mips32, add option to avoid check in last instruction
[openocd.git] / src / target / embeddedice.c
blob09d6fc8a158366896c13cfcac4729de28e0c278b
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 ***************************************************************************/
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
29 #include "embeddedice.h"
30 #include "register.h"
32 /**
33 * @file
35 * This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
36 * module found on scan chain 2 in ARM7, ARM9, and some other families
37 * of ARM cores. The module is called "EmbeddedICE-RT" if it has
38 * monitor mode support.
40 * EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
41 * Communications Channel (DCC) used to read or write 32-bit words to
42 * OpenOCD-aware code running on the target CPU.
43 * Newer modules also include vector catch hardware. Some versions
44 * support hardware single-stepping, "monitor mode" debug (which is not
45 * currently supported by OpenOCD), or extended reporting on why the
46 * core entered debug mode.
49 static int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf);
52 * From: ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
54 static const struct {
55 const char *name;
56 unsigned short addr;
57 unsigned short width;
58 } eice_regs[] = {
59 [EICE_DBG_CTRL] = {
60 .name = "debug_ctrl",
61 .addr = 0,
62 /* width is assigned based on EICE version */
64 [EICE_DBG_STAT] = {
65 .name = "debug_status",
66 .addr = 1,
67 /* width is assigned based on EICE version */
69 [EICE_COMMS_CTRL] = {
70 .name = "comms_ctrl",
71 .addr = 4,
72 .width = 6,
74 [EICE_COMMS_DATA] = {
75 .name = "comms_data",
76 .addr = 5,
77 .width = 32,
79 [EICE_W0_ADDR_VALUE] = {
80 .name = "watch_0_addr_value",
81 .addr = 8,
82 .width = 32,
84 [EICE_W0_ADDR_MASK] = {
85 .name = "watch_0_addr_mask",
86 .addr = 9,
87 .width = 32,
89 [EICE_W0_DATA_VALUE] = {
90 .name = "watch_0_data_value",
91 .addr = 10,
92 .width = 32,
94 [EICE_W0_DATA_MASK] = {
95 .name = "watch_0_data_mask",
96 .addr = 11,
97 .width = 32,
99 [EICE_W0_CONTROL_VALUE] = {
100 .name = "watch_0_control_value",
101 .addr = 12,
102 .width = 9,
104 [EICE_W0_CONTROL_MASK] = {
105 .name = "watch_0_control_mask",
106 .addr = 13,
107 .width = 8,
109 [EICE_W1_ADDR_VALUE] = {
110 .name = "watch_1_addr_value",
111 .addr = 16,
112 .width = 32,
114 [EICE_W1_ADDR_MASK] = {
115 .name = "watch_1_addr_mask",
116 .addr = 17,
117 .width = 32,
119 [EICE_W1_DATA_VALUE] = {
120 .name = "watch_1_data_value",
121 .addr = 18,
122 .width = 32,
124 [EICE_W1_DATA_MASK] = {
125 .name = "watch_1_data_mask",
126 .addr = 19,
127 .width = 32,
129 [EICE_W1_CONTROL_VALUE] = {
130 .name = "watch_1_control_value",
131 .addr = 20,
132 .width = 9,
134 [EICE_W1_CONTROL_MASK] = {
135 .name = "watch_1_control_mask",
136 .addr = 21,
137 .width = 8,
139 /* vector_catch isn't always present */
140 [EICE_VEC_CATCH] = {
141 .name = "vector_catch",
142 .addr = 2,
143 .width = 8,
147 static int embeddedice_get_reg(struct reg *reg)
149 int retval = embeddedice_read_reg(reg);
150 if (retval != ERROR_OK) {
151 LOG_ERROR("error queueing EmbeddedICE register read");
152 return retval;
155 retval = jtag_execute_queue();
156 if (retval != ERROR_OK)
157 LOG_ERROR("EmbeddedICE register read failed");
159 return retval;
162 static const struct reg_arch_type eice_reg_type = {
163 .get = embeddedice_get_reg,
164 .set = embeddedice_set_reg_w_exec,
168 * Probe EmbeddedICE module and set up local records of its registers.
169 * Different versions of the modules have different capabilities, such as
170 * hardware support for vector_catch, single stepping, and monitor mode.
172 struct reg_cache *embeddedice_build_reg_cache(struct target *target,
173 struct arm7_9_common *arm7_9)
175 int retval;
176 struct reg_cache *reg_cache = malloc(sizeof(struct reg_cache));
177 struct reg *reg_list = NULL;
178 struct embeddedice_reg *arch_info = NULL;
179 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
180 int num_regs = ARRAY_SIZE(eice_regs);
181 int i;
182 int eice_version = 0;
184 /* vector_catch isn't always present */
185 if (!arm7_9->has_vector_catch)
186 num_regs--;
188 /* the actual registers are kept in two arrays */
189 reg_list = calloc(num_regs, sizeof(struct reg));
190 arch_info = calloc(num_regs, sizeof(struct embeddedice_reg));
192 /* fill in values for the reg cache */
193 reg_cache->name = "EmbeddedICE registers";
194 reg_cache->next = NULL;
195 reg_cache->reg_list = reg_list;
196 reg_cache->num_regs = num_regs;
198 /* FIXME the second watchpoint unit on Feroceon and Dragonite
199 * seems not to work ... we should have a way to not set up
200 * its four registers here!
203 /* set up registers */
204 for (i = 0; i < num_regs; i++) {
205 reg_list[i].name = eice_regs[i].name;
206 reg_list[i].size = eice_regs[i].width;
207 reg_list[i].dirty = 0;
208 reg_list[i].valid = 0;
209 reg_list[i].value = calloc(1, 4);
210 reg_list[i].arch_info = &arch_info[i];
211 reg_list[i].type = &eice_reg_type;
212 arch_info[i].addr = eice_regs[i].addr;
213 arch_info[i].jtag_info = jtag_info;
216 /* identify EmbeddedICE version by reading DCC control register */
217 embeddedice_read_reg(&reg_list[EICE_COMMS_CTRL]);
218 retval = jtag_execute_queue();
219 if (retval != ERROR_OK) {
220 for (i = 0; i < num_regs; i++)
221 free(reg_list[i].value);
222 free(reg_list);
223 free(reg_cache);
224 free(arch_info);
225 return NULL;
228 eice_version = buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 28, 4);
229 LOG_INFO("Embedded ICE version %d", eice_version);
231 switch (eice_version) {
232 case 1:
233 /* ARM7TDMI r3, ARM7TDMI-S r3
235 * REVISIT docs say ARM7TDMI-S r4 uses version 1 but
236 * that it has 6-bit CTRL and 5-bit STAT... doc bug?
237 * ARM7TDMI r4 docs say EICE v4.
239 reg_list[EICE_DBG_CTRL].size = 3;
240 reg_list[EICE_DBG_STAT].size = 5;
241 break;
242 case 2:
243 /* ARM9TDMI */
244 reg_list[EICE_DBG_CTRL].size = 4;
245 reg_list[EICE_DBG_STAT].size = 5;
246 arm7_9->has_single_step = 1;
247 break;
248 case 3:
249 LOG_ERROR("EmbeddedICE v%d handling might be broken",
250 eice_version);
251 reg_list[EICE_DBG_CTRL].size = 6;
252 reg_list[EICE_DBG_STAT].size = 5;
253 arm7_9->has_single_step = 1;
254 arm7_9->has_monitor_mode = 1;
255 break;
256 case 4:
257 /* ARM7TDMI r4 */
258 reg_list[EICE_DBG_CTRL].size = 6;
259 reg_list[EICE_DBG_STAT].size = 5;
260 arm7_9->has_monitor_mode = 1;
261 break;
262 case 5:
263 /* ARM9E-S rev 1 */
264 reg_list[EICE_DBG_CTRL].size = 6;
265 reg_list[EICE_DBG_STAT].size = 5;
266 arm7_9->has_single_step = 1;
267 arm7_9->has_monitor_mode = 1;
268 break;
269 case 6:
270 /* ARM7EJ-S, ARM9E-S rev 2, ARM9EJ-S */
271 reg_list[EICE_DBG_CTRL].size = 6;
272 reg_list[EICE_DBG_STAT].size = 10;
273 /* DBG_STAT has MOE bits */
274 arm7_9->has_monitor_mode = 1;
275 break;
276 case 7:
277 LOG_ERROR("EmbeddedICE v%d handling might be broken",
278 eice_version);
279 reg_list[EICE_DBG_CTRL].size = 6;
280 reg_list[EICE_DBG_STAT].size = 5;
281 arm7_9->has_monitor_mode = 1;
282 break;
283 default:
285 * The Feroceon implementation has the version number
286 * in some unusual bits. Let feroceon.c validate it
287 * and do the appropriate setup itself.
289 if (strcmp(target_type_name(target), "feroceon") == 0 ||
290 strcmp(target_type_name(target), "dragonite") == 0)
291 break;
292 LOG_ERROR("unknown EmbeddedICE version "
293 "(comms ctrl: 0x%8.8" PRIx32 ")",
294 buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32));
297 /* On Feroceon and Dragonite the second unit is seemingly missing. */
298 LOG_INFO("%s: hardware has %d breakpoint/watchpoint unit%s",
299 target_name(target), arm7_9->wp_available_max,
300 (arm7_9->wp_available_max != 1) ? "s" : "");
302 return reg_cache;
306 * Initialize EmbeddedICE module, if needed.
308 int embeddedice_setup(struct target *target)
310 int retval;
311 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
313 /* Explicitly disable monitor mode. For now we only support halting
314 * debug ... we don't know how to talk with a resident debug monitor
315 * that manages break requests. ARM's "Angel Debug Monitor" is one
316 * common example of such code.
318 if (arm7_9->has_monitor_mode) {
319 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
321 embeddedice_read_reg(dbg_ctrl);
322 retval = jtag_execute_queue();
323 if (retval != ERROR_OK)
324 return retval;
325 buf_set_u32(dbg_ctrl->value, 4, 1, 0);
326 embeddedice_set_reg_w_exec(dbg_ctrl, dbg_ctrl->value);
328 return jtag_execute_queue();
332 * Queue a read for an EmbeddedICE register into the register cache,
333 * optionally checking the value read.
334 * Note that at this level, all registers are 32 bits wide.
336 int embeddedice_read_reg_w_check(struct reg *reg,
337 uint8_t *check_value, uint8_t *check_mask)
339 struct embeddedice_reg *ice_reg = reg->arch_info;
340 uint8_t reg_addr = ice_reg->addr & 0x1f;
341 struct scan_field fields[3];
342 uint8_t field1_out[1];
343 uint8_t field2_out[1];
344 int retval;
346 retval = arm_jtag_scann(ice_reg->jtag_info, 0x2, TAP_IDLE);
347 if (retval != ERROR_OK)
348 return retval;
350 retval = arm_jtag_set_instr(ice_reg->jtag_info->tap,
351 ice_reg->jtag_info->intest_instr, NULL, TAP_IDLE);
352 if (retval != ERROR_OK)
353 return retval;
355 /* bits 31:0 -- data (ignored here) */
356 fields[0].num_bits = 32;
357 fields[0].out_value = reg->value;
358 fields[0].in_value = NULL;
359 fields[0].check_value = NULL;
360 fields[0].check_mask = NULL;
362 /* bits 36:32 -- register */
363 fields[1].num_bits = 5;
364 fields[1].out_value = field1_out;
365 field1_out[0] = reg_addr;
366 fields[1].in_value = NULL;
367 fields[1].check_value = NULL;
368 fields[1].check_mask = NULL;
370 /* bit 37 -- 0/read */
371 fields[2].num_bits = 1;
372 fields[2].out_value = field2_out;
373 field2_out[0] = 0;
374 fields[2].in_value = NULL;
375 fields[2].check_value = NULL;
376 fields[2].check_mask = NULL;
378 /* traverse Update-DR, setting address for the next read */
379 jtag_add_dr_scan(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
381 /* bits 31:0 -- the data we're reading (and maybe checking) */
382 fields[0].in_value = reg->value;
383 fields[0].check_value = check_value;
384 fields[0].check_mask = check_mask;
386 /* when reading the DCC data register, leaving the address field set to
387 * EICE_COMMS_DATA would read the register twice
388 * reading the control register is safe
390 field1_out[0] = eice_regs[EICE_COMMS_CTRL].addr;
392 /* traverse Update-DR, reading but with no other side effects */
393 jtag_add_dr_scan_check(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
395 return ERROR_OK;
399 * Receive a block of size 32-bit words from the DCC.
400 * We assume the target is always going to be fast enough (relative to
401 * the JTAG clock) that the debugger won't need to poll the handshake
402 * bit. The JTAG clock is usually at least six times slower than the
403 * functional clock, so the 50+ JTAG clocks needed to receive the word
404 * allow hundreds of instruction cycles (per word) in the target.
406 int embeddedice_receive(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
408 struct scan_field fields[3];
409 uint8_t field1_out[1];
410 uint8_t field2_out[1];
411 int retval;
413 retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
414 if (retval != ERROR_OK)
415 return retval;
416 retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
417 if (retval != ERROR_OK)
418 return retval;
420 fields[0].num_bits = 32;
421 fields[0].out_value = NULL;
422 fields[0].in_value = NULL;
424 fields[1].num_bits = 5;
425 fields[1].out_value = field1_out;
426 field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
427 fields[1].in_value = NULL;
429 fields[2].num_bits = 1;
430 fields[2].out_value = field2_out;
431 field2_out[0] = 0;
432 fields[2].in_value = NULL;
434 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
436 while (size > 0) {
437 /* when reading the last item, set the register address to the DCC control reg,
438 * to avoid reading additional data from the DCC data reg
440 if (size == 1)
441 field1_out[0] = eice_regs[EICE_COMMS_CTRL].addr;
443 fields[0].in_value = (uint8_t *)data;
444 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
445 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)data);
447 data++;
448 size--;
451 return jtag_execute_queue();
455 * Queue a read for an EmbeddedICE register into the register cache,
456 * not checking the value read.
458 int embeddedice_read_reg(struct reg *reg)
460 return embeddedice_read_reg_w_check(reg, NULL, NULL);
464 * Queue a write for an EmbeddedICE register, updating the register cache.
465 * Uses embeddedice_write_reg().
467 void embeddedice_set_reg(struct reg *reg, uint32_t value)
469 embeddedice_write_reg(reg, value);
471 buf_set_u32(reg->value, 0, reg->size, value);
472 reg->valid = 1;
473 reg->dirty = 0;
478 * Write an EmbeddedICE register, updating the register cache.
479 * Uses embeddedice_set_reg(); not queued.
481 static int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf)
483 int retval;
485 embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size));
486 retval = jtag_execute_queue();
487 if (retval != ERROR_OK)
488 LOG_ERROR("register write failed");
489 return retval;
493 * Queue a write for an EmbeddedICE register, bypassing the register cache.
495 void embeddedice_write_reg(struct reg *reg, uint32_t value)
497 struct embeddedice_reg *ice_reg = reg->arch_info;
499 LOG_DEBUG("%i: 0x%8.8" PRIx32 "", ice_reg->addr, value);
501 arm_jtag_scann(ice_reg->jtag_info, 0x2, TAP_IDLE);
503 arm_jtag_set_instr(ice_reg->jtag_info->tap, ice_reg->jtag_info->intest_instr, NULL, TAP_IDLE);
505 uint8_t reg_addr = ice_reg->addr & 0x1f;
506 embeddedice_write_reg_inner(ice_reg->jtag_info->tap, reg_addr, value);
510 * Queue a write for an EmbeddedICE register, using cached value.
511 * Uses embeddedice_write_reg().
513 void embeddedice_store_reg(struct reg *reg)
515 embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
519 * Send a block of size 32-bit words to the DCC.
520 * We assume the target is always going to be fast enough (relative to
521 * the JTAG clock) that the debugger won't need to poll the handshake
522 * bit. The JTAG clock is usually at least six times slower than the
523 * functional clock, so the 50+ JTAG clocks needed to receive the word
524 * allow hundreds of instruction cycles (per word) in the target.
526 int embeddedice_send(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
528 struct scan_field fields[3];
529 uint8_t field0_out[4];
530 uint8_t field1_out[1];
531 uint8_t field2_out[1];
532 int retval;
534 retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
535 if (retval != ERROR_OK)
536 return retval;
537 retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
538 if (retval != ERROR_OK)
539 return retval;
541 fields[0].num_bits = 32;
542 fields[0].out_value = field0_out;
543 fields[0].in_value = NULL;
545 fields[1].num_bits = 5;
546 fields[1].out_value = field1_out;
547 field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
548 fields[1].in_value = NULL;
550 fields[2].num_bits = 1;
551 fields[2].out_value = field2_out;
552 field2_out[0] = 1;
554 fields[2].in_value = NULL;
556 while (size > 0) {
557 buf_set_u32(field0_out, 0, 32, *data);
558 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
560 data++;
561 size--;
564 /* call to jtag_execute_queue() intentionally omitted */
565 return ERROR_OK;
569 * Poll DCC control register until read or write handshake completes.
571 int embeddedice_handshake(struct arm_jtag *jtag_info, int hsbit, uint32_t timeout)
573 struct scan_field fields[3];
574 uint8_t field0_in[4];
575 uint8_t field1_out[1];
576 uint8_t field2_out[1];
577 int retval;
578 uint32_t hsact;
579 struct timeval lap;
580 struct timeval now;
582 if (hsbit == EICE_COMM_CTRL_WBIT)
583 hsact = 1;
584 else if (hsbit == EICE_COMM_CTRL_RBIT)
585 hsact = 0;
586 else {
587 LOG_ERROR("Invalid arguments");
588 return ERROR_COMMAND_SYNTAX_ERROR;
591 retval = arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
592 if (retval != ERROR_OK)
593 return retval;
594 retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
595 if (retval != ERROR_OK)
596 return retval;
598 fields[0].num_bits = 32;
599 fields[0].out_value = NULL;
600 fields[0].in_value = field0_in;
602 fields[1].num_bits = 5;
603 fields[1].out_value = field1_out;
604 field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
605 fields[1].in_value = NULL;
607 fields[2].num_bits = 1;
608 fields[2].out_value = field2_out;
609 field2_out[0] = 0;
610 fields[2].in_value = NULL;
612 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
613 gettimeofday(&lap, NULL);
614 do {
615 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
616 retval = jtag_execute_queue();
617 if (retval != ERROR_OK)
618 return retval;
620 if (buf_get_u32(field0_in, hsbit, 1) == hsact)
621 return ERROR_OK;
623 gettimeofday(&now, NULL);
624 } while ((uint32_t)((now.tv_sec - lap.tv_sec) * 1000
625 + (now.tv_usec - lap.tv_usec) / 1000) <= timeout);
627 LOG_ERROR("embeddedice handshake timeout");
628 return ERROR_TARGET_TIMEOUT;
631 #ifndef HAVE_JTAG_MINIDRIVER_H
633 * This is an inner loop of the open loop DCC write of data to target
635 void embeddedice_write_dcc(struct jtag_tap *tap,
636 int reg_addr, const uint8_t *buffer, int little, int count)
638 int i;
640 for (i = 0; i < count; i++) {
641 embeddedice_write_reg_inner(tap, reg_addr,
642 fast_target_buffer_get_u32(buffer, little));
643 buffer += 4;
646 #else
647 /* provided by minidriver */
648 #endif