mips32, add option to avoid check in last instruction
[openocd.git] / src / target / image.c
blobf97d904039176c8848a7ab4cdc9d0dbb8a82008c
1 /***************************************************************************
2 * Copyright (C) 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Franck Hereson *
12 * franck.hereson@secad.fr *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
26 ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
32 #include "image.h"
33 #include "target.h"
34 #include <helper/log.h>
36 /* convert ELF header field to host endianness */
37 #define field16(elf, field) \
38 ((elf->endianness == ELFDATA2LSB) ? \
39 le_to_h_u16((uint8_t *)&field) : be_to_h_u16((uint8_t *)&field))
41 #define field32(elf, field) \
42 ((elf->endianness == ELFDATA2LSB) ? \
43 le_to_h_u32((uint8_t *)&field) : be_to_h_u32((uint8_t *)&field))
45 static int autodetect_image_type(struct image *image, const char *url)
47 int retval;
48 struct fileio *fileio;
49 size_t read_bytes;
50 uint8_t buffer[9];
52 /* read the first 4 bytes of image */
53 retval = fileio_open(&fileio, url, FILEIO_READ, FILEIO_BINARY);
54 if (retval != ERROR_OK)
55 return retval;
56 retval = fileio_read(fileio, 9, buffer, &read_bytes);
58 if (retval == ERROR_OK) {
59 if (read_bytes != 9)
60 retval = ERROR_FILEIO_OPERATION_FAILED;
62 fileio_close(fileio);
64 if (retval != ERROR_OK)
65 return retval;
67 /* check header against known signatures */
68 if (strncmp((char *)buffer, ELFMAG, SELFMAG) == 0) {
69 LOG_DEBUG("ELF image detected.");
70 image->type = IMAGE_ELF;
71 } else if ((buffer[0] == ':') /* record start byte */
72 && (isxdigit(buffer[1]))
73 && (isxdigit(buffer[2]))
74 && (isxdigit(buffer[3]))
75 && (isxdigit(buffer[4]))
76 && (isxdigit(buffer[5]))
77 && (isxdigit(buffer[6]))
78 && (buffer[7] == '0') /* record type : 00 -> 05 */
79 && (buffer[8] >= '0') && (buffer[8] < '6')) {
80 LOG_DEBUG("IHEX image detected.");
81 image->type = IMAGE_IHEX;
82 } else if ((buffer[0] == 'S') /* record start byte */
83 && (isxdigit(buffer[1]))
84 && (isxdigit(buffer[2]))
85 && (isxdigit(buffer[3]))
86 && (buffer[1] >= '0') && (buffer[1] < '9')) {
87 LOG_DEBUG("S19 image detected.");
88 image->type = IMAGE_SRECORD;
89 } else
90 image->type = IMAGE_BINARY;
92 return ERROR_OK;
95 static int identify_image_type(struct image *image, const char *type_string, const char *url)
97 if (type_string) {
98 if (!strcmp(type_string, "bin"))
99 image->type = IMAGE_BINARY;
100 else if (!strcmp(type_string, "ihex"))
101 image->type = IMAGE_IHEX;
102 else if (!strcmp(type_string, "elf"))
103 image->type = IMAGE_ELF;
104 else if (!strcmp(type_string, "mem"))
105 image->type = IMAGE_MEMORY;
106 else if (!strcmp(type_string, "s19"))
107 image->type = IMAGE_SRECORD;
108 else if (!strcmp(type_string, "build"))
109 image->type = IMAGE_BUILDER;
110 else
111 return ERROR_IMAGE_TYPE_UNKNOWN;
112 } else
113 return autodetect_image_type(image, url);
115 return ERROR_OK;
118 static int image_ihex_buffer_complete_inner(struct image *image,
119 char *lpszLine,
120 struct imagesection *section)
122 struct image_ihex *ihex = image->type_private;
123 struct fileio *fileio = ihex->fileio;
124 uint32_t full_address = 0x0;
125 uint32_t cooked_bytes;
126 int i;
128 /* we can't determine the number of sections that we'll have to create ahead of time,
129 * so we locally hold them until parsing is finished */
131 size_t filesize;
132 int retval;
133 retval = fileio_size(fileio, &filesize);
134 if (retval != ERROR_OK)
135 return retval;
137 ihex->buffer = malloc(filesize >> 1);
138 cooked_bytes = 0x0;
139 image->num_sections = 0;
140 section[image->num_sections].private = &ihex->buffer[cooked_bytes];
141 section[image->num_sections].base_address = 0x0;
142 section[image->num_sections].size = 0x0;
143 section[image->num_sections].flags = 0;
145 while (fileio_fgets(fileio, 1023, lpszLine) == ERROR_OK) {
146 uint32_t count;
147 uint32_t address;
148 uint32_t record_type;
149 uint32_t checksum;
150 uint8_t cal_checksum = 0;
151 size_t bytes_read = 0;
153 if (lpszLine[0] == '#')
154 continue;
156 if (sscanf(&lpszLine[bytes_read], ":%2" SCNx32 "%4" SCNx32 "%2" SCNx32, &count,
157 &address, &record_type) != 3)
158 return ERROR_IMAGE_FORMAT_ERROR;
159 bytes_read += 9;
161 cal_checksum += (uint8_t)count;
162 cal_checksum += (uint8_t)(address >> 8);
163 cal_checksum += (uint8_t)address;
164 cal_checksum += (uint8_t)record_type;
166 if (record_type == 0) { /* Data Record */
167 if ((full_address & 0xffff) != address) {
168 /* we encountered a nonconsecutive location, create a new section,
169 * unless the current section has zero size, in which case this specifies
170 * the current section's base address
172 if (section[image->num_sections].size != 0) {
173 image->num_sections++;
174 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
175 /* too many sections */
176 LOG_ERROR("Too many sections found in IHEX file");
177 return ERROR_IMAGE_FORMAT_ERROR;
179 section[image->num_sections].size = 0x0;
180 section[image->num_sections].flags = 0;
181 section[image->num_sections].private =
182 &ihex->buffer[cooked_bytes];
184 section[image->num_sections].base_address =
185 (full_address & 0xffff0000) | address;
186 full_address = (full_address & 0xffff0000) | address;
189 while (count-- > 0) {
190 unsigned value;
191 sscanf(&lpszLine[bytes_read], "%2x", &value);
192 ihex->buffer[cooked_bytes] = (uint8_t)value;
193 cal_checksum += (uint8_t)ihex->buffer[cooked_bytes];
194 bytes_read += 2;
195 cooked_bytes += 1;
196 section[image->num_sections].size += 1;
197 full_address++;
199 } else if (record_type == 1) { /* End of File Record */
200 /* finish the current section */
201 image->num_sections++;
203 /* copy section information */
204 image->sections = malloc(sizeof(struct imagesection) * image->num_sections);
205 for (i = 0; i < image->num_sections; i++) {
206 image->sections[i].private = section[i].private;
207 image->sections[i].base_address = section[i].base_address;
208 image->sections[i].size = section[i].size;
209 image->sections[i].flags = section[i].flags;
212 return ERROR_OK;
213 } else if (record_type == 2) { /* Linear Address Record */
214 uint16_t upper_address;
216 sscanf(&lpszLine[bytes_read], "%4hx", &upper_address);
217 cal_checksum += (uint8_t)(upper_address >> 8);
218 cal_checksum += (uint8_t)upper_address;
219 bytes_read += 4;
221 if ((full_address >> 4) != upper_address) {
222 /* we encountered a nonconsecutive location, create a new section,
223 * unless the current section has zero size, in which case this specifies
224 * the current section's base address
226 if (section[image->num_sections].size != 0) {
227 image->num_sections++;
228 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
229 /* too many sections */
230 LOG_ERROR("Too many sections found in IHEX file");
231 return ERROR_IMAGE_FORMAT_ERROR;
233 section[image->num_sections].size = 0x0;
234 section[image->num_sections].flags = 0;
235 section[image->num_sections].private =
236 &ihex->buffer[cooked_bytes];
238 section[image->num_sections].base_address =
239 (full_address & 0xffff) | (upper_address << 4);
240 full_address = (full_address & 0xffff) | (upper_address << 4);
242 } else if (record_type == 3) { /* Start Segment Address Record */
243 uint32_t dummy;
245 /* "Start Segment Address Record" will not be supported
246 * but we must consume it, and do not create an error. */
247 while (count-- > 0) {
248 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &dummy);
249 cal_checksum += (uint8_t)dummy;
250 bytes_read += 2;
252 } else if (record_type == 4) { /* Extended Linear Address Record */
253 uint16_t upper_address;
255 sscanf(&lpszLine[bytes_read], "%4hx", &upper_address);
256 cal_checksum += (uint8_t)(upper_address >> 8);
257 cal_checksum += (uint8_t)upper_address;
258 bytes_read += 4;
260 if ((full_address >> 16) != upper_address) {
261 /* we encountered a nonconsecutive location, create a new section,
262 * unless the current section has zero size, in which case this specifies
263 * the current section's base address
265 if (section[image->num_sections].size != 0) {
266 image->num_sections++;
267 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
268 /* too many sections */
269 LOG_ERROR("Too many sections found in IHEX file");
270 return ERROR_IMAGE_FORMAT_ERROR;
272 section[image->num_sections].size = 0x0;
273 section[image->num_sections].flags = 0;
274 section[image->num_sections].private =
275 &ihex->buffer[cooked_bytes];
277 section[image->num_sections].base_address =
278 (full_address & 0xffff) | (upper_address << 16);
279 full_address = (full_address & 0xffff) | (upper_address << 16);
281 } else if (record_type == 5) { /* Start Linear Address Record */
282 uint32_t start_address;
284 sscanf(&lpszLine[bytes_read], "%8" SCNx32, &start_address);
285 cal_checksum += (uint8_t)(start_address >> 24);
286 cal_checksum += (uint8_t)(start_address >> 16);
287 cal_checksum += (uint8_t)(start_address >> 8);
288 cal_checksum += (uint8_t)start_address;
289 bytes_read += 8;
291 image->start_address_set = 1;
292 image->start_address = be_to_h_u32((uint8_t *)&start_address);
293 } else {
294 LOG_ERROR("unhandled IHEX record type: %i", (int)record_type);
295 return ERROR_IMAGE_FORMAT_ERROR;
298 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &checksum);
300 if ((uint8_t)checksum != (uint8_t)(~cal_checksum + 1)) {
301 /* checksum failed */
302 LOG_ERROR("incorrect record checksum found in IHEX file");
303 return ERROR_IMAGE_CHECKSUM;
307 LOG_ERROR("premature end of IHEX file, no end-of-file record found");
308 return ERROR_IMAGE_FORMAT_ERROR;
312 * Allocate memory dynamically instead of on the stack. This
313 * is important w/embedded hosts.
315 static int image_ihex_buffer_complete(struct image *image)
317 char *lpszLine = malloc(1023);
318 if (lpszLine == NULL) {
319 LOG_ERROR("Out of memory");
320 return ERROR_FAIL;
322 struct imagesection *section = malloc(sizeof(struct imagesection) * IMAGE_MAX_SECTIONS);
323 if (section == NULL) {
324 free(lpszLine);
325 LOG_ERROR("Out of memory");
326 return ERROR_FAIL;
328 int retval;
330 retval = image_ihex_buffer_complete_inner(image, lpszLine, section);
332 free(section);
333 free(lpszLine);
335 return retval;
338 static int image_elf_read_headers(struct image *image)
340 struct image_elf *elf = image->type_private;
341 size_t read_bytes;
342 uint32_t i, j;
343 int retval;
344 uint32_t nload, load_to_vaddr = 0;
346 elf->header = malloc(sizeof(Elf32_Ehdr));
348 if (elf->header == NULL) {
349 LOG_ERROR("insufficient memory to perform operation ");
350 return ERROR_FILEIO_OPERATION_FAILED;
353 retval = fileio_read(elf->fileio, sizeof(Elf32_Ehdr), (uint8_t *)elf->header, &read_bytes);
354 if (retval != ERROR_OK) {
355 LOG_ERROR("cannot read ELF file header, read failed");
356 return ERROR_FILEIO_OPERATION_FAILED;
358 if (read_bytes != sizeof(Elf32_Ehdr)) {
359 LOG_ERROR("cannot read ELF file header, only partially read");
360 return ERROR_FILEIO_OPERATION_FAILED;
363 if (strncmp((char *)elf->header->e_ident, ELFMAG, SELFMAG) != 0) {
364 LOG_ERROR("invalid ELF file, bad magic number");
365 return ERROR_IMAGE_FORMAT_ERROR;
367 if (elf->header->e_ident[EI_CLASS] != ELFCLASS32) {
368 LOG_ERROR("invalid ELF file, only 32bits files are supported");
369 return ERROR_IMAGE_FORMAT_ERROR;
372 elf->endianness = elf->header->e_ident[EI_DATA];
373 if ((elf->endianness != ELFDATA2LSB)
374 && (elf->endianness != ELFDATA2MSB)) {
375 LOG_ERROR("invalid ELF file, unknown endianness setting");
376 return ERROR_IMAGE_FORMAT_ERROR;
379 elf->segment_count = field16(elf, elf->header->e_phnum);
380 if (elf->segment_count == 0) {
381 LOG_ERROR("invalid ELF file, no program headers");
382 return ERROR_IMAGE_FORMAT_ERROR;
385 retval = fileio_seek(elf->fileio, field32(elf, elf->header->e_phoff));
386 if (retval != ERROR_OK) {
387 LOG_ERROR("cannot seek to ELF program header table, read failed");
388 return retval;
391 elf->segments = malloc(elf->segment_count*sizeof(Elf32_Phdr));
392 if (elf->segments == NULL) {
393 LOG_ERROR("insufficient memory to perform operation ");
394 return ERROR_FILEIO_OPERATION_FAILED;
397 retval = fileio_read(elf->fileio, elf->segment_count*sizeof(Elf32_Phdr),
398 (uint8_t *)elf->segments, &read_bytes);
399 if (retval != ERROR_OK) {
400 LOG_ERROR("cannot read ELF segment headers, read failed");
401 return retval;
403 if (read_bytes != elf->segment_count*sizeof(Elf32_Phdr)) {
404 LOG_ERROR("cannot read ELF segment headers, only partially read");
405 return ERROR_FILEIO_OPERATION_FAILED;
408 /* count useful segments (loadable), ignore BSS section */
409 image->num_sections = 0;
410 for (i = 0; i < elf->segment_count; i++)
411 if ((field32(elf,
412 elf->segments[i].p_type) == PT_LOAD) &&
413 (field32(elf, elf->segments[i].p_filesz) != 0))
414 image->num_sections++;
416 assert(image->num_sections > 0);
419 * some ELF linkers produce binaries with *all* the program header
420 * p_paddr fields zero (there can be however one loadable segment
421 * that has valid physical address 0x0).
422 * If we have such a binary with more than
423 * one PT_LOAD header, then use p_vaddr instead of p_paddr
424 * (ARM ELF standard demands p_paddr = 0 anyway, and BFD
425 * library uses this approach to workaround zero-initialized p_paddrs
426 * when obtaining lma - look at elf.c of BDF)
428 for (nload = 0, i = 0; i < elf->segment_count; i++)
429 if (elf->segments[i].p_paddr != 0)
430 break;
431 else if ((field32(elf,
432 elf->segments[i].p_type) == PT_LOAD) &&
433 (field32(elf, elf->segments[i].p_memsz) != 0))
434 ++nload;
436 if (i >= elf->segment_count && nload > 1)
437 load_to_vaddr = 1;
439 /* alloc and fill sections array with loadable segments */
440 image->sections = malloc(image->num_sections * sizeof(struct imagesection));
441 for (i = 0, j = 0; i < elf->segment_count; i++) {
442 if ((field32(elf,
443 elf->segments[i].p_type) == PT_LOAD) &&
444 (field32(elf, elf->segments[i].p_filesz) != 0)) {
445 image->sections[j].size = field32(elf, elf->segments[i].p_filesz);
446 if (load_to_vaddr)
447 image->sections[j].base_address = field32(elf,
448 elf->segments[i].p_vaddr);
449 else
450 image->sections[j].base_address = field32(elf,
451 elf->segments[i].p_paddr);
452 image->sections[j].private = &elf->segments[i];
453 image->sections[j].flags = field32(elf, elf->segments[i].p_flags);
454 j++;
458 image->start_address_set = 1;
459 image->start_address = field32(elf, elf->header->e_entry);
461 return ERROR_OK;
464 static int image_elf_read_section(struct image *image,
465 int section,
466 uint32_t offset,
467 uint32_t size,
468 uint8_t *buffer,
469 size_t *size_read)
471 struct image_elf *elf = image->type_private;
472 Elf32_Phdr *segment = (Elf32_Phdr *)image->sections[section].private;
473 size_t read_size, really_read;
474 int retval;
476 *size_read = 0;
478 LOG_DEBUG("load segment %d at 0x%" PRIx32 " (sz = 0x%" PRIx32 ")", section, offset, size);
480 /* read initialized data in current segment if any */
481 if (offset < field32(elf, segment->p_filesz)) {
482 /* maximal size present in file for the current segment */
483 read_size = MIN(size, field32(elf, segment->p_filesz) - offset);
484 LOG_DEBUG("read elf: size = 0x%zu at 0x%" PRIx32 "", read_size,
485 field32(elf, segment->p_offset) + offset);
486 /* read initialized area of the segment */
487 retval = fileio_seek(elf->fileio, field32(elf, segment->p_offset) + offset);
488 if (retval != ERROR_OK) {
489 LOG_ERROR("cannot find ELF segment content, seek failed");
490 return retval;
492 retval = fileio_read(elf->fileio, read_size, buffer, &really_read);
493 if (retval != ERROR_OK) {
494 LOG_ERROR("cannot read ELF segment content, read failed");
495 return retval;
497 size -= read_size;
498 *size_read += read_size;
499 /* need more data ? */
500 if (!size)
501 return ERROR_OK;
504 return ERROR_OK;
507 static int image_mot_buffer_complete_inner(struct image *image,
508 char *lpszLine,
509 struct imagesection *section)
511 struct image_mot *mot = image->type_private;
512 struct fileio *fileio = mot->fileio;
513 uint32_t full_address = 0x0;
514 uint32_t cooked_bytes;
515 int i;
517 /* we can't determine the number of sections that we'll have to create ahead of time,
518 * so we locally hold them until parsing is finished */
520 int retval;
521 size_t filesize;
522 retval = fileio_size(fileio, &filesize);
523 if (retval != ERROR_OK)
524 return retval;
526 mot->buffer = malloc(filesize >> 1);
527 cooked_bytes = 0x0;
528 image->num_sections = 0;
529 section[image->num_sections].private = &mot->buffer[cooked_bytes];
530 section[image->num_sections].base_address = 0x0;
531 section[image->num_sections].size = 0x0;
532 section[image->num_sections].flags = 0;
534 while (fileio_fgets(fileio, 1023, lpszLine) == ERROR_OK) {
535 uint32_t count;
536 uint32_t address;
537 uint32_t record_type;
538 uint32_t checksum;
539 uint8_t cal_checksum = 0;
540 uint32_t bytes_read = 0;
542 /* get record type and record length */
543 if (sscanf(&lpszLine[bytes_read], "S%1" SCNx32 "%2" SCNx32, &record_type,
544 &count) != 2)
545 return ERROR_IMAGE_FORMAT_ERROR;
547 bytes_read += 4;
548 cal_checksum += (uint8_t)count;
550 /* skip checksum byte */
551 count -= 1;
553 if (record_type == 0) {
554 /* S0 - starting record (optional) */
555 int iValue;
557 while (count-- > 0) {
558 sscanf(&lpszLine[bytes_read], "%2x", &iValue);
559 cal_checksum += (uint8_t)iValue;
560 bytes_read += 2;
562 } else if (record_type >= 1 && record_type <= 3) {
563 switch (record_type) {
564 case 1:
565 /* S1 - 16 bit address data record */
566 sscanf(&lpszLine[bytes_read], "%4" SCNx32, &address);
567 cal_checksum += (uint8_t)(address >> 8);
568 cal_checksum += (uint8_t)address;
569 bytes_read += 4;
570 count -= 2;
571 break;
573 case 2:
574 /* S2 - 24 bit address data record */
575 sscanf(&lpszLine[bytes_read], "%6" SCNx32, &address);
576 cal_checksum += (uint8_t)(address >> 16);
577 cal_checksum += (uint8_t)(address >> 8);
578 cal_checksum += (uint8_t)address;
579 bytes_read += 6;
580 count -= 3;
581 break;
583 case 3:
584 /* S3 - 32 bit address data record */
585 sscanf(&lpszLine[bytes_read], "%8" SCNx32, &address);
586 cal_checksum += (uint8_t)(address >> 24);
587 cal_checksum += (uint8_t)(address >> 16);
588 cal_checksum += (uint8_t)(address >> 8);
589 cal_checksum += (uint8_t)address;
590 bytes_read += 8;
591 count -= 4;
592 break;
596 if (full_address != address) {
597 /* we encountered a nonconsecutive location, create a new section,
598 * unless the current section has zero size, in which case this specifies
599 * the current section's base address
601 if (section[image->num_sections].size != 0) {
602 image->num_sections++;
603 section[image->num_sections].size = 0x0;
604 section[image->num_sections].flags = 0;
605 section[image->num_sections].private =
606 &mot->buffer[cooked_bytes];
608 section[image->num_sections].base_address = address;
609 full_address = address;
612 while (count-- > 0) {
613 unsigned value;
614 sscanf(&lpszLine[bytes_read], "%2x", &value);
615 mot->buffer[cooked_bytes] = (uint8_t)value;
616 cal_checksum += (uint8_t)mot->buffer[cooked_bytes];
617 bytes_read += 2;
618 cooked_bytes += 1;
619 section[image->num_sections].size += 1;
620 full_address++;
622 } else if (record_type == 5) {
623 /* S5 is the data count record, we ignore it */
624 uint32_t dummy;
626 while (count-- > 0) {
627 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &dummy);
628 cal_checksum += (uint8_t)dummy;
629 bytes_read += 2;
631 } else if (record_type >= 7 && record_type <= 9) {
632 /* S7, S8, S9 - ending records for 32, 24 and 16bit */
633 image->num_sections++;
635 /* copy section information */
636 image->sections = malloc(sizeof(struct imagesection) * image->num_sections);
637 for (i = 0; i < image->num_sections; i++) {
638 image->sections[i].private = section[i].private;
639 image->sections[i].base_address = section[i].base_address;
640 image->sections[i].size = section[i].size;
641 image->sections[i].flags = section[i].flags;
644 return ERROR_OK;
645 } else {
646 LOG_ERROR("unhandled S19 record type: %i", (int)(record_type));
647 return ERROR_IMAGE_FORMAT_ERROR;
650 /* account for checksum, will always be 0xFF */
651 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &checksum);
652 cal_checksum += (uint8_t)checksum;
654 if (cal_checksum != 0xFF) {
655 /* checksum failed */
656 LOG_ERROR("incorrect record checksum found in S19 file");
657 return ERROR_IMAGE_CHECKSUM;
661 LOG_ERROR("premature end of S19 file, no end-of-file record found");
662 return ERROR_IMAGE_FORMAT_ERROR;
666 * Allocate memory dynamically instead of on the stack. This
667 * is important w/embedded hosts.
669 static int image_mot_buffer_complete(struct image *image)
671 char *lpszLine = malloc(1023);
672 if (lpszLine == NULL) {
673 LOG_ERROR("Out of memory");
674 return ERROR_FAIL;
676 struct imagesection *section = malloc(sizeof(struct imagesection) * IMAGE_MAX_SECTIONS);
677 if (section == NULL) {
678 free(lpszLine);
679 LOG_ERROR("Out of memory");
680 return ERROR_FAIL;
682 int retval;
684 retval = image_mot_buffer_complete_inner(image, lpszLine, section);
686 free(section);
687 free(lpszLine);
689 return retval;
692 int image_open(struct image *image, const char *url, const char *type_string)
694 int retval = ERROR_OK;
696 retval = identify_image_type(image, type_string, url);
697 if (retval != ERROR_OK)
698 return retval;
700 if (image->type == IMAGE_BINARY) {
701 struct image_binary *image_binary;
703 image_binary = image->type_private = malloc(sizeof(struct image_binary));
705 retval = fileio_open(&image_binary->fileio, url, FILEIO_READ, FILEIO_BINARY);
706 if (retval != ERROR_OK)
707 return retval;
708 size_t filesize;
709 retval = fileio_size(image_binary->fileio, &filesize);
710 if (retval != ERROR_OK) {
711 fileio_close(image_binary->fileio);
712 return retval;
715 image->num_sections = 1;
716 image->sections = malloc(sizeof(struct imagesection));
717 image->sections[0].base_address = 0x0;
718 image->sections[0].size = filesize;
719 image->sections[0].flags = 0;
720 } else if (image->type == IMAGE_IHEX) {
721 struct image_ihex *image_ihex;
723 image_ihex = image->type_private = malloc(sizeof(struct image_ihex));
725 retval = fileio_open(&image_ihex->fileio, url, FILEIO_READ, FILEIO_TEXT);
726 if (retval != ERROR_OK)
727 return retval;
729 retval = image_ihex_buffer_complete(image);
730 if (retval != ERROR_OK) {
731 LOG_ERROR(
732 "failed buffering IHEX image, check server output for additional information");
733 fileio_close(image_ihex->fileio);
734 return retval;
736 } else if (image->type == IMAGE_ELF) {
737 struct image_elf *image_elf;
739 image_elf = image->type_private = malloc(sizeof(struct image_elf));
741 retval = fileio_open(&image_elf->fileio, url, FILEIO_READ, FILEIO_BINARY);
742 if (retval != ERROR_OK)
743 return retval;
745 retval = image_elf_read_headers(image);
746 if (retval != ERROR_OK) {
747 fileio_close(image_elf->fileio);
748 return retval;
750 } else if (image->type == IMAGE_MEMORY) {
751 struct target *target = get_target(url);
753 if (target == NULL) {
754 LOG_ERROR("target '%s' not defined", url);
755 return ERROR_FAIL;
758 struct image_memory *image_memory;
760 image->num_sections = 1;
761 image->sections = malloc(sizeof(struct imagesection));
762 image->sections[0].base_address = 0x0;
763 image->sections[0].size = 0xffffffff;
764 image->sections[0].flags = 0;
766 image_memory = image->type_private = malloc(sizeof(struct image_memory));
768 image_memory->target = target;
769 image_memory->cache = NULL;
770 image_memory->cache_address = 0x0;
771 } else if (image->type == IMAGE_SRECORD) {
772 struct image_mot *image_mot;
774 image_mot = image->type_private = malloc(sizeof(struct image_mot));
776 retval = fileio_open(&image_mot->fileio, url, FILEIO_READ, FILEIO_TEXT);
777 if (retval != ERROR_OK)
778 return retval;
780 retval = image_mot_buffer_complete(image);
781 if (retval != ERROR_OK) {
782 LOG_ERROR(
783 "failed buffering S19 image, check server output for additional information");
784 fileio_close(image_mot->fileio);
785 return retval;
787 } else if (image->type == IMAGE_BUILDER) {
788 image->num_sections = 0;
789 image->base_address_set = 0;
790 image->sections = NULL;
791 image->type_private = NULL;
794 if (image->base_address_set) {
795 /* relocate */
796 int section;
797 for (section = 0; section < image->num_sections; section++)
798 image->sections[section].base_address += image->base_address;
799 /* we're done relocating. The two statements below are mainly
800 * for documenation purposes: stop anyone from empirically
801 * thinking they should use these values henceforth. */
802 image->base_address = 0;
803 image->base_address_set = 0;
806 return retval;
809 int image_read_section(struct image *image,
810 int section,
811 uint32_t offset,
812 uint32_t size,
813 uint8_t *buffer,
814 size_t *size_read)
816 int retval;
818 /* don't read past the end of a section */
819 if (offset + size > image->sections[section].size) {
820 LOG_DEBUG(
821 "read past end of section: 0x%8.8" PRIx32 " + 0x%8.8" PRIx32 " > 0x%8.8" PRIx32 "",
822 offset,
823 size,
824 image->sections[section].size);
825 return ERROR_COMMAND_SYNTAX_ERROR;
828 if (image->type == IMAGE_BINARY) {
829 struct image_binary *image_binary = image->type_private;
831 /* only one section in a plain binary */
832 if (section != 0)
833 return ERROR_COMMAND_SYNTAX_ERROR;
835 /* seek to offset */
836 retval = fileio_seek(image_binary->fileio, offset);
837 if (retval != ERROR_OK)
838 return retval;
840 /* return requested bytes */
841 retval = fileio_read(image_binary->fileio, size, buffer, size_read);
842 if (retval != ERROR_OK)
843 return retval;
844 } else if (image->type == IMAGE_IHEX) {
845 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
846 *size_read = size;
848 return ERROR_OK;
849 } else if (image->type == IMAGE_ELF)
850 return image_elf_read_section(image, section, offset, size, buffer, size_read);
851 else if (image->type == IMAGE_MEMORY) {
852 struct image_memory *image_memory = image->type_private;
853 uint32_t address = image->sections[section].base_address + offset;
855 *size_read = 0;
857 while ((size - *size_read) > 0) {
858 uint32_t size_in_cache;
860 if (!image_memory->cache
861 || (address < image_memory->cache_address)
862 || (address >=
863 (image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE))) {
864 if (!image_memory->cache)
865 image_memory->cache = malloc(IMAGE_MEMORY_CACHE_SIZE);
867 if (target_read_buffer(image_memory->target, address &
868 ~(IMAGE_MEMORY_CACHE_SIZE - 1),
869 IMAGE_MEMORY_CACHE_SIZE, image_memory->cache) != ERROR_OK) {
870 free(image_memory->cache);
871 image_memory->cache = NULL;
872 return ERROR_IMAGE_TEMPORARILY_UNAVAILABLE;
874 image_memory->cache_address = address &
875 ~(IMAGE_MEMORY_CACHE_SIZE - 1);
878 size_in_cache =
879 (image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE) - address;
881 memcpy(buffer + *size_read,
882 image_memory->cache + (address - image_memory->cache_address),
883 (size_in_cache > size) ? size : size_in_cache
886 *size_read += (size_in_cache > size) ? size : size_in_cache;
887 address += (size_in_cache > size) ? size : size_in_cache;
889 } else if (image->type == IMAGE_SRECORD) {
890 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
891 *size_read = size;
893 return ERROR_OK;
894 } else if (image->type == IMAGE_BUILDER) {
895 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
896 *size_read = size;
898 return ERROR_OK;
901 return ERROR_OK;
904 int image_add_section(struct image *image, uint32_t base, uint32_t size, int flags, uint8_t const *data)
906 struct imagesection *section;
908 /* only image builder supports adding sections */
909 if (image->type != IMAGE_BUILDER)
910 return ERROR_COMMAND_SYNTAX_ERROR;
912 /* see if there's a previous section */
913 if (image->num_sections) {
914 section = &image->sections[image->num_sections - 1];
916 /* see if it's enough to extend the last section,
917 * adding data to previous sections or merging is not supported */
918 if (((section->base_address + section->size) == base) &&
919 (section->flags == flags)) {
920 section->private = realloc(section->private, section->size + size);
921 memcpy((uint8_t *)section->private + section->size, data, size);
922 section->size += size;
923 return ERROR_OK;
927 /* allocate new section */
928 image->num_sections++;
929 image->sections =
930 realloc(image->sections, sizeof(struct imagesection) * image->num_sections);
931 section = &image->sections[image->num_sections - 1];
932 section->base_address = base;
933 section->size = size;
934 section->flags = flags;
935 section->private = malloc(sizeof(uint8_t) * size);
936 memcpy((uint8_t *)section->private, data, size);
938 return ERROR_OK;
941 void image_close(struct image *image)
943 if (image->type == IMAGE_BINARY) {
944 struct image_binary *image_binary = image->type_private;
946 fileio_close(image_binary->fileio);
947 } else if (image->type == IMAGE_IHEX) {
948 struct image_ihex *image_ihex = image->type_private;
950 fileio_close(image_ihex->fileio);
952 if (image_ihex->buffer) {
953 free(image_ihex->buffer);
954 image_ihex->buffer = NULL;
956 } else if (image->type == IMAGE_ELF) {
957 struct image_elf *image_elf = image->type_private;
959 fileio_close(image_elf->fileio);
961 if (image_elf->header) {
962 free(image_elf->header);
963 image_elf->header = NULL;
966 if (image_elf->segments) {
967 free(image_elf->segments);
968 image_elf->segments = NULL;
970 } else if (image->type == IMAGE_MEMORY) {
971 struct image_memory *image_memory = image->type_private;
973 if (image_memory->cache) {
974 free(image_memory->cache);
975 image_memory->cache = NULL;
977 } else if (image->type == IMAGE_SRECORD) {
978 struct image_mot *image_mot = image->type_private;
980 fileio_close(image_mot->fileio);
982 if (image_mot->buffer) {
983 free(image_mot->buffer);
984 image_mot->buffer = NULL;
986 } else if (image->type == IMAGE_BUILDER) {
987 int i;
989 for (i = 0; i < image->num_sections; i++) {
990 free(image->sections[i].private);
991 image->sections[i].private = NULL;
995 if (image->type_private) {
996 free(image->type_private);
997 image->type_private = NULL;
1000 if (image->sections) {
1001 free(image->sections);
1002 image->sections = NULL;
1006 int image_calculate_checksum(uint8_t *buffer, uint32_t nbytes, uint32_t *checksum)
1008 uint32_t crc = 0xffffffff;
1009 LOG_DEBUG("Calculating checksum");
1011 static uint32_t crc32_table[256];
1013 static bool first_init;
1014 if (!first_init) {
1015 /* Initialize the CRC table and the decoding table. */
1016 int i, j;
1017 unsigned int c;
1018 for (i = 0; i < 256; i++) {
1019 /* as per gdb */
1020 for (c = i << 24, j = 8; j > 0; --j)
1021 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
1022 crc32_table[i] = c;
1025 first_init = true;
1028 while (nbytes > 0) {
1029 int run = nbytes;
1030 if (run > 32768)
1031 run = 32768;
1032 nbytes -= run;
1033 while (run--) {
1034 /* as per gdb */
1035 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buffer++) & 255];
1037 keep_alive();
1040 LOG_DEBUG("Calculating checksum done");
1042 *checksum = crc;
1043 return ERROR_OK;