aarch64: fix handling of 'reset halt'
[openocd.git] / src / target / arm920t.c
bloba6d626eeea58e0dd543a1a62f5a3a8a2292f7d56
2 /***************************************************************************
3 * Copyright (C) 2005 by Dominic Rath *
4 * Dominic.Rath@gmx.de *
5 * *
6 * This program is free software; you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation; either version 2 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
18 ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
24 #include "arm920t.h"
25 #include <helper/time_support.h>
26 #include "target_type.h"
27 #include "register.h"
28 #include "arm_opcodes.h"
31 * For information about the ARM920T, see ARM DDI 0151C especially
32 * Chapter 9 about debug support, which shows how to manipulate each
33 * of the different scan chains:
35 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
36 * 1 ... debugging; watchpoint and breakpoint status, etc; also
37 * MMU and cache access in conjunction with scan chain 15
38 * 2 ... EmbeddedICE
39 * 3 ... external boundary scan (SoC-specific, unused here)
40 * 4 ... access to cache tag RAM
41 * 6 ... ETM9
42 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
43 * "interpreted" works with a few actual MRC/MCR instructions
44 * "physical" provides register-like behaviors. Section 9.6.7
45 * covers these details.
47 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
50 #if 0
51 #define _DEBUG_INSTRUCTION_EXECUTION_
52 #endif
54 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
55 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
56 * JTAG scan, while reads use two.
58 * Table 9-9 lists the thirteen registers which support physical access.
59 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
60 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
62 * x == bit[38]
63 * y == bits[37:34]
64 * z == bit[33]
66 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
68 /* Registers supporting physical Read access (from table 9-9) */
69 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
70 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
71 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
72 /* NOTE: several more registers support only physical read access */
74 /* Registers supporting physical Read/Write access (from table 9-9) */
75 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
76 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
77 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
78 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
79 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
81 static int arm920t_read_cp15_physical(struct target *target,
82 int reg_addr, uint32_t *value)
84 struct arm920t_common *arm920t = target_to_arm920(target);
85 struct arm_jtag *jtag_info;
86 struct scan_field fields[4];
87 uint8_t access_type_buf = 1;
88 uint8_t reg_addr_buf = reg_addr & 0x3f;
89 uint8_t nr_w_buf = 0;
90 int retval;
92 jtag_info = &arm920t->arm7_9_common.jtag_info;
94 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
95 if (retval != ERROR_OK)
96 return retval;
97 retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
98 if (retval != ERROR_OK)
99 return retval;
101 fields[0].num_bits = 1;
102 fields[0].out_value = &access_type_buf;
103 fields[0].in_value = NULL;
105 fields[1].num_bits = 32;
106 fields[1].out_value = NULL;
107 fields[1].in_value = NULL;
109 fields[2].num_bits = 6;
110 fields[2].out_value = &reg_addr_buf;
111 fields[2].in_value = NULL;
113 fields[3].num_bits = 1;
114 fields[3].out_value = &nr_w_buf;
115 fields[3].in_value = NULL;
117 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
119 fields[1].in_value = (uint8_t *)value;
121 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
123 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
125 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
126 jtag_execute_queue();
127 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
128 #endif
130 return ERROR_OK;
133 static int arm920t_write_cp15_physical(struct target *target,
134 int reg_addr, uint32_t value)
136 struct arm920t_common *arm920t = target_to_arm920(target);
137 struct arm_jtag *jtag_info;
138 struct scan_field fields[4];
139 uint8_t access_type_buf = 1;
140 uint8_t reg_addr_buf = reg_addr & 0x3f;
141 uint8_t nr_w_buf = 1;
142 uint8_t value_buf[4];
143 int retval;
145 jtag_info = &arm920t->arm7_9_common.jtag_info;
147 buf_set_u32(value_buf, 0, 32, value);
149 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
150 if (retval != ERROR_OK)
151 return retval;
152 retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
153 if (retval != ERROR_OK)
154 return retval;
156 fields[0].num_bits = 1;
157 fields[0].out_value = &access_type_buf;
158 fields[0].in_value = NULL;
160 fields[1].num_bits = 32;
161 fields[1].out_value = value_buf;
162 fields[1].in_value = NULL;
164 fields[2].num_bits = 6;
165 fields[2].out_value = &reg_addr_buf;
166 fields[2].in_value = NULL;
168 fields[3].num_bits = 1;
169 fields[3].out_value = &nr_w_buf;
170 fields[3].in_value = NULL;
172 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
174 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
175 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
176 #endif
178 return ERROR_OK;
181 /* See table 9-10 for scan chain 15 format during interpreted access mode.
182 * If the TESTSTATE register is set for interpreted access, certain CP15
183 * MRC and MCR instructions may be executed through scan chain 15.
185 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
186 * executed using scan chain 15 interpreted mode.
188 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
189 uint32_t arm_opcode)
191 int retval;
192 struct arm920t_common *arm920t = target_to_arm920(target);
193 struct arm_jtag *jtag_info;
194 struct scan_field fields[4];
195 uint8_t access_type_buf = 0; /* interpreted access */
196 uint8_t reg_addr_buf = 0x0;
197 uint8_t nr_w_buf = 0;
198 uint8_t cp15_opcode_buf[4];
200 jtag_info = &arm920t->arm7_9_common.jtag_info;
202 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
203 if (retval != ERROR_OK)
204 return retval;
205 retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
206 if (retval != ERROR_OK)
207 return retval;
209 buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
211 fields[0].num_bits = 1;
212 fields[0].out_value = &access_type_buf;
213 fields[0].in_value = NULL;
215 fields[1].num_bits = 32;
216 fields[1].out_value = cp15_opcode_buf;
217 fields[1].in_value = NULL;
219 fields[2].num_bits = 6;
220 fields[2].out_value = &reg_addr_buf;
221 fields[2].in_value = NULL;
223 fields[3].num_bits = 1;
224 fields[3].out_value = &nr_w_buf;
225 fields[3].in_value = NULL;
227 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
229 arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
230 arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
231 retval = arm7_9_execute_sys_speed(target);
232 if (retval != ERROR_OK)
233 return retval;
235 retval = jtag_execute_queue();
236 if (retval != ERROR_OK) {
237 LOG_ERROR("failed executing JTAG queue");
238 return retval;
241 return ERROR_OK;
244 static int arm920t_read_cp15_interpreted(struct target *target,
245 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
247 struct arm *arm = target_to_arm(target);
248 uint32_t *regs_p[16];
249 uint32_t regs[16];
250 uint32_t cp15c15 = 0x0;
251 struct reg *r = arm->core_cache->reg_list;
253 /* load address into R1 */
254 regs[1] = address;
255 arm9tdmi_write_core_regs(target, 0x2, regs);
257 /* read-modify-write CP15 test state register
258 * to enable interpreted access mode */
259 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
260 jtag_execute_queue();
261 cp15c15 |= 1; /* set interpret mode */
262 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
264 /* execute CP15 instruction and ARM load (reading from coprocessor) */
265 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
267 /* disable interpreted access mode */
268 cp15c15 &= ~1U; /* clear interpret mode */
269 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
271 /* retrieve value from R0 */
272 regs_p[0] = value;
273 arm9tdmi_read_core_regs(target, 0x1, regs_p);
274 jtag_execute_queue();
276 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
277 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
278 cp15_opcode, address, *value);
279 #endif
281 if (!is_arm_mode(arm->core_mode)) {
282 LOG_ERROR("not a valid arm core mode - communication failure?");
283 return ERROR_FAIL;
286 r[0].dirty = true;
287 r[1].dirty = true;
289 return ERROR_OK;
292 static
293 int arm920t_write_cp15_interpreted(struct target *target,
294 uint32_t cp15_opcode, uint32_t value, uint32_t address)
296 uint32_t cp15c15 = 0x0;
297 struct arm *arm = target_to_arm(target);
298 uint32_t regs[16];
299 struct reg *r = arm->core_cache->reg_list;
301 /* load value, address into R0, R1 */
302 regs[0] = value;
303 regs[1] = address;
304 arm9tdmi_write_core_regs(target, 0x3, regs);
306 /* read-modify-write CP15 test state register
307 * to enable interpreted access mode */
308 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
309 jtag_execute_queue();
310 cp15c15 |= 1; /* set interpret mode */
311 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
313 /* execute CP15 instruction and ARM store (writing to coprocessor) */
314 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
316 /* disable interpreted access mode */
317 cp15c15 &= ~1U; /* set interpret mode */
318 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
320 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
321 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
322 cp15_opcode, value, address);
323 #endif
325 if (!is_arm_mode(arm->core_mode)) {
326 LOG_ERROR("not a valid arm core mode - communication failure?");
327 return ERROR_FAIL;
330 r[0].dirty = true;
331 r[1].dirty = true;
333 return ERROR_OK;
336 /* EXPORTED to FA256 */
337 int arm920t_get_ttb(struct target *target, uint32_t *result)
339 int retval;
340 uint32_t ttb = 0x0;
342 retval = arm920t_read_cp15_interpreted(target,
343 /* FIXME use opcode macro */
344 0xeebf0f51, 0x0, &ttb);
345 if (retval != ERROR_OK)
346 return retval;
348 *result = ttb;
349 return ERROR_OK;
352 /* EXPORTED to FA256 */
353 int arm920t_disable_mmu_caches(struct target *target, int mmu,
354 int d_u_cache, int i_cache)
356 uint32_t cp15_control;
357 int retval;
359 /* read cp15 control register */
360 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
361 if (retval != ERROR_OK)
362 return retval;
363 retval = jtag_execute_queue();
364 if (retval != ERROR_OK)
365 return retval;
367 if (mmu)
368 cp15_control &= ~0x1U;
370 if (d_u_cache)
371 cp15_control &= ~0x4U;
373 if (i_cache)
374 cp15_control &= ~0x1000U;
376 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
377 return retval;
380 /* EXPORTED to FA256 */
381 int arm920t_enable_mmu_caches(struct target *target, int mmu,
382 int d_u_cache, int i_cache)
384 uint32_t cp15_control;
385 int retval;
387 /* read cp15 control register */
388 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
389 if (retval != ERROR_OK)
390 return retval;
391 retval = jtag_execute_queue();
392 if (retval != ERROR_OK)
393 return retval;
395 if (mmu)
396 cp15_control |= 0x1U;
398 if (d_u_cache)
399 cp15_control |= 0x4U;
401 if (i_cache)
402 cp15_control |= 0x1000U;
404 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
405 return retval;
408 /* EXPORTED to FA256 */
409 int arm920t_post_debug_entry(struct target *target)
411 uint32_t cp15c15;
412 struct arm920t_common *arm920t = target_to_arm920(target);
413 int retval;
415 /* examine cp15 control reg */
416 retval = arm920t_read_cp15_physical(target,
417 CP15PHYS_CTRL, &arm920t->cp15_control_reg);
418 if (retval != ERROR_OK)
419 return retval;
420 retval = jtag_execute_queue();
421 if (retval != ERROR_OK)
422 return retval;
423 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
425 if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1) {
426 uint32_t cache_type_reg;
427 /* identify caches */
428 retval = arm920t_read_cp15_physical(target,
429 CP15PHYS_CACHETYPE, &cache_type_reg);
430 if (retval != ERROR_OK)
431 return retval;
432 retval = jtag_execute_queue();
433 if (retval != ERROR_OK)
434 return retval;
435 armv4_5_identify_cache(cache_type_reg,
436 &arm920t->armv4_5_mmu.armv4_5_cache);
439 arm920t->armv4_5_mmu.mmu_enabled =
440 (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
441 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
442 (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
443 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
444 (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
446 /* save i/d fault status and address register
447 * FIXME use opcode macros */
448 retval = arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
449 if (retval != ERROR_OK)
450 return retval;
451 retval = arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
452 if (retval != ERROR_OK)
453 return retval;
454 retval = arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
455 if (retval != ERROR_OK)
456 return retval;
457 retval = arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
458 if (retval != ERROR_OK)
459 return retval;
461 LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
462 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
463 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
465 if (arm920t->preserve_cache) {
466 /* read-modify-write CP15 test state register
467 * to disable I/D-cache linefills */
468 retval = arm920t_read_cp15_physical(target,
469 CP15PHYS_TESTSTATE, &cp15c15);
470 if (retval != ERROR_OK)
471 return retval;
472 retval = jtag_execute_queue();
473 if (retval != ERROR_OK)
474 return retval;
475 cp15c15 |= 0x600;
476 retval = arm920t_write_cp15_physical(target,
477 CP15PHYS_TESTSTATE, cp15c15);
478 if (retval != ERROR_OK)
479 return retval;
481 return ERROR_OK;
484 /* EXPORTED to FA256 */
485 void arm920t_pre_restore_context(struct target *target)
487 uint32_t cp15c15 = 0;
488 struct arm920t_common *arm920t = target_to_arm920(target);
490 /* restore i/d fault status and address register */
491 arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
492 arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
493 arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
494 arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
496 /* read-modify-write CP15 test state register
497 * to reenable I/D-cache linefills */
498 if (arm920t->preserve_cache) {
499 arm920t_read_cp15_physical(target,
500 CP15PHYS_TESTSTATE, &cp15c15);
501 jtag_execute_queue();
502 cp15c15 &= ~0x600U;
503 arm920t_write_cp15_physical(target,
504 CP15PHYS_TESTSTATE, cp15c15);
508 static const char arm920_not[] = "target is not an ARM920";
510 static int arm920t_verify_pointer(struct command_invocation *cmd,
511 struct arm920t_common *arm920t)
513 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
514 command_print(cmd, arm920_not);
515 return ERROR_TARGET_INVALID;
518 return ERROR_OK;
521 /** Logs summary of ARM920 state for a halted target. */
522 int arm920t_arch_state(struct target *target)
524 static const char *state[] = {
525 "disabled", "enabled"
528 struct arm920t_common *arm920t = target_to_arm920(target);
530 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
531 LOG_ERROR("BUG: %s", arm920_not);
532 return ERROR_TARGET_INVALID;
535 arm_arch_state(target);
536 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
537 state[arm920t->armv4_5_mmu.mmu_enabled],
538 state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
539 state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
541 return ERROR_OK;
544 static int arm920_mmu(struct target *target, int *enabled)
546 if (target->state != TARGET_HALTED) {
547 LOG_ERROR("%s: target not halted", __func__);
548 return ERROR_TARGET_INVALID;
551 *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
552 return ERROR_OK;
555 static int arm920_virt2phys(struct target *target,
556 target_addr_t virt, target_addr_t *phys)
558 uint32_t cb;
559 struct arm920t_common *arm920t = target_to_arm920(target);
561 uint32_t ret;
562 int retval = armv4_5_mmu_translate_va(target,
563 &arm920t->armv4_5_mmu, virt, &cb, &ret);
564 if (retval != ERROR_OK)
565 return retval;
566 *phys = ret;
567 return ERROR_OK;
570 /** Reads a buffer, in the specified word size, with current MMU settings. */
571 int arm920t_read_memory(struct target *target, target_addr_t address,
572 uint32_t size, uint32_t count, uint8_t *buffer)
574 int retval;
576 retval = arm7_9_read_memory(target, address, size, count, buffer);
578 return retval;
582 static int arm920t_read_phys_memory(struct target *target,
583 target_addr_t address, uint32_t size,
584 uint32_t count, uint8_t *buffer)
586 struct arm920t_common *arm920t = target_to_arm920(target);
588 return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
589 address, size, count, buffer);
592 static int arm920t_write_phys_memory(struct target *target,
593 target_addr_t address, uint32_t size,
594 uint32_t count, const uint8_t *buffer)
596 struct arm920t_common *arm920t = target_to_arm920(target);
598 return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
599 address, size, count, buffer);
602 /** Writes a buffer, in the specified word size, with current MMU settings. */
603 int arm920t_write_memory(struct target *target, target_addr_t address,
604 uint32_t size, uint32_t count, const uint8_t *buffer)
606 int retval;
607 const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
608 struct arm920t_common *arm920t = target_to_arm920(target);
610 /* FIX!!!! this should be cleaned up and made much more general. The
611 * plan is to write up and test on arm920t specifically and
612 * then generalize and clean up afterwards.
614 * Also it should be moved to the callbacks that handle breakpoints
615 * specifically and not the generic memory write fn's. See XScale code.
617 if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
618 ((size == 2) || (size == 4))) {
619 /* special case the handling of single word writes to
620 * bypass MMU, to allow implementation of breakpoints
621 * in memory marked read only
622 * by MMU
624 uint32_t cb;
625 uint32_t pa;
628 * We need physical address and cb
630 retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
631 address, &cb, &pa);
632 if (retval != ERROR_OK)
633 return retval;
635 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled) {
636 if (cb & 0x1) {
637 LOG_DEBUG("D-Cache buffered, "
638 "drain write buffer");
640 * Buffered ?
641 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
644 retval = arm920t_write_cp15_interpreted(target,
645 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
646 0x0, 0);
647 if (retval != ERROR_OK)
648 return retval;
651 if (cb == 0x3) {
653 * Write back memory ? -> clean cache
655 * There is no way to clean cache lines using
656 * cp15 scan chain, so copy the full cache
657 * line from cache to physical memory.
659 uint8_t data[32];
661 LOG_DEBUG("D-Cache in 'write back' mode, "
662 "flush cache line");
664 retval = target_read_memory(target,
665 address & cache_mask, 1,
666 sizeof(data), &data[0]);
667 if (retval != ERROR_OK)
668 return retval;
670 retval = armv4_5_mmu_write_physical(target,
671 &arm920t->armv4_5_mmu,
672 pa & cache_mask, 1,
673 sizeof(data), &data[0]);
674 if (retval != ERROR_OK)
675 return retval;
678 /* Cached ? */
679 if (cb & 0x2) {
681 * Cached ? -> Invalidate data cache using MVA
683 * MCR p15,0,Rd,c7,c6,1
685 LOG_DEBUG("D-Cache enabled, "
686 "invalidate cache line");
688 retval = arm920t_write_cp15_interpreted(target,
689 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
690 address & cache_mask);
691 if (retval != ERROR_OK)
692 return retval;
696 /* write directly to physical memory,
697 * bypassing any read only MMU bits, etc.
699 retval = armv4_5_mmu_write_physical(target,
700 &arm920t->armv4_5_mmu, pa, size,
701 count, buffer);
702 if (retval != ERROR_OK)
703 return retval;
704 } else {
705 retval = arm7_9_write_memory(target, address, size, count, buffer);
706 if (retval != ERROR_OK)
707 return retval;
710 /* If ICache is enabled, we have to invalidate affected ICache lines
711 * the DCache is forced to write-through,
712 * so we don't have to clean it here
714 if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled) {
715 if (count <= 1) {
716 /* invalidate ICache single entry with MVA
717 * mcr 15, 0, r0, cr7, cr5, {1}
719 LOG_DEBUG("I-Cache enabled, "
720 "invalidating affected I-Cache line");
721 retval = arm920t_write_cp15_interpreted(target,
722 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
723 0x0, address & cache_mask);
724 if (retval != ERROR_OK)
725 return retval;
726 } else {
727 /* invalidate ICache
728 * mcr 15, 0, r0, cr7, cr5, {0}
730 retval = arm920t_write_cp15_interpreted(target,
731 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
732 0x0, 0x0);
733 if (retval != ERROR_OK)
734 return retval;
738 return ERROR_OK;
741 /* EXPORTED to FA256 */
742 int arm920t_soft_reset_halt(struct target *target)
744 int retval = ERROR_OK;
745 struct arm920t_common *arm920t = target_to_arm920(target);
746 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
747 struct arm *arm = &arm7_9->arm;
748 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
750 retval = target_halt(target);
751 if (retval != ERROR_OK)
752 return retval;
754 int64_t then = timeval_ms();
755 bool timeout;
756 while (!(timeout = ((timeval_ms()-then) > 1000))) {
757 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) == 0) {
758 embeddedice_read_reg(dbg_stat);
759 retval = jtag_execute_queue();
760 if (retval != ERROR_OK)
761 return retval;
762 } else
763 break;
764 if (debug_level >= 3) {
765 /* do not eat all CPU, time out after 1 se*/
766 alive_sleep(100);
767 } else
768 keep_alive();
770 if (timeout) {
771 LOG_ERROR("Failed to halt CPU after 1 sec");
772 return ERROR_TARGET_TIMEOUT;
775 target->state = TARGET_HALTED;
777 /* SVC, ARM state, IRQ and FIQ disabled */
778 uint32_t cpsr;
780 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
781 cpsr &= ~0xff;
782 cpsr |= 0xd3;
783 arm_set_cpsr(arm, cpsr);
784 arm->cpsr->dirty = true;
786 /* start fetching from 0x0 */
787 buf_set_u32(arm->pc->value, 0, 32, 0x0);
788 arm->pc->dirty = true;
789 arm->pc->valid = true;
791 arm920t_disable_mmu_caches(target, 1, 1, 1);
792 arm920t->armv4_5_mmu.mmu_enabled = 0;
793 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
794 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
796 return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
799 /* FIXME remove forward decls */
800 static int arm920t_mrc(struct target *target, int cpnum,
801 uint32_t op1, uint32_t op2,
802 uint32_t crn, uint32_t crm,
803 uint32_t *value);
804 static int arm920t_mcr(struct target *target, int cpnum,
805 uint32_t op1, uint32_t op2,
806 uint32_t crn, uint32_t crm,
807 uint32_t value);
809 static int arm920t_init_arch_info(struct target *target,
810 struct arm920t_common *arm920t, struct jtag_tap *tap)
812 struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
814 arm7_9->arm.mrc = arm920t_mrc;
815 arm7_9->arm.mcr = arm920t_mcr;
817 /* initialize arm7/arm9 specific info (including armv4_5) */
818 arm9tdmi_init_arch_info(target, arm7_9, tap);
820 arm920t->common_magic = ARM920T_COMMON_MAGIC;
822 arm7_9->post_debug_entry = arm920t_post_debug_entry;
823 arm7_9->pre_restore_context = arm920t_pre_restore_context;
824 arm7_9->write_memory = arm920t_write_memory;
826 arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
827 arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
828 arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
829 arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
830 arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
831 arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
832 arm920t->armv4_5_mmu.has_tiny_pages = 1;
833 arm920t->armv4_5_mmu.mmu_enabled = 0;
835 /* disabling linefills leads to lockups, so keep them enabled for now
836 * this doesn't affect correctness, but might affect timing issues, if
837 * important data is evicted from the cache during the debug session
838 * */
839 arm920t->preserve_cache = 0;
841 /* override hw single-step capability from ARM9TDMI */
842 arm7_9->has_single_step = 1;
844 return ERROR_OK;
847 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
849 struct arm920t_common *arm920t;
851 arm920t = calloc(1, sizeof(struct arm920t_common));
852 return arm920t_init_arch_info(target, arm920t, target->tap);
855 static void arm920t_deinit_target(struct target *target)
857 struct arm *arm = target_to_arm(target);
858 struct arm920t_common *arm920t = target_to_arm920(target);
860 arm7_9_deinit(target);
861 arm_free_reg_cache(arm);
862 free(arm920t);
865 COMMAND_HANDLER(arm920t_handle_read_cache_command)
867 int retval = ERROR_OK;
868 struct target *target = get_current_target(CMD_CTX);
869 struct arm920t_common *arm920t = target_to_arm920(target);
870 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
871 struct arm *arm = &arm7_9->arm;
872 uint32_t cp15c15;
873 uint32_t cp15_ctrl, cp15_ctrl_saved;
874 uint32_t regs[16];
875 uint32_t *regs_p[16];
876 uint32_t c15_c_d_ind, c15_c_i_ind;
877 int i;
878 FILE *output;
879 int segment, index_t;
880 struct reg *r;
882 retval = arm920t_verify_pointer(CMD, arm920t);
883 if (retval != ERROR_OK)
884 return retval;
886 if (CMD_ARGC != 1)
887 return ERROR_COMMAND_SYNTAX_ERROR;
889 output = fopen(CMD_ARGV[0], "w");
890 if (!output) {
891 LOG_DEBUG("error opening cache content file");
892 return ERROR_OK;
895 for (i = 0; i < 16; i++)
896 regs_p[i] = &regs[i];
898 /* disable MMU and Caches */
899 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
900 retval = jtag_execute_queue();
901 if (retval != ERROR_OK)
902 return retval;
903 cp15_ctrl_saved = cp15_ctrl;
904 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
905 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
906 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
908 /* read CP15 test state register */
909 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
910 jtag_execute_queue();
912 /* read DCache content */
913 fprintf(output, "DCache:\n");
915 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
916 for (segment = 0;
917 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
918 segment++) {
919 fprintf(output, "\nsegment: %i\n----------", segment);
921 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
922 regs[0] = 0x0 | (segment << 5);
923 arm9tdmi_write_core_regs(target, 0x1, regs);
925 /* set interpret mode */
926 cp15c15 |= 0x1;
927 arm920t_write_cp15_physical(target,
928 CP15PHYS_TESTSTATE, cp15c15);
930 /* D CAM Read, loads current victim into C15.C.D.Ind */
931 arm920t_execute_cp15(target,
932 ARMV4_5_MCR(15, 2, 0, 15, 6, 2), ARMV4_5_LDR(1, 0));
934 /* read current victim */
935 arm920t_read_cp15_physical(target,
936 CP15PHYS_DCACHE_IDX, &c15_c_d_ind);
938 /* clear interpret mode */
939 cp15c15 &= ~0x1;
940 arm920t_write_cp15_physical(target,
941 CP15PHYS_TESTSTATE, cp15c15);
943 for (index_t = 0; index_t < 64; index_t++) {
944 /* Ra:
945 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
947 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
948 arm9tdmi_write_core_regs(target, 0x1, regs);
950 /* set interpret mode */
951 cp15c15 |= 0x1;
952 arm920t_write_cp15_physical(target,
953 CP15PHYS_TESTSTATE, cp15c15);
955 /* Write DCache victim */
956 arm920t_execute_cp15(target,
957 ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
959 /* Read D RAM */
960 arm920t_execute_cp15(target,
961 ARMV4_5_MCR(15, 2, 0, 15, 10, 2),
962 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
964 /* Read D CAM */
965 arm920t_execute_cp15(target,
966 ARMV4_5_MCR(15, 2, 0, 15, 6, 2),
967 ARMV4_5_LDR(9, 0));
969 /* clear interpret mode */
970 cp15c15 &= ~0x1;
971 arm920t_write_cp15_physical(target,
972 CP15PHYS_TESTSTATE, cp15c15);
974 /* read D RAM and CAM content */
975 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
976 retval = jtag_execute_queue();
977 if (retval != ERROR_OK)
978 return retval;
980 /* mask LFSR[6] */
981 regs[9] &= 0xfffffffe;
982 fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
983 PRIx32 ", content (%s):\n",
984 segment, index_t, regs[9],
985 (regs[9] & 0x10) ? "valid" : "invalid");
987 for (i = 1; i < 9; i++) {
988 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
989 i-1, regs[i]);
994 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
995 regs[0] = 0x0 | (segment << 5) | (c15_c_d_ind << 26);
996 arm9tdmi_write_core_regs(target, 0x1, regs);
998 /* set interpret mode */
999 cp15c15 |= 0x1;
1000 arm920t_write_cp15_physical(target,
1001 CP15PHYS_TESTSTATE, cp15c15);
1003 /* Write DCache victim */
1004 arm920t_execute_cp15(target,
1005 ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
1007 /* clear interpret mode */
1008 cp15c15 &= ~0x1;
1009 arm920t_write_cp15_physical(target,
1010 CP15PHYS_TESTSTATE, cp15c15);
1013 /* read ICache content */
1014 fprintf(output, "ICache:\n");
1016 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
1017 for (segment = 0;
1018 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
1019 segment++) {
1020 fprintf(output, "segment: %i\n----------", segment);
1022 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1023 regs[0] = 0x0 | (segment << 5);
1024 arm9tdmi_write_core_regs(target, 0x1, regs);
1026 /* set interpret mode */
1027 cp15c15 |= 0x1;
1028 arm920t_write_cp15_physical(target,
1029 CP15PHYS_TESTSTATE, cp15c15);
1031 /* I CAM Read, loads current victim into C15.C.I.Ind */
1032 arm920t_execute_cp15(target,
1033 ARMV4_5_MCR(15, 2, 0, 15, 5, 2), ARMV4_5_LDR(1, 0));
1035 /* read current victim */
1036 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1037 &c15_c_i_ind);
1039 /* clear interpret mode */
1040 cp15c15 &= ~0x1;
1041 arm920t_write_cp15_physical(target,
1042 CP15PHYS_TESTSTATE, cp15c15);
1044 for (index_t = 0; index_t < 64; index_t++) {
1045 /* Ra:
1046 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1048 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
1049 arm9tdmi_write_core_regs(target, 0x1, regs);
1051 /* set interpret mode */
1052 cp15c15 |= 0x1;
1053 arm920t_write_cp15_physical(target,
1054 CP15PHYS_TESTSTATE, cp15c15);
1056 /* Write ICache victim */
1057 arm920t_execute_cp15(target,
1058 ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
1060 /* Read I RAM */
1061 arm920t_execute_cp15(target,
1062 ARMV4_5_MCR(15, 2, 0, 15, 9, 2),
1063 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1065 /* Read I CAM */
1066 arm920t_execute_cp15(target,
1067 ARMV4_5_MCR(15, 2, 0, 15, 5, 2),
1068 ARMV4_5_LDR(9, 0));
1070 /* clear interpret mode */
1071 cp15c15 &= ~0x1;
1072 arm920t_write_cp15_physical(target,
1073 CP15PHYS_TESTSTATE, cp15c15);
1075 /* read I RAM and CAM content */
1076 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1077 retval = jtag_execute_queue();
1078 if (retval != ERROR_OK)
1079 return retval;
1081 /* mask LFSR[6] */
1082 regs[9] &= 0xfffffffe;
1083 fprintf(output, "\nsegment: %i, index: %i, "
1084 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1085 segment, index_t, regs[9],
1086 (regs[9] & 0x10) ? "valid" : "invalid");
1088 for (i = 1; i < 9; i++) {
1089 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1090 i-1, regs[i]);
1094 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1095 regs[0] = 0x0 | (segment << 5) | (c15_c_d_ind << 26);
1096 arm9tdmi_write_core_regs(target, 0x1, regs);
1098 /* set interpret mode */
1099 cp15c15 |= 0x1;
1100 arm920t_write_cp15_physical(target,
1101 CP15PHYS_TESTSTATE, cp15c15);
1103 /* Write ICache victim */
1104 arm920t_execute_cp15(target,
1105 ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
1107 /* clear interpret mode */
1108 cp15c15 &= ~0x1;
1109 arm920t_write_cp15_physical(target,
1110 CP15PHYS_TESTSTATE, cp15c15);
1113 /* restore CP15 MMU and Cache settings */
1114 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1116 command_print(CMD, "cache content successfully output to %s",
1117 CMD_ARGV[0]);
1119 fclose(output);
1121 if (!is_arm_mode(arm->core_mode)) {
1122 LOG_ERROR("not a valid arm core mode - communication failure?");
1123 return ERROR_FAIL;
1126 /* force writeback of the valid data */
1127 r = arm->core_cache->reg_list;
1128 r[0].dirty = r[0].valid;
1129 r[1].dirty = r[1].valid;
1130 r[2].dirty = r[2].valid;
1131 r[3].dirty = r[3].valid;
1132 r[4].dirty = r[4].valid;
1133 r[5].dirty = r[5].valid;
1134 r[6].dirty = r[6].valid;
1135 r[7].dirty = r[7].valid;
1137 r = arm_reg_current(arm, 8);
1138 r->dirty = r->valid;
1140 r = arm_reg_current(arm, 9);
1141 r->dirty = r->valid;
1143 return ERROR_OK;
1146 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1148 int retval = ERROR_OK;
1149 struct target *target = get_current_target(CMD_CTX);
1150 struct arm920t_common *arm920t = target_to_arm920(target);
1151 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1152 struct arm *arm = &arm7_9->arm;
1153 uint32_t cp15c15;
1154 uint32_t cp15_ctrl, cp15_ctrl_saved;
1155 uint32_t regs[16];
1156 uint32_t *regs_p[16];
1157 int i;
1158 FILE *output;
1159 uint32_t d_lockdown, i_lockdown;
1160 struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1161 int victim;
1162 struct reg *r;
1164 retval = arm920t_verify_pointer(CMD, arm920t);
1165 if (retval != ERROR_OK)
1166 return retval;
1168 if (CMD_ARGC != 1)
1169 return ERROR_COMMAND_SYNTAX_ERROR;
1171 output = fopen(CMD_ARGV[0], "w");
1172 if (!output) {
1173 LOG_DEBUG("error opening mmu content file");
1174 return ERROR_OK;
1177 for (i = 0; i < 16; i++)
1178 regs_p[i] = &regs[i];
1180 /* disable MMU and Caches */
1181 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1182 retval = jtag_execute_queue();
1183 if (retval != ERROR_OK)
1184 return retval;
1185 cp15_ctrl_saved = cp15_ctrl;
1186 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1187 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1188 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1190 /* read CP15 test state register */
1191 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1192 retval = jtag_execute_queue();
1193 if (retval != ERROR_OK)
1194 return retval;
1196 /* prepare reading D TLB content
1197 * */
1199 /* set interpret mode */
1200 cp15c15 |= 0x1;
1201 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1203 /* Read D TLB lockdown */
1204 arm920t_execute_cp15(target,
1205 ARMV4_5_MRC(15, 0, 0, 10, 0, 0), ARMV4_5_LDR(1, 0));
1207 /* clear interpret mode */
1208 cp15c15 &= ~0x1;
1209 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1211 /* read D TLB lockdown stored to r1 */
1212 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1213 retval = jtag_execute_queue();
1214 if (retval != ERROR_OK)
1215 return retval;
1216 d_lockdown = regs[1];
1218 for (victim = 0; victim < 64; victim += 8) {
1219 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1220 * base remains unchanged, victim goes through entries 0 to 63
1222 regs[1] = (d_lockdown & 0xfc000000) | (victim << 20);
1223 arm9tdmi_write_core_regs(target, 0x2, regs);
1225 /* set interpret mode */
1226 cp15c15 |= 0x1;
1227 arm920t_write_cp15_physical(target,
1228 CP15PHYS_TESTSTATE, cp15c15);
1230 /* Write D TLB lockdown */
1231 arm920t_execute_cp15(target,
1232 ARMV4_5_MCR(15, 0, 0, 10, 0, 0),
1233 ARMV4_5_STR(1, 0));
1235 /* Read D TLB CAM */
1236 arm920t_execute_cp15(target,
1237 ARMV4_5_MCR(15, 4, 0, 15, 6, 4),
1238 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1240 /* clear interpret mode */
1241 cp15c15 &= ~0x1;
1242 arm920t_write_cp15_physical(target,
1243 CP15PHYS_TESTSTATE, cp15c15);
1245 /* read D TLB CAM content stored to r2-r9 */
1246 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1247 retval = jtag_execute_queue();
1248 if (retval != ERROR_OK)
1249 return retval;
1251 for (i = 0; i < 8; i++)
1252 d_tlb[victim + i].cam = regs[i + 2];
1255 for (victim = 0; victim < 64; victim++) {
1256 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1257 * base remains unchanged, victim goes through entries 0 to 63
1259 regs[1] = (d_lockdown & 0xfc000000) | (victim << 20);
1260 arm9tdmi_write_core_regs(target, 0x2, regs);
1262 /* set interpret mode */
1263 cp15c15 |= 0x1;
1264 arm920t_write_cp15_physical(target,
1265 CP15PHYS_TESTSTATE, cp15c15);
1267 /* Write D TLB lockdown */
1268 arm920t_execute_cp15(target,
1269 ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
1271 /* Read D TLB RAM1 */
1272 arm920t_execute_cp15(target,
1273 ARMV4_5_MCR(15, 4, 0, 15, 10, 4), ARMV4_5_LDR(2, 0));
1275 /* Read D TLB RAM2 */
1276 arm920t_execute_cp15(target,
1277 ARMV4_5_MCR(15, 4, 0, 15, 2, 5), ARMV4_5_LDR(3, 0));
1279 /* clear interpret mode */
1280 cp15c15 &= ~0x1;
1281 arm920t_write_cp15_physical(target,
1282 CP15PHYS_TESTSTATE, cp15c15);
1284 /* read D TLB RAM content stored to r2 and r3 */
1285 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1286 retval = jtag_execute_queue();
1287 if (retval != ERROR_OK)
1288 return retval;
1290 d_tlb[victim].ram1 = regs[2];
1291 d_tlb[victim].ram2 = regs[3];
1294 /* restore D TLB lockdown */
1295 regs[1] = d_lockdown;
1296 arm9tdmi_write_core_regs(target, 0x2, regs);
1298 /* Write D TLB lockdown */
1299 arm920t_execute_cp15(target,
1300 ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
1302 /* prepare reading I TLB content
1303 * */
1305 /* set interpret mode */
1306 cp15c15 |= 0x1;
1307 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1309 /* Read I TLB lockdown */
1310 arm920t_execute_cp15(target,
1311 ARMV4_5_MRC(15, 0, 0, 10, 0, 1), ARMV4_5_LDR(1, 0));
1313 /* clear interpret mode */
1314 cp15c15 &= ~0x1;
1315 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1317 /* read I TLB lockdown stored to r1 */
1318 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1319 retval = jtag_execute_queue();
1320 if (retval != ERROR_OK)
1321 return retval;
1322 i_lockdown = regs[1];
1324 for (victim = 0; victim < 64; victim += 8) {
1325 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1326 * base remains unchanged, victim goes through entries 0 to 63
1328 regs[1] = (i_lockdown & 0xfc000000) | (victim << 20);
1329 arm9tdmi_write_core_regs(target, 0x2, regs);
1331 /* set interpret mode */
1332 cp15c15 |= 0x1;
1333 arm920t_write_cp15_physical(target,
1334 CP15PHYS_TESTSTATE, cp15c15);
1336 /* Write I TLB lockdown */
1337 arm920t_execute_cp15(target,
1338 ARMV4_5_MCR(15, 0, 0, 10, 0, 1),
1339 ARMV4_5_STR(1, 0));
1341 /* Read I TLB CAM */
1342 arm920t_execute_cp15(target,
1343 ARMV4_5_MCR(15, 4, 0, 15, 5, 4),
1344 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1346 /* clear interpret mode */
1347 cp15c15 &= ~0x1;
1348 arm920t_write_cp15_physical(target,
1349 CP15PHYS_TESTSTATE, cp15c15);
1351 /* read I TLB CAM content stored to r2-r9 */
1352 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1353 retval = jtag_execute_queue();
1354 if (retval != ERROR_OK)
1355 return retval;
1357 for (i = 0; i < 8; i++)
1358 i_tlb[i + victim].cam = regs[i + 2];
1361 for (victim = 0; victim < 64; victim++) {
1362 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1363 * base remains unchanged, victim goes through entries 0 to 63
1365 regs[1] = (d_lockdown & 0xfc000000) | (victim << 20);
1366 arm9tdmi_write_core_regs(target, 0x2, regs);
1368 /* set interpret mode */
1369 cp15c15 |= 0x1;
1370 arm920t_write_cp15_physical(target,
1371 CP15PHYS_TESTSTATE, cp15c15);
1373 /* Write I TLB lockdown */
1374 arm920t_execute_cp15(target,
1375 ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
1377 /* Read I TLB RAM1 */
1378 arm920t_execute_cp15(target,
1379 ARMV4_5_MCR(15, 4, 0, 15, 9, 4), ARMV4_5_LDR(2, 0));
1381 /* Read I TLB RAM2 */
1382 arm920t_execute_cp15(target,
1383 ARMV4_5_MCR(15, 4, 0, 15, 1, 5), ARMV4_5_LDR(3, 0));
1385 /* clear interpret mode */
1386 cp15c15 &= ~0x1;
1387 arm920t_write_cp15_physical(target,
1388 CP15PHYS_TESTSTATE, cp15c15);
1390 /* read I TLB RAM content stored to r2 and r3 */
1391 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1392 retval = jtag_execute_queue();
1393 if (retval != ERROR_OK)
1394 return retval;
1396 i_tlb[victim].ram1 = regs[2];
1397 i_tlb[victim].ram2 = regs[3];
1400 /* restore I TLB lockdown */
1401 regs[1] = i_lockdown;
1402 arm9tdmi_write_core_regs(target, 0x2, regs);
1404 /* Write I TLB lockdown */
1405 arm920t_execute_cp15(target,
1406 ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
1408 /* restore CP15 MMU and Cache settings */
1409 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1411 /* output data to file */
1412 fprintf(output, "D TLB content:\n");
1413 for (i = 0; i < 64; i++) {
1414 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1415 " 0x%8.8" PRIx32 " %s\n",
1416 i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1417 (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1420 fprintf(output, "\n\nI TLB content:\n");
1421 for (i = 0; i < 64; i++) {
1422 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1423 " 0x%8.8" PRIx32 " %s\n",
1424 i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1425 (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1428 command_print(CMD, "mmu content successfully output to %s",
1429 CMD_ARGV[0]);
1431 fclose(output);
1433 if (!is_arm_mode(arm->core_mode)) {
1434 LOG_ERROR("not a valid arm core mode - communication failure?");
1435 return ERROR_FAIL;
1438 /* force writeback of the valid data */
1439 r = arm->core_cache->reg_list;
1440 r[0].dirty = r[0].valid;
1441 r[1].dirty = r[1].valid;
1442 r[2].dirty = r[2].valid;
1443 r[3].dirty = r[3].valid;
1444 r[4].dirty = r[4].valid;
1445 r[5].dirty = r[5].valid;
1446 r[6].dirty = r[6].valid;
1447 r[7].dirty = r[7].valid;
1449 r = arm_reg_current(arm, 8);
1450 r->dirty = r->valid;
1452 r = arm_reg_current(arm, 9);
1453 r->dirty = r->valid;
1455 return ERROR_OK;
1458 COMMAND_HANDLER(arm920t_handle_cp15_command)
1460 int retval;
1461 struct target *target = get_current_target(CMD_CTX);
1462 struct arm920t_common *arm920t = target_to_arm920(target);
1464 retval = arm920t_verify_pointer(CMD, arm920t);
1465 if (retval != ERROR_OK)
1466 return retval;
1468 if (target->state != TARGET_HALTED) {
1469 command_print(CMD, "target must be stopped for "
1470 "\"%s\" command", CMD_NAME);
1471 return ERROR_OK;
1474 /* one argument, read a register.
1475 * two arguments, write it.
1477 if (CMD_ARGC >= 1) {
1478 int address;
1479 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1481 if (CMD_ARGC == 1) {
1482 uint32_t value;
1483 retval = arm920t_read_cp15_physical(target, address, &value);
1484 if (retval != ERROR_OK) {
1485 command_print(CMD,
1486 "couldn't access reg %i", address);
1487 return ERROR_OK;
1489 retval = jtag_execute_queue();
1490 if (retval != ERROR_OK)
1491 return retval;
1493 command_print(CMD, "%i: %8.8" PRIx32,
1494 address, value);
1495 } else if (CMD_ARGC == 2) {
1496 uint32_t value;
1497 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1498 retval = arm920t_write_cp15_physical(target,
1499 address, value);
1500 if (retval != ERROR_OK) {
1501 command_print(CMD,
1502 "couldn't access reg %i", address);
1503 /* REVISIT why lie? "return retval"? */
1504 return ERROR_OK;
1506 command_print(CMD, "%i: %8.8" PRIx32,
1507 address, value);
1511 return ERROR_OK;
1514 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1516 int retval;
1517 struct target *target = get_current_target(CMD_CTX);
1518 struct arm920t_common *arm920t = target_to_arm920(target);
1520 retval = arm920t_verify_pointer(CMD, arm920t);
1521 if (retval != ERROR_OK)
1522 return retval;
1524 return armv4_5_handle_cache_info_command(CMD,
1525 &arm920t->armv4_5_mmu.armv4_5_cache);
1529 static int arm920t_mrc(struct target *target, int cpnum,
1530 uint32_t op1, uint32_t op2,
1531 uint32_t crn, uint32_t crm,
1532 uint32_t *value)
1534 if (cpnum != 15) {
1535 LOG_ERROR("Only cp15 is supported");
1536 return ERROR_FAIL;
1539 /* read "to" r0 */
1540 return arm920t_read_cp15_interpreted(target,
1541 ARMV4_5_MRC(cpnum, op1, 0, crn, crm, op2),
1542 0, value);
1545 static int arm920t_mcr(struct target *target, int cpnum,
1546 uint32_t op1, uint32_t op2,
1547 uint32_t crn, uint32_t crm,
1548 uint32_t value)
1550 if (cpnum != 15) {
1551 LOG_ERROR("Only cp15 is supported");
1552 return ERROR_FAIL;
1555 /* write "from" r0 */
1556 return arm920t_write_cp15_interpreted(target,
1557 ARMV4_5_MCR(cpnum, op1, 0, crn, crm, op2),
1558 0, value);
1561 static const struct command_registration arm920t_exec_command_handlers[] = {
1563 .name = "cp15",
1564 .handler = arm920t_handle_cp15_command,
1565 .mode = COMMAND_EXEC,
1566 .help = "display/modify cp15 register",
1567 .usage = "regnum [value]",
1570 .name = "cache_info",
1571 .handler = arm920t_handle_cache_info_command,
1572 .mode = COMMAND_EXEC,
1573 .usage = "",
1574 .help = "display information about target caches",
1577 .name = "read_cache",
1578 .handler = arm920t_handle_read_cache_command,
1579 .mode = COMMAND_EXEC,
1580 .help = "dump I/D cache content to file",
1581 .usage = "filename",
1584 .name = "read_mmu",
1585 .handler = arm920t_handle_read_mmu_command,
1586 .mode = COMMAND_EXEC,
1587 .help = "dump I/D mmu content to file",
1588 .usage = "filename",
1590 COMMAND_REGISTRATION_DONE
1592 const struct command_registration arm920t_command_handlers[] = {
1594 .chain = arm9tdmi_command_handlers,
1597 .name = "arm920t",
1598 .mode = COMMAND_ANY,
1599 .help = "arm920t command group",
1600 .usage = "",
1601 .chain = arm920t_exec_command_handlers,
1603 COMMAND_REGISTRATION_DONE
1606 /** Holds methods for ARM920 targets. */
1607 struct target_type arm920t_target = {
1608 .name = "arm920t",
1610 .poll = arm7_9_poll,
1611 .arch_state = arm920t_arch_state,
1613 .target_request_data = arm7_9_target_request_data,
1615 .halt = arm7_9_halt,
1616 .resume = arm7_9_resume,
1617 .step = arm7_9_step,
1619 .assert_reset = arm7_9_assert_reset,
1620 .deassert_reset = arm7_9_deassert_reset,
1621 .soft_reset_halt = arm920t_soft_reset_halt,
1623 .get_gdb_arch = arm_get_gdb_arch,
1624 .get_gdb_reg_list = arm_get_gdb_reg_list,
1626 .read_memory = arm920t_read_memory,
1627 .write_memory = arm7_9_write_memory_opt,
1628 .read_phys_memory = arm920t_read_phys_memory,
1629 .write_phys_memory = arm920t_write_phys_memory,
1630 .mmu = arm920_mmu,
1631 .virt2phys = arm920_virt2phys,
1633 .checksum_memory = arm_checksum_memory,
1634 .blank_check_memory = arm_blank_check_memory,
1636 .run_algorithm = armv4_5_run_algorithm,
1638 .add_breakpoint = arm7_9_add_breakpoint,
1639 .remove_breakpoint = arm7_9_remove_breakpoint,
1640 .add_watchpoint = arm7_9_add_watchpoint,
1641 .remove_watchpoint = arm7_9_remove_watchpoint,
1643 .commands = arm920t_command_handlers,
1644 .target_create = arm920t_target_create,
1645 .init_target = arm9tdmi_init_target,
1646 .deinit_target = arm920t_deinit_target,
1647 .examine = arm7_9_examine,
1648 .check_reset = arm7_9_check_reset,