aarch64: fix handling of 'reset halt'
[openocd.git] / src / target / image.c
blob130ea6c1f98cc4fae9f468f77ac816967bd4263a
1 /***************************************************************************
2 * Copyright (C) 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Franck Hereson *
12 * franck.hereson@secad.fr *
13 * *
14 * Copyright (C) 2018 by Advantest *
15 * florian.meister@advantest.com *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
29 ***************************************************************************/
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
35 #include "image.h"
36 #include "target.h"
37 #include <helper/log.h>
39 /* convert ELF header field to host endianness */
40 #define field16(elf, field) \
41 ((elf->endianness == ELFDATA2LSB) ? \
42 le_to_h_u16((uint8_t *)&field) : be_to_h_u16((uint8_t *)&field))
44 #define field32(elf, field) \
45 ((elf->endianness == ELFDATA2LSB) ? \
46 le_to_h_u32((uint8_t *)&field) : be_to_h_u32((uint8_t *)&field))
48 #define field64(elf, field) \
49 ((elf->endianness == ELFDATA2LSB) ? \
50 le_to_h_u64((uint8_t *)&field) : be_to_h_u64((uint8_t *)&field))
52 static int autodetect_image_type(struct image *image, const char *url)
54 int retval;
55 struct fileio *fileio;
56 size_t read_bytes;
57 uint8_t buffer[9];
59 /* read the first 9 bytes of image */
60 retval = fileio_open(&fileio, url, FILEIO_READ, FILEIO_BINARY);
61 if (retval != ERROR_OK)
62 return retval;
63 retval = fileio_read(fileio, 9, buffer, &read_bytes);
65 if (retval == ERROR_OK) {
66 if (read_bytes != 9)
67 retval = ERROR_FILEIO_OPERATION_FAILED;
69 fileio_close(fileio);
71 if (retval != ERROR_OK)
72 return retval;
74 /* check header against known signatures */
75 if (strncmp((char *)buffer, ELFMAG, SELFMAG) == 0) {
76 LOG_DEBUG("ELF image detected.");
77 image->type = IMAGE_ELF;
78 } else if ((buffer[0] == ':') /* record start byte */
79 && (isxdigit(buffer[1]))
80 && (isxdigit(buffer[2]))
81 && (isxdigit(buffer[3]))
82 && (isxdigit(buffer[4]))
83 && (isxdigit(buffer[5]))
84 && (isxdigit(buffer[6]))
85 && (buffer[7] == '0') /* record type : 00 -> 05 */
86 && (buffer[8] >= '0') && (buffer[8] < '6')) {
87 LOG_DEBUG("IHEX image detected.");
88 image->type = IMAGE_IHEX;
89 } else if ((buffer[0] == 'S') /* record start byte */
90 && (isxdigit(buffer[1]))
91 && (isxdigit(buffer[2]))
92 && (isxdigit(buffer[3]))
93 && (buffer[1] >= '0') && (buffer[1] < '9')) {
94 LOG_DEBUG("S19 image detected.");
95 image->type = IMAGE_SRECORD;
96 } else
97 image->type = IMAGE_BINARY;
99 return ERROR_OK;
102 static int identify_image_type(struct image *image, const char *type_string, const char *url)
104 if (type_string) {
105 if (!strcmp(type_string, "bin"))
106 image->type = IMAGE_BINARY;
107 else if (!strcmp(type_string, "ihex"))
108 image->type = IMAGE_IHEX;
109 else if (!strcmp(type_string, "elf"))
110 image->type = IMAGE_ELF;
111 else if (!strcmp(type_string, "mem"))
112 image->type = IMAGE_MEMORY;
113 else if (!strcmp(type_string, "s19"))
114 image->type = IMAGE_SRECORD;
115 else if (!strcmp(type_string, "build"))
116 image->type = IMAGE_BUILDER;
117 else
118 return ERROR_IMAGE_TYPE_UNKNOWN;
119 } else
120 return autodetect_image_type(image, url);
122 return ERROR_OK;
125 static int image_ihex_buffer_complete_inner(struct image *image,
126 char *lpsz_line,
127 struct imagesection *section)
129 struct image_ihex *ihex = image->type_private;
130 struct fileio *fileio = ihex->fileio;
131 uint32_t full_address;
132 uint32_t cooked_bytes;
133 bool end_rec = false;
135 /* we can't determine the number of sections that we'll have to create ahead of time,
136 * so we locally hold them until parsing is finished */
138 size_t filesize;
139 int retval;
140 retval = fileio_size(fileio, &filesize);
141 if (retval != ERROR_OK)
142 return retval;
144 ihex->buffer = malloc(filesize >> 1);
145 cooked_bytes = 0x0;
146 image->num_sections = 0;
148 while (!fileio_feof(fileio)) {
149 full_address = 0x0;
150 section[image->num_sections].private = &ihex->buffer[cooked_bytes];
151 section[image->num_sections].base_address = 0x0;
152 section[image->num_sections].size = 0x0;
153 section[image->num_sections].flags = 0;
155 while (fileio_fgets(fileio, 1023, lpsz_line) == ERROR_OK) {
156 uint32_t count;
157 uint32_t address;
158 uint32_t record_type;
159 uint32_t checksum;
160 uint8_t cal_checksum = 0;
161 size_t bytes_read = 0;
163 /* skip comments and blank lines */
164 if ((lpsz_line[0] == '#') || (strlen(lpsz_line + strspn(lpsz_line, "\n\t\r ")) == 0))
165 continue;
167 if (sscanf(&lpsz_line[bytes_read], ":%2" SCNx32 "%4" SCNx32 "%2" SCNx32, &count,
168 &address, &record_type) != 3)
169 return ERROR_IMAGE_FORMAT_ERROR;
170 bytes_read += 9;
172 cal_checksum += (uint8_t)count;
173 cal_checksum += (uint8_t)(address >> 8);
174 cal_checksum += (uint8_t)address;
175 cal_checksum += (uint8_t)record_type;
177 if (record_type == 0) { /* Data Record */
178 if ((full_address & 0xffff) != address) {
179 /* we encountered a nonconsecutive location, create a new section,
180 * unless the current section has zero size, in which case this specifies
181 * the current section's base address
183 if (section[image->num_sections].size != 0) {
184 image->num_sections++;
185 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
186 /* too many sections */
187 LOG_ERROR("Too many sections found in IHEX file");
188 return ERROR_IMAGE_FORMAT_ERROR;
190 section[image->num_sections].size = 0x0;
191 section[image->num_sections].flags = 0;
192 section[image->num_sections].private =
193 &ihex->buffer[cooked_bytes];
195 section[image->num_sections].base_address =
196 (full_address & 0xffff0000) | address;
197 full_address = (full_address & 0xffff0000) | address;
200 while (count-- > 0) {
201 unsigned value;
202 sscanf(&lpsz_line[bytes_read], "%2x", &value);
203 ihex->buffer[cooked_bytes] = (uint8_t)value;
204 cal_checksum += (uint8_t)ihex->buffer[cooked_bytes];
205 bytes_read += 2;
206 cooked_bytes += 1;
207 section[image->num_sections].size += 1;
208 full_address++;
210 } else if (record_type == 1) { /* End of File Record */
211 /* finish the current section */
212 image->num_sections++;
214 /* copy section information */
215 image->sections = malloc(sizeof(struct imagesection) * image->num_sections);
216 for (unsigned int i = 0; i < image->num_sections; i++) {
217 image->sections[i].private = section[i].private;
218 image->sections[i].base_address = section[i].base_address;
219 image->sections[i].size = section[i].size;
220 image->sections[i].flags = section[i].flags;
223 end_rec = true;
224 break;
225 } else if (record_type == 2) { /* Linear Address Record */
226 uint16_t upper_address;
228 sscanf(&lpsz_line[bytes_read], "%4hx", &upper_address);
229 cal_checksum += (uint8_t)(upper_address >> 8);
230 cal_checksum += (uint8_t)upper_address;
231 bytes_read += 4;
233 if ((full_address >> 4) != upper_address) {
234 /* we encountered a nonconsecutive location, create a new section,
235 * unless the current section has zero size, in which case this specifies
236 * the current section's base address
238 if (section[image->num_sections].size != 0) {
239 image->num_sections++;
240 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
241 /* too many sections */
242 LOG_ERROR("Too many sections found in IHEX file");
243 return ERROR_IMAGE_FORMAT_ERROR;
245 section[image->num_sections].size = 0x0;
246 section[image->num_sections].flags = 0;
247 section[image->num_sections].private =
248 &ihex->buffer[cooked_bytes];
250 section[image->num_sections].base_address =
251 (full_address & 0xffff) | (upper_address << 4);
252 full_address = (full_address & 0xffff) | (upper_address << 4);
254 } else if (record_type == 3) { /* Start Segment Address Record */
255 uint32_t dummy;
257 /* "Start Segment Address Record" will not be supported
258 * but we must consume it, and do not create an error. */
259 while (count-- > 0) {
260 sscanf(&lpsz_line[bytes_read], "%2" SCNx32, &dummy);
261 cal_checksum += (uint8_t)dummy;
262 bytes_read += 2;
264 } else if (record_type == 4) { /* Extended Linear Address Record */
265 uint16_t upper_address;
267 sscanf(&lpsz_line[bytes_read], "%4hx", &upper_address);
268 cal_checksum += (uint8_t)(upper_address >> 8);
269 cal_checksum += (uint8_t)upper_address;
270 bytes_read += 4;
272 if ((full_address >> 16) != upper_address) {
273 /* we encountered a nonconsecutive location, create a new section,
274 * unless the current section has zero size, in which case this specifies
275 * the current section's base address
277 if (section[image->num_sections].size != 0) {
278 image->num_sections++;
279 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
280 /* too many sections */
281 LOG_ERROR("Too many sections found in IHEX file");
282 return ERROR_IMAGE_FORMAT_ERROR;
284 section[image->num_sections].size = 0x0;
285 section[image->num_sections].flags = 0;
286 section[image->num_sections].private =
287 &ihex->buffer[cooked_bytes];
289 section[image->num_sections].base_address =
290 (full_address & 0xffff) | (upper_address << 16);
291 full_address = (full_address & 0xffff) | (upper_address << 16);
293 } else if (record_type == 5) { /* Start Linear Address Record */
294 uint32_t start_address;
296 sscanf(&lpsz_line[bytes_read], "%8" SCNx32, &start_address);
297 cal_checksum += (uint8_t)(start_address >> 24);
298 cal_checksum += (uint8_t)(start_address >> 16);
299 cal_checksum += (uint8_t)(start_address >> 8);
300 cal_checksum += (uint8_t)start_address;
301 bytes_read += 8;
303 image->start_address_set = true;
304 image->start_address = be_to_h_u32((uint8_t *)&start_address);
305 } else {
306 LOG_ERROR("unhandled IHEX record type: %i", (int)record_type);
307 return ERROR_IMAGE_FORMAT_ERROR;
310 sscanf(&lpsz_line[bytes_read], "%2" SCNx32, &checksum);
312 if ((uint8_t)checksum != (uint8_t)(~cal_checksum + 1)) {
313 /* checksum failed */
314 LOG_ERROR("incorrect record checksum found in IHEX file");
315 return ERROR_IMAGE_CHECKSUM;
318 if (end_rec) {
319 end_rec = false;
320 LOG_WARNING("continuing after end-of-file record: %.40s", lpsz_line);
325 if (end_rec)
326 return ERROR_OK;
327 else {
328 LOG_ERROR("premature end of IHEX file, no matching end-of-file record found");
329 return ERROR_IMAGE_FORMAT_ERROR;
334 * Allocate memory dynamically instead of on the stack. This
335 * is important w/embedded hosts.
337 static int image_ihex_buffer_complete(struct image *image)
339 char *lpsz_line = malloc(1023);
340 if (!lpsz_line) {
341 LOG_ERROR("Out of memory");
342 return ERROR_FAIL;
344 struct imagesection *section = malloc(sizeof(struct imagesection) * IMAGE_MAX_SECTIONS);
345 if (!section) {
346 free(lpsz_line);
347 LOG_ERROR("Out of memory");
348 return ERROR_FAIL;
350 int retval;
352 retval = image_ihex_buffer_complete_inner(image, lpsz_line, section);
354 free(section);
355 free(lpsz_line);
357 return retval;
360 static int image_elf32_read_headers(struct image *image)
362 struct image_elf *elf = image->type_private;
363 size_t read_bytes;
364 uint32_t i, j;
365 int retval;
366 uint32_t nload;
367 bool load_to_vaddr = false;
369 retval = fileio_seek(elf->fileio, 0);
370 if (retval != ERROR_OK) {
371 LOG_ERROR("cannot seek to ELF file header, read failed");
372 return retval;
375 elf->header32 = malloc(sizeof(Elf32_Ehdr));
377 if (!elf->header32) {
378 LOG_ERROR("insufficient memory to perform operation");
379 return ERROR_FILEIO_OPERATION_FAILED;
382 retval = fileio_read(elf->fileio, sizeof(Elf32_Ehdr), (uint8_t *)elf->header32, &read_bytes);
383 if (retval != ERROR_OK) {
384 LOG_ERROR("cannot read ELF file header, read failed");
385 return ERROR_FILEIO_OPERATION_FAILED;
387 if (read_bytes != sizeof(Elf32_Ehdr)) {
388 LOG_ERROR("cannot read ELF file header, only partially read");
389 return ERROR_FILEIO_OPERATION_FAILED;
392 elf->segment_count = field16(elf, elf->header32->e_phnum);
393 if (elf->segment_count == 0) {
394 LOG_ERROR("invalid ELF file, no program headers");
395 return ERROR_IMAGE_FORMAT_ERROR;
398 retval = fileio_seek(elf->fileio, field32(elf, elf->header32->e_phoff));
399 if (retval != ERROR_OK) {
400 LOG_ERROR("cannot seek to ELF program header table, read failed");
401 return retval;
404 elf->segments32 = malloc(elf->segment_count*sizeof(Elf32_Phdr));
405 if (!elf->segments32) {
406 LOG_ERROR("insufficient memory to perform operation");
407 return ERROR_FILEIO_OPERATION_FAILED;
410 retval = fileio_read(elf->fileio, elf->segment_count*sizeof(Elf32_Phdr),
411 (uint8_t *)elf->segments32, &read_bytes);
412 if (retval != ERROR_OK) {
413 LOG_ERROR("cannot read ELF segment headers, read failed");
414 return retval;
416 if (read_bytes != elf->segment_count*sizeof(Elf32_Phdr)) {
417 LOG_ERROR("cannot read ELF segment headers, only partially read");
418 return ERROR_FILEIO_OPERATION_FAILED;
421 /* count useful segments (loadable), ignore BSS section */
422 image->num_sections = 0;
423 for (i = 0; i < elf->segment_count; i++)
424 if ((field32(elf,
425 elf->segments32[i].p_type) == PT_LOAD) &&
426 (field32(elf, elf->segments32[i].p_filesz) != 0))
427 image->num_sections++;
429 if (image->num_sections == 0) {
430 LOG_ERROR("invalid ELF file, no loadable segments");
431 return ERROR_IMAGE_FORMAT_ERROR;
435 * some ELF linkers produce binaries with *all* the program header
436 * p_paddr fields zero (there can be however one loadable segment
437 * that has valid physical address 0x0).
438 * If we have such a binary with more than
439 * one PT_LOAD header, then use p_vaddr instead of p_paddr
440 * (ARM ELF standard demands p_paddr = 0 anyway, and BFD
441 * library uses this approach to workaround zero-initialized p_paddrs
442 * when obtaining lma - look at elf.c of BDF)
444 for (nload = 0, i = 0; i < elf->segment_count; i++)
445 if (elf->segments32[i].p_paddr != 0)
446 break;
447 else if ((field32(elf,
448 elf->segments32[i].p_type) == PT_LOAD) &&
449 (field32(elf, elf->segments32[i].p_memsz) != 0))
450 ++nload;
452 if (i >= elf->segment_count && nload > 1)
453 load_to_vaddr = true;
455 /* alloc and fill sections array with loadable segments */
456 image->sections = malloc(image->num_sections * sizeof(struct imagesection));
457 if (!image->sections) {
458 LOG_ERROR("insufficient memory to perform operation");
459 return ERROR_FILEIO_OPERATION_FAILED;
462 for (i = 0, j = 0; i < elf->segment_count; i++) {
463 if ((field32(elf,
464 elf->segments32[i].p_type) == PT_LOAD) &&
465 (field32(elf, elf->segments32[i].p_filesz) != 0)) {
466 image->sections[j].size = field32(elf, elf->segments32[i].p_filesz);
467 if (load_to_vaddr)
468 image->sections[j].base_address = field32(elf,
469 elf->segments32[i].p_vaddr);
470 else
471 image->sections[j].base_address = field32(elf,
472 elf->segments32[i].p_paddr);
473 image->sections[j].private = &elf->segments32[i];
474 image->sections[j].flags = field32(elf, elf->segments32[i].p_flags);
475 j++;
479 image->start_address_set = true;
480 image->start_address = field32(elf, elf->header32->e_entry);
482 return ERROR_OK;
485 static int image_elf64_read_headers(struct image *image)
487 struct image_elf *elf = image->type_private;
488 size_t read_bytes;
489 uint32_t i, j;
490 int retval;
491 uint32_t nload;
492 bool load_to_vaddr = false;
494 retval = fileio_seek(elf->fileio, 0);
495 if (retval != ERROR_OK) {
496 LOG_ERROR("cannot seek to ELF file header, read failed");
497 return retval;
500 elf->header64 = malloc(sizeof(Elf64_Ehdr));
502 if (!elf->header64) {
503 LOG_ERROR("insufficient memory to perform operation");
504 return ERROR_FILEIO_OPERATION_FAILED;
507 retval = fileio_read(elf->fileio, sizeof(Elf64_Ehdr), (uint8_t *)elf->header64, &read_bytes);
508 if (retval != ERROR_OK) {
509 LOG_ERROR("cannot read ELF file header, read failed");
510 return ERROR_FILEIO_OPERATION_FAILED;
512 if (read_bytes != sizeof(Elf64_Ehdr)) {
513 LOG_ERROR("cannot read ELF file header, only partially read");
514 return ERROR_FILEIO_OPERATION_FAILED;
517 elf->segment_count = field16(elf, elf->header64->e_phnum);
518 if (elf->segment_count == 0) {
519 LOG_ERROR("invalid ELF file, no program headers");
520 return ERROR_IMAGE_FORMAT_ERROR;
523 retval = fileio_seek(elf->fileio, field64(elf, elf->header64->e_phoff));
524 if (retval != ERROR_OK) {
525 LOG_ERROR("cannot seek to ELF program header table, read failed");
526 return retval;
529 elf->segments64 = malloc(elf->segment_count*sizeof(Elf64_Phdr));
530 if (!elf->segments64) {
531 LOG_ERROR("insufficient memory to perform operation");
532 return ERROR_FILEIO_OPERATION_FAILED;
535 retval = fileio_read(elf->fileio, elf->segment_count*sizeof(Elf64_Phdr),
536 (uint8_t *)elf->segments64, &read_bytes);
537 if (retval != ERROR_OK) {
538 LOG_ERROR("cannot read ELF segment headers, read failed");
539 return retval;
541 if (read_bytes != elf->segment_count*sizeof(Elf64_Phdr)) {
542 LOG_ERROR("cannot read ELF segment headers, only partially read");
543 return ERROR_FILEIO_OPERATION_FAILED;
546 /* count useful segments (loadable), ignore BSS section */
547 image->num_sections = 0;
548 for (i = 0; i < elf->segment_count; i++)
549 if ((field32(elf,
550 elf->segments64[i].p_type) == PT_LOAD) &&
551 (field64(elf, elf->segments64[i].p_filesz) != 0))
552 image->num_sections++;
554 if (image->num_sections == 0) {
555 LOG_ERROR("invalid ELF file, no loadable segments");
556 return ERROR_IMAGE_FORMAT_ERROR;
560 * some ELF linkers produce binaries with *all* the program header
561 * p_paddr fields zero (there can be however one loadable segment
562 * that has valid physical address 0x0).
563 * If we have such a binary with more than
564 * one PT_LOAD header, then use p_vaddr instead of p_paddr
565 * (ARM ELF standard demands p_paddr = 0 anyway, and BFD
566 * library uses this approach to workaround zero-initialized p_paddrs
567 * when obtaining lma - look at elf.c of BDF)
569 for (nload = 0, i = 0; i < elf->segment_count; i++)
570 if (elf->segments64[i].p_paddr != 0)
571 break;
572 else if ((field32(elf,
573 elf->segments64[i].p_type) == PT_LOAD) &&
574 (field64(elf, elf->segments64[i].p_memsz) != 0))
575 ++nload;
577 if (i >= elf->segment_count && nload > 1)
578 load_to_vaddr = true;
580 /* alloc and fill sections array with loadable segments */
581 image->sections = malloc(image->num_sections * sizeof(struct imagesection));
582 if (!image->sections) {
583 LOG_ERROR("insufficient memory to perform operation");
584 return ERROR_FILEIO_OPERATION_FAILED;
587 for (i = 0, j = 0; i < elf->segment_count; i++) {
588 if ((field32(elf,
589 elf->segments64[i].p_type) == PT_LOAD) &&
590 (field64(elf, elf->segments64[i].p_filesz) != 0)) {
591 image->sections[j].size = field64(elf, elf->segments64[i].p_filesz);
592 if (load_to_vaddr)
593 image->sections[j].base_address = field64(elf,
594 elf->segments64[i].p_vaddr);
595 else
596 image->sections[j].base_address = field64(elf,
597 elf->segments64[i].p_paddr);
598 image->sections[j].private = &elf->segments64[i];
599 image->sections[j].flags = field64(elf, elf->segments64[i].p_flags);
600 j++;
604 image->start_address_set = true;
605 image->start_address = field64(elf, elf->header64->e_entry);
607 return ERROR_OK;
610 static int image_elf_read_headers(struct image *image)
612 struct image_elf *elf = image->type_private;
613 size_t read_bytes;
614 unsigned char e_ident[EI_NIDENT];
615 int retval;
617 retval = fileio_read(elf->fileio, EI_NIDENT, e_ident, &read_bytes);
618 if (retval != ERROR_OK) {
619 LOG_ERROR("cannot read ELF file header, read failed");
620 return ERROR_FILEIO_OPERATION_FAILED;
622 if (read_bytes != EI_NIDENT) {
623 LOG_ERROR("cannot read ELF file header, only partially read");
624 return ERROR_FILEIO_OPERATION_FAILED;
627 if (strncmp((char *)e_ident, ELFMAG, SELFMAG) != 0) {
628 LOG_ERROR("invalid ELF file, bad magic number");
629 return ERROR_IMAGE_FORMAT_ERROR;
632 elf->endianness = e_ident[EI_DATA];
633 if ((elf->endianness != ELFDATA2LSB)
634 && (elf->endianness != ELFDATA2MSB)) {
635 LOG_ERROR("invalid ELF file, unknown endianness setting");
636 return ERROR_IMAGE_FORMAT_ERROR;
639 switch (e_ident[EI_CLASS]) {
640 case ELFCLASS32:
641 LOG_DEBUG("ELF32 image detected.");
642 elf->is_64_bit = false;
643 return image_elf32_read_headers(image);
645 case ELFCLASS64:
646 LOG_DEBUG("ELF64 image detected.");
647 elf->is_64_bit = true;
648 return image_elf64_read_headers(image);
650 default:
651 LOG_ERROR("invalid ELF file, only 32/64 bit ELF files are supported");
652 return ERROR_IMAGE_FORMAT_ERROR;
656 static int image_elf32_read_section(struct image *image,
657 int section,
658 target_addr_t offset,
659 uint32_t size,
660 uint8_t *buffer,
661 size_t *size_read)
663 struct image_elf *elf = image->type_private;
664 Elf32_Phdr *segment = (Elf32_Phdr *)image->sections[section].private;
665 size_t read_size, really_read;
666 int retval;
668 *size_read = 0;
670 LOG_DEBUG("load segment %d at 0x%" TARGET_PRIxADDR " (sz = 0x%" PRIx32 ")", section, offset, size);
672 /* read initialized data in current segment if any */
673 if (offset < field32(elf, segment->p_filesz)) {
674 /* maximal size present in file for the current segment */
675 read_size = MIN(size, field32(elf, segment->p_filesz) - offset);
676 LOG_DEBUG("read elf: size = 0x%zx at 0x%" TARGET_PRIxADDR "", read_size,
677 field32(elf, segment->p_offset) + offset);
678 /* read initialized area of the segment */
679 retval = fileio_seek(elf->fileio, field32(elf, segment->p_offset) + offset);
680 if (retval != ERROR_OK) {
681 LOG_ERROR("cannot find ELF segment content, seek failed");
682 return retval;
684 retval = fileio_read(elf->fileio, read_size, buffer, &really_read);
685 if (retval != ERROR_OK) {
686 LOG_ERROR("cannot read ELF segment content, read failed");
687 return retval;
689 size -= read_size;
690 *size_read += read_size;
691 /* need more data ? */
692 if (!size)
693 return ERROR_OK;
696 return ERROR_OK;
699 static int image_elf64_read_section(struct image *image,
700 int section,
701 target_addr_t offset,
702 uint32_t size,
703 uint8_t *buffer,
704 size_t *size_read)
706 struct image_elf *elf = image->type_private;
707 Elf64_Phdr *segment = (Elf64_Phdr *)image->sections[section].private;
708 size_t read_size, really_read;
709 int retval;
711 *size_read = 0;
713 LOG_DEBUG("load segment %d at 0x%" TARGET_PRIxADDR " (sz = 0x%" PRIx32 ")", section, offset, size);
715 /* read initialized data in current segment if any */
716 if (offset < field64(elf, segment->p_filesz)) {
717 /* maximal size present in file for the current segment */
718 read_size = MIN(size, field64(elf, segment->p_filesz) - offset);
719 LOG_DEBUG("read elf: size = 0x%zx at 0x%" TARGET_PRIxADDR "", read_size,
720 field64(elf, segment->p_offset) + offset);
721 /* read initialized area of the segment */
722 retval = fileio_seek(elf->fileio, field64(elf, segment->p_offset) + offset);
723 if (retval != ERROR_OK) {
724 LOG_ERROR("cannot find ELF segment content, seek failed");
725 return retval;
727 retval = fileio_read(elf->fileio, read_size, buffer, &really_read);
728 if (retval != ERROR_OK) {
729 LOG_ERROR("cannot read ELF segment content, read failed");
730 return retval;
732 size -= read_size;
733 *size_read += read_size;
734 /* need more data ? */
735 if (!size)
736 return ERROR_OK;
739 return ERROR_OK;
742 static int image_elf_read_section(struct image *image,
743 int section,
744 target_addr_t offset,
745 uint32_t size,
746 uint8_t *buffer,
747 size_t *size_read)
749 struct image_elf *elf = image->type_private;
751 if (elf->is_64_bit)
752 return image_elf64_read_section(image, section, offset, size, buffer, size_read);
753 else
754 return image_elf32_read_section(image, section, offset, size, buffer, size_read);
757 static int image_mot_buffer_complete_inner(struct image *image,
758 char *lpsz_line,
759 struct imagesection *section)
761 struct image_mot *mot = image->type_private;
762 struct fileio *fileio = mot->fileio;
763 uint32_t full_address;
764 uint32_t cooked_bytes;
765 bool end_rec = false;
767 /* we can't determine the number of sections that we'll have to create ahead of time,
768 * so we locally hold them until parsing is finished */
770 int retval;
771 size_t filesize;
772 retval = fileio_size(fileio, &filesize);
773 if (retval != ERROR_OK)
774 return retval;
776 mot->buffer = malloc(filesize >> 1);
777 cooked_bytes = 0x0;
778 image->num_sections = 0;
780 while (!fileio_feof(fileio)) {
781 full_address = 0x0;
782 section[image->num_sections].private = &mot->buffer[cooked_bytes];
783 section[image->num_sections].base_address = 0x0;
784 section[image->num_sections].size = 0x0;
785 section[image->num_sections].flags = 0;
787 while (fileio_fgets(fileio, 1023, lpsz_line) == ERROR_OK) {
788 uint32_t count;
789 uint32_t address;
790 uint32_t record_type;
791 uint32_t checksum;
792 uint8_t cal_checksum = 0;
793 uint32_t bytes_read = 0;
795 /* skip comments and blank lines */
796 if ((lpsz_line[0] == '#') || (strlen(lpsz_line + strspn(lpsz_line, "\n\t\r ")) == 0))
797 continue;
799 /* get record type and record length */
800 if (sscanf(&lpsz_line[bytes_read], "S%1" SCNx32 "%2" SCNx32, &record_type,
801 &count) != 2)
802 return ERROR_IMAGE_FORMAT_ERROR;
804 bytes_read += 4;
805 cal_checksum += (uint8_t)count;
807 /* skip checksum byte */
808 count -= 1;
810 if (record_type == 0) {
811 /* S0 - starting record (optional) */
812 int value;
814 while (count-- > 0) {
815 sscanf(&lpsz_line[bytes_read], "%2x", &value);
816 cal_checksum += (uint8_t)value;
817 bytes_read += 2;
819 } else if (record_type >= 1 && record_type <= 3) {
820 switch (record_type) {
821 case 1:
822 /* S1 - 16 bit address data record */
823 sscanf(&lpsz_line[bytes_read], "%4" SCNx32, &address);
824 cal_checksum += (uint8_t)(address >> 8);
825 cal_checksum += (uint8_t)address;
826 bytes_read += 4;
827 count -= 2;
828 break;
830 case 2:
831 /* S2 - 24 bit address data record */
832 sscanf(&lpsz_line[bytes_read], "%6" SCNx32, &address);
833 cal_checksum += (uint8_t)(address >> 16);
834 cal_checksum += (uint8_t)(address >> 8);
835 cal_checksum += (uint8_t)address;
836 bytes_read += 6;
837 count -= 3;
838 break;
840 case 3:
841 /* S3 - 32 bit address data record */
842 sscanf(&lpsz_line[bytes_read], "%8" SCNx32, &address);
843 cal_checksum += (uint8_t)(address >> 24);
844 cal_checksum += (uint8_t)(address >> 16);
845 cal_checksum += (uint8_t)(address >> 8);
846 cal_checksum += (uint8_t)address;
847 bytes_read += 8;
848 count -= 4;
849 break;
853 if (full_address != address) {
854 /* we encountered a nonconsecutive location, create a new section,
855 * unless the current section has zero size, in which case this specifies
856 * the current section's base address
858 if (section[image->num_sections].size != 0) {
859 image->num_sections++;
860 section[image->num_sections].size = 0x0;
861 section[image->num_sections].flags = 0;
862 section[image->num_sections].private =
863 &mot->buffer[cooked_bytes];
865 section[image->num_sections].base_address = address;
866 full_address = address;
869 while (count-- > 0) {
870 unsigned value;
871 sscanf(&lpsz_line[bytes_read], "%2x", &value);
872 mot->buffer[cooked_bytes] = (uint8_t)value;
873 cal_checksum += (uint8_t)mot->buffer[cooked_bytes];
874 bytes_read += 2;
875 cooked_bytes += 1;
876 section[image->num_sections].size += 1;
877 full_address++;
879 } else if (record_type == 5 || record_type == 6) {
880 /* S5 and S6 are the data count records, we ignore them */
881 uint32_t dummy;
883 while (count-- > 0) {
884 sscanf(&lpsz_line[bytes_read], "%2" SCNx32, &dummy);
885 cal_checksum += (uint8_t)dummy;
886 bytes_read += 2;
888 } else if (record_type >= 7 && record_type <= 9) {
889 /* S7, S8, S9 - ending records for 32, 24 and 16bit */
890 image->num_sections++;
892 /* copy section information */
893 image->sections = malloc(sizeof(struct imagesection) * image->num_sections);
894 for (unsigned int i = 0; i < image->num_sections; i++) {
895 image->sections[i].private = section[i].private;
896 image->sections[i].base_address = section[i].base_address;
897 image->sections[i].size = section[i].size;
898 image->sections[i].flags = section[i].flags;
901 end_rec = true;
902 break;
903 } else {
904 LOG_ERROR("unhandled S19 record type: %i", (int)(record_type));
905 return ERROR_IMAGE_FORMAT_ERROR;
908 /* account for checksum, will always be 0xFF */
909 sscanf(&lpsz_line[bytes_read], "%2" SCNx32, &checksum);
910 cal_checksum += (uint8_t)checksum;
912 if (cal_checksum != 0xFF) {
913 /* checksum failed */
914 LOG_ERROR("incorrect record checksum found in S19 file");
915 return ERROR_IMAGE_CHECKSUM;
918 if (end_rec) {
919 end_rec = false;
920 LOG_WARNING("continuing after end-of-file record: %.40s", lpsz_line);
925 if (end_rec)
926 return ERROR_OK;
927 else {
928 LOG_ERROR("premature end of S19 file, no matching end-of-file record found");
929 return ERROR_IMAGE_FORMAT_ERROR;
934 * Allocate memory dynamically instead of on the stack. This
935 * is important w/embedded hosts.
937 static int image_mot_buffer_complete(struct image *image)
939 char *lpsz_line = malloc(1023);
940 if (!lpsz_line) {
941 LOG_ERROR("Out of memory");
942 return ERROR_FAIL;
944 struct imagesection *section = malloc(sizeof(struct imagesection) * IMAGE_MAX_SECTIONS);
945 if (!section) {
946 free(lpsz_line);
947 LOG_ERROR("Out of memory");
948 return ERROR_FAIL;
950 int retval;
952 retval = image_mot_buffer_complete_inner(image, lpsz_line, section);
954 free(section);
955 free(lpsz_line);
957 return retval;
960 int image_open(struct image *image, const char *url, const char *type_string)
962 int retval = ERROR_OK;
964 retval = identify_image_type(image, type_string, url);
965 if (retval != ERROR_OK)
966 return retval;
968 if (image->type == IMAGE_BINARY) {
969 struct image_binary *image_binary;
971 image_binary = image->type_private = malloc(sizeof(struct image_binary));
973 retval = fileio_open(&image_binary->fileio, url, FILEIO_READ, FILEIO_BINARY);
974 if (retval != ERROR_OK)
975 return retval;
976 size_t filesize;
977 retval = fileio_size(image_binary->fileio, &filesize);
978 if (retval != ERROR_OK) {
979 fileio_close(image_binary->fileio);
980 return retval;
983 image->num_sections = 1;
984 image->sections = malloc(sizeof(struct imagesection));
985 image->sections[0].base_address = 0x0;
986 image->sections[0].size = filesize;
987 image->sections[0].flags = 0;
988 } else if (image->type == IMAGE_IHEX) {
989 struct image_ihex *image_ihex;
991 image_ihex = image->type_private = malloc(sizeof(struct image_ihex));
993 retval = fileio_open(&image_ihex->fileio, url, FILEIO_READ, FILEIO_TEXT);
994 if (retval != ERROR_OK)
995 return retval;
997 retval = image_ihex_buffer_complete(image);
998 if (retval != ERROR_OK) {
999 LOG_ERROR(
1000 "failed buffering IHEX image, check server output for additional information");
1001 fileio_close(image_ihex->fileio);
1002 return retval;
1004 } else if (image->type == IMAGE_ELF) {
1005 struct image_elf *image_elf;
1007 image_elf = image->type_private = malloc(sizeof(struct image_elf));
1009 retval = fileio_open(&image_elf->fileio, url, FILEIO_READ, FILEIO_BINARY);
1010 if (retval != ERROR_OK)
1011 return retval;
1013 retval = image_elf_read_headers(image);
1014 if (retval != ERROR_OK) {
1015 fileio_close(image_elf->fileio);
1016 return retval;
1018 } else if (image->type == IMAGE_MEMORY) {
1019 struct target *target = get_target(url);
1021 if (!target) {
1022 LOG_ERROR("target '%s' not defined", url);
1023 return ERROR_FAIL;
1026 struct image_memory *image_memory;
1028 image->num_sections = 1;
1029 image->sections = malloc(sizeof(struct imagesection));
1030 image->sections[0].base_address = 0x0;
1031 image->sections[0].size = 0xffffffff;
1032 image->sections[0].flags = 0;
1034 image_memory = image->type_private = malloc(sizeof(struct image_memory));
1036 image_memory->target = target;
1037 image_memory->cache = NULL;
1038 image_memory->cache_address = 0x0;
1039 } else if (image->type == IMAGE_SRECORD) {
1040 struct image_mot *image_mot;
1042 image_mot = image->type_private = malloc(sizeof(struct image_mot));
1044 retval = fileio_open(&image_mot->fileio, url, FILEIO_READ, FILEIO_TEXT);
1045 if (retval != ERROR_OK)
1046 return retval;
1048 retval = image_mot_buffer_complete(image);
1049 if (retval != ERROR_OK) {
1050 LOG_ERROR(
1051 "failed buffering S19 image, check server output for additional information");
1052 fileio_close(image_mot->fileio);
1053 return retval;
1055 } else if (image->type == IMAGE_BUILDER) {
1056 image->num_sections = 0;
1057 image->base_address_set = false;
1058 image->sections = NULL;
1059 image->type_private = NULL;
1062 if (image->base_address_set) {
1063 /* relocate */
1064 for (unsigned int section = 0; section < image->num_sections; section++)
1065 image->sections[section].base_address += image->base_address;
1066 /* we're done relocating. The two statements below are mainly
1067 * for documentation purposes: stop anyone from empirically
1068 * thinking they should use these values henceforth. */
1069 image->base_address = 0;
1070 image->base_address_set = false;
1073 return retval;
1076 int image_read_section(struct image *image,
1077 int section,
1078 target_addr_t offset,
1079 uint32_t size,
1080 uint8_t *buffer,
1081 size_t *size_read)
1083 int retval;
1085 /* don't read past the end of a section */
1086 if (offset + size > image->sections[section].size) {
1087 LOG_DEBUG(
1088 "read past end of section: 0x%8.8" TARGET_PRIxADDR " + 0x%8.8" PRIx32 " > 0x%8.8" PRIx32 "",
1089 offset,
1090 size,
1091 image->sections[section].size);
1092 return ERROR_COMMAND_SYNTAX_ERROR;
1095 if (image->type == IMAGE_BINARY) {
1096 struct image_binary *image_binary = image->type_private;
1098 /* only one section in a plain binary */
1099 if (section != 0)
1100 return ERROR_COMMAND_SYNTAX_ERROR;
1102 /* seek to offset */
1103 retval = fileio_seek(image_binary->fileio, offset);
1104 if (retval != ERROR_OK)
1105 return retval;
1107 /* return requested bytes */
1108 retval = fileio_read(image_binary->fileio, size, buffer, size_read);
1109 if (retval != ERROR_OK)
1110 return retval;
1111 } else if (image->type == IMAGE_IHEX) {
1112 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
1113 *size_read = size;
1115 return ERROR_OK;
1116 } else if (image->type == IMAGE_ELF) {
1117 return image_elf_read_section(image, section, offset, size, buffer, size_read);
1118 } else if (image->type == IMAGE_MEMORY) {
1119 struct image_memory *image_memory = image->type_private;
1120 uint32_t address = image->sections[section].base_address + offset;
1122 *size_read = 0;
1124 while ((size - *size_read) > 0) {
1125 uint32_t size_in_cache;
1127 if (!image_memory->cache
1128 || (address < image_memory->cache_address)
1129 || (address >=
1130 (image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE))) {
1131 if (!image_memory->cache)
1132 image_memory->cache = malloc(IMAGE_MEMORY_CACHE_SIZE);
1134 if (target_read_buffer(image_memory->target, address &
1135 ~(IMAGE_MEMORY_CACHE_SIZE - 1),
1136 IMAGE_MEMORY_CACHE_SIZE, image_memory->cache) != ERROR_OK) {
1137 free(image_memory->cache);
1138 image_memory->cache = NULL;
1139 return ERROR_IMAGE_TEMPORARILY_UNAVAILABLE;
1141 image_memory->cache_address = address &
1142 ~(IMAGE_MEMORY_CACHE_SIZE - 1);
1145 size_in_cache =
1146 (image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE) - address;
1148 memcpy(buffer + *size_read,
1149 image_memory->cache + (address - image_memory->cache_address),
1150 (size_in_cache > size) ? size : size_in_cache
1153 *size_read += (size_in_cache > size) ? size : size_in_cache;
1154 address += (size_in_cache > size) ? size : size_in_cache;
1156 } else if (image->type == IMAGE_SRECORD) {
1157 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
1158 *size_read = size;
1160 return ERROR_OK;
1161 } else if (image->type == IMAGE_BUILDER) {
1162 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
1163 *size_read = size;
1165 return ERROR_OK;
1168 return ERROR_OK;
1171 int image_add_section(struct image *image, target_addr_t base, uint32_t size, uint64_t flags, uint8_t const *data)
1173 struct imagesection *section;
1175 /* only image builder supports adding sections */
1176 if (image->type != IMAGE_BUILDER)
1177 return ERROR_COMMAND_SYNTAX_ERROR;
1179 /* see if there's a previous section */
1180 if (image->num_sections) {
1181 section = &image->sections[image->num_sections - 1];
1183 /* see if it's enough to extend the last section,
1184 * adding data to previous sections or merging is not supported */
1185 if (((section->base_address + section->size) == base) &&
1186 (section->flags == flags)) {
1187 section->private = realloc(section->private, section->size + size);
1188 memcpy((uint8_t *)section->private + section->size, data, size);
1189 section->size += size;
1190 return ERROR_OK;
1194 /* allocate new section */
1195 image->num_sections++;
1196 image->sections =
1197 realloc(image->sections, sizeof(struct imagesection) * image->num_sections);
1198 section = &image->sections[image->num_sections - 1];
1199 section->base_address = base;
1200 section->size = size;
1201 section->flags = flags;
1202 section->private = malloc(sizeof(uint8_t) * size);
1203 memcpy((uint8_t *)section->private, data, size);
1205 return ERROR_OK;
1208 void image_close(struct image *image)
1210 if (image->type == IMAGE_BINARY) {
1211 struct image_binary *image_binary = image->type_private;
1213 fileio_close(image_binary->fileio);
1214 } else if (image->type == IMAGE_IHEX) {
1215 struct image_ihex *image_ihex = image->type_private;
1217 fileio_close(image_ihex->fileio);
1219 free(image_ihex->buffer);
1220 image_ihex->buffer = NULL;
1221 } else if (image->type == IMAGE_ELF) {
1222 struct image_elf *image_elf = image->type_private;
1224 fileio_close(image_elf->fileio);
1226 if (image_elf->is_64_bit) {
1227 free(image_elf->header64);
1228 image_elf->header64 = NULL;
1230 free(image_elf->segments64);
1231 image_elf->segments64 = NULL;
1232 } else {
1233 free(image_elf->header32);
1234 image_elf->header32 = NULL;
1236 free(image_elf->segments32);
1237 image_elf->segments32 = NULL;
1239 } else if (image->type == IMAGE_MEMORY) {
1240 struct image_memory *image_memory = image->type_private;
1242 free(image_memory->cache);
1243 image_memory->cache = NULL;
1244 } else if (image->type == IMAGE_SRECORD) {
1245 struct image_mot *image_mot = image->type_private;
1247 fileio_close(image_mot->fileio);
1249 free(image_mot->buffer);
1250 image_mot->buffer = NULL;
1251 } else if (image->type == IMAGE_BUILDER) {
1252 for (unsigned int i = 0; i < image->num_sections; i++) {
1253 free(image->sections[i].private);
1254 image->sections[i].private = NULL;
1258 free(image->type_private);
1259 image->type_private = NULL;
1261 free(image->sections);
1262 image->sections = NULL;
1265 int image_calculate_checksum(const uint8_t *buffer, uint32_t nbytes, uint32_t *checksum)
1267 uint32_t crc = 0xffffffff;
1268 LOG_DEBUG("Calculating checksum");
1270 static uint32_t crc32_table[256];
1272 static bool first_init;
1273 if (!first_init) {
1274 /* Initialize the CRC table and the decoding table. */
1275 unsigned int i, j, c;
1276 for (i = 0; i < 256; i++) {
1277 /* as per gdb */
1278 for (c = i << 24, j = 8; j > 0; --j)
1279 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
1280 crc32_table[i] = c;
1283 first_init = true;
1286 while (nbytes > 0) {
1287 int run = nbytes;
1288 if (run > 32768)
1289 run = 32768;
1290 nbytes -= run;
1291 while (run--) {
1292 /* as per gdb */
1293 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buffer++) & 255];
1295 keep_alive();
1298 LOG_DEBUG("Calculating checksum done; checksum=0x%" PRIx32, crc);
1300 *checksum = crc;
1301 return ERROR_OK;