memory(target, addr, width, count, buffer);
4455 if (retval != ERROR_OK) {
4456 /* BOO !*/
4457 LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4458 addr,
4459 width,
4460 count);
4461 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4462 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4463 e = JIM_ERR;
4464 break;
4466 addr += count * width;
4469 free(buffer);
4471 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4473 return e;
4476 /* FIX? should we propagate errors here rather than printing them
4477 * and continuing?
4479 void target_handle_event(struct target *target, enum target_event e)
4481 struct target_event_action *teap;
4483 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4484 if (teap->event == e) {
4485 LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4486 target->target_number,
4487 target_name(target),
4488 target_type_name(target),
4490 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4491 Jim_GetString(teap->body, NULL));
4493 /* Override current target by the target an event
4494 * is issued from (lot of scripts need it).
4495 * Return back to previous override as soon
4496 * as the handler processing is done */
4497 struct command_context *cmd_ctx = current_command_context(teap->interp);
4498 struct target *saved_target_override = cmd_ctx->current_target_override;
4499 cmd_ctx->current_target_override = target;
4501 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4502 Jim_MakeErrorMessage(teap->interp);
4503 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4506 cmd_ctx->current_target_override = saved_target_override;
4512 * Returns true only if the target has a handler for the specified event.
4514 bool target_has_event_action(struct target *target, enum target_event event)
4516 struct target_event_action *teap;
4518 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4519 if (teap->event == event)
4520 return true;
4522 return false;
4525 enum target_cfg_param {
4526 TCFG_TYPE,
4527 TCFG_EVENT,
4528 TCFG_WORK_AREA_VIRT,
4529 TCFG_WORK_AREA_PHYS,
4530 TCFG_WORK_AREA_SIZE,
4531 TCFG_WORK_AREA_BACKUP,
4532 TCFG_ENDIAN,
4533 TCFG_COREID,
4534 TCFG_CHAIN_POSITION,
4535 TCFG_DBGBASE,
4536 TCFG_RTOS,
4537 TCFG_DEFER_EXAMINE,
4540 static Jim_Nvp nvp_config_opts[] = {
4541 { .name = "-type", .value = TCFG_TYPE },
4542 { .name = "-event", .value = TCFG_EVENT },
4543 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4544 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4545 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4546 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4547 { .name = "-endian" , .value = TCFG_ENDIAN },
4548 { .name = "-coreid", .value = TCFG_COREID },
4549 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4550 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4551 { .name = "-rtos", .value = TCFG_RTOS },
4552 { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4553 { .name = NULL, .value = -1 }
4556 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4558 Jim_Nvp *n;
4559 Jim_Obj *o;
4560 jim_wide w;
4561 int e;
4563 /* parse config or cget options ... */
4564 while (goi->argc > 0) {
4565 Jim_SetEmptyResult(goi->interp);
4566 /* Jim_GetOpt_Debug(goi); */
4568 if (target->type->target_jim_configure) {
4569 /* target defines a configure function */
4570 /* target gets first dibs on parameters */
4571 e = (*(target->type->target_jim_configure))(target, goi);
4572 if (e == JIM_OK) {
4573 /* more? */
4574 continue;
4576 if (e == JIM_ERR) {
4577 /* An error */
4578 return e;
4580 /* otherwise we 'continue' below */
4582 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4583 if (e != JIM_OK) {
4584 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4585 return e;
4587 switch (n->value) {
4588 case TCFG_TYPE:
4589 /* not setable */
4590 if (goi->isconfigure) {
4591 Jim_SetResultFormatted(goi->interp,
4592 "not settable: %s", n->name);
4593 return JIM_ERR;
4594 } else {
4595 no_params:
4596 if (goi->argc != 0) {
4597 Jim_WrongNumArgs(goi->interp,
4598 goi->argc, goi->argv,
4599 "NO PARAMS");
4600 return JIM_ERR;
4603 Jim_SetResultString(goi->interp,
4604 target_type_name(target), -1);
4605 /* loop for more */
4606 break;
4607 case TCFG_EVENT:
4608 if (goi->argc == 0) {
4609 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4610 return JIM_ERR;
4613 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4614 if (e != JIM_OK) {
4615 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4616 return e;
4619 if (goi->isconfigure) {
4620 if (goi->argc != 1) {
4621 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4622 return JIM_ERR;
4624 } else {
4625 if (goi->argc != 0) {
4626 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4627 return JIM_ERR;
4632 struct target_event_action *teap;
4634 teap = target->event_action;
4635 /* replace existing? */
4636 while (teap) {
4637 if (teap->event == (enum target_event)n->value)
4638 break;
4639 teap = teap->next;
4642 if (goi->isconfigure) {
4643 bool replace = true;
4644 if (teap == NULL) {
4645 /* create new */
4646 teap = calloc(1, sizeof(*teap));
4647 replace = false;
4649 teap->event = n->value;
4650 teap->interp = goi->interp;
4651 Jim_GetOpt_Obj(goi, &o);
4652 if (teap->body)
4653 Jim_DecrRefCount(teap->interp, teap->body);
4654 teap->body = Jim_DuplicateObj(goi->interp, o);
4656 * FIXME:
4657 * Tcl/TK - "tk events" have a nice feature.
4658 * See the "BIND" command.
4659 * We should support that here.
4660 * You can specify %X and %Y in the event code.
4661 * The idea is: %T - target name.
4662 * The idea is: %N - target number
4663 * The idea is: %E - event name.
4665 Jim_IncrRefCount(teap->body);
4667 if (!replace) {
4668 /* add to head of event list */
4669 teap->next = target->event_action;
4670 target->event_action = teap;
4672 Jim_SetEmptyResult(goi->interp);
4673 } else {
4674 /* get */
4675 if (teap == NULL)
4676 Jim_SetEmptyResult(goi->interp);
4677 else
4678 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4681 /* loop for more */
4682 break;
4684 case TCFG_WORK_AREA_VIRT:
4685 if (goi->isconfigure) {
4686 target_free_all_working_areas(target);
4687 e = Jim_GetOpt_Wide(goi, &w);
4688 if (e != JIM_OK)
4689 return e;
4690 target->working_area_virt = w;
4691 target->working_area_virt_spec = true;
4692 } else {
4693 if (goi->argc != 0)
4694 goto no_params;
4696 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4697 /* loop for more */
4698 break;
4700 case TCFG_WORK_AREA_PHYS:
4701 if (goi->isconfigure) {
4702 target_free_all_working_areas(target);
4703 e = Jim_GetOpt_Wide(goi, &w);
4704 if (e != JIM_OK)
4705 return e;
4706 target->working_area_phys = w;
4707 target->working_area_phys_spec = true;
4708 } else {
4709 if (goi->argc != 0)
4710 goto no_params;
4712 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4713 /* loop for more */
4714 break;
4716 case TCFG_WORK_AREA_SIZE:
4717 if (goi->isconfigure) {
4718 target_free_all_working_areas(target);
4719 e = Jim_GetOpt_Wide(goi, &w);
4720 if (e != JIM_OK)
4721 return e;
4722 target->working_area_size = w;
4723 } else {
4724 if (goi->argc != 0)
4725 goto no_params;
4727 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4728 /* loop for more */
4729 break;
4731 case TCFG_WORK_AREA_BACKUP:
4732 if (goi->isconfigure) {
4733 target_free_all_working_areas(target);
4734 e = Jim_GetOpt_Wide(goi, &w);
4735 if (e != JIM_OK)
4736 return e;
4737 /* make this exactly 1 or 0 */
4738 target->backup_working_area = (!!w);
4739 } else {
4740 if (goi->argc != 0)
4741 goto no_params;
4743 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4744 /* loop for more e*/
4745 break;
4748 case TCFG_ENDIAN:
4749 if (goi->isconfigure) {
4750 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4751 if (e != JIM_OK) {
4752 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4753 return e;
4755 target->endianness = n->value;
4756 } else {
4757 if (goi->argc != 0)
4758 goto no_params;
4760 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4761 if (n->name == NULL) {
4762 target->endianness = TARGET_LITTLE_ENDIAN;
4763 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4765 Jim_SetResultString(goi->interp, n->name, -1);
4766 /* loop for more */
4767 break;
4769 case TCFG_COREID:
4770 if (goi->isconfigure) {
4771 e = Jim_GetOpt_Wide(goi, &w);
4772 if (e != JIM_OK)
4773 return e;
4774 target->coreid = (int32_t)w;
4775 } else {
4776 if (goi->argc != 0)
4777 goto no_params;
4779 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4780 /* loop for more */
4781 break;
4783 case TCFG_CHAIN_POSITION:
4784 if (goi->isconfigure) {
4785 Jim_Obj *o_t;
4786 struct jtag_tap *tap;
4788 if (target->has_dap) {
4789 Jim_SetResultString(goi->interp,
4790 "target requires -dap parameter instead of -chain-position!", -1);
4791 return JIM_ERR;
4794 target_free_all_working_areas(target);
4795 e = Jim_GetOpt_Obj(goi, &o_t);
4796 if (e != JIM_OK)
4797 return e;
4798 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4799 if (tap == NULL)
4800 return JIM_ERR;
4801 target->tap = tap;
4802 target->tap_configured = true;
4803 } else {
4804 if (goi->argc != 0)
4805 goto no_params;
4807 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4808 /* loop for more e*/
4809 break;
4810 case TCFG_DBGBASE:
4811 if (goi->isconfigure) {
4812 e = Jim_GetOpt_Wide(goi, &w);
4813 if (e != JIM_OK)
4814 return e;
4815 target->dbgbase = (uint32_t)w;
4816 target->dbgbase_set = true;
4817 } else {
4818 if (goi->argc != 0)
4819 goto no_params;
4821 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4822 /* loop for more */
4823 break;
4824 case TCFG_RTOS:
4825 /* RTOS */
4827 int result = rtos_create(goi, target);
4828 if (result != JIM_OK)
4829 return result;
4831 /* loop for more */
4832 break;
4834 case TCFG_DEFER_EXAMINE:
4835 /* DEFER_EXAMINE */
4836 target->defer_examine = true;
4837 /* loop for more */
4838 break;
4841 } /* while (goi->argc) */
4844 /* done - we return */
4845 return JIM_OK;
4848 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4850 Jim_GetOptInfo goi;
4852 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4853 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4854 if (goi.argc < 1) {
4855 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4856 "missing: -option ...");
4857 return JIM_ERR;
4859 struct target *target = Jim_CmdPrivData(goi.interp);
4860 return target_configure(&goi, target);
4863 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4865 const char *cmd_name = Jim_GetString(argv[0], NULL);
4867 Jim_GetOptInfo goi;
4868 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4870 if (goi.argc < 2 || goi.argc > 4) {
4871 Jim_SetResultFormatted(goi.interp,
4872 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4873 return JIM_ERR;
4876 target_write_fn fn;
4877 fn = target_write_memory;
4879 int e;
4880 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4881 /* consume it */
4882 struct Jim_Obj *obj;
4883 e = Jim_GetOpt_Obj(&goi, &obj);
4884 if (e != JIM_OK)
4885 return e;
4887 fn = target_write_phys_memory;
4890 jim_wide a;
4891 e = Jim_GetOpt_Wide(&goi, &a);
4892 if (e != JIM_OK)
4893 return e;
4895 jim_wide b;
4896 e = Jim_GetOpt_Wide(&goi, &b);
4897 if (e != JIM_OK)
4898 return e;
4900 jim_wide c = 1;
4901 if (goi.argc == 1) {
4902 e = Jim_GetOpt_Wide(&goi, &c);
4903 if (e != JIM_OK)
4904 return e;
4907 /* all args must be consumed */
4908 if (goi.argc != 0)
4909 return JIM_ERR;
4911 struct target *target = Jim_CmdPrivData(goi.interp);
4912 unsigned data_size;
4913 if (strcasecmp(cmd_name, "mww") == 0)
4914 data_size = 4;
4915 else if (strcasecmp(cmd_name, "mwh") == 0)
4916 data_size = 2;
4917 else if (strcasecmp(cmd_name, "mwb") == 0)
4918 data_size = 1;
4919 else {
4920 LOG_ERROR("command '%s' unknown: ", cmd_name);
4921 return JIM_ERR;
4924 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4928 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4930 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4931 * mdh [phys] <address> [<count>] - for 16 bit reads
4932 * mdb [phys] <address> [<count>] - for 8 bit reads
4934 * Count defaults to 1.
4936 * Calls target_read_memory or target_read_phys_memory depending on
4937 * the presence of the "phys" argument
4938 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4939 * to int representation in base16.
4940 * Also outputs read data in a human readable form using command_print
4942 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4943 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4944 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4945 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4946 * on success, with [<count>] number of elements.
4948 * In case of little endian target:
4949 * Example1: "mdw 0x00000000" returns "10123456"
4950 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4951 * Example3: "mdb 0x00000000" returns "56"
4952 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4953 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4955 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4957 const char *cmd_name = Jim_GetString(argv[0], NULL);
4959 Jim_GetOptInfo goi;
4960 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4962 if ((goi.argc < 1) || (goi.argc > 3)) {
4963 Jim_SetResultFormatted(goi.interp,
4964 "usage: %s [phys] <address> [<count>]", cmd_name);
4965 return JIM_ERR;
4968 int (*fn)(struct target *target,
4969 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4970 fn = target_read_memory;
4972 int e;
4973 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4974 /* consume it */
4975 struct Jim_Obj *obj;
4976 e = Jim_GetOpt_Obj(&goi, &obj);
4977 if (e != JIM_OK)
4978 return e;
4980 fn = target_read_phys_memory;
4983 /* Read address parameter */
4984 jim_wide addr;
4985 e = Jim_GetOpt_Wide(&goi, &addr);
4986 if (e != JIM_OK)
4987 return JIM_ERR;
4989 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4990 jim_wide count;
4991 if (goi.argc == 1) {
4992 e = Jim_GetOpt_Wide(&goi, &count);
4993 if (e != JIM_OK)
4994 return JIM_ERR;
4995 } else
4996 count = 1;
4998 /* all args must be consumed */
4999 if (goi.argc != 0)
5000 return JIM_ERR;
5002 jim_wide dwidth = 1; /* shut up gcc */
5003 if (strcasecmp(cmd_name, "mdw") == 0)
5004 dwidth = 4;
5005 else if (strcasecmp(cmd_name, "mdh") == 0)
5006 dwidth = 2;
5007 else if (strcasecmp(cmd_name, "mdb") == 0)
5008 dwidth = 1;
5009 else {
5010 LOG_ERROR("command '%s' unknown: ", cmd_name);
5011 return JIM_ERR;
5014 /* convert count to "bytes" */
5015 int bytes = count * dwidth;
5017 struct target *target = Jim_CmdPrivData(goi.interp);
5018 uint8_t target_buf[32];
5019 jim_wide x, y, z;
5020 while (bytes > 0) {
5021 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
5023 /* Try to read out next block */
5024 e = fn(target, addr, dwidth, y / dwidth, target_buf);
5026 if (e != ERROR_OK) {
5027 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
5028 return JIM_ERR;
5031 command_print_sameline(NULL, "0x%08x ", (int)(addr));
5032 switch (dwidth) {
5033 case 4:
5034 for (x = 0; x < 16 && x < y; x += 4) {
5035 z = target_buffer_get_u32(target, &(target_buf[x]));
5036 command_print_sameline(NULL, "%08x ", (int)(z));
5038 for (; (x < 16) ; x += 4)
5039 command_print_sameline(NULL, " ");
5040 break;
5041 case 2:
5042 for (x = 0; x < 16 && x < y; x += 2) {
5043 z = target_buffer_get_u16(target, &(target_buf[x]));
5044 command_print_sameline(NULL, "%04x ", (int)(z));
5046 for (; (x < 16) ; x += 2)
5047 command_print_sameline(NULL, " ");
5048 break;
5049 case 1:
5050 default:
5051 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
5052 z = target_buffer_get_u8(target, &(target_buf[x]));
5053 command_print_sameline(NULL, "%02x ", (int)(z));
5055 for (; (x < 16) ; x += 1)
5056 command_print_sameline(NULL, " ");
5057 break;
5059 /* ascii-ify the bytes */
5060 for (x = 0 ; x < y ; x++) {
5061 if ((target_buf[x] >= 0x20) &&
5062 (target_buf[x] <= 0x7e)) {
5063 /* good */
5064 } else {
5065 /* smack it */
5066 target_buf[x] = '.';
5069 /* space pad */
5070 while (x < 16) {
5071 target_buf[x] = ' ';
5072 x++;
5074 /* terminate */
5075 target_buf[16] = 0;
5076 /* print - with a newline */
5077 command_print_sameline(NULL, "%s\n", target_buf);
5078 /* NEXT... */
5079 bytes -= 16;
5080 addr += 16;
5082 return JIM_OK;
5085 static int jim_target_mem2array(Jim_Interp *interp,
5086 int argc, Jim_Obj *const *argv)
5088 struct target *target = Jim_CmdPrivData(interp);
5089 return target_mem2array(interp, target, argc - 1, argv + 1);
5092 static int jim_target_array2mem(Jim_Interp *interp,
5093 int argc, Jim_Obj *const *argv)
5095 struct target *target = Jim_CmdPrivData(interp);
5096 return target_array2mem(interp, target, argc - 1, argv + 1);
5099 static int jim_target_tap_disabled(Jim_Interp *interp)
5101 Jim_SetResultFormatted(interp, "[TAP is disabled]");
5102 return JIM_ERR;
5105 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5107 bool allow_defer = false;
5109 Jim_GetOptInfo goi;
5110 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5111 if (goi.argc > 1) {
5112 const char *cmd_name = Jim_GetString(argv[0], NULL);
5113 Jim_SetResultFormatted(goi.interp,
5114 "usage: %s ['allow-defer']", cmd_name);
5115 return JIM_ERR;
5117 if (goi.argc > 0 &&
5118 strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5119 /* consume it */
5120 struct Jim_Obj *obj;
5121 int e = Jim_GetOpt_Obj(&goi, &obj);
5122 if (e != JIM_OK)
5123 return e;
5124 allow_defer = true;
5127 struct target *target = Jim_CmdPrivData(interp);
5128 if (!target->tap->enabled)
5129 return jim_target_tap_disabled(interp);
5131 if (allow_defer && target->defer_examine) {
5132 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5133 LOG_INFO("Use arp_examine command to examine it manually!");
5134 return JIM_OK;
5137 int e = target->type->examine(target);
5138 if (e != ERROR_OK)
5139 return JIM_ERR;
5140 return JIM_OK;
5143 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5145 struct target *target = Jim_CmdPrivData(interp);
5147 Jim_SetResultBool(interp, target_was_examined(target));
5148 return JIM_OK;
5151 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5153 struct target *target = Jim_CmdPrivData(interp);
5155 Jim_SetResultBool(interp, target->defer_examine);
5156 return JIM_OK;
5159 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5161 if (argc != 1) {
5162 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5163 return JIM_ERR;
5165 struct target *target = Jim_CmdPrivData(interp);
5167 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5168 return JIM_ERR;
5170 return JIM_OK;
5173 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5175 if (argc != 1) {
5176 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5177 return JIM_ERR;
5179 struct target *target = Jim_CmdPrivData(interp);
5180 if (!target->tap->enabled)
5181 return jim_target_tap_disabled(interp);
5183 int e;
5184 if (!(target_was_examined(target)))
5185 e = ERROR_TARGET_NOT_EXAMINED;
5186 else
5187 e = target->type->poll(target);
5188 if (e != ERROR_OK)
5189 return JIM_ERR;
5190 return JIM_OK;
5193 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5195 Jim_GetOptInfo goi;
5196 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5198 if (goi.argc != 2) {
5199 Jim_WrongNumArgs(interp, 0, argv,
5200 "([tT]|[fF]|assert|deassert) BOOL");
5201 return JIM_ERR;
5204 Jim_Nvp *n;
5205 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5206 if (e != JIM_OK) {
5207 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5208 return e;
5210 /* the halt or not param */
5211 jim_wide a;
5212 e = Jim_GetOpt_Wide(&goi, &a);
5213 if (e != JIM_OK)
5214 return e;
5216 struct target *target = Jim_CmdPrivData(goi.interp);
5217 if (!target->tap->enabled)
5218 return jim_target_tap_disabled(interp);
5220 if (!target->type->assert_reset || !target->type->deassert_reset) {
5221 Jim_SetResultFormatted(interp,
5222 "No target-specific reset for %s",
5223 target_name(target));
5224 return JIM_ERR;
5227 if (target->defer_examine)
5228 target_reset_examined(target);
5230 /* determine if we should halt or not. */
5231 target->reset_halt = !!a;
5232 /* When this happens - all workareas are invalid. */
5233 target_free_all_working_areas_restore(target, 0);
5235 /* do the assert */
5236 if (n->value == NVP_ASSERT)
5237 e = target->type->assert_reset(target);
5238 else
5239 e = target->type->deassert_reset(target);
5240 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5243 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5245 if (argc != 1) {
5246 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5247 return JIM_ERR;
5249 struct target *target = Jim_CmdPrivData(interp);
5250 if (!target->tap->enabled)
5251 return jim_target_tap_disabled(interp);
5252 int e = target->type->halt(target);
5253 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5256 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5258 Jim_GetOptInfo goi;
5259 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5261 /* params: <name> statename timeoutmsecs */
5262 if (goi.argc != 2) {
5263 const char *cmd_name = Jim_GetString(argv[0], NULL);
5264 Jim_SetResultFormatted(goi.interp,
5265 "%s <state_name> <timeout_in_msec>", cmd_name);
5266 return JIM_ERR;
5269 Jim_Nvp *n;
5270 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5271 if (e != JIM_OK) {
5272 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5273 return e;
5275 jim_wide a;
5276 e = Jim_GetOpt_Wide(&goi, &a);
5277 if (e != JIM_OK)
5278 return e;
5279 struct target *target = Jim_CmdPrivData(interp);
5280 if (!target->tap->enabled)
5281 return jim_target_tap_disabled(interp);
5283 e = target_wait_state(target, n->value, a);
5284 if (e != ERROR_OK) {
5285 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5286 Jim_SetResultFormatted(goi.interp,
5287 "target: %s wait %s fails (%#s) %s",
5288 target_name(target), n->name,
5289 eObj, target_strerror_safe(e));
5290 Jim_FreeNewObj(interp, eObj);
5291 return JIM_ERR;
5293 return JIM_OK;
5295 /* List for human, Events defined for this target.
5296 * scripts/programs should use 'name cget -event NAME'
5298 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5300 struct command_context *cmd_ctx = current_command_context(interp);
5301 assert(cmd_ctx != NULL);
5303 struct target *target = Jim_CmdPrivData(interp);
5304 struct target_event_action *teap = target->event_action;
5305 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5306 target->target_number,
5307 target_name(target));
5308 command_print(cmd_ctx, "%-25s | Body", "Event");
5309 command_print(cmd_ctx, "------------------------- | "
5310 "----------------------------------------");
5311 while (teap) {
5312 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5313 command_print(cmd_ctx, "%-25s | %s",
5314 opt->name, Jim_GetString(teap->body, NULL));
5315 teap = teap->next;
5317 command_print(cmd_ctx, "***END***");
5318 return JIM_OK;
5320 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5322 if (argc != 1) {
5323 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5324 return JIM_ERR;
5326 struct target *target = Jim_CmdPrivData(interp);
5327 Jim_SetResultString(interp, target_state_name(target), -1);
5328 return JIM_OK;
5330 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5332 Jim_GetOptInfo goi;
5333 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5334 if (goi.argc != 1) {
5335 const char *cmd_name = Jim_GetString(argv[0], NULL);
5336 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5337 return JIM_ERR;
5339 Jim_Nvp *n;
5340 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5341 if (e != JIM_OK) {
5342 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5343 return e;
5345 struct target *target = Jim_CmdPrivData(interp);
5346 target_handle_event(target, n->value);
5347 return JIM_OK;
5350 static const struct command_registration target_instance_command_handlers[] = {
5352 .name = "configure",
5353 .mode = COMMAND_CONFIG,
5354 .jim_handler = jim_target_configure,
5355 .help = "configure a new target for use",
5356 .usage = "[target_attribute ...]",
5359 .name = "cget",
5360 .mode = COMMAND_ANY,
5361 .jim_handler = jim_target_configure,
5362 .help = "returns the specified target attribute",
5363 .usage = "target_attribute",
5366 .name = "mww",
5367 .mode = COMMAND_EXEC,
5368 .jim_handler = jim_target_mw,
5369 .help = "Write 32-bit word(s) to target memory",
5370 .usage = "address data [count]",
5373 .name = "mwh",
5374 .mode = COMMAND_EXEC,
5375 .jim_handler = jim_target_mw,
5376 .help = "Write 16-bit half-word(s) to target memory",
5377 .usage = "address data [count]",
5380 .name = "mwb",
5381 .mode = COMMAND_EXEC,
5382 .jim_handler = jim_target_mw,
5383 .help = "Write byte(s) to target memory",
5384 .usage = "address data [count]",
5387 .name = "mdw",
5388 .mode = COMMAND_EXEC,
5389 .jim_handler = jim_target_md,
5390 .help = "Display target memory as 32-bit words",
5391 .usage = "address [count]",
5394 .name = "mdh",
5395 .mode = COMMAND_EXEC,
5396 .jim_handler = jim_target_md,
5397 .help = "Display target memory as 16-bit half-words",
5398 .usage = "address [count]",
5401 .name = "mdb",
5402 .mode = COMMAND_EXEC,
5403 .jim_handler = jim_target_md,
5404 .help = "Display target memory as 8-bit bytes",
5405 .usage = "address [count]",
5408 .name = "array2mem",
5409 .mode = COMMAND_EXEC,
5410 .jim_handler = jim_target_array2mem,
5411 .help = "Writes Tcl array of 8/16/32 bit numbers "
5412 "to target memory",
5413 .usage = "arrayname bitwidth address count",
5416 .name = "mem2array",
5417 .mode = COMMAND_EXEC,
5418 .jim_handler = jim_target_mem2array,
5419 .help = "Loads Tcl array of 8/16/32 bit numbers "
5420 "from target memory",
5421 .usage = "arrayname bitwidth address count",
5424 .name = "eventlist",
5425 .mode = COMMAND_EXEC,
5426 .jim_handler = jim_target_event_list,
5427 .help = "displays a table of events defined for this target",
5430 .name = "curstate",
5431 .mode = COMMAND_EXEC,
5432 .jim_handler = jim_target_current_state,
5433 .help = "displays the current state of this target",
5436 .name = "arp_examine",
5437 .mode = COMMAND_EXEC,
5438 .jim_handler = jim_target_examine,
5439 .help = "used internally for reset processing",
5440 .usage = "['allow-defer']",
5443 .name = "was_examined",
5444 .mode = COMMAND_EXEC,
5445 .jim_handler = jim_target_was_examined,
5446 .help = "used internally for reset processing",
5449 .name = "examine_deferred",
5450 .mode = COMMAND_EXEC,
5451 .jim_handler = jim_target_examine_deferred,
5452 .help = "used internally for reset processing",
5455 .name = "arp_halt_gdb",
5456 .mode = COMMAND_EXEC,
5457 .jim_handler = jim_target_halt_gdb,
5458 .help = "used internally for reset processing to halt GDB",
5461 .name = "arp_poll",
5462 .mode = COMMAND_EXEC,
5463 .jim_handler = jim_target_poll,
5464 .help = "used internally for reset processing",
5467 .name = "arp_reset",
5468 .mode = COMMAND_EXEC,
5469 .jim_handler = jim_target_reset,
5470 .help = "used internally for reset processing",
5473 .name = "arp_halt",
5474 .mode = COMMAND_EXEC,
5475 .jim_handler = jim_target_halt,
5476 .help = "used internally for reset processing",
5479 .name = "arp_waitstate",
5480 .mode = COMMAND_EXEC,
5481 .jim_handler = jim_target_wait_state,
5482 .help = "used internally for reset processing",
5485 .name = "invoke-event",
5486 .mode = COMMAND_EXEC,
5487 .jim_handler = jim_target_invoke_event,
5488 .help = "invoke handler for specified event",
5489 .usage = "event_name",
5491 COMMAND_REGISTRATION_DONE
5494 static int target_create(Jim_GetOptInfo *goi)
5496 Jim_Obj *new_cmd;
5497 Jim_Cmd *cmd;
5498 const char *cp;
5499 int e;
5500 int x;
5501 struct target *target;
5502 struct command_context *cmd_ctx;
5504 cmd_ctx = current_command_context(goi->interp);
5505 assert(cmd_ctx != NULL);
5507 if (goi->argc < 3) {
5508 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5509 return JIM_ERR;
5512 /* COMMAND */
5513 Jim_GetOpt_Obj(goi, &new_cmd);
5514 /* does this command exist? */
5515 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5516 if (cmd) {
5517 cp = Jim_GetString(new_cmd, NULL);
5518 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5519 return JIM_ERR;
5522 /* TYPE */
5523 e = Jim_GetOpt_String(goi, &cp, NULL);
5524 if (e != JIM_OK)
5525 return e;
5526 struct transport *tr = get_current_transport();
5527 if (tr->override_target) {
5528 e = tr->override_target(&cp);
5529 if (e != ERROR_OK) {
5530 LOG_ERROR("The selected transport doesn't support this target");
5531 return JIM_ERR;
5533 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5535 /* now does target type exist */
5536 for (x = 0 ; target_types[x] ; x++) {
5537 if (0 == strcmp(cp, target_types[x]->name)) {
5538 /* found */
5539 break;
5542 /* check for deprecated name */
5543 if (target_types[x]->deprecated_name) {
5544 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5545 /* found */
5546 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5547 break;
5551 if (target_types[x] == NULL) {
5552 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5553 for (x = 0 ; target_types[x] ; x++) {
5554 if (target_types[x + 1]) {
5555 Jim_AppendStrings(goi->interp,
5556 Jim_GetResult(goi->interp),
5557 target_types[x]->name,
5558 ", ", NULL);
5559 } else {
5560 Jim_AppendStrings(goi->interp,
5561 Jim_GetResult(goi->interp),
5562 " or ",
5563 target_types[x]->name, NULL);
5566 return JIM_ERR;
5569 /* Create it */
5570 target = calloc(1, sizeof(struct target));
5571 /* set target number */
5572 target->target_number = new_target_number();
5573 cmd_ctx->current_target = target;
5575 /* allocate memory for each unique target type */
5576 target->type = calloc(1, sizeof(struct target_type));
5578 memcpy(target->type, target_types[x], sizeof(struct target_type));
5580 /* will be set by "-endian" */
5581 target->endianness = TARGET_ENDIAN_UNKNOWN;
5583 /* default to first core, override with -coreid */
5584 target->coreid = 0;
5586 target->working_area = 0x0;
5587 target->working_area_size = 0x0;
5588 target->working_areas = NULL;
5589 target->backup_working_area = 0;
5591 target->state = TARGET_UNKNOWN;
5592 target->debug_reason = DBG_REASON_UNDEFINED;
5593 target->reg_cache = NULL;
5594 target->breakpoints = NULL;
5595 target->watchpoints = NULL;
5596 target->next = NULL;
5597 target->arch_info = NULL;
5599 target->verbose_halt_msg = true;
5601 target->halt_issued = false;
5603 /* initialize trace information */
5604 target->trace_info = calloc(1, sizeof(struct trace));
5606 target->dbgmsg = NULL;
5607 target->dbg_msg_enabled = 0;
5609 target->endianness = TARGET_ENDIAN_UNKNOWN;
5611 target->rtos = NULL;
5612 target->rtos_auto_detect = false;
5614 /* Do the rest as "configure" options */
5615 goi->isconfigure = 1;
5616 e = target_configure(goi, target);
5618 if (e == JIM_OK) {
5619 if (target->has_dap) {
5620 if (!target->dap_configured) {
5621 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5622 e = JIM_ERR;
5624 } else {
5625 if (!target->tap_configured) {
5626 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5627 e = JIM_ERR;
5630 /* tap must be set after target was configured */
5631 if (target->tap == NULL)
5632 e = JIM_ERR;
5635 if (e != JIM_OK) {
5636 free(target->type);
5637 free(target);
5638 return e;
5641 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5642 /* default endian to little if not specified */
5643 target->endianness = TARGET_LITTLE_ENDIAN;
5646 cp = Jim_GetString(new_cmd, NULL);
5647 target->cmd_name = strdup(cp);
5649 if (target->type->target_create) {
5650 e = (*(target->type->target_create))(target, goi->interp);
5651 if (e != ERROR_OK) {
5652 LOG_DEBUG("target_create failed");
5653 free(target->type);
5654 free(target->cmd_name);
5655 free(target);
5656 return JIM_ERR;
5660 /* create the target specific commands */
5661 if (target->type->commands) {
5662 e = register_commands(cmd_ctx, NULL, target->type->commands);
5663 if (ERROR_OK != e)
5664 LOG_ERROR("unable to register '%s' commands", cp);
5667 /* append to end of list */
5669 struct target **tpp;
5670 tpp = &(all_targets);
5671 while (*tpp)
5672 tpp = &((*tpp)->next);
5673 *tpp = target;
5676 /* now - create the new target name command */
5677 const struct command_registration target_subcommands[] = {
5679 .chain = target_instance_command_handlers,
5682 .chain = target->type->commands,
5684 COMMAND_REGISTRATION_DONE
5686 const struct command_registration target_commands[] = {
5688 .name = cp,
5689 .mode = COMMAND_ANY,
5690 .help = "target command group",
5691 .usage = "",
5692 .chain = target_subcommands,
5694 COMMAND_REGISTRATION_DONE
5696 e = register_commands(cmd_ctx, NULL, target_commands);
5697 if (ERROR_OK != e)
5698 return JIM_ERR;
5700 struct command *c = command_find_in_context(cmd_ctx, cp);
5701 assert(c);
5702 command_set_handler_data(c, target);
5704 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5707 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5709 if (argc != 1) {
5710 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5711 return JIM_ERR;
5713 struct command_context *cmd_ctx = current_command_context(interp);
5714 assert(cmd_ctx != NULL);
5716 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5717 return JIM_OK;
5720 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5722 if (argc != 1) {
5723 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5724 return JIM_ERR;
5726 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5727 for (unsigned x = 0; NULL != target_types[x]; x++) {
5728 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5729 Jim_NewStringObj(interp, target_types[x]->name, -1));
5731 return JIM_OK;
5734 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5736 if (argc != 1) {
5737 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5738 return JIM_ERR;
5740 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5741 struct target *target = all_targets;
5742 while (target) {
5743 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5744 Jim_NewStringObj(interp, target_name(target), -1));
5745 target = target->next;
5747 return JIM_OK;
5750 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5752 int i;
5753 const char *targetname;
5754 int retval, len;
5755 struct target *target = (struct target *) NULL;
5756 struct target_list *head, *curr, *new;
5757 curr = (struct target_list *) NULL;
5758 head = (struct target_list *) NULL;
5760 retval = 0;
5761 LOG_DEBUG("%d", argc);
5762 /* argv[1] = target to associate in smp
5763 * argv[2] = target to assoicate in smp
5764 * argv[3] ...
5767 for (i = 1; i < argc; i++) {
5769 targetname = Jim_GetString(argv[i], &len);
5770 target = get_target(targetname);
5771 LOG_DEBUG("%s ", targetname);
5772 if (target) {
5773 new = malloc(sizeof(struct target_list));
5774 new->target = target;
5775 new->next = (struct target_list *)NULL;
5776 if (head == (struct target_list *)NULL) {
5777 head = new;
5778 curr = head;
5779 } else {
5780 curr->next = new;
5781 curr = new;
5785 /* now parse the list of cpu and put the target in smp mode*/
5786 curr = head;
5788 while (curr != (struct target_list *)NULL) {
5789 target = curr->target;
5790 target->smp = 1;
5791 target->head = head;
5792 curr = curr->next;
5795 if (target && target->rtos)
5796 retval = rtos_smp_init(head->target);
5798 return retval;
5802 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5804 Jim_GetOptInfo goi;
5805 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5806 if (goi.argc < 3) {
5807 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5808 "<name> <target_type> [<target_options> ...]");
5809 return JIM_ERR;
5811 return target_create(&goi);
5814 static const struct command_registration target_subcommand_handlers[] = {
5816 .name = "init",
5817 .mode = COMMAND_CONFIG,
5818 .handler = handle_target_init_command,
5819 .help = "initialize targets",
5822 .name = "create",
5823 /* REVISIT this should be COMMAND_CONFIG ... */
5824 .mode = COMMAND_ANY,
5825 .jim_handler = jim_target_create,
5826 .usage = "name type '-chain-position' name [options ...]",
5827 .help = "Creates and selects a new target",
5830 .name = "current",
5831 .mode = COMMAND_ANY,
5832 .jim_handler = jim_target_current,
5833 .help = "Returns the currently selected target",
5836 .name = "types",
5837 .mode = COMMAND_ANY,
5838 .jim_handler = jim_target_types,
5839 .help = "Returns the available target types as "
5840 "a list of strings",
5843 .name = "names",
5844 .mode = COMMAND_ANY,
5845 .jim_handler = jim_target_names,
5846 .help = "Returns the names of all targets as a list of strings",
5849 .name = "smp",
5850 .mode = COMMAND_ANY,
5851 .jim_handler = jim_target_smp,
5852 .usage = "targetname1 targetname2 ...",
5853 .help = "gather several target in a smp list"
5856 COMMAND_REGISTRATION_DONE
5859 struct FastLoad {
5860 target_addr_t address;
5861 uint8_t *data;
5862 int length;
5866 static int fastload_num;
5867 static struct FastLoad *fastload;
5869 static void free_fastload(void)
5871 if (fastload != NULL) {
5872 int i;
5873 for (i = 0; i < fastload_num; i++) {
5874 if (fastload[i].data)
5875 free(fastload[i].data);
5877 free(fastload);
5878 fastload = NULL;
5882 COMMAND_HANDLER(handle_fast_load_image_command)
5884 uint8_t *buffer;
5885 size_t buf_cnt;
5886 uint32_t image_size;
5887 target_addr_t min_address = 0;
5888 target_addr_t max_address = -1;
5889 int i;
5891 struct image image;
5893 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5894 &image, &min_address, &max_address);
5895 if (ERROR_OK != retval)
5896 return retval;
5898 struct duration bench;
5899 duration_start(&bench);
5901 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5902 if (retval != ERROR_OK)
5903 return retval;
5905 image_size = 0x0;
5906 retval = ERROR_OK;
5907 fastload_num = image.num_sections;
5908 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5909 if (fastload == NULL) {
5910 command_print(CMD_CTX, "out of memory");
5911 image_close(&image);
5912 return ERROR_FAIL;
5914 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5915 for (i = 0; i < image.num_sections; i++) {
5916 buffer = malloc(image.sections[i].size);
5917 if (buffer == NULL) {
5918 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5919 (int)(image.sections[i].size));
5920 retval = ERROR_FAIL;
5921 break;
5924 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5925 if (retval != ERROR_OK) {
5926 free(buffer);
5927 break;
5930 uint32_t offset = 0;
5931 uint32_t length = buf_cnt;
5933 /* DANGER!!! beware of unsigned comparision here!!! */
5935 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5936 (image.sections[i].base_address < max_address)) {
5937 if (image.sections[i].base_address < min_address) {
5938 /* clip addresses below */
5939 offset += min_address-image.sections[i].base_address;
5940 length -= offset;
5943 if (image.sections[i].base_address + buf_cnt > max_address)
5944 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5946 fastload[i].address = image.sections[i].base_address + offset;
5947 fastload[i].data = malloc(length);
5948 if (fastload[i].data == NULL) {
5949 free(buffer);
5950 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5951 length);
5952 retval = ERROR_FAIL;
5953 break;
5955 memcpy(fastload[i].data, buffer + offset, length);
5956 fastload[i].length = length;
5958 image_size += length;
5959 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5960 (unsigned int)length,
5961 ((unsigned int)(image.sections[i].base_address + offset)));
5964 free(buffer);
5967 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5968 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5969 "in %fs (%0.3f KiB/s)", image_size,
5970 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5972 command_print(CMD_CTX,
5973 "WARNING: image has not been loaded to target!"
5974 "You can issue a 'fast_load' to finish loading.");
5977 image_close(&image);
5979 if (retval != ERROR_OK)
5980 free_fastload();
5982 return retval;
5985 COMMAND_HANDLER(handle_fast_load_command)
5987 if (CMD_ARGC > 0)
5988 return ERROR_COMMAND_SYNTAX_ERROR;
5989 if (fastload == NULL) {
5990 LOG_ERROR("No image in memory");
5991 return ERROR_FAIL;
5993 int i;
5994 int64_t ms = timeval_ms();
5995 int size = 0;
5996 int retval = ERROR_OK;
5997 for (i = 0; i < fastload_num; i++) {
5998 struct target *target = get_current_target(CMD_CTX);
5999 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
6000 (unsigned int)(fastload[i].address),
6001 (unsigned int)(fastload[i].length));
6002 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
6003 if (retval != ERROR_OK)
6004 break;
6005 size += fastload[i].length;
6007 if (retval == ERROR_OK) {
6008 int64_t after = timeval_ms();
6009 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
6011 return retval;
6014 static const struct command_registration target_command_handlers[] = {
6016 .name = "targets",
6017 .handler = handle_targets_command,
6018 .mode = COMMAND_ANY,
6019 .help = "change current default target (one parameter) "
6020 "or prints table of all targets (no parameters)",
6021 .usage = "[target]",
6024 .name = "target",
6025 .mode = COMMAND_CONFIG,
6026 .help = "configure target",
6028 .chain = target_subcommand_handlers,
6030 COMMAND_REGISTRATION_DONE
6033 int target_register_commands(struct command_context *cmd_ctx)
6035 return register_commands(cmd_ctx, NULL, target_command_handlers);
6038 static bool target_reset_nag = true;
6040 bool get_target_reset_nag(void)
6042 return target_reset_nag;
6045 COMMAND_HANDLER(handle_target_reset_nag)
6047 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6048 &target_reset_nag, "Nag after each reset about options to improve "
6049 "performance");
6052 COMMAND_HANDLER(handle_ps_command)
6054 struct target *target = get_current_target(CMD_CTX);
6055 char *display;
6056 if (target->state != TARGET_HALTED) {
6057 LOG_INFO("target not halted !!");
6058 return ERROR_OK;
6061 if ((target->rtos) && (target->rtos->type)
6062 && (target->rtos->type->ps_command)) {
6063 display = target->rtos->type->ps_command(target);
6064 command_print(CMD_CTX, "%s", display);
6065 free(display);
6066 return ERROR_OK;
6067 } else {
6068 LOG_INFO("failed");
6069 return ERROR_TARGET_FAILURE;
6073 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
6075 if (text != NULL)
6076 command_print_sameline(cmd_ctx, "%s", text);
6077 for (int i = 0; i < size; i++)
6078 command_print_sameline(cmd_ctx, " %02x", buf[i]);
6079 command_print(cmd_ctx, " ");
6082 COMMAND_HANDLER(handle_test_mem_access_command)
6084 struct target *target = get_current_target(CMD_CTX);
6085 uint32_t test_size;
6086 int retval = ERROR_OK;
6088 if (target->state != TARGET_HALTED) {
6089 LOG_INFO("target not halted !!");
6090 return ERROR_FAIL;
6093 if (CMD_ARGC != 1)
6094 return ERROR_COMMAND_SYNTAX_ERROR;
6096 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6098 /* Test reads */
6099 size_t num_bytes = test_size + 4;
6101 struct working_area *wa = NULL;
6102 retval = target_alloc_working_area(target, num_bytes, &wa);
6103 if (retval != ERROR_OK) {
6104 LOG_ERROR("Not enough working area");
6105 return ERROR_FAIL;
6108 uint8_t *test_pattern = malloc(num_bytes);
6110 for (size_t i = 0; i < num_bytes; i++)
6111 test_pattern[i] = rand();
6113 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6114 if (retval != ERROR_OK) {
6115 LOG_ERROR("Test pattern write failed");
6116 goto out;
6119 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6120 for (int size = 1; size <= 4; size *= 2) {
6121 for (int offset = 0; offset < 4; offset++) {
6122 uint32_t count = test_size / size;
6123 size_t host_bufsiz = (count + 2) * size + host_offset;
6124 uint8_t *read_ref = malloc(host_bufsiz);
6125 uint8_t *read_buf = malloc(host_bufsiz);
6127 for (size_t i = 0; i < host_bufsiz; i++) {
6128 read_ref[i] = rand();
6129 read_buf[i] = read_ref[i];
6131 command_print_sameline(CMD_CTX,
6132 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6133 size, offset, host_offset ? "un" : "");
6135 struct duration bench;
6136 duration_start(&bench);
6138 retval = target_read_memory(target, wa->address + offset, size, count,
6139 read_buf + size + host_offset);
6141 duration_measure(&bench);
6143 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6144 command_print(CMD_CTX, "Unsupported alignment");
6145 goto next;
6146 } else if (retval != ERROR_OK) {
6147 command_print(CMD_CTX, "Memory read failed");
6148 goto next;
6151 /* replay on host */
6152 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6154 /* check result */
6155 int result = memcmp(read_ref, read_buf, host_bufsiz);
6156 if (result == 0) {
6157 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6158 duration_elapsed(&bench),
6159 duration_kbps(&bench, count * size));
6160 } else {
6161 command_print(CMD_CTX, "Compare failed");
6162 binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6163 binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6165 next:
6166 free(read_ref);
6167 free(read_buf);
6172 out:
6173 free(test_pattern);
6175 if (wa != NULL)
6176 target_free_working_area(target, wa);
6178 /* Test writes */
6179 num_bytes = test_size + 4 + 4 + 4;
6181 retval = target_alloc_working_area(target, num_bytes, &wa);
6182 if (retval != ERROR_OK) {
6183 LOG_ERROR("Not enough working area");
6184 return ERROR_FAIL;
6187 test_pattern = malloc(num_bytes);
6189 for (size_t i = 0; i < num_bytes; i++)
6190 test_pattern[i] = rand();
6192 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6193 for (int size = 1; size <= 4; size *= 2) {
6194 for (int offset = 0; offset < 4; offset++) {
6195 uint32_t count = test_size / size;
6196 size_t host_bufsiz = count * size + host_offset;
6197 uint8_t *read_ref = malloc(num_bytes);
6198 uint8_t *read_buf = malloc(num_bytes);
6199 uint8_t *write_buf = malloc(host_bufsiz);
6201 for (size_t i = 0; i < host_bufsiz; i++)
6202 write_buf[i] = rand();
6203 command_print_sameline(CMD_CTX,
6204 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6205 size, offset, host_offset ? "un" : "");
6207 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6208 if (retval != ERROR_OK) {
6209 command_print(CMD_CTX, "Test pattern write failed");
6210 goto nextw;
6213 /* replay on host */
6214 memcpy(read_ref, test_pattern, num_bytes);
6215 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6217 struct duration bench;
6218 duration_start(&bench);
6220 retval = target_write_memory(target, wa->address + size + offset, size, count,
6221 write_buf + host_offset);
6223 duration_measure(&bench);
6225 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6226 command_print(CMD_CTX, "Unsupported alignment");
6227 goto nextw;
6228 } else if (retval != ERROR_OK) {
6229 command_print(CMD_CTX, "Memory write failed");
6230 goto nextw;
6233 /* read back */
6234 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6235 if (retval != ERROR_OK) {
6236 command_print(CMD_CTX, "Test pattern write failed");
6237 goto nextw;
6240 /* check result */
6241 int result = memcmp(read_ref, read_buf, num_bytes);
6242 if (result == 0) {
6243 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6244 duration_elapsed(&bench),
6245 duration_kbps(&bench, count * size));
6246 } else {
6247 command_print(CMD_CTX, "Compare failed");
6248 binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6249 binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6251 nextw:
6252 free(read_ref);
6253 free(read_buf);
6258 free(test_pattern);
6260 if (wa != NULL)
6261 target_free_working_area(target, wa);
6262 return retval;
6265 static const struct command_registration target_exec_command_handlers[] = {
6267 .name = "fast_load_image",
6268 .handler = handle_fast_load_image_command,
6269 .mode = COMMAND_ANY,
6270 .help = "Load image into server memory for later use by "
6271 "fast_load; primarily for profiling",
6272 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6273 "[min_address [max_length]]",
6276 .name = "fast_load",
6277 .handler = handle_fast_load_command,
6278 .mode = COMMAND_EXEC,
6279 .help = "loads active fast load image to current target "
6280 "- mainly for profiling purposes",
6281 .usage = "",
6284 .name = "profile",
6285 .handler = handle_profile_command,
6286 .mode = COMMAND_EXEC,
6287 .usage = "seconds filename [start end]",
6288 .help = "profiling samples the CPU PC",
6290 /** @todo don't register virt2phys() unless target supports it */
6292 .name = "virt2phys",
6293 .handler = handle_virt2phys_command,
6294 .mode = COMMAND_ANY,
6295 .help = "translate a virtual address into a physical address",
6296 .usage = "virtual_address",
6299 .name = "reg",
6300 .handler = handle_reg_command,
6301 .mode = COMMAND_EXEC,
6302 .help = "display (reread from target with \"force\") or set a register; "
6303 "with no arguments, displays all registers and their values",
6304 .usage = "[(register_number|register_name) [(value|'force')]]",
6307 .name = "poll",
6308 .handler = handle_poll_command,
6309 .mode = COMMAND_EXEC,
6310 .help = "poll target state; or reconfigure background polling",
6311 .usage = "['on'|'off']",
6314 .name = "wait_halt",
6315 .handler = handle_wait_halt_command,
6316 .mode = COMMAND_EXEC,
6317 .help = "wait up to the specified number of milliseconds "
6318 "(default 5000) for a previously requested halt",
6319 .usage = "[milliseconds]",
6322 .name = "halt",
6323 .handler = handle_halt_command,
6324 .mode = COMMAND_EXEC,
6325 .help = "request target to halt, then wait up to the specified"
6326 "number of milliseconds (default 5000) for it to complete",
6327 .usage = "[milliseconds]",
6330 .name = "resume",
6331 .handler = handle_resume_command,
6332 .mode = COMMAND_EXEC,
6333 .help = "resume target execution from current PC or address",
6334 .usage = "[address]",
6337 .name = "reset",
6338 .handler = handle_reset_command,
6339 .mode = COMMAND_EXEC,
6340 .usage = "[run|halt|init]",
6341 .help = "Reset all targets into the specified mode."
6342 "Default reset mode is run, if not given.",
6345 .name = "soft_reset_halt",
6346 .handler = handle_soft_reset_halt_command,
6347 .mode = COMMAND_EXEC,
6348 .usage = "",
6349 .help = "halt the target and do a soft reset",
6352 .name = "step",
6353 .handler = handle_step_command,
6354 .mode = COMMAND_EXEC,
6355 .help = "step one instruction from current PC or address",
6356 .usage = "[address]",
6359 .name = "mdd",
6360 .handler = handle_md_command,
6361 .mode = COMMAND_EXEC,
6362 .help = "display memory words",
6363 .usage = "['phys'] address [count]",
6366 .name = "mdw",
6367 .handler = handle_md_command,
6368 .mode = COMMAND_EXEC,
6369 .help = "display memory words",
6370 .usage = "['phys'] address [count]",
6373 .name = "mdh",
6374 .handler = handle_md_command,
6375 .mode = COMMAND_EXEC,
6376 .help = "display memory half-words",
6377 .usage = "['phys'] address [count]",
6380 .name = "mdb",
6381 .handler = handle_md_command,
6382 .mode = COMMAND_EXEC,
6383 .help = "display memory bytes",
6384 .usage = "['phys'] address [count]",
6387 .name = "mwd",
6388 .handler = handle_mw_command,
6389 .mode = COMMAND_EXEC,
6390 .help = "write memory word",
6391 .usage = "['phys'] address value [count]",
6394 .name = "mww",
6395 .handler = handle_mw_command,
6396 .mode = COMMAND_EXEC,
6397 .help = "write memory word",
6398 .usage = "['phys'] address value [count]",
6401 .name = "mwh",
6402 .handler = handle_mw_command,
6403 .mode = COMMAND_EXEC,
6404 .help = "write memory half-word",
6405 .usage = "['phys'] address value [count]",
6408 .name = "mwb",
6409 .handler = handle_mw_command,
6410 .mode = COMMAND_EXEC,
6411 .help = "write memory byte",
6412 .usage = "['phys'] address value [count]",
6415 .name = "bp",
6416 .handler = handle_bp_command,
6417 .mode = COMMAND_EXEC,
6418 .help = "list or set hardware or software breakpoint",
6419 .usage = "<address> [<asid>] <length> ['hw'|'hw_ctx']",
6422 .name = "rbp",
6423 .handler = handle_rbp_command,
6424 .mode = COMMAND_EXEC,
6425 .help = "remove breakpoint",
6426 .usage = "address",
6429 .name = "wp",
6430 .handler = handle_wp_command,
6431 .mode = COMMAND_EXEC,
6432 .help = "list (no params) or create watchpoints",
6433 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6436 .name = "rwp",
6437 .handler = handle_rwp_command,
6438 .mode = COMMAND_EXEC,
6439 .help = "remove watchpoint",
6440 .usage = "address",
6443 .name = "load_image",
6444 .handler = handle_load_image_command,
6445 .mode = COMMAND_EXEC,
6446 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6447 "[min_address] [max_length]",
6450 .name = "dump_image",
6451 .handler = handle_dump_image_command,
6452 .mode = COMMAND_EXEC,
6453 .usage = "filename address size",
6456 .name = "verify_image_checksum",
6457 .handler = handle_verify_image_checksum_command,
6458 .mode = COMMAND_EXEC,
6459 .usage = "filename [offset [type]]",
6462 .name = "verify_image",
6463 .handler = handle_verify_image_command,
6464 .mode = COMMAND_EXEC,
6465 .usage = "filename [offset [type]]",
6468 .name = "test_image",
6469 .handler = handle_test_image_command,
6470 .mode = COMMAND_EXEC,
6471 .usage = "filename [offset [type]]",
6474 .name = "mem2array",
6475 .mode = COMMAND_EXEC,
6476 .jim_handler = jim_mem2array,
6477 .help = "read 8/16/32 bit memory and return as a TCL array "
6478 "for script processing",
6479 .usage = "arrayname bitwidth address count",
6482 .name = "array2mem",
6483 .mode = COMMAND_EXEC,
6484 .jim_handler = jim_array2mem,
6485 .help = "convert a TCL array to memory locations "
6486 "and write the 8/16/32 bit values",
6487 .usage = "arrayname bitwidth address count",
6490 .name = "reset_nag",
6491 .handler = handle_target_reset_nag,
6492 .mode = COMMAND_ANY,
6493 .help = "Nag after each reset about options that could have been "
6494 "enabled to improve performance. ",
6495 .usage = "['enable'|'disable']",
6498 .name = "ps",
6499 .handler = handle_ps_command,
6500 .mode = COMMAND_EXEC,
6501 .help = "list all tasks ",
6502 .usage = " ",
6505 .name = "test_mem_access",
6506 .handler = handle_test_mem_access_command,
6507 .mode = COMMAND_EXEC,
6508 .help = "Test the target's memory access functions",
6509 .usage = "size",
6512 COMMAND_REGISTRATION_DONE
6514 static int target_register_user_commands(struct command_context *cmd_ctx)
6516 int retval = ERROR_OK;
6517 retval = target_request_register_commands(cmd_ctx);
6518 if (retval != ERROR_OK)
6519 return retval;
6521 retval = trace_register_commands(cmd_ctx);
6522 if (retval != ERROR_OK)
6523 return retval;
6526 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);