mips32, add option to avoid check in last instruction
[openocd.git] / src / target / target.c
blobe04ecc470e937a485f49c0291817b6a9987eca98
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
61 static int target_read_buffer_default(struct target *target, target_addr_t address,
62 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, target_addr_t address,
64 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type aarch64_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type ls1_sap_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
109 static struct target_type *target_types[] = {
110 &arm7tdmi_target,
111 &arm9tdmi_target,
112 &arm920t_target,
113 &arm720t_target,
114 &arm966e_target,
115 &arm946e_target,
116 &arm926ejs_target,
117 &fa526_target,
118 &feroceon_target,
119 &dragonite_target,
120 &xscale_target,
121 &cortexm_target,
122 &cortexa_target,
123 &cortexr4_target,
124 &arm11_target,
125 &ls1_sap_target,
126 &mips_m4k_target,
127 &avr_target,
128 &dsp563xx_target,
129 &dsp5680xx_target,
130 &testee_target,
131 &avr32_ap7k_target,
132 &hla_target,
133 &nds32_v2_target,
134 &nds32_v3_target,
135 &nds32_v3m_target,
136 &or1k_target,
137 &quark_x10xx_target,
138 &quark_d20xx_target,
139 #if BUILD_TARGET64
140 &aarch64_target,
141 #endif
142 NULL,
145 struct target *all_targets;
146 static struct target_event_callback *target_event_callbacks;
147 static struct target_timer_callback *target_timer_callbacks;
148 LIST_HEAD(target_reset_callback_list);
149 LIST_HEAD(target_trace_callback_list);
150 static const int polling_interval = 100;
152 static const Jim_Nvp nvp_assert[] = {
153 { .name = "assert", NVP_ASSERT },
154 { .name = "deassert", NVP_DEASSERT },
155 { .name = "T", NVP_ASSERT },
156 { .name = "F", NVP_DEASSERT },
157 { .name = "t", NVP_ASSERT },
158 { .name = "f", NVP_DEASSERT },
159 { .name = NULL, .value = -1 }
162 static const Jim_Nvp nvp_error_target[] = {
163 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
164 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
165 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
166 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
167 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
168 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
169 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
170 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
171 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
172 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
173 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
174 { .value = -1, .name = NULL }
177 static const char *target_strerror_safe(int err)
179 const Jim_Nvp *n;
181 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
182 if (n->name == NULL)
183 return "unknown";
184 else
185 return n->name;
188 static const Jim_Nvp nvp_target_event[] = {
190 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
191 { .value = TARGET_EVENT_HALTED, .name = "halted" },
192 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
193 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
194 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
196 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
197 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
199 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
200 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
201 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
202 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
203 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
204 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
205 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
206 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
207 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
208 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
209 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
210 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
212 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
213 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
215 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
216 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
218 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
219 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
221 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
222 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
224 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
225 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
227 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
229 { .name = NULL, .value = -1 }
232 static const Jim_Nvp nvp_target_state[] = {
233 { .name = "unknown", .value = TARGET_UNKNOWN },
234 { .name = "running", .value = TARGET_RUNNING },
235 { .name = "halted", .value = TARGET_HALTED },
236 { .name = "reset", .value = TARGET_RESET },
237 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
238 { .name = NULL, .value = -1 },
241 static const Jim_Nvp nvp_target_debug_reason[] = {
242 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
243 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
244 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
245 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
246 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
247 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
248 { .name = "program-exit" , .value = DBG_REASON_EXIT },
249 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
250 { .name = NULL, .value = -1 },
253 static const Jim_Nvp nvp_target_endian[] = {
254 { .name = "big", .value = TARGET_BIG_ENDIAN },
255 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
256 { .name = "be", .value = TARGET_BIG_ENDIAN },
257 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
258 { .name = NULL, .value = -1 },
261 static const Jim_Nvp nvp_reset_modes[] = {
262 { .name = "unknown", .value = RESET_UNKNOWN },
263 { .name = "run" , .value = RESET_RUN },
264 { .name = "halt" , .value = RESET_HALT },
265 { .name = "init" , .value = RESET_INIT },
266 { .name = NULL , .value = -1 },
269 const char *debug_reason_name(struct target *t)
271 const char *cp;
273 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
274 t->debug_reason)->name;
275 if (!cp) {
276 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
277 cp = "(*BUG*unknown*BUG*)";
279 return cp;
282 const char *target_state_name(struct target *t)
284 const char *cp;
285 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
286 if (!cp) {
287 LOG_ERROR("Invalid target state: %d", (int)(t->state));
288 cp = "(*BUG*unknown*BUG*)";
291 if (!target_was_examined(t) && t->defer_examine)
292 cp = "examine deferred";
294 return cp;
297 const char *target_event_name(enum target_event event)
299 const char *cp;
300 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
301 if (!cp) {
302 LOG_ERROR("Invalid target event: %d", (int)(event));
303 cp = "(*BUG*unknown*BUG*)";
305 return cp;
308 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
310 const char *cp;
311 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
312 if (!cp) {
313 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
314 cp = "(*BUG*unknown*BUG*)";
316 return cp;
319 /* determine the number of the new target */
320 static int new_target_number(void)
322 struct target *t;
323 int x;
325 /* number is 0 based */
326 x = -1;
327 t = all_targets;
328 while (t) {
329 if (x < t->target_number)
330 x = t->target_number;
331 t = t->next;
333 return x + 1;
336 /* read a uint64_t from a buffer in target memory endianness */
337 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
339 if (target->endianness == TARGET_LITTLE_ENDIAN)
340 return le_to_h_u64(buffer);
341 else
342 return be_to_h_u64(buffer);
345 /* read a uint32_t from a buffer in target memory endianness */
346 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
348 if (target->endianness == TARGET_LITTLE_ENDIAN)
349 return le_to_h_u32(buffer);
350 else
351 return be_to_h_u32(buffer);
354 /* read a uint24_t from a buffer in target memory endianness */
355 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
357 if (target->endianness == TARGET_LITTLE_ENDIAN)
358 return le_to_h_u24(buffer);
359 else
360 return be_to_h_u24(buffer);
363 /* read a uint16_t from a buffer in target memory endianness */
364 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
366 if (target->endianness == TARGET_LITTLE_ENDIAN)
367 return le_to_h_u16(buffer);
368 else
369 return be_to_h_u16(buffer);
372 /* read a uint8_t from a buffer in target memory endianness */
373 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
375 return *buffer & 0x0ff;
378 /* write a uint64_t to a buffer in target memory endianness */
379 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
381 if (target->endianness == TARGET_LITTLE_ENDIAN)
382 h_u64_to_le(buffer, value);
383 else
384 h_u64_to_be(buffer, value);
387 /* write a uint32_t to a buffer in target memory endianness */
388 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
390 if (target->endianness == TARGET_LITTLE_ENDIAN)
391 h_u32_to_le(buffer, value);
392 else
393 h_u32_to_be(buffer, value);
396 /* write a uint24_t to a buffer in target memory endianness */
397 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
399 if (target->endianness == TARGET_LITTLE_ENDIAN)
400 h_u24_to_le(buffer, value);
401 else
402 h_u24_to_be(buffer, value);
405 /* write a uint16_t to a buffer in target memory endianness */
406 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
408 if (target->endianness == TARGET_LITTLE_ENDIAN)
409 h_u16_to_le(buffer, value);
410 else
411 h_u16_to_be(buffer, value);
414 /* write a uint8_t to a buffer in target memory endianness */
415 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
417 *buffer = value;
420 /* write a uint64_t array to a buffer in target memory endianness */
421 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
423 uint32_t i;
424 for (i = 0; i < count; i++)
425 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
428 /* write a uint32_t array to a buffer in target memory endianness */
429 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
431 uint32_t i;
432 for (i = 0; i < count; i++)
433 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
436 /* write a uint16_t array to a buffer in target memory endianness */
437 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
439 uint32_t i;
440 for (i = 0; i < count; i++)
441 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
444 /* write a uint64_t array to a buffer in target memory endianness */
445 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
447 uint32_t i;
448 for (i = 0; i < count; i++)
449 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
452 /* write a uint32_t array to a buffer in target memory endianness */
453 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
455 uint32_t i;
456 for (i = 0; i < count; i++)
457 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
460 /* write a uint16_t array to a buffer in target memory endianness */
461 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
463 uint32_t i;
464 for (i = 0; i < count; i++)
465 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
468 /* return a pointer to a configured target; id is name or number */
469 struct target *get_target(const char *id)
471 struct target *target;
473 /* try as tcltarget name */
474 for (target = all_targets; target; target = target->next) {
475 if (target_name(target) == NULL)
476 continue;
477 if (strcmp(id, target_name(target)) == 0)
478 return target;
481 /* It's OK to remove this fallback sometime after August 2010 or so */
483 /* no match, try as number */
484 unsigned num;
485 if (parse_uint(id, &num) != ERROR_OK)
486 return NULL;
488 for (target = all_targets; target; target = target->next) {
489 if (target->target_number == (int)num) {
490 LOG_WARNING("use '%s' as target identifier, not '%u'",
491 target_name(target), num);
492 return target;
496 return NULL;
499 /* returns a pointer to the n-th configured target */
500 struct target *get_target_by_num(int num)
502 struct target *target = all_targets;
504 while (target) {
505 if (target->target_number == num)
506 return target;
507 target = target->next;
510 return NULL;
513 struct target *get_current_target(struct command_context *cmd_ctx)
515 struct target *target = get_target_by_num(cmd_ctx->current_target);
517 if (target == NULL) {
518 LOG_ERROR("BUG: current_target out of bounds");
519 exit(-1);
522 return target;
525 int target_poll(struct target *target)
527 int retval;
529 /* We can't poll until after examine */
530 if (!target_was_examined(target)) {
531 /* Fail silently lest we pollute the log */
532 return ERROR_FAIL;
535 retval = target->type->poll(target);
536 if (retval != ERROR_OK)
537 return retval;
539 if (target->halt_issued) {
540 if (target->state == TARGET_HALTED)
541 target->halt_issued = false;
542 else {
543 int64_t t = timeval_ms() - target->halt_issued_time;
544 if (t > DEFAULT_HALT_TIMEOUT) {
545 target->halt_issued = false;
546 LOG_INFO("Halt timed out, wake up GDB.");
547 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
552 return ERROR_OK;
555 int target_halt(struct target *target)
557 int retval;
558 /* We can't poll until after examine */
559 if (!target_was_examined(target)) {
560 LOG_ERROR("Target not examined yet");
561 return ERROR_FAIL;
564 retval = target->type->halt(target);
565 if (retval != ERROR_OK)
566 return retval;
568 target->halt_issued = true;
569 target->halt_issued_time = timeval_ms();
571 return ERROR_OK;
575 * Make the target (re)start executing using its saved execution
576 * context (possibly with some modifications).
578 * @param target Which target should start executing.
579 * @param current True to use the target's saved program counter instead
580 * of the address parameter
581 * @param address Optionally used as the program counter.
582 * @param handle_breakpoints True iff breakpoints at the resumption PC
583 * should be skipped. (For example, maybe execution was stopped by
584 * such a breakpoint, in which case it would be counterprodutive to
585 * let it re-trigger.
586 * @param debug_execution False if all working areas allocated by OpenOCD
587 * should be released and/or restored to their original contents.
588 * (This would for example be true to run some downloaded "helper"
589 * algorithm code, which resides in one such working buffer and uses
590 * another for data storage.)
592 * @todo Resolve the ambiguity about what the "debug_execution" flag
593 * signifies. For example, Target implementations don't agree on how
594 * it relates to invalidation of the register cache, or to whether
595 * breakpoints and watchpoints should be enabled. (It would seem wrong
596 * to enable breakpoints when running downloaded "helper" algorithms
597 * (debug_execution true), since the breakpoints would be set to match
598 * target firmware being debugged, not the helper algorithm.... and
599 * enabling them could cause such helpers to malfunction (for example,
600 * by overwriting data with a breakpoint instruction. On the other
601 * hand the infrastructure for running such helpers might use this
602 * procedure but rely on hardware breakpoint to detect termination.)
604 int target_resume(struct target *target, int current, target_addr_t address,
605 int handle_breakpoints, int debug_execution)
607 int retval;
609 /* We can't poll until after examine */
610 if (!target_was_examined(target)) {
611 LOG_ERROR("Target not examined yet");
612 return ERROR_FAIL;
615 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
617 /* note that resume *must* be asynchronous. The CPU can halt before
618 * we poll. The CPU can even halt at the current PC as a result of
619 * a software breakpoint being inserted by (a bug?) the application.
621 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
622 if (retval != ERROR_OK)
623 return retval;
625 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
627 return retval;
630 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
632 char buf[100];
633 int retval;
634 Jim_Nvp *n;
635 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
636 if (n->name == NULL) {
637 LOG_ERROR("invalid reset mode");
638 return ERROR_FAIL;
641 struct target *target;
642 for (target = all_targets; target; target = target->next)
643 target_call_reset_callbacks(target, reset_mode);
645 /* disable polling during reset to make reset event scripts
646 * more predictable, i.e. dr/irscan & pathmove in events will
647 * not have JTAG operations injected into the middle of a sequence.
649 bool save_poll = jtag_poll_get_enabled();
651 jtag_poll_set_enabled(false);
653 sprintf(buf, "ocd_process_reset %s", n->name);
654 retval = Jim_Eval(cmd_ctx->interp, buf);
656 jtag_poll_set_enabled(save_poll);
658 if (retval != JIM_OK) {
659 Jim_MakeErrorMessage(cmd_ctx->interp);
660 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
661 return ERROR_FAIL;
664 /* We want any events to be processed before the prompt */
665 retval = target_call_timer_callbacks_now();
667 for (target = all_targets; target; target = target->next) {
668 target->type->check_reset(target);
669 target->running_alg = false;
672 return retval;
675 static int identity_virt2phys(struct target *target,
676 target_addr_t virtual, target_addr_t *physical)
678 *physical = virtual;
679 return ERROR_OK;
682 static int no_mmu(struct target *target, int *enabled)
684 *enabled = 0;
685 return ERROR_OK;
688 static int default_examine(struct target *target)
690 target_set_examined(target);
691 return ERROR_OK;
694 /* no check by default */
695 static int default_check_reset(struct target *target)
697 return ERROR_OK;
700 int target_examine_one(struct target *target)
702 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
704 int retval = target->type->examine(target);
705 if (retval != ERROR_OK)
706 return retval;
708 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
710 return ERROR_OK;
713 static int jtag_enable_callback(enum jtag_event event, void *priv)
715 struct target *target = priv;
717 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
718 return ERROR_OK;
720 jtag_unregister_event_callback(jtag_enable_callback, target);
722 return target_examine_one(target);
725 /* Targets that correctly implement init + examine, i.e.
726 * no communication with target during init:
728 * XScale
730 int target_examine(void)
732 int retval = ERROR_OK;
733 struct target *target;
735 for (target = all_targets; target; target = target->next) {
736 /* defer examination, but don't skip it */
737 if (!target->tap->enabled) {
738 jtag_register_event_callback(jtag_enable_callback,
739 target);
740 continue;
743 if (target->defer_examine)
744 continue;
746 retval = target_examine_one(target);
747 if (retval != ERROR_OK)
748 return retval;
750 return retval;
753 const char *target_type_name(struct target *target)
755 return target->type->name;
758 static int target_soft_reset_halt(struct target *target)
760 if (!target_was_examined(target)) {
761 LOG_ERROR("Target not examined yet");
762 return ERROR_FAIL;
764 if (!target->type->soft_reset_halt) {
765 LOG_ERROR("Target %s does not support soft_reset_halt",
766 target_name(target));
767 return ERROR_FAIL;
769 return target->type->soft_reset_halt(target);
773 * Downloads a target-specific native code algorithm to the target,
774 * and executes it. * Note that some targets may need to set up, enable,
775 * and tear down a breakpoint (hard or * soft) to detect algorithm
776 * termination, while others may support lower overhead schemes where
777 * soft breakpoints embedded in the algorithm automatically terminate the
778 * algorithm.
780 * @param target used to run the algorithm
781 * @param arch_info target-specific description of the algorithm.
783 int target_run_algorithm(struct target *target,
784 int num_mem_params, struct mem_param *mem_params,
785 int num_reg_params, struct reg_param *reg_param,
786 uint32_t entry_point, uint32_t exit_point,
787 int timeout_ms, void *arch_info)
789 int retval = ERROR_FAIL;
791 if (!target_was_examined(target)) {
792 LOG_ERROR("Target not examined yet");
793 goto done;
795 if (!target->type->run_algorithm) {
796 LOG_ERROR("Target type '%s' does not support %s",
797 target_type_name(target), __func__);
798 goto done;
801 target->running_alg = true;
802 retval = target->type->run_algorithm(target,
803 num_mem_params, mem_params,
804 num_reg_params, reg_param,
805 entry_point, exit_point, timeout_ms, arch_info);
806 target->running_alg = false;
808 done:
809 return retval;
813 * Downloads a target-specific native code algorithm to the target,
814 * executes and leaves it running.
816 * @param target used to run the algorithm
817 * @param arch_info target-specific description of the algorithm.
819 int target_start_algorithm(struct target *target,
820 int num_mem_params, struct mem_param *mem_params,
821 int num_reg_params, struct reg_param *reg_params,
822 uint32_t entry_point, uint32_t exit_point,
823 void *arch_info)
825 int retval = ERROR_FAIL;
827 if (!target_was_examined(target)) {
828 LOG_ERROR("Target not examined yet");
829 goto done;
831 if (!target->type->start_algorithm) {
832 LOG_ERROR("Target type '%s' does not support %s",
833 target_type_name(target), __func__);
834 goto done;
836 if (target->running_alg) {
837 LOG_ERROR("Target is already running an algorithm");
838 goto done;
841 target->running_alg = true;
842 retval = target->type->start_algorithm(target,
843 num_mem_params, mem_params,
844 num_reg_params, reg_params,
845 entry_point, exit_point, arch_info);
847 done:
848 return retval;
852 * Waits for an algorithm started with target_start_algorithm() to complete.
854 * @param target used to run the algorithm
855 * @param arch_info target-specific description of the algorithm.
857 int target_wait_algorithm(struct target *target,
858 int num_mem_params, struct mem_param *mem_params,
859 int num_reg_params, struct reg_param *reg_params,
860 uint32_t exit_point, int timeout_ms,
861 void *arch_info)
863 int retval = ERROR_FAIL;
865 if (!target->type->wait_algorithm) {
866 LOG_ERROR("Target type '%s' does not support %s",
867 target_type_name(target), __func__);
868 goto done;
870 if (!target->running_alg) {
871 LOG_ERROR("Target is not running an algorithm");
872 goto done;
875 retval = target->type->wait_algorithm(target,
876 num_mem_params, mem_params,
877 num_reg_params, reg_params,
878 exit_point, timeout_ms, arch_info);
879 if (retval != ERROR_TARGET_TIMEOUT)
880 target->running_alg = false;
882 done:
883 return retval;
887 * Executes a target-specific native code algorithm in the target.
888 * It differs from target_run_algorithm in that the algorithm is asynchronous.
889 * Because of this it requires an compliant algorithm:
890 * see contrib/loaders/flash/stm32f1x.S for example.
892 * @param target used to run the algorithm
895 int target_run_flash_async_algorithm(struct target *target,
896 const uint8_t *buffer, uint32_t count, int block_size,
897 int num_mem_params, struct mem_param *mem_params,
898 int num_reg_params, struct reg_param *reg_params,
899 uint32_t buffer_start, uint32_t buffer_size,
900 uint32_t entry_point, uint32_t exit_point, void *arch_info)
902 int retval;
903 int timeout = 0;
905 const uint8_t *buffer_orig = buffer;
907 /* Set up working area. First word is write pointer, second word is read pointer,
908 * rest is fifo data area. */
909 uint32_t wp_addr = buffer_start;
910 uint32_t rp_addr = buffer_start + 4;
911 uint32_t fifo_start_addr = buffer_start + 8;
912 uint32_t fifo_end_addr = buffer_start + buffer_size;
914 uint32_t wp = fifo_start_addr;
915 uint32_t rp = fifo_start_addr;
917 /* validate block_size is 2^n */
918 assert(!block_size || !(block_size & (block_size - 1)));
920 retval = target_write_u32(target, wp_addr, wp);
921 if (retval != ERROR_OK)
922 return retval;
923 retval = target_write_u32(target, rp_addr, rp);
924 if (retval != ERROR_OK)
925 return retval;
927 /* Start up algorithm on target and let it idle while writing the first chunk */
928 retval = target_start_algorithm(target, num_mem_params, mem_params,
929 num_reg_params, reg_params,
930 entry_point,
931 exit_point,
932 arch_info);
934 if (retval != ERROR_OK) {
935 LOG_ERROR("error starting target flash write algorithm");
936 return retval;
939 while (count > 0) {
941 retval = target_read_u32(target, rp_addr, &rp);
942 if (retval != ERROR_OK) {
943 LOG_ERROR("failed to get read pointer");
944 break;
947 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
948 (size_t) (buffer - buffer_orig), count, wp, rp);
950 if (rp == 0) {
951 LOG_ERROR("flash write algorithm aborted by target");
952 retval = ERROR_FLASH_OPERATION_FAILED;
953 break;
956 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
957 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
958 break;
961 /* Count the number of bytes available in the fifo without
962 * crossing the wrap around. Make sure to not fill it completely,
963 * because that would make wp == rp and that's the empty condition. */
964 uint32_t thisrun_bytes;
965 if (rp > wp)
966 thisrun_bytes = rp - wp - block_size;
967 else if (rp > fifo_start_addr)
968 thisrun_bytes = fifo_end_addr - wp;
969 else
970 thisrun_bytes = fifo_end_addr - wp - block_size;
972 if (thisrun_bytes == 0) {
973 /* Throttle polling a bit if transfer is (much) faster than flash
974 * programming. The exact delay shouldn't matter as long as it's
975 * less than buffer size / flash speed. This is very unlikely to
976 * run when using high latency connections such as USB. */
977 alive_sleep(10);
979 /* to stop an infinite loop on some targets check and increment a timeout
980 * this issue was observed on a stellaris using the new ICDI interface */
981 if (timeout++ >= 500) {
982 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
983 return ERROR_FLASH_OPERATION_FAILED;
985 continue;
988 /* reset our timeout */
989 timeout = 0;
991 /* Limit to the amount of data we actually want to write */
992 if (thisrun_bytes > count * block_size)
993 thisrun_bytes = count * block_size;
995 /* Write data to fifo */
996 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
997 if (retval != ERROR_OK)
998 break;
1000 /* Update counters and wrap write pointer */
1001 buffer += thisrun_bytes;
1002 count -= thisrun_bytes / block_size;
1003 wp += thisrun_bytes;
1004 if (wp >= fifo_end_addr)
1005 wp = fifo_start_addr;
1007 /* Store updated write pointer to target */
1008 retval = target_write_u32(target, wp_addr, wp);
1009 if (retval != ERROR_OK)
1010 break;
1013 if (retval != ERROR_OK) {
1014 /* abort flash write algorithm on target */
1015 target_write_u32(target, wp_addr, 0);
1018 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1019 num_reg_params, reg_params,
1020 exit_point,
1021 10000,
1022 arch_info);
1024 if (retval2 != ERROR_OK) {
1025 LOG_ERROR("error waiting for target flash write algorithm");
1026 retval = retval2;
1029 if (retval == ERROR_OK) {
1030 /* check if algorithm set rp = 0 after fifo writer loop finished */
1031 retval = target_read_u32(target, rp_addr, &rp);
1032 if (retval == ERROR_OK && rp == 0) {
1033 LOG_ERROR("flash write algorithm aborted by target");
1034 retval = ERROR_FLASH_OPERATION_FAILED;
1038 return retval;
1041 int target_read_memory(struct target *target,
1042 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1044 if (!target_was_examined(target)) {
1045 LOG_ERROR("Target not examined yet");
1046 return ERROR_FAIL;
1048 if (!target->type->read_memory) {
1049 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1050 return ERROR_FAIL;
1052 return target->type->read_memory(target, address, size, count, buffer);
1055 int target_read_phys_memory(struct target *target,
1056 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1058 if (!target_was_examined(target)) {
1059 LOG_ERROR("Target not examined yet");
1060 return ERROR_FAIL;
1062 if (!target->type->read_phys_memory) {
1063 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1064 return ERROR_FAIL;
1066 return target->type->read_phys_memory(target, address, size, count, buffer);
1069 int target_write_memory(struct target *target,
1070 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1072 if (!target_was_examined(target)) {
1073 LOG_ERROR("Target not examined yet");
1074 return ERROR_FAIL;
1076 if (!target->type->write_memory) {
1077 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1078 return ERROR_FAIL;
1080 return target->type->write_memory(target, address, size, count, buffer);
1083 int target_write_phys_memory(struct target *target,
1084 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1086 if (!target_was_examined(target)) {
1087 LOG_ERROR("Target not examined yet");
1088 return ERROR_FAIL;
1090 if (!target->type->write_phys_memory) {
1091 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1092 return ERROR_FAIL;
1094 return target->type->write_phys_memory(target, address, size, count, buffer);
1097 int target_add_breakpoint(struct target *target,
1098 struct breakpoint *breakpoint)
1100 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1101 LOG_WARNING("target %s is not halted", target_name(target));
1102 return ERROR_TARGET_NOT_HALTED;
1104 return target->type->add_breakpoint(target, breakpoint);
1107 int target_add_context_breakpoint(struct target *target,
1108 struct breakpoint *breakpoint)
1110 if (target->state != TARGET_HALTED) {
1111 LOG_WARNING("target %s is not halted", target_name(target));
1112 return ERROR_TARGET_NOT_HALTED;
1114 return target->type->add_context_breakpoint(target, breakpoint);
1117 int target_add_hybrid_breakpoint(struct target *target,
1118 struct breakpoint *breakpoint)
1120 if (target->state != TARGET_HALTED) {
1121 LOG_WARNING("target %s is not halted", target_name(target));
1122 return ERROR_TARGET_NOT_HALTED;
1124 return target->type->add_hybrid_breakpoint(target, breakpoint);
1127 int target_remove_breakpoint(struct target *target,
1128 struct breakpoint *breakpoint)
1130 return target->type->remove_breakpoint(target, breakpoint);
1133 int target_add_watchpoint(struct target *target,
1134 struct watchpoint *watchpoint)
1136 if (target->state != TARGET_HALTED) {
1137 LOG_WARNING("target %s is not halted", target_name(target));
1138 return ERROR_TARGET_NOT_HALTED;
1140 return target->type->add_watchpoint(target, watchpoint);
1142 int target_remove_watchpoint(struct target *target,
1143 struct watchpoint *watchpoint)
1145 return target->type->remove_watchpoint(target, watchpoint);
1147 int target_hit_watchpoint(struct target *target,
1148 struct watchpoint **hit_watchpoint)
1150 if (target->state != TARGET_HALTED) {
1151 LOG_WARNING("target %s is not halted", target->cmd_name);
1152 return ERROR_TARGET_NOT_HALTED;
1155 if (target->type->hit_watchpoint == NULL) {
1156 /* For backward compatible, if hit_watchpoint is not implemented,
1157 * return ERROR_FAIL such that gdb_server will not take the nonsense
1158 * information. */
1159 return ERROR_FAIL;
1162 return target->type->hit_watchpoint(target, hit_watchpoint);
1165 int target_get_gdb_reg_list(struct target *target,
1166 struct reg **reg_list[], int *reg_list_size,
1167 enum target_register_class reg_class)
1169 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1171 int target_step(struct target *target,
1172 int current, target_addr_t address, int handle_breakpoints)
1174 return target->type->step(target, current, address, handle_breakpoints);
1177 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1179 if (target->state != TARGET_HALTED) {
1180 LOG_WARNING("target %s is not halted", target->cmd_name);
1181 return ERROR_TARGET_NOT_HALTED;
1183 return target->type->get_gdb_fileio_info(target, fileio_info);
1186 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1188 if (target->state != TARGET_HALTED) {
1189 LOG_WARNING("target %s is not halted", target->cmd_name);
1190 return ERROR_TARGET_NOT_HALTED;
1192 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1195 int target_profiling(struct target *target, uint32_t *samples,
1196 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1198 if (target->state != TARGET_HALTED) {
1199 LOG_WARNING("target %s is not halted", target->cmd_name);
1200 return ERROR_TARGET_NOT_HALTED;
1202 return target->type->profiling(target, samples, max_num_samples,
1203 num_samples, seconds);
1207 * Reset the @c examined flag for the given target.
1208 * Pure paranoia -- targets are zeroed on allocation.
1210 static void target_reset_examined(struct target *target)
1212 target->examined = false;
1215 static int handle_target(void *priv);
1217 static int target_init_one(struct command_context *cmd_ctx,
1218 struct target *target)
1220 target_reset_examined(target);
1222 struct target_type *type = target->type;
1223 if (type->examine == NULL)
1224 type->examine = default_examine;
1226 if (type->check_reset == NULL)
1227 type->check_reset = default_check_reset;
1229 assert(type->init_target != NULL);
1231 int retval = type->init_target(cmd_ctx, target);
1232 if (ERROR_OK != retval) {
1233 LOG_ERROR("target '%s' init failed", target_name(target));
1234 return retval;
1237 /* Sanity-check MMU support ... stub in what we must, to help
1238 * implement it in stages, but warn if we need to do so.
1240 if (type->mmu) {
1241 if (type->virt2phys == NULL) {
1242 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1243 type->virt2phys = identity_virt2phys;
1245 } else {
1246 /* Make sure no-MMU targets all behave the same: make no
1247 * distinction between physical and virtual addresses, and
1248 * ensure that virt2phys() is always an identity mapping.
1250 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1251 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1253 type->mmu = no_mmu;
1254 type->write_phys_memory = type->write_memory;
1255 type->read_phys_memory = type->read_memory;
1256 type->virt2phys = identity_virt2phys;
1259 if (target->type->read_buffer == NULL)
1260 target->type->read_buffer = target_read_buffer_default;
1262 if (target->type->write_buffer == NULL)
1263 target->type->write_buffer = target_write_buffer_default;
1265 if (target->type->get_gdb_fileio_info == NULL)
1266 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1268 if (target->type->gdb_fileio_end == NULL)
1269 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1271 if (target->type->profiling == NULL)
1272 target->type->profiling = target_profiling_default;
1274 return ERROR_OK;
1277 static int target_init(struct command_context *cmd_ctx)
1279 struct target *target;
1280 int retval;
1282 for (target = all_targets; target; target = target->next) {
1283 retval = target_init_one(cmd_ctx, target);
1284 if (ERROR_OK != retval)
1285 return retval;
1288 if (!all_targets)
1289 return ERROR_OK;
1291 retval = target_register_user_commands(cmd_ctx);
1292 if (ERROR_OK != retval)
1293 return retval;
1295 retval = target_register_timer_callback(&handle_target,
1296 polling_interval, 1, cmd_ctx->interp);
1297 if (ERROR_OK != retval)
1298 return retval;
1300 return ERROR_OK;
1303 COMMAND_HANDLER(handle_target_init_command)
1305 int retval;
1307 if (CMD_ARGC != 0)
1308 return ERROR_COMMAND_SYNTAX_ERROR;
1310 static bool target_initialized;
1311 if (target_initialized) {
1312 LOG_INFO("'target init' has already been called");
1313 return ERROR_OK;
1315 target_initialized = true;
1317 retval = command_run_line(CMD_CTX, "init_targets");
1318 if (ERROR_OK != retval)
1319 return retval;
1321 retval = command_run_line(CMD_CTX, "init_target_events");
1322 if (ERROR_OK != retval)
1323 return retval;
1325 retval = command_run_line(CMD_CTX, "init_board");
1326 if (ERROR_OK != retval)
1327 return retval;
1329 LOG_DEBUG("Initializing targets...");
1330 return target_init(CMD_CTX);
1333 int target_register_event_callback(int (*callback)(struct target *target,
1334 enum target_event event, void *priv), void *priv)
1336 struct target_event_callback **callbacks_p = &target_event_callbacks;
1338 if (callback == NULL)
1339 return ERROR_COMMAND_SYNTAX_ERROR;
1341 if (*callbacks_p) {
1342 while ((*callbacks_p)->next)
1343 callbacks_p = &((*callbacks_p)->next);
1344 callbacks_p = &((*callbacks_p)->next);
1347 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1348 (*callbacks_p)->callback = callback;
1349 (*callbacks_p)->priv = priv;
1350 (*callbacks_p)->next = NULL;
1352 return ERROR_OK;
1355 int target_register_reset_callback(int (*callback)(struct target *target,
1356 enum target_reset_mode reset_mode, void *priv), void *priv)
1358 struct target_reset_callback *entry;
1360 if (callback == NULL)
1361 return ERROR_COMMAND_SYNTAX_ERROR;
1363 entry = malloc(sizeof(struct target_reset_callback));
1364 if (entry == NULL) {
1365 LOG_ERROR("error allocating buffer for reset callback entry");
1366 return ERROR_COMMAND_SYNTAX_ERROR;
1369 entry->callback = callback;
1370 entry->priv = priv;
1371 list_add(&entry->list, &target_reset_callback_list);
1374 return ERROR_OK;
1377 int target_register_trace_callback(int (*callback)(struct target *target,
1378 size_t len, uint8_t *data, void *priv), void *priv)
1380 struct target_trace_callback *entry;
1382 if (callback == NULL)
1383 return ERROR_COMMAND_SYNTAX_ERROR;
1385 entry = malloc(sizeof(struct target_trace_callback));
1386 if (entry == NULL) {
1387 LOG_ERROR("error allocating buffer for trace callback entry");
1388 return ERROR_COMMAND_SYNTAX_ERROR;
1391 entry->callback = callback;
1392 entry->priv = priv;
1393 list_add(&entry->list, &target_trace_callback_list);
1396 return ERROR_OK;
1399 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1401 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1402 struct timeval now;
1404 if (callback == NULL)
1405 return ERROR_COMMAND_SYNTAX_ERROR;
1407 if (*callbacks_p) {
1408 while ((*callbacks_p)->next)
1409 callbacks_p = &((*callbacks_p)->next);
1410 callbacks_p = &((*callbacks_p)->next);
1413 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1414 (*callbacks_p)->callback = callback;
1415 (*callbacks_p)->periodic = periodic;
1416 (*callbacks_p)->time_ms = time_ms;
1417 (*callbacks_p)->removed = false;
1419 gettimeofday(&now, NULL);
1420 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1421 time_ms -= (time_ms % 1000);
1422 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1423 if ((*callbacks_p)->when.tv_usec > 1000000) {
1424 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1425 (*callbacks_p)->when.tv_sec += 1;
1428 (*callbacks_p)->priv = priv;
1429 (*callbacks_p)->next = NULL;
1431 return ERROR_OK;
1434 int target_unregister_event_callback(int (*callback)(struct target *target,
1435 enum target_event event, void *priv), void *priv)
1437 struct target_event_callback **p = &target_event_callbacks;
1438 struct target_event_callback *c = target_event_callbacks;
1440 if (callback == NULL)
1441 return ERROR_COMMAND_SYNTAX_ERROR;
1443 while (c) {
1444 struct target_event_callback *next = c->next;
1445 if ((c->callback == callback) && (c->priv == priv)) {
1446 *p = next;
1447 free(c);
1448 return ERROR_OK;
1449 } else
1450 p = &(c->next);
1451 c = next;
1454 return ERROR_OK;
1457 int target_unregister_reset_callback(int (*callback)(struct target *target,
1458 enum target_reset_mode reset_mode, void *priv), void *priv)
1460 struct target_reset_callback *entry;
1462 if (callback == NULL)
1463 return ERROR_COMMAND_SYNTAX_ERROR;
1465 list_for_each_entry(entry, &target_reset_callback_list, list) {
1466 if (entry->callback == callback && entry->priv == priv) {
1467 list_del(&entry->list);
1468 free(entry);
1469 break;
1473 return ERROR_OK;
1476 int target_unregister_trace_callback(int (*callback)(struct target *target,
1477 size_t len, uint8_t *data, void *priv), void *priv)
1479 struct target_trace_callback *entry;
1481 if (callback == NULL)
1482 return ERROR_COMMAND_SYNTAX_ERROR;
1484 list_for_each_entry(entry, &target_trace_callback_list, list) {
1485 if (entry->callback == callback && entry->priv == priv) {
1486 list_del(&entry->list);
1487 free(entry);
1488 break;
1492 return ERROR_OK;
1495 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1497 if (callback == NULL)
1498 return ERROR_COMMAND_SYNTAX_ERROR;
1500 for (struct target_timer_callback *c = target_timer_callbacks;
1501 c; c = c->next) {
1502 if ((c->callback == callback) && (c->priv == priv)) {
1503 c->removed = true;
1504 return ERROR_OK;
1508 return ERROR_FAIL;
1511 int target_call_event_callbacks(struct target *target, enum target_event event)
1513 struct target_event_callback *callback = target_event_callbacks;
1514 struct target_event_callback *next_callback;
1516 if (event == TARGET_EVENT_HALTED) {
1517 /* execute early halted first */
1518 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1521 LOG_DEBUG("target event %i (%s)", event,
1522 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1524 target_handle_event(target, event);
1526 while (callback) {
1527 next_callback = callback->next;
1528 callback->callback(target, event, callback->priv);
1529 callback = next_callback;
1532 return ERROR_OK;
1535 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1537 struct target_reset_callback *callback;
1539 LOG_DEBUG("target reset %i (%s)", reset_mode,
1540 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1542 list_for_each_entry(callback, &target_reset_callback_list, list)
1543 callback->callback(target, reset_mode, callback->priv);
1545 return ERROR_OK;
1548 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1550 struct target_trace_callback *callback;
1552 list_for_each_entry(callback, &target_trace_callback_list, list)
1553 callback->callback(target, len, data, callback->priv);
1555 return ERROR_OK;
1558 static int target_timer_callback_periodic_restart(
1559 struct target_timer_callback *cb, struct timeval *now)
1561 int time_ms = cb->time_ms;
1562 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1563 time_ms -= (time_ms % 1000);
1564 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1565 if (cb->when.tv_usec > 1000000) {
1566 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1567 cb->when.tv_sec += 1;
1569 return ERROR_OK;
1572 static int target_call_timer_callback(struct target_timer_callback *cb,
1573 struct timeval *now)
1575 cb->callback(cb->priv);
1577 if (cb->periodic)
1578 return target_timer_callback_periodic_restart(cb, now);
1580 return target_unregister_timer_callback(cb->callback, cb->priv);
1583 static int target_call_timer_callbacks_check_time(int checktime)
1585 static bool callback_processing;
1587 /* Do not allow nesting */
1588 if (callback_processing)
1589 return ERROR_OK;
1591 callback_processing = true;
1593 keep_alive();
1595 struct timeval now;
1596 gettimeofday(&now, NULL);
1598 /* Store an address of the place containing a pointer to the
1599 * next item; initially, that's a standalone "root of the
1600 * list" variable. */
1601 struct target_timer_callback **callback = &target_timer_callbacks;
1602 while (*callback) {
1603 if ((*callback)->removed) {
1604 struct target_timer_callback *p = *callback;
1605 *callback = (*callback)->next;
1606 free(p);
1607 continue;
1610 bool call_it = (*callback)->callback &&
1611 ((!checktime && (*callback)->periodic) ||
1612 now.tv_sec > (*callback)->when.tv_sec ||
1613 (now.tv_sec == (*callback)->when.tv_sec &&
1614 now.tv_usec >= (*callback)->when.tv_usec));
1616 if (call_it)
1617 target_call_timer_callback(*callback, &now);
1619 callback = &(*callback)->next;
1622 callback_processing = false;
1623 return ERROR_OK;
1626 int target_call_timer_callbacks(void)
1628 return target_call_timer_callbacks_check_time(1);
1631 /* invoke periodic callbacks immediately */
1632 int target_call_timer_callbacks_now(void)
1634 return target_call_timer_callbacks_check_time(0);
1637 /* Prints the working area layout for debug purposes */
1638 static void print_wa_layout(struct target *target)
1640 struct working_area *c = target->working_areas;
1642 while (c) {
1643 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1644 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1645 c->address, c->address + c->size - 1, c->size);
1646 c = c->next;
1650 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1651 static void target_split_working_area(struct working_area *area, uint32_t size)
1653 assert(area->free); /* Shouldn't split an allocated area */
1654 assert(size <= area->size); /* Caller should guarantee this */
1656 /* Split only if not already the right size */
1657 if (size < area->size) {
1658 struct working_area *new_wa = malloc(sizeof(*new_wa));
1660 if (new_wa == NULL)
1661 return;
1663 new_wa->next = area->next;
1664 new_wa->size = area->size - size;
1665 new_wa->address = area->address + size;
1666 new_wa->backup = NULL;
1667 new_wa->user = NULL;
1668 new_wa->free = true;
1670 area->next = new_wa;
1671 area->size = size;
1673 /* If backup memory was allocated to this area, it has the wrong size
1674 * now so free it and it will be reallocated if/when needed */
1675 if (area->backup) {
1676 free(area->backup);
1677 area->backup = NULL;
1682 /* Merge all adjacent free areas into one */
1683 static void target_merge_working_areas(struct target *target)
1685 struct working_area *c = target->working_areas;
1687 while (c && c->next) {
1688 assert(c->next->address == c->address + c->size); /* This is an invariant */
1690 /* Find two adjacent free areas */
1691 if (c->free && c->next->free) {
1692 /* Merge the last into the first */
1693 c->size += c->next->size;
1695 /* Remove the last */
1696 struct working_area *to_be_freed = c->next;
1697 c->next = c->next->next;
1698 if (to_be_freed->backup)
1699 free(to_be_freed->backup);
1700 free(to_be_freed);
1702 /* If backup memory was allocated to the remaining area, it's has
1703 * the wrong size now */
1704 if (c->backup) {
1705 free(c->backup);
1706 c->backup = NULL;
1708 } else {
1709 c = c->next;
1714 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1716 /* Reevaluate working area address based on MMU state*/
1717 if (target->working_areas == NULL) {
1718 int retval;
1719 int enabled;
1721 retval = target->type->mmu(target, &enabled);
1722 if (retval != ERROR_OK)
1723 return retval;
1725 if (!enabled) {
1726 if (target->working_area_phys_spec) {
1727 LOG_DEBUG("MMU disabled, using physical "
1728 "address for working memory " TARGET_ADDR_FMT,
1729 target->working_area_phys);
1730 target->working_area = target->working_area_phys;
1731 } else {
1732 LOG_ERROR("No working memory available. "
1733 "Specify -work-area-phys to target.");
1734 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1736 } else {
1737 if (target->working_area_virt_spec) {
1738 LOG_DEBUG("MMU enabled, using virtual "
1739 "address for working memory " TARGET_ADDR_FMT,
1740 target->working_area_virt);
1741 target->working_area = target->working_area_virt;
1742 } else {
1743 LOG_ERROR("No working memory available. "
1744 "Specify -work-area-virt to target.");
1745 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1749 /* Set up initial working area on first call */
1750 struct working_area *new_wa = malloc(sizeof(*new_wa));
1751 if (new_wa) {
1752 new_wa->next = NULL;
1753 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1754 new_wa->address = target->working_area;
1755 new_wa->backup = NULL;
1756 new_wa->user = NULL;
1757 new_wa->free = true;
1760 target->working_areas = new_wa;
1763 /* only allocate multiples of 4 byte */
1764 if (size % 4)
1765 size = (size + 3) & (~3UL);
1767 struct working_area *c = target->working_areas;
1769 /* Find the first large enough working area */
1770 while (c) {
1771 if (c->free && c->size >= size)
1772 break;
1773 c = c->next;
1776 if (c == NULL)
1777 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1779 /* Split the working area into the requested size */
1780 target_split_working_area(c, size);
1782 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1783 size, c->address);
1785 if (target->backup_working_area) {
1786 if (c->backup == NULL) {
1787 c->backup = malloc(c->size);
1788 if (c->backup == NULL)
1789 return ERROR_FAIL;
1792 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1793 if (retval != ERROR_OK)
1794 return retval;
1797 /* mark as used, and return the new (reused) area */
1798 c->free = false;
1799 *area = c;
1801 /* user pointer */
1802 c->user = area;
1804 print_wa_layout(target);
1806 return ERROR_OK;
1809 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1811 int retval;
1813 retval = target_alloc_working_area_try(target, size, area);
1814 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1815 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1816 return retval;
1820 static int target_restore_working_area(struct target *target, struct working_area *area)
1822 int retval = ERROR_OK;
1824 if (target->backup_working_area && area->backup != NULL) {
1825 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1826 if (retval != ERROR_OK)
1827 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1828 area->size, area->address);
1831 return retval;
1834 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1835 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1837 int retval = ERROR_OK;
1839 if (area->free)
1840 return retval;
1842 if (restore) {
1843 retval = target_restore_working_area(target, area);
1844 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1845 if (retval != ERROR_OK)
1846 return retval;
1849 area->free = true;
1851 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1852 area->size, area->address);
1854 /* mark user pointer invalid */
1855 /* TODO: Is this really safe? It points to some previous caller's memory.
1856 * How could we know that the area pointer is still in that place and not
1857 * some other vital data? What's the purpose of this, anyway? */
1858 *area->user = NULL;
1859 area->user = NULL;
1861 target_merge_working_areas(target);
1863 print_wa_layout(target);
1865 return retval;
1868 int target_free_working_area(struct target *target, struct working_area *area)
1870 return target_free_working_area_restore(target, area, 1);
1873 static void target_destroy(struct target *target)
1875 if (target->type->deinit_target)
1876 target->type->deinit_target(target);
1878 free(target->type);
1879 free(target->trace_info);
1880 free(target->cmd_name);
1881 free(target);
1884 void target_quit(void)
1886 struct target_event_callback *pe = target_event_callbacks;
1887 while (pe) {
1888 struct target_event_callback *t = pe->next;
1889 free(pe);
1890 pe = t;
1892 target_event_callbacks = NULL;
1894 struct target_timer_callback *pt = target_timer_callbacks;
1895 while (pt) {
1896 struct target_timer_callback *t = pt->next;
1897 free(pt);
1898 pt = t;
1900 target_timer_callbacks = NULL;
1902 for (struct target *target = all_targets; target;) {
1903 struct target *tmp;
1905 tmp = target->next;
1906 target_destroy(target);
1907 target = tmp;
1910 all_targets = NULL;
1913 /* free resources and restore memory, if restoring memory fails,
1914 * free up resources anyway
1916 static void target_free_all_working_areas_restore(struct target *target, int restore)
1918 struct working_area *c = target->working_areas;
1920 LOG_DEBUG("freeing all working areas");
1922 /* Loop through all areas, restoring the allocated ones and marking them as free */
1923 while (c) {
1924 if (!c->free) {
1925 if (restore)
1926 target_restore_working_area(target, c);
1927 c->free = true;
1928 *c->user = NULL; /* Same as above */
1929 c->user = NULL;
1931 c = c->next;
1934 /* Run a merge pass to combine all areas into one */
1935 target_merge_working_areas(target);
1937 print_wa_layout(target);
1940 void target_free_all_working_areas(struct target *target)
1942 target_free_all_working_areas_restore(target, 1);
1945 /* Find the largest number of bytes that can be allocated */
1946 uint32_t target_get_working_area_avail(struct target *target)
1948 struct working_area *c = target->working_areas;
1949 uint32_t max_size = 0;
1951 if (c == NULL)
1952 return target->working_area_size;
1954 while (c) {
1955 if (c->free && max_size < c->size)
1956 max_size = c->size;
1958 c = c->next;
1961 return max_size;
1964 int target_arch_state(struct target *target)
1966 int retval;
1967 if (target == NULL) {
1968 LOG_WARNING("No target has been configured");
1969 return ERROR_OK;
1972 if (target->state != TARGET_HALTED)
1973 return ERROR_OK;
1975 retval = target->type->arch_state(target);
1976 return retval;
1979 static int target_get_gdb_fileio_info_default(struct target *target,
1980 struct gdb_fileio_info *fileio_info)
1982 /* If target does not support semi-hosting function, target
1983 has no need to provide .get_gdb_fileio_info callback.
1984 It just return ERROR_FAIL and gdb_server will return "Txx"
1985 as target halted every time. */
1986 return ERROR_FAIL;
1989 static int target_gdb_fileio_end_default(struct target *target,
1990 int retcode, int fileio_errno, bool ctrl_c)
1992 return ERROR_OK;
1995 static int target_profiling_default(struct target *target, uint32_t *samples,
1996 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1998 struct timeval timeout, now;
2000 gettimeofday(&timeout, NULL);
2001 timeval_add_time(&timeout, seconds, 0);
2003 LOG_INFO("Starting profiling. Halting and resuming the"
2004 " target as often as we can...");
2006 uint32_t sample_count = 0;
2007 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2008 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2010 int retval = ERROR_OK;
2011 for (;;) {
2012 target_poll(target);
2013 if (target->state == TARGET_HALTED) {
2014 uint32_t t = buf_get_u32(reg->value, 0, 32);
2015 samples[sample_count++] = t;
2016 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2017 retval = target_resume(target, 1, 0, 0, 0);
2018 target_poll(target);
2019 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2020 } else if (target->state == TARGET_RUNNING) {
2021 /* We want to quickly sample the PC. */
2022 retval = target_halt(target);
2023 } else {
2024 LOG_INFO("Target not halted or running");
2025 retval = ERROR_OK;
2026 break;
2029 if (retval != ERROR_OK)
2030 break;
2032 gettimeofday(&now, NULL);
2033 if ((sample_count >= max_num_samples) ||
2034 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2035 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2036 break;
2040 *num_samples = sample_count;
2041 return retval;
2044 /* Single aligned words are guaranteed to use 16 or 32 bit access
2045 * mode respectively, otherwise data is handled as quickly as
2046 * possible
2048 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2050 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2051 size, address);
2053 if (!target_was_examined(target)) {
2054 LOG_ERROR("Target not examined yet");
2055 return ERROR_FAIL;
2058 if (size == 0)
2059 return ERROR_OK;
2061 if ((address + size - 1) < address) {
2062 /* GDB can request this when e.g. PC is 0xfffffffc */
2063 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2064 address,
2065 size);
2066 return ERROR_FAIL;
2069 return target->type->write_buffer(target, address, size, buffer);
2072 static int target_write_buffer_default(struct target *target,
2073 target_addr_t address, uint32_t count, const uint8_t *buffer)
2075 uint32_t size;
2077 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2078 * will have something to do with the size we leave to it. */
2079 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2080 if (address & size) {
2081 int retval = target_write_memory(target, address, size, 1, buffer);
2082 if (retval != ERROR_OK)
2083 return retval;
2084 address += size;
2085 count -= size;
2086 buffer += size;
2090 /* Write the data with as large access size as possible. */
2091 for (; size > 0; size /= 2) {
2092 uint32_t aligned = count - count % size;
2093 if (aligned > 0) {
2094 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2095 if (retval != ERROR_OK)
2096 return retval;
2097 address += aligned;
2098 count -= aligned;
2099 buffer += aligned;
2103 return ERROR_OK;
2106 /* Single aligned words are guaranteed to use 16 or 32 bit access
2107 * mode respectively, otherwise data is handled as quickly as
2108 * possible
2110 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2112 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2113 size, address);
2115 if (!target_was_examined(target)) {
2116 LOG_ERROR("Target not examined yet");
2117 return ERROR_FAIL;
2120 if (size == 0)
2121 return ERROR_OK;
2123 if ((address + size - 1) < address) {
2124 /* GDB can request this when e.g. PC is 0xfffffffc */
2125 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2126 address,
2127 size);
2128 return ERROR_FAIL;
2131 return target->type->read_buffer(target, address, size, buffer);
2134 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2136 uint32_t size;
2138 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2139 * will have something to do with the size we leave to it. */
2140 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2141 if (address & size) {
2142 int retval = target_read_memory(target, address, size, 1, buffer);
2143 if (retval != ERROR_OK)
2144 return retval;
2145 address += size;
2146 count -= size;
2147 buffer += size;
2151 /* Read the data with as large access size as possible. */
2152 for (; size > 0; size /= 2) {
2153 uint32_t aligned = count - count % size;
2154 if (aligned > 0) {
2155 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2156 if (retval != ERROR_OK)
2157 return retval;
2158 address += aligned;
2159 count -= aligned;
2160 buffer += aligned;
2164 return ERROR_OK;
2167 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2169 uint8_t *buffer;
2170 int retval;
2171 uint32_t i;
2172 uint32_t checksum = 0;
2173 if (!target_was_examined(target)) {
2174 LOG_ERROR("Target not examined yet");
2175 return ERROR_FAIL;
2178 retval = target->type->checksum_memory(target, address, size, &checksum);
2179 if (retval != ERROR_OK) {
2180 buffer = malloc(size);
2181 if (buffer == NULL) {
2182 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2183 return ERROR_COMMAND_SYNTAX_ERROR;
2185 retval = target_read_buffer(target, address, size, buffer);
2186 if (retval != ERROR_OK) {
2187 free(buffer);
2188 return retval;
2191 /* convert to target endianness */
2192 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2193 uint32_t target_data;
2194 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2195 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2198 retval = image_calculate_checksum(buffer, size, &checksum);
2199 free(buffer);
2202 *crc = checksum;
2204 return retval;
2207 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2208 uint8_t erased_value)
2210 int retval;
2211 if (!target_was_examined(target)) {
2212 LOG_ERROR("Target not examined yet");
2213 return ERROR_FAIL;
2216 if (target->type->blank_check_memory == 0)
2217 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2219 retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2221 return retval;
2224 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2226 uint8_t value_buf[8];
2227 if (!target_was_examined(target)) {
2228 LOG_ERROR("Target not examined yet");
2229 return ERROR_FAIL;
2232 int retval = target_read_memory(target, address, 8, 1, value_buf);
2234 if (retval == ERROR_OK) {
2235 *value = target_buffer_get_u64(target, value_buf);
2236 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2237 address,
2238 *value);
2239 } else {
2240 *value = 0x0;
2241 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2242 address);
2245 return retval;
2248 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2250 uint8_t value_buf[4];
2251 if (!target_was_examined(target)) {
2252 LOG_ERROR("Target not examined yet");
2253 return ERROR_FAIL;
2256 int retval = target_read_memory(target, address, 4, 1, value_buf);
2258 if (retval == ERROR_OK) {
2259 *value = target_buffer_get_u32(target, value_buf);
2260 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2261 address,
2262 *value);
2263 } else {
2264 *value = 0x0;
2265 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2266 address);
2269 return retval;
2272 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2274 uint8_t value_buf[2];
2275 if (!target_was_examined(target)) {
2276 LOG_ERROR("Target not examined yet");
2277 return ERROR_FAIL;
2280 int retval = target_read_memory(target, address, 2, 1, value_buf);
2282 if (retval == ERROR_OK) {
2283 *value = target_buffer_get_u16(target, value_buf);
2284 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2285 address,
2286 *value);
2287 } else {
2288 *value = 0x0;
2289 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2290 address);
2293 return retval;
2296 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2298 if (!target_was_examined(target)) {
2299 LOG_ERROR("Target not examined yet");
2300 return ERROR_FAIL;
2303 int retval = target_read_memory(target, address, 1, 1, value);
2305 if (retval == ERROR_OK) {
2306 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2307 address,
2308 *value);
2309 } else {
2310 *value = 0x0;
2311 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2312 address);
2315 return retval;
2318 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2320 int retval;
2321 uint8_t value_buf[8];
2322 if (!target_was_examined(target)) {
2323 LOG_ERROR("Target not examined yet");
2324 return ERROR_FAIL;
2327 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2328 address,
2329 value);
2331 target_buffer_set_u64(target, value_buf, value);
2332 retval = target_write_memory(target, address, 8, 1, value_buf);
2333 if (retval != ERROR_OK)
2334 LOG_DEBUG("failed: %i", retval);
2336 return retval;
2339 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2341 int retval;
2342 uint8_t value_buf[4];
2343 if (!target_was_examined(target)) {
2344 LOG_ERROR("Target not examined yet");
2345 return ERROR_FAIL;
2348 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2349 address,
2350 value);
2352 target_buffer_set_u32(target, value_buf, value);
2353 retval = target_write_memory(target, address, 4, 1, value_buf);
2354 if (retval != ERROR_OK)
2355 LOG_DEBUG("failed: %i", retval);
2357 return retval;
2360 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2362 int retval;
2363 uint8_t value_buf[2];
2364 if (!target_was_examined(target)) {
2365 LOG_ERROR("Target not examined yet");
2366 return ERROR_FAIL;
2369 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2370 address,
2371 value);
2373 target_buffer_set_u16(target, value_buf, value);
2374 retval = target_write_memory(target, address, 2, 1, value_buf);
2375 if (retval != ERROR_OK)
2376 LOG_DEBUG("failed: %i", retval);
2378 return retval;
2381 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2383 int retval;
2384 if (!target_was_examined(target)) {
2385 LOG_ERROR("Target not examined yet");
2386 return ERROR_FAIL;
2389 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2390 address, value);
2392 retval = target_write_memory(target, address, 1, 1, &value);
2393 if (retval != ERROR_OK)
2394 LOG_DEBUG("failed: %i", retval);
2396 return retval;
2399 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2401 int retval;
2402 uint8_t value_buf[8];
2403 if (!target_was_examined(target)) {
2404 LOG_ERROR("Target not examined yet");
2405 return ERROR_FAIL;
2408 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2409 address,
2410 value);
2412 target_buffer_set_u64(target, value_buf, value);
2413 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2414 if (retval != ERROR_OK)
2415 LOG_DEBUG("failed: %i", retval);
2417 return retval;
2420 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2422 int retval;
2423 uint8_t value_buf[4];
2424 if (!target_was_examined(target)) {
2425 LOG_ERROR("Target not examined yet");
2426 return ERROR_FAIL;
2429 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2430 address,
2431 value);
2433 target_buffer_set_u32(target, value_buf, value);
2434 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2435 if (retval != ERROR_OK)
2436 LOG_DEBUG("failed: %i", retval);
2438 return retval;
2441 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2443 int retval;
2444 uint8_t value_buf[2];
2445 if (!target_was_examined(target)) {
2446 LOG_ERROR("Target not examined yet");
2447 return ERROR_FAIL;
2450 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2451 address,
2452 value);
2454 target_buffer_set_u16(target, value_buf, value);
2455 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2456 if (retval != ERROR_OK)
2457 LOG_DEBUG("failed: %i", retval);
2459 return retval;
2462 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2464 int retval;
2465 if (!target_was_examined(target)) {
2466 LOG_ERROR("Target not examined yet");
2467 return ERROR_FAIL;
2470 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2471 address, value);
2473 retval = target_write_phys_memory(target, address, 1, 1, &value);
2474 if (retval != ERROR_OK)
2475 LOG_DEBUG("failed: %i", retval);
2477 return retval;
2480 static int find_target(struct command_context *cmd_ctx, const char *name)
2482 struct target *target = get_target(name);
2483 if (target == NULL) {
2484 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2485 return ERROR_FAIL;
2487 if (!target->tap->enabled) {
2488 LOG_USER("Target: TAP %s is disabled, "
2489 "can't be the current target\n",
2490 target->tap->dotted_name);
2491 return ERROR_FAIL;
2494 cmd_ctx->current_target = target->target_number;
2495 return ERROR_OK;
2499 COMMAND_HANDLER(handle_targets_command)
2501 int retval = ERROR_OK;
2502 if (CMD_ARGC == 1) {
2503 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2504 if (retval == ERROR_OK) {
2505 /* we're done! */
2506 return retval;
2510 struct target *target = all_targets;
2511 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2512 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2513 while (target) {
2514 const char *state;
2515 char marker = ' ';
2517 if (target->tap->enabled)
2518 state = target_state_name(target);
2519 else
2520 state = "tap-disabled";
2522 if (CMD_CTX->current_target == target->target_number)
2523 marker = '*';
2525 /* keep columns lined up to match the headers above */
2526 command_print(CMD_CTX,
2527 "%2d%c %-18s %-10s %-6s %-18s %s",
2528 target->target_number,
2529 marker,
2530 target_name(target),
2531 target_type_name(target),
2532 Jim_Nvp_value2name_simple(nvp_target_endian,
2533 target->endianness)->name,
2534 target->tap->dotted_name,
2535 state);
2536 target = target->next;
2539 return retval;
2542 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2544 static int powerDropout;
2545 static int srstAsserted;
2547 static int runPowerRestore;
2548 static int runPowerDropout;
2549 static int runSrstAsserted;
2550 static int runSrstDeasserted;
2552 static int sense_handler(void)
2554 static int prevSrstAsserted;
2555 static int prevPowerdropout;
2557 int retval = jtag_power_dropout(&powerDropout);
2558 if (retval != ERROR_OK)
2559 return retval;
2561 int powerRestored;
2562 powerRestored = prevPowerdropout && !powerDropout;
2563 if (powerRestored)
2564 runPowerRestore = 1;
2566 int64_t current = timeval_ms();
2567 static int64_t lastPower;
2568 bool waitMore = lastPower + 2000 > current;
2569 if (powerDropout && !waitMore) {
2570 runPowerDropout = 1;
2571 lastPower = current;
2574 retval = jtag_srst_asserted(&srstAsserted);
2575 if (retval != ERROR_OK)
2576 return retval;
2578 int srstDeasserted;
2579 srstDeasserted = prevSrstAsserted && !srstAsserted;
2581 static int64_t lastSrst;
2582 waitMore = lastSrst + 2000 > current;
2583 if (srstDeasserted && !waitMore) {
2584 runSrstDeasserted = 1;
2585 lastSrst = current;
2588 if (!prevSrstAsserted && srstAsserted)
2589 runSrstAsserted = 1;
2591 prevSrstAsserted = srstAsserted;
2592 prevPowerdropout = powerDropout;
2594 if (srstDeasserted || powerRestored) {
2595 /* Other than logging the event we can't do anything here.
2596 * Issuing a reset is a particularly bad idea as we might
2597 * be inside a reset already.
2601 return ERROR_OK;
2604 /* process target state changes */
2605 static int handle_target(void *priv)
2607 Jim_Interp *interp = (Jim_Interp *)priv;
2608 int retval = ERROR_OK;
2610 if (!is_jtag_poll_safe()) {
2611 /* polling is disabled currently */
2612 return ERROR_OK;
2615 /* we do not want to recurse here... */
2616 static int recursive;
2617 if (!recursive) {
2618 recursive = 1;
2619 sense_handler();
2620 /* danger! running these procedures can trigger srst assertions and power dropouts.
2621 * We need to avoid an infinite loop/recursion here and we do that by
2622 * clearing the flags after running these events.
2624 int did_something = 0;
2625 if (runSrstAsserted) {
2626 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2627 Jim_Eval(interp, "srst_asserted");
2628 did_something = 1;
2630 if (runSrstDeasserted) {
2631 Jim_Eval(interp, "srst_deasserted");
2632 did_something = 1;
2634 if (runPowerDropout) {
2635 LOG_INFO("Power dropout detected, running power_dropout proc.");
2636 Jim_Eval(interp, "power_dropout");
2637 did_something = 1;
2639 if (runPowerRestore) {
2640 Jim_Eval(interp, "power_restore");
2641 did_something = 1;
2644 if (did_something) {
2645 /* clear detect flags */
2646 sense_handler();
2649 /* clear action flags */
2651 runSrstAsserted = 0;
2652 runSrstDeasserted = 0;
2653 runPowerRestore = 0;
2654 runPowerDropout = 0;
2656 recursive = 0;
2659 /* Poll targets for state changes unless that's globally disabled.
2660 * Skip targets that are currently disabled.
2662 for (struct target *target = all_targets;
2663 is_jtag_poll_safe() && target;
2664 target = target->next) {
2666 if (!target_was_examined(target))
2667 continue;
2669 if (!target->tap->enabled)
2670 continue;
2672 if (target->backoff.times > target->backoff.count) {
2673 /* do not poll this time as we failed previously */
2674 target->backoff.count++;
2675 continue;
2677 target->backoff.count = 0;
2679 /* only poll target if we've got power and srst isn't asserted */
2680 if (!powerDropout && !srstAsserted) {
2681 /* polling may fail silently until the target has been examined */
2682 retval = target_poll(target);
2683 if (retval != ERROR_OK) {
2684 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2685 if (target->backoff.times * polling_interval < 5000) {
2686 target->backoff.times *= 2;
2687 target->backoff.times++;
2690 /* Tell GDB to halt the debugger. This allows the user to
2691 * run monitor commands to handle the situation.
2693 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2695 if (target->backoff.times > 0) {
2696 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2697 target_reset_examined(target);
2698 retval = target_examine_one(target);
2699 /* Target examination could have failed due to unstable connection,
2700 * but we set the examined flag anyway to repoll it later */
2701 if (retval != ERROR_OK) {
2702 target->examined = true;
2703 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2704 target->backoff.times * polling_interval);
2705 return retval;
2709 /* Since we succeeded, we reset backoff count */
2710 target->backoff.times = 0;
2714 return retval;
2717 COMMAND_HANDLER(handle_reg_command)
2719 struct target *target;
2720 struct reg *reg = NULL;
2721 unsigned count = 0;
2722 char *value;
2724 LOG_DEBUG("-");
2726 target = get_current_target(CMD_CTX);
2728 /* list all available registers for the current target */
2729 if (CMD_ARGC == 0) {
2730 struct reg_cache *cache = target->reg_cache;
2732 count = 0;
2733 while (cache) {
2734 unsigned i;
2736 command_print(CMD_CTX, "===== %s", cache->name);
2738 for (i = 0, reg = cache->reg_list;
2739 i < cache->num_regs;
2740 i++, reg++, count++) {
2741 /* only print cached values if they are valid */
2742 if (reg->valid) {
2743 value = buf_to_str(reg->value,
2744 reg->size, 16);
2745 command_print(CMD_CTX,
2746 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2747 count, reg->name,
2748 reg->size, value,
2749 reg->dirty
2750 ? " (dirty)"
2751 : "");
2752 free(value);
2753 } else {
2754 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2755 count, reg->name,
2756 reg->size) ;
2759 cache = cache->next;
2762 return ERROR_OK;
2765 /* access a single register by its ordinal number */
2766 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2767 unsigned num;
2768 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2770 struct reg_cache *cache = target->reg_cache;
2771 count = 0;
2772 while (cache) {
2773 unsigned i;
2774 for (i = 0; i < cache->num_regs; i++) {
2775 if (count++ == num) {
2776 reg = &cache->reg_list[i];
2777 break;
2780 if (reg)
2781 break;
2782 cache = cache->next;
2785 if (!reg) {
2786 command_print(CMD_CTX, "%i is out of bounds, the current target "
2787 "has only %i registers (0 - %i)", num, count, count - 1);
2788 return ERROR_OK;
2790 } else {
2791 /* access a single register by its name */
2792 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2794 if (!reg) {
2795 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2796 return ERROR_OK;
2800 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2802 /* display a register */
2803 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2804 && (CMD_ARGV[1][0] <= '9')))) {
2805 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2806 reg->valid = 0;
2808 if (reg->valid == 0)
2809 reg->type->get(reg);
2810 value = buf_to_str(reg->value, reg->size, 16);
2811 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2812 free(value);
2813 return ERROR_OK;
2816 /* set register value */
2817 if (CMD_ARGC == 2) {
2818 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2819 if (buf == NULL)
2820 return ERROR_FAIL;
2821 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2823 reg->type->set(reg, buf);
2825 value = buf_to_str(reg->value, reg->size, 16);
2826 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2827 free(value);
2829 free(buf);
2831 return ERROR_OK;
2834 return ERROR_COMMAND_SYNTAX_ERROR;
2837 COMMAND_HANDLER(handle_poll_command)
2839 int retval = ERROR_OK;
2840 struct target *target = get_current_target(CMD_CTX);
2842 if (CMD_ARGC == 0) {
2843 command_print(CMD_CTX, "background polling: %s",
2844 jtag_poll_get_enabled() ? "on" : "off");
2845 command_print(CMD_CTX, "TAP: %s (%s)",
2846 target->tap->dotted_name,
2847 target->tap->enabled ? "enabled" : "disabled");
2848 if (!target->tap->enabled)
2849 return ERROR_OK;
2850 retval = target_poll(target);
2851 if (retval != ERROR_OK)
2852 return retval;
2853 retval = target_arch_state(target);
2854 if (retval != ERROR_OK)
2855 return retval;
2856 } else if (CMD_ARGC == 1) {
2857 bool enable;
2858 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2859 jtag_poll_set_enabled(enable);
2860 } else
2861 return ERROR_COMMAND_SYNTAX_ERROR;
2863 return retval;
2866 COMMAND_HANDLER(handle_wait_halt_command)
2868 if (CMD_ARGC > 1)
2869 return ERROR_COMMAND_SYNTAX_ERROR;
2871 unsigned ms = DEFAULT_HALT_TIMEOUT;
2872 if (1 == CMD_ARGC) {
2873 int retval = parse_uint(CMD_ARGV[0], &ms);
2874 if (ERROR_OK != retval)
2875 return ERROR_COMMAND_SYNTAX_ERROR;
2878 struct target *target = get_current_target(CMD_CTX);
2879 return target_wait_state(target, TARGET_HALTED, ms);
2882 /* wait for target state to change. The trick here is to have a low
2883 * latency for short waits and not to suck up all the CPU time
2884 * on longer waits.
2886 * After 500ms, keep_alive() is invoked
2888 int target_wait_state(struct target *target, enum target_state state, int ms)
2890 int retval;
2891 int64_t then = 0, cur;
2892 bool once = true;
2894 for (;;) {
2895 retval = target_poll(target);
2896 if (retval != ERROR_OK)
2897 return retval;
2898 if (target->state == state)
2899 break;
2900 cur = timeval_ms();
2901 if (once) {
2902 once = false;
2903 then = timeval_ms();
2904 LOG_DEBUG("waiting for target %s...",
2905 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2908 if (cur-then > 500)
2909 keep_alive();
2911 if ((cur-then) > ms) {
2912 LOG_ERROR("timed out while waiting for target %s",
2913 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2914 return ERROR_FAIL;
2918 return ERROR_OK;
2921 COMMAND_HANDLER(handle_halt_command)
2923 LOG_DEBUG("-");
2925 struct target *target = get_current_target(CMD_CTX);
2926 int retval = target_halt(target);
2927 if (ERROR_OK != retval)
2928 return retval;
2930 if (CMD_ARGC == 1) {
2931 unsigned wait_local;
2932 retval = parse_uint(CMD_ARGV[0], &wait_local);
2933 if (ERROR_OK != retval)
2934 return ERROR_COMMAND_SYNTAX_ERROR;
2935 if (!wait_local)
2936 return ERROR_OK;
2939 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2942 COMMAND_HANDLER(handle_soft_reset_halt_command)
2944 struct target *target = get_current_target(CMD_CTX);
2946 LOG_USER("requesting target halt and executing a soft reset");
2948 target_soft_reset_halt(target);
2950 return ERROR_OK;
2953 COMMAND_HANDLER(handle_reset_command)
2955 if (CMD_ARGC > 1)
2956 return ERROR_COMMAND_SYNTAX_ERROR;
2958 enum target_reset_mode reset_mode = RESET_RUN;
2959 if (CMD_ARGC == 1) {
2960 const Jim_Nvp *n;
2961 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2962 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2963 return ERROR_COMMAND_SYNTAX_ERROR;
2964 reset_mode = n->value;
2967 /* reset *all* targets */
2968 return target_process_reset(CMD_CTX, reset_mode);
2972 COMMAND_HANDLER(handle_resume_command)
2974 int current = 1;
2975 if (CMD_ARGC > 1)
2976 return ERROR_COMMAND_SYNTAX_ERROR;
2978 struct target *target = get_current_target(CMD_CTX);
2980 /* with no CMD_ARGV, resume from current pc, addr = 0,
2981 * with one arguments, addr = CMD_ARGV[0],
2982 * handle breakpoints, not debugging */
2983 target_addr_t addr = 0;
2984 if (CMD_ARGC == 1) {
2985 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
2986 current = 0;
2989 return target_resume(target, current, addr, 1, 0);
2992 COMMAND_HANDLER(handle_step_command)
2994 if (CMD_ARGC > 1)
2995 return ERROR_COMMAND_SYNTAX_ERROR;
2997 LOG_DEBUG("-");
2999 /* with no CMD_ARGV, step from current pc, addr = 0,
3000 * with one argument addr = CMD_ARGV[0],
3001 * handle breakpoints, debugging */
3002 target_addr_t addr = 0;
3003 int current_pc = 1;
3004 if (CMD_ARGC == 1) {
3005 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3006 current_pc = 0;
3009 struct target *target = get_current_target(CMD_CTX);
3011 return target->type->step(target, current_pc, addr, 1);
3014 static void handle_md_output(struct command_context *cmd_ctx,
3015 struct target *target, target_addr_t address, unsigned size,
3016 unsigned count, const uint8_t *buffer)
3018 const unsigned line_bytecnt = 32;
3019 unsigned line_modulo = line_bytecnt / size;
3021 char output[line_bytecnt * 4 + 1];
3022 unsigned output_len = 0;
3024 const char *value_fmt;
3025 switch (size) {
3026 case 8:
3027 value_fmt = "%16.16llx ";
3028 break;
3029 case 4:
3030 value_fmt = "%8.8x ";
3031 break;
3032 case 2:
3033 value_fmt = "%4.4x ";
3034 break;
3035 case 1:
3036 value_fmt = "%2.2x ";
3037 break;
3038 default:
3039 /* "can't happen", caller checked */
3040 LOG_ERROR("invalid memory read size: %u", size);
3041 return;
3044 for (unsigned i = 0; i < count; i++) {
3045 if (i % line_modulo == 0) {
3046 output_len += snprintf(output + output_len,
3047 sizeof(output) - output_len,
3048 TARGET_ADDR_FMT ": ",
3049 (address + (i * size)));
3052 uint64_t value = 0;
3053 const uint8_t *value_ptr = buffer + i * size;
3054 switch (size) {
3055 case 8:
3056 value = target_buffer_get_u64(target, value_ptr);
3057 break;
3058 case 4:
3059 value = target_buffer_get_u32(target, value_ptr);
3060 break;
3061 case 2:
3062 value = target_buffer_get_u16(target, value_ptr);
3063 break;
3064 case 1:
3065 value = *value_ptr;
3067 output_len += snprintf(output + output_len,
3068 sizeof(output) - output_len,
3069 value_fmt, value);
3071 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3072 command_print(cmd_ctx, "%s", output);
3073 output_len = 0;
3078 COMMAND_HANDLER(handle_md_command)
3080 if (CMD_ARGC < 1)
3081 return ERROR_COMMAND_SYNTAX_ERROR;
3083 unsigned size = 0;
3084 switch (CMD_NAME[2]) {
3085 case 'd':
3086 size = 8;
3087 break;
3088 case 'w':
3089 size = 4;
3090 break;
3091 case 'h':
3092 size = 2;
3093 break;
3094 case 'b':
3095 size = 1;
3096 break;
3097 default:
3098 return ERROR_COMMAND_SYNTAX_ERROR;
3101 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3102 int (*fn)(struct target *target,
3103 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3104 if (physical) {
3105 CMD_ARGC--;
3106 CMD_ARGV++;
3107 fn = target_read_phys_memory;
3108 } else
3109 fn = target_read_memory;
3110 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3111 return ERROR_COMMAND_SYNTAX_ERROR;
3113 target_addr_t address;
3114 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3116 unsigned count = 1;
3117 if (CMD_ARGC == 2)
3118 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3120 uint8_t *buffer = calloc(count, size);
3122 struct target *target = get_current_target(CMD_CTX);
3123 int retval = fn(target, address, size, count, buffer);
3124 if (ERROR_OK == retval)
3125 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3127 free(buffer);
3129 return retval;
3132 typedef int (*target_write_fn)(struct target *target,
3133 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3135 static int target_fill_mem(struct target *target,
3136 target_addr_t address,
3137 target_write_fn fn,
3138 unsigned data_size,
3139 /* value */
3140 uint64_t b,
3141 /* count */
3142 unsigned c)
3144 /* We have to write in reasonably large chunks to be able
3145 * to fill large memory areas with any sane speed */
3146 const unsigned chunk_size = 16384;
3147 uint8_t *target_buf = malloc(chunk_size * data_size);
3148 if (target_buf == NULL) {
3149 LOG_ERROR("Out of memory");
3150 return ERROR_FAIL;
3153 for (unsigned i = 0; i < chunk_size; i++) {
3154 switch (data_size) {
3155 case 8:
3156 target_buffer_set_u64(target, target_buf + i * data_size, b);
3157 break;
3158 case 4:
3159 target_buffer_set_u32(target, target_buf + i * data_size, b);
3160 break;
3161 case 2:
3162 target_buffer_set_u16(target, target_buf + i * data_size, b);
3163 break;
3164 case 1:
3165 target_buffer_set_u8(target, target_buf + i * data_size, b);
3166 break;
3167 default:
3168 exit(-1);
3172 int retval = ERROR_OK;
3174 for (unsigned x = 0; x < c; x += chunk_size) {
3175 unsigned current;
3176 current = c - x;
3177 if (current > chunk_size)
3178 current = chunk_size;
3179 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3180 if (retval != ERROR_OK)
3181 break;
3182 /* avoid GDB timeouts */
3183 keep_alive();
3185 free(target_buf);
3187 return retval;
3191 COMMAND_HANDLER(handle_mw_command)
3193 if (CMD_ARGC < 2)
3194 return ERROR_COMMAND_SYNTAX_ERROR;
3195 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3196 target_write_fn fn;
3197 if (physical) {
3198 CMD_ARGC--;
3199 CMD_ARGV++;
3200 fn = target_write_phys_memory;
3201 } else
3202 fn = target_write_memory;
3203 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3204 return ERROR_COMMAND_SYNTAX_ERROR;
3206 target_addr_t address;
3207 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3209 target_addr_t value;
3210 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3212 unsigned count = 1;
3213 if (CMD_ARGC == 3)
3214 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3216 struct target *target = get_current_target(CMD_CTX);
3217 unsigned wordsize;
3218 switch (CMD_NAME[2]) {
3219 case 'd':
3220 wordsize = 8;
3221 break;
3222 case 'w':
3223 wordsize = 4;
3224 break;
3225 case 'h':
3226 wordsize = 2;
3227 break;
3228 case 'b':
3229 wordsize = 1;
3230 break;
3231 default:
3232 return ERROR_COMMAND_SYNTAX_ERROR;
3235 return target_fill_mem(target, address, fn, wordsize, value, count);
3238 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3239 target_addr_t *min_address, target_addr_t *max_address)
3241 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3242 return ERROR_COMMAND_SYNTAX_ERROR;
3244 /* a base address isn't always necessary,
3245 * default to 0x0 (i.e. don't relocate) */
3246 if (CMD_ARGC >= 2) {
3247 target_addr_t addr;
3248 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3249 image->base_address = addr;
3250 image->base_address_set = 1;
3251 } else
3252 image->base_address_set = 0;
3254 image->start_address_set = 0;
3256 if (CMD_ARGC >= 4)
3257 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3258 if (CMD_ARGC == 5) {
3259 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3260 /* use size (given) to find max (required) */
3261 *max_address += *min_address;
3264 if (*min_address > *max_address)
3265 return ERROR_COMMAND_SYNTAX_ERROR;
3267 return ERROR_OK;
3270 COMMAND_HANDLER(handle_load_image_command)
3272 uint8_t *buffer;
3273 size_t buf_cnt;
3274 uint32_t image_size;
3275 target_addr_t min_address = 0;
3276 target_addr_t max_address = -1;
3277 int i;
3278 struct image image;
3280 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3281 &image, &min_address, &max_address);
3282 if (ERROR_OK != retval)
3283 return retval;
3285 struct target *target = get_current_target(CMD_CTX);
3287 struct duration bench;
3288 duration_start(&bench);
3290 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3291 return ERROR_FAIL;
3293 image_size = 0x0;
3294 retval = ERROR_OK;
3295 for (i = 0; i < image.num_sections; i++) {
3296 buffer = malloc(image.sections[i].size);
3297 if (buffer == NULL) {
3298 command_print(CMD_CTX,
3299 "error allocating buffer for section (%d bytes)",
3300 (int)(image.sections[i].size));
3301 retval = ERROR_FAIL;
3302 break;
3305 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3306 if (retval != ERROR_OK) {
3307 free(buffer);
3308 break;
3311 uint32_t offset = 0;
3312 uint32_t length = buf_cnt;
3314 /* DANGER!!! beware of unsigned comparision here!!! */
3316 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3317 (image.sections[i].base_address < max_address)) {
3319 if (image.sections[i].base_address < min_address) {
3320 /* clip addresses below */
3321 offset += min_address-image.sections[i].base_address;
3322 length -= offset;
3325 if (image.sections[i].base_address + buf_cnt > max_address)
3326 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3328 retval = target_write_buffer(target,
3329 image.sections[i].base_address + offset, length, buffer + offset);
3330 if (retval != ERROR_OK) {
3331 free(buffer);
3332 break;
3334 image_size += length;
3335 command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3336 (unsigned int)length,
3337 image.sections[i].base_address + offset);
3340 free(buffer);
3343 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3344 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3345 "in %fs (%0.3f KiB/s)", image_size,
3346 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3349 image_close(&image);
3351 return retval;
3355 COMMAND_HANDLER(handle_dump_image_command)
3357 struct fileio *fileio;
3358 uint8_t *buffer;
3359 int retval, retvaltemp;
3360 target_addr_t address, size;
3361 struct duration bench;
3362 struct target *target = get_current_target(CMD_CTX);
3364 if (CMD_ARGC != 3)
3365 return ERROR_COMMAND_SYNTAX_ERROR;
3367 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3368 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3370 uint32_t buf_size = (size > 4096) ? 4096 : size;
3371 buffer = malloc(buf_size);
3372 if (!buffer)
3373 return ERROR_FAIL;
3375 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3376 if (retval != ERROR_OK) {
3377 free(buffer);
3378 return retval;
3381 duration_start(&bench);
3383 while (size > 0) {
3384 size_t size_written;
3385 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3386 retval = target_read_buffer(target, address, this_run_size, buffer);
3387 if (retval != ERROR_OK)
3388 break;
3390 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3391 if (retval != ERROR_OK)
3392 break;
3394 size -= this_run_size;
3395 address += this_run_size;
3398 free(buffer);
3400 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3401 size_t filesize;
3402 retval = fileio_size(fileio, &filesize);
3403 if (retval != ERROR_OK)
3404 return retval;
3405 command_print(CMD_CTX,
3406 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3407 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3410 retvaltemp = fileio_close(fileio);
3411 if (retvaltemp != ERROR_OK)
3412 return retvaltemp;
3414 return retval;
3417 enum verify_mode {
3418 IMAGE_TEST = 0,
3419 IMAGE_VERIFY = 1,
3420 IMAGE_CHECKSUM_ONLY = 2
3423 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3425 uint8_t *buffer;
3426 size_t buf_cnt;
3427 uint32_t image_size;
3428 int i;
3429 int retval;
3430 uint32_t checksum = 0;
3431 uint32_t mem_checksum = 0;
3433 struct image image;
3435 struct target *target = get_current_target(CMD_CTX);
3437 if (CMD_ARGC < 1)
3438 return ERROR_COMMAND_SYNTAX_ERROR;
3440 if (!target) {
3441 LOG_ERROR("no target selected");
3442 return ERROR_FAIL;
3445 struct duration bench;
3446 duration_start(&bench);
3448 if (CMD_ARGC >= 2) {
3449 target_addr_t addr;
3450 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3451 image.base_address = addr;
3452 image.base_address_set = 1;
3453 } else {
3454 image.base_address_set = 0;
3455 image.base_address = 0x0;
3458 image.start_address_set = 0;
3460 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3461 if (retval != ERROR_OK)
3462 return retval;
3464 image_size = 0x0;
3465 int diffs = 0;
3466 retval = ERROR_OK;
3467 for (i = 0; i < image.num_sections; i++) {
3468 buffer = malloc(image.sections[i].size);
3469 if (buffer == NULL) {
3470 command_print(CMD_CTX,
3471 "error allocating buffer for section (%d bytes)",
3472 (int)(image.sections[i].size));
3473 break;
3475 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3476 if (retval != ERROR_OK) {
3477 free(buffer);
3478 break;
3481 if (verify >= IMAGE_VERIFY) {
3482 /* calculate checksum of image */
3483 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3484 if (retval != ERROR_OK) {
3485 free(buffer);
3486 break;
3489 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3490 if (retval != ERROR_OK) {
3491 free(buffer);
3492 break;
3494 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3495 LOG_ERROR("checksum mismatch");
3496 free(buffer);
3497 retval = ERROR_FAIL;
3498 goto done;
3500 if (checksum != mem_checksum) {
3501 /* failed crc checksum, fall back to a binary compare */
3502 uint8_t *data;
3504 if (diffs == 0)
3505 LOG_ERROR("checksum mismatch - attempting binary compare");
3507 data = malloc(buf_cnt);
3509 /* Can we use 32bit word accesses? */
3510 int size = 1;
3511 int count = buf_cnt;
3512 if ((count % 4) == 0) {
3513 size *= 4;
3514 count /= 4;
3516 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3517 if (retval == ERROR_OK) {
3518 uint32_t t;
3519 for (t = 0; t < buf_cnt; t++) {
3520 if (data[t] != buffer[t]) {
3521 command_print(CMD_CTX,
3522 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3523 diffs,
3524 (unsigned)(t + image.sections[i].base_address),
3525 data[t],
3526 buffer[t]);
3527 if (diffs++ >= 127) {
3528 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3529 free(data);
3530 free(buffer);
3531 goto done;
3534 keep_alive();
3537 free(data);
3539 } else {
3540 command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3541 image.sections[i].base_address,
3542 buf_cnt);
3545 free(buffer);
3546 image_size += buf_cnt;
3548 if (diffs > 0)
3549 command_print(CMD_CTX, "No more differences found.");
3550 done:
3551 if (diffs > 0)
3552 retval = ERROR_FAIL;
3553 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3554 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3555 "in %fs (%0.3f KiB/s)", image_size,
3556 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3559 image_close(&image);
3561 return retval;
3564 COMMAND_HANDLER(handle_verify_image_checksum_command)
3566 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3569 COMMAND_HANDLER(handle_verify_image_command)
3571 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3574 COMMAND_HANDLER(handle_test_image_command)
3576 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3579 static int handle_bp_command_list(struct command_context *cmd_ctx)
3581 struct target *target = get_current_target(cmd_ctx);
3582 struct breakpoint *breakpoint = target->breakpoints;
3583 while (breakpoint) {
3584 if (breakpoint->type == BKPT_SOFT) {
3585 char *buf = buf_to_str(breakpoint->orig_instr,
3586 breakpoint->length, 16);
3587 command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3588 breakpoint->address,
3589 breakpoint->length,
3590 breakpoint->set, buf);
3591 free(buf);
3592 } else {
3593 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3594 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3595 breakpoint->asid,
3596 breakpoint->length, breakpoint->set);
3597 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3598 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3599 breakpoint->address,
3600 breakpoint->length, breakpoint->set);
3601 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3602 breakpoint->asid);
3603 } else
3604 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3605 breakpoint->address,
3606 breakpoint->length, breakpoint->set);
3609 breakpoint = breakpoint->next;
3611 return ERROR_OK;
3614 static int handle_bp_command_set(struct command_context *cmd_ctx,
3615 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3617 struct target *target = get_current_target(cmd_ctx);
3618 int retval;
3620 if (asid == 0) {
3621 retval = breakpoint_add(target, addr, length, hw);
3622 if (ERROR_OK == retval)
3623 command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3624 else {
3625 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3626 return retval;
3628 } else if (addr == 0) {
3629 if (target->type->add_context_breakpoint == NULL) {
3630 LOG_WARNING("Context breakpoint not available");
3631 return ERROR_OK;
3633 retval = context_breakpoint_add(target, asid, length, hw);
3634 if (ERROR_OK == retval)
3635 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3636 else {
3637 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3638 return retval;
3640 } else {
3641 if (target->type->add_hybrid_breakpoint == NULL) {
3642 LOG_WARNING("Hybrid breakpoint not available");
3643 return ERROR_OK;
3645 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3646 if (ERROR_OK == retval)
3647 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3648 else {
3649 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3650 return retval;
3653 return ERROR_OK;
3656 COMMAND_HANDLER(handle_bp_command)
3658 target_addr_t addr;
3659 uint32_t asid;
3660 uint32_t length;
3661 int hw = BKPT_SOFT;
3663 switch (CMD_ARGC) {
3664 case 0:
3665 return handle_bp_command_list(CMD_CTX);
3667 case 2:
3668 asid = 0;
3669 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3670 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3671 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3673 case 3:
3674 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3675 hw = BKPT_HARD;
3676 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3677 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3678 asid = 0;
3679 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3680 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3681 hw = BKPT_HARD;
3682 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3683 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3684 addr = 0;
3685 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3688 case 4:
3689 hw = BKPT_HARD;
3690 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3691 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3692 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3693 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3695 default:
3696 return ERROR_COMMAND_SYNTAX_ERROR;
3700 COMMAND_HANDLER(handle_rbp_command)
3702 if (CMD_ARGC != 1)
3703 return ERROR_COMMAND_SYNTAX_ERROR;
3705 target_addr_t addr;
3706 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3708 struct target *target = get_current_target(CMD_CTX);
3709 breakpoint_remove(target, addr);
3711 return ERROR_OK;
3714 COMMAND_HANDLER(handle_wp_command)
3716 struct target *target = get_current_target(CMD_CTX);
3718 if (CMD_ARGC == 0) {
3719 struct watchpoint *watchpoint = target->watchpoints;
3721 while (watchpoint) {
3722 command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3723 ", len: 0x%8.8" PRIx32
3724 ", r/w/a: %i, value: 0x%8.8" PRIx32
3725 ", mask: 0x%8.8" PRIx32,
3726 watchpoint->address,
3727 watchpoint->length,
3728 (int)watchpoint->rw,
3729 watchpoint->value,
3730 watchpoint->mask);
3731 watchpoint = watchpoint->next;
3733 return ERROR_OK;
3736 enum watchpoint_rw type = WPT_ACCESS;
3737 uint32_t addr = 0;
3738 uint32_t length = 0;
3739 uint32_t data_value = 0x0;
3740 uint32_t data_mask = 0xffffffff;
3742 switch (CMD_ARGC) {
3743 case 5:
3744 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3745 /* fall through */
3746 case 4:
3747 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3748 /* fall through */
3749 case 3:
3750 switch (CMD_ARGV[2][0]) {
3751 case 'r':
3752 type = WPT_READ;
3753 break;
3754 case 'w':
3755 type = WPT_WRITE;
3756 break;
3757 case 'a':
3758 type = WPT_ACCESS;
3759 break;
3760 default:
3761 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3762 return ERROR_COMMAND_SYNTAX_ERROR;
3764 /* fall through */
3765 case 2:
3766 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3767 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3768 break;
3770 default:
3771 return ERROR_COMMAND_SYNTAX_ERROR;
3774 int retval = watchpoint_add(target, addr, length, type,
3775 data_value, data_mask);
3776 if (ERROR_OK != retval)
3777 LOG_ERROR("Failure setting watchpoints");
3779 return retval;
3782 COMMAND_HANDLER(handle_rwp_command)
3784 if (CMD_ARGC != 1)
3785 return ERROR_COMMAND_SYNTAX_ERROR;
3787 uint32_t addr;
3788 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3790 struct target *target = get_current_target(CMD_CTX);
3791 watchpoint_remove(target, addr);
3793 return ERROR_OK;
3797 * Translate a virtual address to a physical address.
3799 * The low-level target implementation must have logged a detailed error
3800 * which is forwarded to telnet/GDB session.
3802 COMMAND_HANDLER(handle_virt2phys_command)
3804 if (CMD_ARGC != 1)
3805 return ERROR_COMMAND_SYNTAX_ERROR;
3807 target_addr_t va;
3808 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3809 target_addr_t pa;
3811 struct target *target = get_current_target(CMD_CTX);
3812 int retval = target->type->virt2phys(target, va, &pa);
3813 if (retval == ERROR_OK)
3814 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3816 return retval;
3819 static void writeData(FILE *f, const void *data, size_t len)
3821 size_t written = fwrite(data, 1, len, f);
3822 if (written != len)
3823 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3826 static void writeLong(FILE *f, int l, struct target *target)
3828 uint8_t val[4];
3830 target_buffer_set_u32(target, val, l);
3831 writeData(f, val, 4);
3834 static void writeString(FILE *f, char *s)
3836 writeData(f, s, strlen(s));
3839 typedef unsigned char UNIT[2]; /* unit of profiling */
3841 /* Dump a gmon.out histogram file. */
3842 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3843 uint32_t start_address, uint32_t end_address, struct target *target)
3845 uint32_t i;
3846 FILE *f = fopen(filename, "w");
3847 if (f == NULL)
3848 return;
3849 writeString(f, "gmon");
3850 writeLong(f, 0x00000001, target); /* Version */
3851 writeLong(f, 0, target); /* padding */
3852 writeLong(f, 0, target); /* padding */
3853 writeLong(f, 0, target); /* padding */
3855 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3856 writeData(f, &zero, 1);
3858 /* figure out bucket size */
3859 uint32_t min;
3860 uint32_t max;
3861 if (with_range) {
3862 min = start_address;
3863 max = end_address;
3864 } else {
3865 min = samples[0];
3866 max = samples[0];
3867 for (i = 0; i < sampleNum; i++) {
3868 if (min > samples[i])
3869 min = samples[i];
3870 if (max < samples[i])
3871 max = samples[i];
3874 /* max should be (largest sample + 1)
3875 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3876 max++;
3879 int addressSpace = max - min;
3880 assert(addressSpace >= 2);
3882 /* FIXME: What is the reasonable number of buckets?
3883 * The profiling result will be more accurate if there are enough buckets. */
3884 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3885 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3886 if (numBuckets > maxBuckets)
3887 numBuckets = maxBuckets;
3888 int *buckets = malloc(sizeof(int) * numBuckets);
3889 if (buckets == NULL) {
3890 fclose(f);
3891 return;
3893 memset(buckets, 0, sizeof(int) * numBuckets);
3894 for (i = 0; i < sampleNum; i++) {
3895 uint32_t address = samples[i];
3897 if ((address < min) || (max <= address))
3898 continue;
3900 long long a = address - min;
3901 long long b = numBuckets;
3902 long long c = addressSpace;
3903 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3904 buckets[index_t]++;
3907 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3908 writeLong(f, min, target); /* low_pc */
3909 writeLong(f, max, target); /* high_pc */
3910 writeLong(f, numBuckets, target); /* # of buckets */
3911 writeLong(f, 100, target); /* KLUDGE! We lie, ca. 100Hz best case. */
3912 writeString(f, "seconds");
3913 for (i = 0; i < (15-strlen("seconds")); i++)
3914 writeData(f, &zero, 1);
3915 writeString(f, "s");
3917 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3919 char *data = malloc(2 * numBuckets);
3920 if (data != NULL) {
3921 for (i = 0; i < numBuckets; i++) {
3922 int val;
3923 val = buckets[i];
3924 if (val > 65535)
3925 val = 65535;
3926 data[i * 2] = val&0xff;
3927 data[i * 2 + 1] = (val >> 8) & 0xff;
3929 free(buckets);
3930 writeData(f, data, numBuckets * 2);
3931 free(data);
3932 } else
3933 free(buckets);
3935 fclose(f);
3938 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3939 * which will be used as a random sampling of PC */
3940 COMMAND_HANDLER(handle_profile_command)
3942 struct target *target = get_current_target(CMD_CTX);
3944 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3945 return ERROR_COMMAND_SYNTAX_ERROR;
3947 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3948 uint32_t offset;
3949 uint32_t num_of_samples;
3950 int retval = ERROR_OK;
3952 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3954 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3955 if (samples == NULL) {
3956 LOG_ERROR("No memory to store samples.");
3957 return ERROR_FAIL;
3961 * Some cores let us sample the PC without the
3962 * annoying halt/resume step; for example, ARMv7 PCSR.
3963 * Provide a way to use that more efficient mechanism.
3965 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3966 &num_of_samples, offset);
3967 if (retval != ERROR_OK) {
3968 free(samples);
3969 return retval;
3972 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3974 retval = target_poll(target);
3975 if (retval != ERROR_OK) {
3976 free(samples);
3977 return retval;
3979 if (target->state == TARGET_RUNNING) {
3980 retval = target_halt(target);
3981 if (retval != ERROR_OK) {
3982 free(samples);
3983 return retval;
3987 retval = target_poll(target);
3988 if (retval != ERROR_OK) {
3989 free(samples);
3990 return retval;
3993 uint32_t start_address = 0;
3994 uint32_t end_address = 0;
3995 bool with_range = false;
3996 if (CMD_ARGC == 4) {
3997 with_range = true;
3998 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3999 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4002 write_gmon(samples, num_of_samples, CMD_ARGV[1],
4003 with_range, start_address, end_address, target);
4004 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4006 free(samples);
4007 return retval;
4010 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4012 char *namebuf;
4013 Jim_Obj *nameObjPtr, *valObjPtr;
4014 int result;
4016 namebuf = alloc_printf("%s(%d)", varname, idx);
4017 if (!namebuf)
4018 return JIM_ERR;
4020 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4021 valObjPtr = Jim_NewIntObj(interp, val);
4022 if (!nameObjPtr || !valObjPtr) {
4023 free(namebuf);
4024 return JIM_ERR;
4027 Jim_IncrRefCount(nameObjPtr);
4028 Jim_IncrRefCount(valObjPtr);
4029 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4030 Jim_DecrRefCount(interp, nameObjPtr);
4031 Jim_DecrRefCount(interp, valObjPtr);
4032 free(namebuf);
4033 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4034 return result;
4037 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4039 struct command_context *context;
4040 struct target *target;
4042 context = current_command_context(interp);
4043 assert(context != NULL);
4045 target = get_current_target(context);
4046 if (target == NULL) {
4047 LOG_ERROR("mem2array: no current target");
4048 return JIM_ERR;
4051 return target_mem2array(interp, target, argc - 1, argv + 1);
4054 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4056 long l;
4057 uint32_t width;
4058 int len;
4059 uint32_t addr;
4060 uint32_t count;
4061 uint32_t v;
4062 const char *varname;
4063 const char *phys;
4064 bool is_phys;
4065 int n, e, retval;
4066 uint32_t i;
4068 /* argv[1] = name of array to receive the data
4069 * argv[2] = desired width
4070 * argv[3] = memory address
4071 * argv[4] = count of times to read
4073 if (argc < 4 || argc > 5) {
4074 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
4075 return JIM_ERR;
4077 varname = Jim_GetString(argv[0], &len);
4078 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4080 e = Jim_GetLong(interp, argv[1], &l);
4081 width = l;
4082 if (e != JIM_OK)
4083 return e;
4085 e = Jim_GetLong(interp, argv[2], &l);
4086 addr = l;
4087 if (e != JIM_OK)
4088 return e;
4089 e = Jim_GetLong(interp, argv[3], &l);
4090 len = l;
4091 if (e != JIM_OK)
4092 return e;
4093 is_phys = false;
4094 if (argc > 4) {
4095 phys = Jim_GetString(argv[4], &n);
4096 if (!strncmp(phys, "phys", n))
4097 is_phys = true;
4098 else
4099 return JIM_ERR;
4101 switch (width) {
4102 case 8:
4103 width = 1;
4104 break;
4105 case 16:
4106 width = 2;
4107 break;
4108 case 32:
4109 width = 4;
4110 break;
4111 default:
4112 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4113 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4114 return JIM_ERR;
4116 if (len == 0) {
4117 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4118 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4119 return JIM_ERR;
4121 if ((addr + (len * width)) < addr) {
4122 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4123 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4124 return JIM_ERR;
4126 /* absurd transfer size? */
4127 if (len > 65536) {
4128 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4129 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4130 return JIM_ERR;
4133 if ((width == 1) ||
4134 ((width == 2) && ((addr & 1) == 0)) ||
4135 ((width == 4) && ((addr & 3) == 0))) {
4136 /* all is well */
4137 } else {
4138 char buf[100];
4139 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4140 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4141 addr,
4142 width);
4143 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4144 return JIM_ERR;
4147 /* Transfer loop */
4149 /* index counter */
4150 n = 0;
4152 size_t buffersize = 4096;
4153 uint8_t *buffer = malloc(buffersize);
4154 if (buffer == NULL)
4155 return JIM_ERR;
4157 /* assume ok */
4158 e = JIM_OK;
4159 while (len) {
4160 /* Slurp... in buffer size chunks */
4162 count = len; /* in objects.. */
4163 if (count > (buffersize / width))
4164 count = (buffersize / width);
4166 if (is_phys)
4167 retval = target_read_phys_memory(target, addr, width, count, buffer);
4168 else
4169 retval = target_read_memory(target, addr, width, count, buffer);
4170 if (retval != ERROR_OK) {
4171 /* BOO !*/
4172 LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4173 addr,
4174 width,
4175 count);
4176 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4177 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4178 e = JIM_ERR;
4179 break;
4180 } else {
4181 v = 0; /* shut up gcc */
4182 for (i = 0; i < count ; i++, n++) {
4183 switch (width) {
4184 case 4:
4185 v = target_buffer_get_u32(target, &buffer[i*width]);
4186 break;
4187 case 2:
4188 v = target_buffer_get_u16(target, &buffer[i*width]);
4189 break;
4190 case 1:
4191 v = buffer[i] & 0x0ff;
4192 break;
4194 new_int_array_element(interp, varname, n, v);
4196 len -= count;
4197 addr += count * width;
4201 free(buffer);
4203 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4205 return e;
4208 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4210 char *namebuf;
4211 Jim_Obj *nameObjPtr, *valObjPtr;
4212 int result;
4213 long l;
4215 namebuf = alloc_printf("%s(%d)", varname, idx);
4216 if (!namebuf)
4217 return JIM_ERR;
4219 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4220 if (!nameObjPtr) {
4221 free(namebuf);
4222 return JIM_ERR;
4225 Jim_IncrRefCount(nameObjPtr);
4226 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4227 Jim_DecrRefCount(interp, nameObjPtr);
4228 free(namebuf);
4229 if (valObjPtr == NULL)
4230 return JIM_ERR;
4232 result = Jim_GetLong(interp, valObjPtr, &l);
4233 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4234 *val = l;
4235 return result;
4238 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4240 struct command_context *context;
4241 struct target *target;
4243 context = current_command_context(interp);
4244 assert(context != NULL);
4246 target = get_current_target(context);
4247 if (target == NULL) {
4248 LOG_ERROR("array2mem: no current target");
4249 return JIM_ERR;
4252 return target_array2mem(interp, target, argc-1, argv + 1);
4255 static int target_array2mem(Jim_Interp *interp, struct target *target,
4256 int argc, Jim_Obj *const *argv)
4258 long l;
4259 uint32_t width;
4260 int len;
4261 uint32_t addr;
4262 uint32_t count;
4263 uint32_t v;
4264 const char *varname;
4265 const char *phys;
4266 bool is_phys;
4267 int n, e, retval;
4268 uint32_t i;
4270 /* argv[1] = name of array to get the data
4271 * argv[2] = desired width
4272 * argv[3] = memory address
4273 * argv[4] = count to write
4275 if (argc < 4 || argc > 5) {
4276 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4277 return JIM_ERR;
4279 varname = Jim_GetString(argv[0], &len);
4280 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4282 e = Jim_GetLong(interp, argv[1], &l);
4283 width = l;
4284 if (e != JIM_OK)
4285 return e;
4287 e = Jim_GetLong(interp, argv[2], &l);
4288 addr = l;
4289 if (e != JIM_OK)
4290 return e;
4291 e = Jim_GetLong(interp, argv[3], &l);
4292 len = l;
4293 if (e != JIM_OK)
4294 return e;
4295 is_phys = false;
4296 if (argc > 4) {
4297 phys = Jim_GetString(argv[4], &n);
4298 if (!strncmp(phys, "phys", n))
4299 is_phys = true;
4300 else
4301 return JIM_ERR;
4303 switch (width) {
4304 case 8:
4305 width = 1;
4306 break;
4307 case 16:
4308 width = 2;
4309 break;
4310 case 32:
4311 width = 4;
4312 break;
4313 default:
4314 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4315 Jim_AppendStrings(interp, Jim_GetResult(interp),
4316 "Invalid width param, must be 8/16/32", NULL);
4317 return JIM_ERR;
4319 if (len == 0) {
4320 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4321 Jim_AppendStrings(interp, Jim_GetResult(interp),
4322 "array2mem: zero width read?", NULL);
4323 return JIM_ERR;
4325 if ((addr + (len * width)) < addr) {
4326 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4327 Jim_AppendStrings(interp, Jim_GetResult(interp),
4328 "array2mem: addr + len - wraps to zero?", NULL);
4329 return JIM_ERR;
4331 /* absurd transfer size? */
4332 if (len > 65536) {
4333 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4334 Jim_AppendStrings(interp, Jim_GetResult(interp),
4335 "array2mem: absurd > 64K item request", NULL);
4336 return JIM_ERR;
4339 if ((width == 1) ||
4340 ((width == 2) && ((addr & 1) == 0)) ||
4341 ((width == 4) && ((addr & 3) == 0))) {
4342 /* all is well */
4343 } else {
4344 char buf[100];
4345 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4346 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4347 addr,
4348 width);
4349 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4350 return JIM_ERR;
4353 /* Transfer loop */
4355 /* index counter */
4356 n = 0;
4357 /* assume ok */
4358 e = JIM_OK;
4360 size_t buffersize = 4096;
4361 uint8_t *buffer = malloc(buffersize);
4362 if (buffer == NULL)
4363 return JIM_ERR;
4365 while (len) {
4366 /* Slurp... in buffer size chunks */
4368 count = len; /* in objects.. */
4369 if (count > (buffersize / width))
4370 count = (buffersize / width);
4372 v = 0; /* shut up gcc */
4373 for (i = 0; i < count; i++, n++) {
4374 get_int_array_element(interp, varname, n, &v);
4375 switch (width) {
4376 case 4:
4377 target_buffer_set_u32(target, &buffer[i * width], v);
4378 break;
4379 case 2:
4380 target_buffer_set_u16(target, &buffer[i * width], v);
4381 break;
4382 case 1:
4383 buffer[i] = v & 0x0ff;
4384 break;
4387 len -= count;
4389 if (is_phys)
4390 retval = target_write_phys_memory(target, addr, width, count, buffer);
4391 else
4392 retval = target_write_memory(target, addr, width, count, buffer);
4393 if (retval != ERROR_OK) {
4394 /* BOO !*/
4395 LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4396 addr,
4397 width,
4398 count);
4399 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4400 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4401 e = JIM_ERR;
4402 break;
4404 addr += count * width;
4407 free(buffer);
4409 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4411 return e;
4414 /* FIX? should we propagate errors here rather than printing them
4415 * and continuing?
4417 void target_handle_event(struct target *target, enum target_event e)
4419 struct target_event_action *teap;
4421 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4422 if (teap->event == e) {
4423 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4424 target->target_number,
4425 target_name(target),
4426 target_type_name(target),
4428 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4429 Jim_GetString(teap->body, NULL));
4430 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4431 Jim_MakeErrorMessage(teap->interp);
4432 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4439 * Returns true only if the target has a handler for the specified event.
4441 bool target_has_event_action(struct target *target, enum target_event event)
4443 struct target_event_action *teap;
4445 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4446 if (teap->event == event)
4447 return true;
4449 return false;
4452 enum target_cfg_param {
4453 TCFG_TYPE,
4454 TCFG_EVENT,
4455 TCFG_WORK_AREA_VIRT,
4456 TCFG_WORK_AREA_PHYS,
4457 TCFG_WORK_AREA_SIZE,
4458 TCFG_WORK_AREA_BACKUP,
4459 TCFG_ENDIAN,
4460 TCFG_COREID,
4461 TCFG_CHAIN_POSITION,
4462 TCFG_DBGBASE,
4463 TCFG_CTIBASE,
4464 TCFG_RTOS,
4465 TCFG_DEFER_EXAMINE,
4468 static Jim_Nvp nvp_config_opts[] = {
4469 { .name = "-type", .value = TCFG_TYPE },
4470 { .name = "-event", .value = TCFG_EVENT },
4471 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4472 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4473 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4474 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4475 { .name = "-endian" , .value = TCFG_ENDIAN },
4476 { .name = "-coreid", .value = TCFG_COREID },
4477 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4478 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4479 { .name = "-ctibase", .value = TCFG_CTIBASE },
4480 { .name = "-rtos", .value = TCFG_RTOS },
4481 { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4482 { .name = NULL, .value = -1 }
4485 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4487 Jim_Nvp *n;
4488 Jim_Obj *o;
4489 jim_wide w;
4490 int e;
4492 /* parse config or cget options ... */
4493 while (goi->argc > 0) {
4494 Jim_SetEmptyResult(goi->interp);
4495 /* Jim_GetOpt_Debug(goi); */
4497 if (target->type->target_jim_configure) {
4498 /* target defines a configure function */
4499 /* target gets first dibs on parameters */
4500 e = (*(target->type->target_jim_configure))(target, goi);
4501 if (e == JIM_OK) {
4502 /* more? */
4503 continue;
4505 if (e == JIM_ERR) {
4506 /* An error */
4507 return e;
4509 /* otherwise we 'continue' below */
4511 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4512 if (e != JIM_OK) {
4513 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4514 return e;
4516 switch (n->value) {
4517 case TCFG_TYPE:
4518 /* not setable */
4519 if (goi->isconfigure) {
4520 Jim_SetResultFormatted(goi->interp,
4521 "not settable: %s", n->name);
4522 return JIM_ERR;
4523 } else {
4524 no_params:
4525 if (goi->argc != 0) {
4526 Jim_WrongNumArgs(goi->interp,
4527 goi->argc, goi->argv,
4528 "NO PARAMS");
4529 return JIM_ERR;
4532 Jim_SetResultString(goi->interp,
4533 target_type_name(target), -1);
4534 /* loop for more */
4535 break;
4536 case TCFG_EVENT:
4537 if (goi->argc == 0) {
4538 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4539 return JIM_ERR;
4542 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4543 if (e != JIM_OK) {
4544 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4545 return e;
4548 if (goi->isconfigure) {
4549 if (goi->argc != 1) {
4550 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4551 return JIM_ERR;
4553 } else {
4554 if (goi->argc != 0) {
4555 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4556 return JIM_ERR;
4561 struct target_event_action *teap;
4563 teap = target->event_action;
4564 /* replace existing? */
4565 while (teap) {
4566 if (teap->event == (enum target_event)n->value)
4567 break;
4568 teap = teap->next;
4571 if (goi->isconfigure) {
4572 bool replace = true;
4573 if (teap == NULL) {
4574 /* create new */
4575 teap = calloc(1, sizeof(*teap));
4576 replace = false;
4578 teap->event = n->value;
4579 teap->interp = goi->interp;
4580 Jim_GetOpt_Obj(goi, &o);
4581 if (teap->body)
4582 Jim_DecrRefCount(teap->interp, teap->body);
4583 teap->body = Jim_DuplicateObj(goi->interp, o);
4585 * FIXME:
4586 * Tcl/TK - "tk events" have a nice feature.
4587 * See the "BIND" command.
4588 * We should support that here.
4589 * You can specify %X and %Y in the event code.
4590 * The idea is: %T - target name.
4591 * The idea is: %N - target number
4592 * The idea is: %E - event name.
4594 Jim_IncrRefCount(teap->body);
4596 if (!replace) {
4597 /* add to head of event list */
4598 teap->next = target->event_action;
4599 target->event_action = teap;
4601 Jim_SetEmptyResult(goi->interp);
4602 } else {
4603 /* get */
4604 if (teap == NULL)
4605 Jim_SetEmptyResult(goi->interp);
4606 else
4607 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4610 /* loop for more */
4611 break;
4613 case TCFG_WORK_AREA_VIRT:
4614 if (goi->isconfigure) {
4615 target_free_all_working_areas(target);
4616 e = Jim_GetOpt_Wide(goi, &w);
4617 if (e != JIM_OK)
4618 return e;
4619 target->working_area_virt = w;
4620 target->working_area_virt_spec = true;
4621 } else {
4622 if (goi->argc != 0)
4623 goto no_params;
4625 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4626 /* loop for more */
4627 break;
4629 case TCFG_WORK_AREA_PHYS:
4630 if (goi->isconfigure) {
4631 target_free_all_working_areas(target);
4632 e = Jim_GetOpt_Wide(goi, &w);
4633 if (e != JIM_OK)
4634 return e;
4635 target->working_area_phys = w;
4636 target->working_area_phys_spec = true;
4637 } else {
4638 if (goi->argc != 0)
4639 goto no_params;
4641 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4642 /* loop for more */
4643 break;
4645 case TCFG_WORK_AREA_SIZE:
4646 if (goi->isconfigure) {
4647 target_free_all_working_areas(target);
4648 e = Jim_GetOpt_Wide(goi, &w);
4649 if (e != JIM_OK)
4650 return e;
4651 target->working_area_size = w;
4652 } else {
4653 if (goi->argc != 0)
4654 goto no_params;
4656 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4657 /* loop for more */
4658 break;
4660 case TCFG_WORK_AREA_BACKUP:
4661 if (goi->isconfigure) {
4662 target_free_all_working_areas(target);
4663 e = Jim_GetOpt_Wide(goi, &w);
4664 if (e != JIM_OK)
4665 return e;
4666 /* make this exactly 1 or 0 */
4667 target->backup_working_area = (!!w);
4668 } else {
4669 if (goi->argc != 0)
4670 goto no_params;
4672 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4673 /* loop for more e*/
4674 break;
4677 case TCFG_ENDIAN:
4678 if (goi->isconfigure) {
4679 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4680 if (e != JIM_OK) {
4681 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4682 return e;
4684 target->endianness = n->value;
4685 } else {
4686 if (goi->argc != 0)
4687 goto no_params;
4689 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4690 if (n->name == NULL) {
4691 target->endianness = TARGET_LITTLE_ENDIAN;
4692 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4694 Jim_SetResultString(goi->interp, n->name, -1);
4695 /* loop for more */
4696 break;
4698 case TCFG_COREID:
4699 if (goi->isconfigure) {
4700 e = Jim_GetOpt_Wide(goi, &w);
4701 if (e != JIM_OK)
4702 return e;
4703 target->coreid = (int32_t)w;
4704 } else {
4705 if (goi->argc != 0)
4706 goto no_params;
4708 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4709 /* loop for more */
4710 break;
4712 case TCFG_CHAIN_POSITION:
4713 if (goi->isconfigure) {
4714 Jim_Obj *o_t;
4715 struct jtag_tap *tap;
4716 target_free_all_working_areas(target);
4717 e = Jim_GetOpt_Obj(goi, &o_t);
4718 if (e != JIM_OK)
4719 return e;
4720 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4721 if (tap == NULL)
4722 return JIM_ERR;
4723 /* make this exactly 1 or 0 */
4724 target->tap = tap;
4725 } else {
4726 if (goi->argc != 0)
4727 goto no_params;
4729 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4730 /* loop for more e*/
4731 break;
4732 case TCFG_DBGBASE:
4733 if (goi->isconfigure) {
4734 e = Jim_GetOpt_Wide(goi, &w);
4735 if (e != JIM_OK)
4736 return e;
4737 target->dbgbase = (uint32_t)w;
4738 target->dbgbase_set = true;
4739 } else {
4740 if (goi->argc != 0)
4741 goto no_params;
4743 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4744 /* loop for more */
4745 break;
4746 case TCFG_CTIBASE:
4747 if (goi->isconfigure) {
4748 e = Jim_GetOpt_Wide(goi, &w);
4749 if (e != JIM_OK)
4750 return e;
4751 target->ctibase = (uint32_t)w;
4752 target->ctibase_set = true;
4753 } else {
4754 if (goi->argc != 0)
4755 goto no_params;
4757 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->ctibase));
4758 /* loop for more */
4759 break;
4760 case TCFG_RTOS:
4761 /* RTOS */
4763 int result = rtos_create(goi, target);
4764 if (result != JIM_OK)
4765 return result;
4767 /* loop for more */
4768 break;
4770 case TCFG_DEFER_EXAMINE:
4771 /* DEFER_EXAMINE */
4772 target->defer_examine = true;
4773 /* loop for more */
4774 break;
4777 } /* while (goi->argc) */
4780 /* done - we return */
4781 return JIM_OK;
4784 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4786 Jim_GetOptInfo goi;
4788 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4789 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4790 if (goi.argc < 1) {
4791 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4792 "missing: -option ...");
4793 return JIM_ERR;
4795 struct target *target = Jim_CmdPrivData(goi.interp);
4796 return target_configure(&goi, target);
4799 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4801 const char *cmd_name = Jim_GetString(argv[0], NULL);
4803 Jim_GetOptInfo goi;
4804 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4806 if (goi.argc < 2 || goi.argc > 4) {
4807 Jim_SetResultFormatted(goi.interp,
4808 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4809 return JIM_ERR;
4812 target_write_fn fn;
4813 fn = target_write_memory;
4815 int e;
4816 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4817 /* consume it */
4818 struct Jim_Obj *obj;
4819 e = Jim_GetOpt_Obj(&goi, &obj);
4820 if (e != JIM_OK)
4821 return e;
4823 fn = target_write_phys_memory;
4826 jim_wide a;
4827 e = Jim_GetOpt_Wide(&goi, &a);
4828 if (e != JIM_OK)
4829 return e;
4831 jim_wide b;
4832 e = Jim_GetOpt_Wide(&goi, &b);
4833 if (e != JIM_OK)
4834 return e;
4836 jim_wide c = 1;
4837 if (goi.argc == 1) {
4838 e = Jim_GetOpt_Wide(&goi, &c);
4839 if (e != JIM_OK)
4840 return e;
4843 /* all args must be consumed */
4844 if (goi.argc != 0)
4845 return JIM_ERR;
4847 struct target *target = Jim_CmdPrivData(goi.interp);
4848 unsigned data_size;
4849 if (strcasecmp(cmd_name, "mww") == 0)
4850 data_size = 4;
4851 else if (strcasecmp(cmd_name, "mwh") == 0)
4852 data_size = 2;
4853 else if (strcasecmp(cmd_name, "mwb") == 0)
4854 data_size = 1;
4855 else {
4856 LOG_ERROR("command '%s' unknown: ", cmd_name);
4857 return JIM_ERR;
4860 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4864 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4866 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4867 * mdh [phys] <address> [<count>] - for 16 bit reads
4868 * mdb [phys] <address> [<count>] - for 8 bit reads
4870 * Count defaults to 1.
4872 * Calls target_read_memory or target_read_phys_memory depending on
4873 * the presence of the "phys" argument
4874 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4875 * to int representation in base16.
4876 * Also outputs read data in a human readable form using command_print
4878 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4879 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4880 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4881 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4882 * on success, with [<count>] number of elements.
4884 * In case of little endian target:
4885 * Example1: "mdw 0x00000000" returns "10123456"
4886 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4887 * Example3: "mdb 0x00000000" returns "56"
4888 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4889 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4891 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4893 const char *cmd_name = Jim_GetString(argv[0], NULL);
4895 Jim_GetOptInfo goi;
4896 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4898 if ((goi.argc < 1) || (goi.argc > 3)) {
4899 Jim_SetResultFormatted(goi.interp,
4900 "usage: %s [phys] <address> [<count>]", cmd_name);
4901 return JIM_ERR;
4904 int (*fn)(struct target *target,
4905 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4906 fn = target_read_memory;
4908 int e;
4909 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4910 /* consume it */
4911 struct Jim_Obj *obj;
4912 e = Jim_GetOpt_Obj(&goi, &obj);
4913 if (e != JIM_OK)
4914 return e;
4916 fn = target_read_phys_memory;
4919 /* Read address parameter */
4920 jim_wide addr;
4921 e = Jim_GetOpt_Wide(&goi, &addr);
4922 if (e != JIM_OK)
4923 return JIM_ERR;
4925 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4926 jim_wide count;
4927 if (goi.argc == 1) {
4928 e = Jim_GetOpt_Wide(&goi, &count);
4929 if (e != JIM_OK)
4930 return JIM_ERR;
4931 } else
4932 count = 1;
4934 /* all args must be consumed */
4935 if (goi.argc != 0)
4936 return JIM_ERR;
4938 jim_wide dwidth = 1; /* shut up gcc */
4939 if (strcasecmp(cmd_name, "mdw") == 0)
4940 dwidth = 4;
4941 else if (strcasecmp(cmd_name, "mdh") == 0)
4942 dwidth = 2;
4943 else if (strcasecmp(cmd_name, "mdb") == 0)
4944 dwidth = 1;
4945 else {
4946 LOG_ERROR("command '%s' unknown: ", cmd_name);
4947 return JIM_ERR;
4950 /* convert count to "bytes" */
4951 int bytes = count * dwidth;
4953 struct target *target = Jim_CmdPrivData(goi.interp);
4954 uint8_t target_buf[32];
4955 jim_wide x, y, z;
4956 while (bytes > 0) {
4957 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4959 /* Try to read out next block */
4960 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4962 if (e != ERROR_OK) {
4963 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4964 return JIM_ERR;
4967 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4968 switch (dwidth) {
4969 case 4:
4970 for (x = 0; x < 16 && x < y; x += 4) {
4971 z = target_buffer_get_u32(target, &(target_buf[x]));
4972 command_print_sameline(NULL, "%08x ", (int)(z));
4974 for (; (x < 16) ; x += 4)
4975 command_print_sameline(NULL, " ");
4976 break;
4977 case 2:
4978 for (x = 0; x < 16 && x < y; x += 2) {
4979 z = target_buffer_get_u16(target, &(target_buf[x]));
4980 command_print_sameline(NULL, "%04x ", (int)(z));
4982 for (; (x < 16) ; x += 2)
4983 command_print_sameline(NULL, " ");
4984 break;
4985 case 1:
4986 default:
4987 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4988 z = target_buffer_get_u8(target, &(target_buf[x]));
4989 command_print_sameline(NULL, "%02x ", (int)(z));
4991 for (; (x < 16) ; x += 1)
4992 command_print_sameline(NULL, " ");
4993 break;
4995 /* ascii-ify the bytes */
4996 for (x = 0 ; x < y ; x++) {
4997 if ((target_buf[x] >= 0x20) &&
4998 (target_buf[x] <= 0x7e)) {
4999 /* good */
5000 } else {
5001 /* smack it */
5002 target_buf[x] = '.';
5005 /* space pad */
5006 while (x < 16) {
5007 target_buf[x] = ' ';
5008 x++;
5010 /* terminate */
5011 target_buf[16] = 0;
5012 /* print - with a newline */
5013 command_print_sameline(NULL, "%s\n", target_buf);
5014 /* NEXT... */
5015 bytes -= 16;
5016 addr += 16;
5018 return JIM_OK;
5021 static int jim_target_mem2array(Jim_Interp *interp,
5022 int argc, Jim_Obj *const *argv)
5024 struct target *target = Jim_CmdPrivData(interp);
5025 return target_mem2array(interp, target, argc - 1, argv + 1);
5028 static int jim_target_array2mem(Jim_Interp *interp,
5029 int argc, Jim_Obj *const *argv)
5031 struct target *target = Jim_CmdPrivData(interp);
5032 return target_array2mem(interp, target, argc - 1, argv + 1);
5035 static int jim_target_tap_disabled(Jim_Interp *interp)
5037 Jim_SetResultFormatted(interp, "[TAP is disabled]");
5038 return JIM_ERR;
5041 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5043 bool allow_defer = false;
5045 Jim_GetOptInfo goi;
5046 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5047 if (goi.argc > 1) {
5048 const char *cmd_name = Jim_GetString(argv[0], NULL);
5049 Jim_SetResultFormatted(goi.interp,
5050 "usage: %s ['allow-defer']", cmd_name);
5051 return JIM_ERR;
5053 if (goi.argc > 0 &&
5054 strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5055 /* consume it */
5056 struct Jim_Obj *obj;
5057 int e = Jim_GetOpt_Obj(&goi, &obj);
5058 if (e != JIM_OK)
5059 return e;
5060 allow_defer = true;
5063 struct target *target = Jim_CmdPrivData(interp);
5064 if (!target->tap->enabled)
5065 return jim_target_tap_disabled(interp);
5067 if (allow_defer && target->defer_examine) {
5068 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5069 LOG_INFO("Use arp_examine command to examine it manually!");
5070 return JIM_OK;
5073 int e = target->type->examine(target);
5074 if (e != ERROR_OK)
5075 return JIM_ERR;
5076 return JIM_OK;
5079 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5081 struct target *target = Jim_CmdPrivData(interp);
5083 Jim_SetResultBool(interp, target_was_examined(target));
5084 return JIM_OK;
5087 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5089 struct target *target = Jim_CmdPrivData(interp);
5091 Jim_SetResultBool(interp, target->defer_examine);
5092 return JIM_OK;
5095 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5097 if (argc != 1) {
5098 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5099 return JIM_ERR;
5101 struct target *target = Jim_CmdPrivData(interp);
5103 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5104 return JIM_ERR;
5106 return JIM_OK;
5109 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5111 if (argc != 1) {
5112 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5113 return JIM_ERR;
5115 struct target *target = Jim_CmdPrivData(interp);
5116 if (!target->tap->enabled)
5117 return jim_target_tap_disabled(interp);
5119 int e;
5120 if (!(target_was_examined(target)))
5121 e = ERROR_TARGET_NOT_EXAMINED;
5122 else
5123 e = target->type->poll(target);
5124 if (e != ERROR_OK)
5125 return JIM_ERR;
5126 return JIM_OK;
5129 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5131 Jim_GetOptInfo goi;
5132 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5134 if (goi.argc != 2) {
5135 Jim_WrongNumArgs(interp, 0, argv,
5136 "([tT]|[fF]|assert|deassert) BOOL");
5137 return JIM_ERR;
5140 Jim_Nvp *n;
5141 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5142 if (e != JIM_OK) {
5143 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5144 return e;
5146 /* the halt or not param */
5147 jim_wide a;
5148 e = Jim_GetOpt_Wide(&goi, &a);
5149 if (e != JIM_OK)
5150 return e;
5152 struct target *target = Jim_CmdPrivData(goi.interp);
5153 if (!target->tap->enabled)
5154 return jim_target_tap_disabled(interp);
5156 if (!target->type->assert_reset || !target->type->deassert_reset) {
5157 Jim_SetResultFormatted(interp,
5158 "No target-specific reset for %s",
5159 target_name(target));
5160 return JIM_ERR;
5163 if (target->defer_examine)
5164 target_reset_examined(target);
5166 /* determine if we should halt or not. */
5167 target->reset_halt = !!a;
5168 /* When this happens - all workareas are invalid. */
5169 target_free_all_working_areas_restore(target, 0);
5171 /* do the assert */
5172 if (n->value == NVP_ASSERT)
5173 e = target->type->assert_reset(target);
5174 else
5175 e = target->type->deassert_reset(target);
5176 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5179 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5181 if (argc != 1) {
5182 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5183 return JIM_ERR;
5185 struct target *target = Jim_CmdPrivData(interp);
5186 if (!target->tap->enabled)
5187 return jim_target_tap_disabled(interp);
5188 int e = target->type->halt(target);
5189 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5192 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5194 Jim_GetOptInfo goi;
5195 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5197 /* params: <name> statename timeoutmsecs */
5198 if (goi.argc != 2) {
5199 const char *cmd_name = Jim_GetString(argv[0], NULL);
5200 Jim_SetResultFormatted(goi.interp,
5201 "%s <state_name> <timeout_in_msec>", cmd_name);
5202 return JIM_ERR;
5205 Jim_Nvp *n;
5206 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5207 if (e != JIM_OK) {
5208 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5209 return e;
5211 jim_wide a;
5212 e = Jim_GetOpt_Wide(&goi, &a);
5213 if (e != JIM_OK)
5214 return e;
5215 struct target *target = Jim_CmdPrivData(interp);
5216 if (!target->tap->enabled)
5217 return jim_target_tap_disabled(interp);
5219 e = target_wait_state(target, n->value, a);
5220 if (e != ERROR_OK) {
5221 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5222 Jim_SetResultFormatted(goi.interp,
5223 "target: %s wait %s fails (%#s) %s",
5224 target_name(target), n->name,
5225 eObj, target_strerror_safe(e));
5226 Jim_FreeNewObj(interp, eObj);
5227 return JIM_ERR;
5229 return JIM_OK;
5231 /* List for human, Events defined for this target.
5232 * scripts/programs should use 'name cget -event NAME'
5234 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5236 struct command_context *cmd_ctx = current_command_context(interp);
5237 assert(cmd_ctx != NULL);
5239 struct target *target = Jim_CmdPrivData(interp);
5240 struct target_event_action *teap = target->event_action;
5241 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5242 target->target_number,
5243 target_name(target));
5244 command_print(cmd_ctx, "%-25s | Body", "Event");
5245 command_print(cmd_ctx, "------------------------- | "
5246 "----------------------------------------");
5247 while (teap) {
5248 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5249 command_print(cmd_ctx, "%-25s | %s",
5250 opt->name, Jim_GetString(teap->body, NULL));
5251 teap = teap->next;
5253 command_print(cmd_ctx, "***END***");
5254 return JIM_OK;
5256 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5258 if (argc != 1) {
5259 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5260 return JIM_ERR;
5262 struct target *target = Jim_CmdPrivData(interp);
5263 Jim_SetResultString(interp, target_state_name(target), -1);
5264 return JIM_OK;
5266 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5268 Jim_GetOptInfo goi;
5269 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5270 if (goi.argc != 1) {
5271 const char *cmd_name = Jim_GetString(argv[0], NULL);
5272 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5273 return JIM_ERR;
5275 Jim_Nvp *n;
5276 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5277 if (e != JIM_OK) {
5278 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5279 return e;
5281 struct target *target = Jim_CmdPrivData(interp);
5282 target_handle_event(target, n->value);
5283 return JIM_OK;
5286 static const struct command_registration target_instance_command_handlers[] = {
5288 .name = "configure",
5289 .mode = COMMAND_CONFIG,
5290 .jim_handler = jim_target_configure,
5291 .help = "configure a new target for use",
5292 .usage = "[target_attribute ...]",
5295 .name = "cget",
5296 .mode = COMMAND_ANY,
5297 .jim_handler = jim_target_configure,
5298 .help = "returns the specified target attribute",
5299 .usage = "target_attribute",
5302 .name = "mww",
5303 .mode = COMMAND_EXEC,
5304 .jim_handler = jim_target_mw,
5305 .help = "Write 32-bit word(s) to target memory",
5306 .usage = "address data [count]",
5309 .name = "mwh",
5310 .mode = COMMAND_EXEC,
5311 .jim_handler = jim_target_mw,
5312 .help = "Write 16-bit half-word(s) to target memory",
5313 .usage = "address data [count]",
5316 .name = "mwb",
5317 .mode = COMMAND_EXEC,
5318 .jim_handler = jim_target_mw,
5319 .help = "Write byte(s) to target memory",
5320 .usage = "address data [count]",
5323 .name = "mdw",
5324 .mode = COMMAND_EXEC,
5325 .jim_handler = jim_target_md,
5326 .help = "Display target memory as 32-bit words",
5327 .usage = "address [count]",
5330 .name = "mdh",
5331 .mode = COMMAND_EXEC,
5332 .jim_handler = jim_target_md,
5333 .help = "Display target memory as 16-bit half-words",
5334 .usage = "address [count]",
5337 .name = "mdb",
5338 .mode = COMMAND_EXEC,
5339 .jim_handler = jim_target_md,
5340 .help = "Display target memory as 8-bit bytes",
5341 .usage = "address [count]",
5344 .name = "array2mem",
5345 .mode = COMMAND_EXEC,
5346 .jim_handler = jim_target_array2mem,
5347 .help = "Writes Tcl array of 8/16/32 bit numbers "
5348 "to target memory",
5349 .usage = "arrayname bitwidth address count",
5352 .name = "mem2array",
5353 .mode = COMMAND_EXEC,
5354 .jim_handler = jim_target_mem2array,
5355 .help = "Loads Tcl array of 8/16/32 bit numbers "
5356 "from target memory",
5357 .usage = "arrayname bitwidth address count",
5360 .name = "eventlist",
5361 .mode = COMMAND_EXEC,
5362 .jim_handler = jim_target_event_list,
5363 .help = "displays a table of events defined for this target",
5366 .name = "curstate",
5367 .mode = COMMAND_EXEC,
5368 .jim_handler = jim_target_current_state,
5369 .help = "displays the current state of this target",
5372 .name = "arp_examine",
5373 .mode = COMMAND_EXEC,
5374 .jim_handler = jim_target_examine,
5375 .help = "used internally for reset processing",
5376 .usage = "arp_examine ['allow-defer']",
5379 .name = "was_examined",
5380 .mode = COMMAND_EXEC,
5381 .jim_handler = jim_target_was_examined,
5382 .help = "used internally for reset processing",
5383 .usage = "was_examined",
5386 .name = "examine_deferred",
5387 .mode = COMMAND_EXEC,
5388 .jim_handler = jim_target_examine_deferred,
5389 .help = "used internally for reset processing",
5390 .usage = "examine_deferred",
5393 .name = "arp_halt_gdb",
5394 .mode = COMMAND_EXEC,
5395 .jim_handler = jim_target_halt_gdb,
5396 .help = "used internally for reset processing to halt GDB",
5399 .name = "arp_poll",
5400 .mode = COMMAND_EXEC,
5401 .jim_handler = jim_target_poll,
5402 .help = "used internally for reset processing",
5405 .name = "arp_reset",
5406 .mode = COMMAND_EXEC,
5407 .jim_handler = jim_target_reset,
5408 .help = "used internally for reset processing",
5411 .name = "arp_halt",
5412 .mode = COMMAND_EXEC,
5413 .jim_handler = jim_target_halt,
5414 .help = "used internally for reset processing",
5417 .name = "arp_waitstate",
5418 .mode = COMMAND_EXEC,
5419 .jim_handler = jim_target_wait_state,
5420 .help = "used internally for reset processing",
5423 .name = "invoke-event",
5424 .mode = COMMAND_EXEC,
5425 .jim_handler = jim_target_invoke_event,
5426 .help = "invoke handler for specified event",
5427 .usage = "event_name",
5429 COMMAND_REGISTRATION_DONE
5432 static int target_create(Jim_GetOptInfo *goi)
5434 Jim_Obj *new_cmd;
5435 Jim_Cmd *cmd;
5436 const char *cp;
5437 int e;
5438 int x;
5439 struct target *target;
5440 struct command_context *cmd_ctx;
5442 cmd_ctx = current_command_context(goi->interp);
5443 assert(cmd_ctx != NULL);
5445 if (goi->argc < 3) {
5446 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5447 return JIM_ERR;
5450 /* COMMAND */
5451 Jim_GetOpt_Obj(goi, &new_cmd);
5452 /* does this command exist? */
5453 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5454 if (cmd) {
5455 cp = Jim_GetString(new_cmd, NULL);
5456 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5457 return JIM_ERR;
5460 /* TYPE */
5461 e = Jim_GetOpt_String(goi, &cp, NULL);
5462 if (e != JIM_OK)
5463 return e;
5464 struct transport *tr = get_current_transport();
5465 if (tr->override_target) {
5466 e = tr->override_target(&cp);
5467 if (e != ERROR_OK) {
5468 LOG_ERROR("The selected transport doesn't support this target");
5469 return JIM_ERR;
5471 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5473 /* now does target type exist */
5474 for (x = 0 ; target_types[x] ; x++) {
5475 if (0 == strcmp(cp, target_types[x]->name)) {
5476 /* found */
5477 break;
5480 /* check for deprecated name */
5481 if (target_types[x]->deprecated_name) {
5482 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5483 /* found */
5484 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5485 break;
5489 if (target_types[x] == NULL) {
5490 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5491 for (x = 0 ; target_types[x] ; x++) {
5492 if (target_types[x + 1]) {
5493 Jim_AppendStrings(goi->interp,
5494 Jim_GetResult(goi->interp),
5495 target_types[x]->name,
5496 ", ", NULL);
5497 } else {
5498 Jim_AppendStrings(goi->interp,
5499 Jim_GetResult(goi->interp),
5500 " or ",
5501 target_types[x]->name, NULL);
5504 return JIM_ERR;
5507 /* Create it */
5508 target = calloc(1, sizeof(struct target));
5509 /* set target number */
5510 target->target_number = new_target_number();
5511 cmd_ctx->current_target = target->target_number;
5513 /* allocate memory for each unique target type */
5514 target->type = calloc(1, sizeof(struct target_type));
5516 memcpy(target->type, target_types[x], sizeof(struct target_type));
5518 /* will be set by "-endian" */
5519 target->endianness = TARGET_ENDIAN_UNKNOWN;
5521 /* default to first core, override with -coreid */
5522 target->coreid = 0;
5524 target->working_area = 0x0;
5525 target->working_area_size = 0x0;
5526 target->working_areas = NULL;
5527 target->backup_working_area = 0;
5529 target->state = TARGET_UNKNOWN;
5530 target->debug_reason = DBG_REASON_UNDEFINED;
5531 target->reg_cache = NULL;
5532 target->breakpoints = NULL;
5533 target->watchpoints = NULL;
5534 target->next = NULL;
5535 target->arch_info = NULL;
5537 target->display = 1;
5539 target->halt_issued = false;
5541 /* initialize trace information */
5542 target->trace_info = calloc(1, sizeof(struct trace));
5544 target->dbgmsg = NULL;
5545 target->dbg_msg_enabled = 0;
5547 target->endianness = TARGET_ENDIAN_UNKNOWN;
5549 target->rtos = NULL;
5550 target->rtos_auto_detect = false;
5552 /* Do the rest as "configure" options */
5553 goi->isconfigure = 1;
5554 e = target_configure(goi, target);
5556 if (target->tap == NULL) {
5557 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5558 e = JIM_ERR;
5561 if (e != JIM_OK) {
5562 free(target->type);
5563 free(target);
5564 return e;
5567 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5568 /* default endian to little if not specified */
5569 target->endianness = TARGET_LITTLE_ENDIAN;
5572 cp = Jim_GetString(new_cmd, NULL);
5573 target->cmd_name = strdup(cp);
5575 /* create the target specific commands */
5576 if (target->type->commands) {
5577 e = register_commands(cmd_ctx, NULL, target->type->commands);
5578 if (ERROR_OK != e)
5579 LOG_ERROR("unable to register '%s' commands", cp);
5581 if (target->type->target_create)
5582 (*(target->type->target_create))(target, goi->interp);
5584 /* append to end of list */
5586 struct target **tpp;
5587 tpp = &(all_targets);
5588 while (*tpp)
5589 tpp = &((*tpp)->next);
5590 *tpp = target;
5593 /* now - create the new target name command */
5594 const struct command_registration target_subcommands[] = {
5596 .chain = target_instance_command_handlers,
5599 .chain = target->type->commands,
5601 COMMAND_REGISTRATION_DONE
5603 const struct command_registration target_commands[] = {
5605 .name = cp,
5606 .mode = COMMAND_ANY,
5607 .help = "target command group",
5608 .usage = "",
5609 .chain = target_subcommands,
5611 COMMAND_REGISTRATION_DONE
5613 e = register_commands(cmd_ctx, NULL, target_commands);
5614 if (ERROR_OK != e)
5615 return JIM_ERR;
5617 struct command *c = command_find_in_context(cmd_ctx, cp);
5618 assert(c);
5619 command_set_handler_data(c, target);
5621 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5624 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5626 if (argc != 1) {
5627 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5628 return JIM_ERR;
5630 struct command_context *cmd_ctx = current_command_context(interp);
5631 assert(cmd_ctx != NULL);
5633 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5634 return JIM_OK;
5637 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5639 if (argc != 1) {
5640 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5641 return JIM_ERR;
5643 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5644 for (unsigned x = 0; NULL != target_types[x]; x++) {
5645 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5646 Jim_NewStringObj(interp, target_types[x]->name, -1));
5648 return JIM_OK;
5651 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5653 if (argc != 1) {
5654 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5655 return JIM_ERR;
5657 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5658 struct target *target = all_targets;
5659 while (target) {
5660 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5661 Jim_NewStringObj(interp, target_name(target), -1));
5662 target = target->next;
5664 return JIM_OK;
5667 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5669 int i;
5670 const char *targetname;
5671 int retval, len;
5672 struct target *target = (struct target *) NULL;
5673 struct target_list *head, *curr, *new;
5674 curr = (struct target_list *) NULL;
5675 head = (struct target_list *) NULL;
5677 retval = 0;
5678 LOG_DEBUG("%d", argc);
5679 /* argv[1] = target to associate in smp
5680 * argv[2] = target to assoicate in smp
5681 * argv[3] ...
5684 for (i = 1; i < argc; i++) {
5686 targetname = Jim_GetString(argv[i], &len);
5687 target = get_target(targetname);
5688 LOG_DEBUG("%s ", targetname);
5689 if (target) {
5690 new = malloc(sizeof(struct target_list));
5691 new->target = target;
5692 new->next = (struct target_list *)NULL;
5693 if (head == (struct target_list *)NULL) {
5694 head = new;
5695 curr = head;
5696 } else {
5697 curr->next = new;
5698 curr = new;
5702 /* now parse the list of cpu and put the target in smp mode*/
5703 curr = head;
5705 while (curr != (struct target_list *)NULL) {
5706 target = curr->target;
5707 target->smp = 1;
5708 target->head = head;
5709 curr = curr->next;
5712 if (target && target->rtos)
5713 retval = rtos_smp_init(head->target);
5715 return retval;
5719 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5721 Jim_GetOptInfo goi;
5722 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5723 if (goi.argc < 3) {
5724 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5725 "<name> <target_type> [<target_options> ...]");
5726 return JIM_ERR;
5728 return target_create(&goi);
5731 static const struct command_registration target_subcommand_handlers[] = {
5733 .name = "init",
5734 .mode = COMMAND_CONFIG,
5735 .handler = handle_target_init_command,
5736 .help = "initialize targets",
5739 .name = "create",
5740 /* REVISIT this should be COMMAND_CONFIG ... */
5741 .mode = COMMAND_ANY,
5742 .jim_handler = jim_target_create,
5743 .usage = "name type '-chain-position' name [options ...]",
5744 .help = "Creates and selects a new target",
5747 .name = "current",
5748 .mode = COMMAND_ANY,
5749 .jim_handler = jim_target_current,
5750 .help = "Returns the currently selected target",
5753 .name = "types",
5754 .mode = COMMAND_ANY,
5755 .jim_handler = jim_target_types,
5756 .help = "Returns the available target types as "
5757 "a list of strings",
5760 .name = "names",
5761 .mode = COMMAND_ANY,
5762 .jim_handler = jim_target_names,
5763 .help = "Returns the names of all targets as a list of strings",
5766 .name = "smp",
5767 .mode = COMMAND_ANY,
5768 .jim_handler = jim_target_smp,
5769 .usage = "targetname1 targetname2 ...",
5770 .help = "gather several target in a smp list"
5773 COMMAND_REGISTRATION_DONE
5776 struct FastLoad {
5777 target_addr_t address;
5778 uint8_t *data;
5779 int length;
5783 static int fastload_num;
5784 static struct FastLoad *fastload;
5786 static void free_fastload(void)
5788 if (fastload != NULL) {
5789 int i;
5790 for (i = 0; i < fastload_num; i++) {
5791 if (fastload[i].data)
5792 free(fastload[i].data);
5794 free(fastload);
5795 fastload = NULL;
5799 COMMAND_HANDLER(handle_fast_load_image_command)
5801 uint8_t *buffer;
5802 size_t buf_cnt;
5803 uint32_t image_size;
5804 target_addr_t min_address = 0;
5805 target_addr_t max_address = -1;
5806 int i;
5808 struct image image;
5810 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5811 &image, &min_address, &max_address);
5812 if (ERROR_OK != retval)
5813 return retval;
5815 struct duration bench;
5816 duration_start(&bench);
5818 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5819 if (retval != ERROR_OK)
5820 return retval;
5822 image_size = 0x0;
5823 retval = ERROR_OK;
5824 fastload_num = image.num_sections;
5825 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5826 if (fastload == NULL) {
5827 command_print(CMD_CTX, "out of memory");
5828 image_close(&image);
5829 return ERROR_FAIL;
5831 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5832 for (i = 0; i < image.num_sections; i++) {
5833 buffer = malloc(image.sections[i].size);
5834 if (buffer == NULL) {
5835 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5836 (int)(image.sections[i].size));
5837 retval = ERROR_FAIL;
5838 break;
5841 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5842 if (retval != ERROR_OK) {
5843 free(buffer);
5844 break;
5847 uint32_t offset = 0;
5848 uint32_t length = buf_cnt;
5850 /* DANGER!!! beware of unsigned comparision here!!! */
5852 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5853 (image.sections[i].base_address < max_address)) {
5854 if (image.sections[i].base_address < min_address) {
5855 /* clip addresses below */
5856 offset += min_address-image.sections[i].base_address;
5857 length -= offset;
5860 if (image.sections[i].base_address + buf_cnt > max_address)
5861 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5863 fastload[i].address = image.sections[i].base_address + offset;
5864 fastload[i].data = malloc(length);
5865 if (fastload[i].data == NULL) {
5866 free(buffer);
5867 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5868 length);
5869 retval = ERROR_FAIL;
5870 break;
5872 memcpy(fastload[i].data, buffer + offset, length);
5873 fastload[i].length = length;
5875 image_size += length;
5876 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5877 (unsigned int)length,
5878 ((unsigned int)(image.sections[i].base_address + offset)));
5881 free(buffer);
5884 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5885 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5886 "in %fs (%0.3f KiB/s)", image_size,
5887 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5889 command_print(CMD_CTX,
5890 "WARNING: image has not been loaded to target!"
5891 "You can issue a 'fast_load' to finish loading.");
5894 image_close(&image);
5896 if (retval != ERROR_OK)
5897 free_fastload();
5899 return retval;
5902 COMMAND_HANDLER(handle_fast_load_command)
5904 if (CMD_ARGC > 0)
5905 return ERROR_COMMAND_SYNTAX_ERROR;
5906 if (fastload == NULL) {
5907 LOG_ERROR("No image in memory");
5908 return ERROR_FAIL;
5910 int i;
5911 int64_t ms = timeval_ms();
5912 int size = 0;
5913 int retval = ERROR_OK;
5914 for (i = 0; i < fastload_num; i++) {
5915 struct target *target = get_current_target(CMD_CTX);
5916 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5917 (unsigned int)(fastload[i].address),
5918 (unsigned int)(fastload[i].length));
5919 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5920 if (retval != ERROR_OK)
5921 break;
5922 size += fastload[i].length;
5924 if (retval == ERROR_OK) {
5925 int64_t after = timeval_ms();
5926 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5928 return retval;
5931 static const struct command_registration target_command_handlers[] = {
5933 .name = "targets",
5934 .handler = handle_targets_command,
5935 .mode = COMMAND_ANY,
5936 .help = "change current default target (one parameter) "
5937 "or prints table of all targets (no parameters)",
5938 .usage = "[target]",
5941 .name = "target",
5942 .mode = COMMAND_CONFIG,
5943 .help = "configure target",
5945 .chain = target_subcommand_handlers,
5947 COMMAND_REGISTRATION_DONE
5950 int target_register_commands(struct command_context *cmd_ctx)
5952 return register_commands(cmd_ctx, NULL, target_command_handlers);
5955 static bool target_reset_nag = true;
5957 bool get_target_reset_nag(void)
5959 return target_reset_nag;
5962 COMMAND_HANDLER(handle_target_reset_nag)
5964 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5965 &target_reset_nag, "Nag after each reset about options to improve "
5966 "performance");
5969 COMMAND_HANDLER(handle_ps_command)
5971 struct target *target = get_current_target(CMD_CTX);
5972 char *display;
5973 if (target->state != TARGET_HALTED) {
5974 LOG_INFO("target not halted !!");
5975 return ERROR_OK;
5978 if ((target->rtos) && (target->rtos->type)
5979 && (target->rtos->type->ps_command)) {
5980 display = target->rtos->type->ps_command(target);
5981 command_print(CMD_CTX, "%s", display);
5982 free(display);
5983 return ERROR_OK;
5984 } else {
5985 LOG_INFO("failed");
5986 return ERROR_TARGET_FAILURE;
5990 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5992 if (text != NULL)
5993 command_print_sameline(cmd_ctx, "%s", text);
5994 for (int i = 0; i < size; i++)
5995 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5996 command_print(cmd_ctx, " ");
5999 COMMAND_HANDLER(handle_test_mem_access_command)
6001 struct target *target = get_current_target(CMD_CTX);
6002 uint32_t test_size;
6003 int retval = ERROR_OK;
6005 if (target->state != TARGET_HALTED) {
6006 LOG_INFO("target not halted !!");
6007 return ERROR_FAIL;
6010 if (CMD_ARGC != 1)
6011 return ERROR_COMMAND_SYNTAX_ERROR;
6013 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6015 /* Test reads */
6016 size_t num_bytes = test_size + 4;
6018 struct working_area *wa = NULL;
6019 retval = target_alloc_working_area(target, num_bytes, &wa);
6020 if (retval != ERROR_OK) {
6021 LOG_ERROR("Not enough working area");
6022 return ERROR_FAIL;
6025 uint8_t *test_pattern = malloc(num_bytes);
6027 for (size_t i = 0; i < num_bytes; i++)
6028 test_pattern[i] = rand();
6030 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6031 if (retval != ERROR_OK) {
6032 LOG_ERROR("Test pattern write failed");
6033 goto out;
6036 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6037 for (int size = 1; size <= 4; size *= 2) {
6038 for (int offset = 0; offset < 4; offset++) {
6039 uint32_t count = test_size / size;
6040 size_t host_bufsiz = (count + 2) * size + host_offset;
6041 uint8_t *read_ref = malloc(host_bufsiz);
6042 uint8_t *read_buf = malloc(host_bufsiz);
6044 for (size_t i = 0; i < host_bufsiz; i++) {
6045 read_ref[i] = rand();
6046 read_buf[i] = read_ref[i];
6048 command_print_sameline(CMD_CTX,
6049 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6050 size, offset, host_offset ? "un" : "");
6052 struct duration bench;
6053 duration_start(&bench);
6055 retval = target_read_memory(target, wa->address + offset, size, count,
6056 read_buf + size + host_offset);
6058 duration_measure(&bench);
6060 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6061 command_print(CMD_CTX, "Unsupported alignment");
6062 goto next;
6063 } else if (retval != ERROR_OK) {
6064 command_print(CMD_CTX, "Memory read failed");
6065 goto next;
6068 /* replay on host */
6069 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6071 /* check result */
6072 int result = memcmp(read_ref, read_buf, host_bufsiz);
6073 if (result == 0) {
6074 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6075 duration_elapsed(&bench),
6076 duration_kbps(&bench, count * size));
6077 } else {
6078 command_print(CMD_CTX, "Compare failed");
6079 binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6080 binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6082 next:
6083 free(read_ref);
6084 free(read_buf);
6089 out:
6090 free(test_pattern);
6092 if (wa != NULL)
6093 target_free_working_area(target, wa);
6095 /* Test writes */
6096 num_bytes = test_size + 4 + 4 + 4;
6098 retval = target_alloc_working_area(target, num_bytes, &wa);
6099 if (retval != ERROR_OK) {
6100 LOG_ERROR("Not enough working area");
6101 return ERROR_FAIL;
6104 test_pattern = malloc(num_bytes);
6106 for (size_t i = 0; i < num_bytes; i++)
6107 test_pattern[i] = rand();
6109 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6110 for (int size = 1; size <= 4; size *= 2) {
6111 for (int offset = 0; offset < 4; offset++) {
6112 uint32_t count = test_size / size;
6113 size_t host_bufsiz = count * size + host_offset;
6114 uint8_t *read_ref = malloc(num_bytes);
6115 uint8_t *read_buf = malloc(num_bytes);
6116 uint8_t *write_buf = malloc(host_bufsiz);
6118 for (size_t i = 0; i < host_bufsiz; i++)
6119 write_buf[i] = rand();
6120 command_print_sameline(CMD_CTX,
6121 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6122 size, offset, host_offset ? "un" : "");
6124 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6125 if (retval != ERROR_OK) {
6126 command_print(CMD_CTX, "Test pattern write failed");
6127 goto nextw;
6130 /* replay on host */
6131 memcpy(read_ref, test_pattern, num_bytes);
6132 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6134 struct duration bench;
6135 duration_start(&bench);
6137 retval = target_write_memory(target, wa->address + size + offset, size, count,
6138 write_buf + host_offset);
6140 duration_measure(&bench);
6142 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6143 command_print(CMD_CTX, "Unsupported alignment");
6144 goto nextw;
6145 } else if (retval != ERROR_OK) {
6146 command_print(CMD_CTX, "Memory write failed");
6147 goto nextw;
6150 /* read back */
6151 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6152 if (retval != ERROR_OK) {
6153 command_print(CMD_CTX, "Test pattern write failed");
6154 goto nextw;
6157 /* check result */
6158 int result = memcmp(read_ref, read_buf, num_bytes);
6159 if (result == 0) {
6160 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6161 duration_elapsed(&bench),
6162 duration_kbps(&bench, count * size));
6163 } else {
6164 command_print(CMD_CTX, "Compare failed");
6165 binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6166 binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6168 nextw:
6169 free(read_ref);
6170 free(read_buf);
6175 free(test_pattern);
6177 if (wa != NULL)
6178 target_free_working_area(target, wa);
6179 return retval;
6182 static const struct command_registration target_exec_command_handlers[] = {
6184 .name = "fast_load_image",
6185 .handler = handle_fast_load_image_command,
6186 .mode = COMMAND_ANY,
6187 .help = "Load image into server memory for later use by "
6188 "fast_load; primarily for profiling",
6189 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6190 "[min_address [max_length]]",
6193 .name = "fast_load",
6194 .handler = handle_fast_load_command,
6195 .mode = COMMAND_EXEC,
6196 .help = "loads active fast load image to current target "
6197 "- mainly for profiling purposes",
6198 .usage = "",
6201 .name = "profile",
6202 .handler = handle_profile_command,
6203 .mode = COMMAND_EXEC,
6204 .usage = "seconds filename [start end]",
6205 .help = "profiling samples the CPU PC",
6207 /** @todo don't register virt2phys() unless target supports it */
6209 .name = "virt2phys",
6210 .handler = handle_virt2phys_command,
6211 .mode = COMMAND_ANY,
6212 .help = "translate a virtual address into a physical address",
6213 .usage = "virtual_address",
6216 .name = "reg",
6217 .handler = handle_reg_command,
6218 .mode = COMMAND_EXEC,
6219 .help = "display (reread from target with \"force\") or set a register; "
6220 "with no arguments, displays all registers and their values",
6221 .usage = "[(register_number|register_name) [(value|'force')]]",
6224 .name = "poll",
6225 .handler = handle_poll_command,
6226 .mode = COMMAND_EXEC,
6227 .help = "poll target state; or reconfigure background polling",
6228 .usage = "['on'|'off']",
6231 .name = "wait_halt",
6232 .handler = handle_wait_halt_command,
6233 .mode = COMMAND_EXEC,
6234 .help = "wait up to the specified number of milliseconds "
6235 "(default 5000) for a previously requested halt",
6236 .usage = "[milliseconds]",
6239 .name = "halt",
6240 .handler = handle_halt_command,
6241 .mode = COMMAND_EXEC,
6242 .help = "request target to halt, then wait up to the specified"
6243 "number of milliseconds (default 5000) for it to complete",
6244 .usage = "[milliseconds]",
6247 .name = "resume",
6248 .handler = handle_resume_command,
6249 .mode = COMMAND_EXEC,
6250 .help = "resume target execution from current PC or address",
6251 .usage = "[address]",
6254 .name = "reset",
6255 .handler = handle_reset_command,
6256 .mode = COMMAND_EXEC,
6257 .usage = "[run|halt|init]",
6258 .help = "Reset all targets into the specified mode."
6259 "Default reset mode is run, if not given.",
6262 .name = "soft_reset_halt",
6263 .handler = handle_soft_reset_halt_command,
6264 .mode = COMMAND_EXEC,
6265 .usage = "",
6266 .help = "halt the target and do a soft reset",
6269 .name = "step",
6270 .handler = handle_step_command,
6271 .mode = COMMAND_EXEC,
6272 .help = "step one instruction from current PC or address",
6273 .usage = "[address]",
6276 .name = "mdd",
6277 .handler = handle_md_command,
6278 .mode = COMMAND_EXEC,
6279 .help = "display memory words",
6280 .usage = "['phys'] address [count]",
6283 .name = "mdw",
6284 .handler = handle_md_command,
6285 .mode = COMMAND_EXEC,
6286 .help = "display memory words",
6287 .usage = "['phys'] address [count]",
6290 .name = "mdh",
6291 .handler = handle_md_command,
6292 .mode = COMMAND_EXEC,
6293 .help = "display memory half-words",
6294 .usage = "['phys'] address [count]",
6297 .name = "mdb",
6298 .handler = handle_md_command,
6299 .mode = COMMAND_EXEC,
6300 .help = "display memory bytes",
6301 .usage = "['phys'] address [count]",
6304 .name = "mwd",
6305 .handler = handle_mw_command,
6306 .mode = COMMAND_EXEC,
6307 .help = "write memory word",
6308 .usage = "['phys'] address value [count]",
6311 .name = "mww",
6312 .handler = handle_mw_command,
6313 .mode = COMMAND_EXEC,
6314 .help = "write memory word",
6315 .usage = "['phys'] address value [count]",
6318 .name = "mwh",
6319 .handler = handle_mw_command,
6320 .mode = COMMAND_EXEC,
6321 .help = "write memory half-word",
6322 .usage = "['phys'] address value [count]",
6325 .name = "mwb",
6326 .handler = handle_mw_command,
6327 .mode = COMMAND_EXEC,
6328 .help = "write memory byte",
6329 .usage = "['phys'] address value [count]",
6332 .name = "bp",
6333 .handler = handle_bp_command,
6334 .mode = COMMAND_EXEC,
6335 .help = "list or set hardware or software breakpoint",
6336 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6339 .name = "rbp",
6340 .handler = handle_rbp_command,
6341 .mode = COMMAND_EXEC,
6342 .help = "remove breakpoint",
6343 .usage = "address",
6346 .name = "wp",
6347 .handler = handle_wp_command,
6348 .mode = COMMAND_EXEC,
6349 .help = "list (no params) or create watchpoints",
6350 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6353 .name = "rwp",
6354 .handler = handle_rwp_command,
6355 .mode = COMMAND_EXEC,
6356 .help = "remove watchpoint",
6357 .usage = "address",
6360 .name = "load_image",
6361 .handler = handle_load_image_command,
6362 .mode = COMMAND_EXEC,
6363 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6364 "[min_address] [max_length]",
6367 .name = "dump_image",
6368 .handler = handle_dump_image_command,
6369 .mode = COMMAND_EXEC,
6370 .usage = "filename address size",
6373 .name = "verify_image_checksum",
6374 .handler = handle_verify_image_checksum_command,
6375 .mode = COMMAND_EXEC,
6376 .usage = "filename [offset [type]]",
6379 .name = "verify_image",
6380 .handler = handle_verify_image_command,
6381 .mode = COMMAND_EXEC,
6382 .usage = "filename [offset [type]]",
6385 .name = "test_image",
6386 .handler = handle_test_image_command,
6387 .mode = COMMAND_EXEC,
6388 .usage = "filename [offset [type]]",
6391 .name = "mem2array",
6392 .mode = COMMAND_EXEC,
6393 .jim_handler = jim_mem2array,
6394 .help = "read 8/16/32 bit memory and return as a TCL array "
6395 "for script processing",
6396 .usage = "arrayname bitwidth address count",
6399 .name = "array2mem",
6400 .mode = COMMAND_EXEC,
6401 .jim_handler = jim_array2mem,
6402 .help = "convert a TCL array to memory locations "
6403 "and write the 8/16/32 bit values",
6404 .usage = "arrayname bitwidth address count",
6407 .name = "reset_nag",
6408 .handler = handle_target_reset_nag,
6409 .mode = COMMAND_ANY,
6410 .help = "Nag after each reset about options that could have been "
6411 "enabled to improve performance. ",
6412 .usage = "['enable'|'disable']",
6415 .name = "ps",
6416 .handler = handle_ps_command,
6417 .mode = COMMAND_EXEC,
6418 .help = "list all tasks ",
6419 .usage = " ",
6422 .name = "test_mem_access",
6423 .handler = handle_test_mem_access_command,
6424 .mode = COMMAND_EXEC,
6425 .help = "Test the target's memory access functions",
6426 .usage = "size",
6429 COMMAND_REGISTRATION_DONE
6431 static int target_register_user_commands(struct command_context *cmd_ctx)
6433 int retval = ERROR_OK;
6434 retval = target_request_register_commands(cmd_ctx);
6435 if (retval != ERROR_OK)
6436 return retval;
6438 retval = trace_register_commands(cmd_ctx);
6439 if (retval != ERROR_OK)
6440 return retval;
6443 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);