helper/command: register full-name commands in jim
[openocd.git] / src / target / armv7m.c
blob101094a971bd7dd79756d03011897a6608ba32d7
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2007,2008 Øyvind Harboe *
12 * oyvind.harboe@zylin.com *
13 * *
14 * Copyright (C) 2018 by Liviu Ionescu *
15 * <ilg@livius.net> *
16 * *
17 * Copyright (C) 2019 by Tomas Vanek *
18 * vanekt@fbl.cz *
19 * *
20 * This program is free software; you can redistribute it and/or modify *
21 * it under the terms of the GNU General Public License as published by *
22 * the Free Software Foundation; either version 2 of the License, or *
23 * (at your option) any later version. *
24 * *
25 * This program is distributed in the hope that it will be useful, *
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
28 * GNU General Public License for more details. *
29 * *
30 * You should have received a copy of the GNU General Public License *
31 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
32 * *
33 * ARMv7-M Architecture, Application Level Reference Manual *
34 * ARM DDI 0405C (September 2008) *
35 * *
36 ***************************************************************************/
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
42 #include "breakpoints.h"
43 #include "armv7m.h"
44 #include "algorithm.h"
45 #include "register.h"
46 #include "semihosting_common.h"
48 #if 0
49 #define _DEBUG_INSTRUCTION_EXECUTION_
50 #endif
52 static const char * const armv7m_exception_strings[] = {
53 "", "Reset", "NMI", "HardFault",
54 "MemManage", "BusFault", "UsageFault", "SecureFault",
55 "RESERVED", "RESERVED", "RESERVED", "SVCall",
56 "DebugMonitor", "RESERVED", "PendSV", "SysTick"
59 /* PSP is used in some thread modes */
60 const int armv7m_psp_reg_map[ARMV7M_NUM_CORE_REGS] = {
61 ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
62 ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
63 ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
64 ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
65 ARMV7M_xPSR,
68 /* MSP is used in handler and some thread modes */
69 const int armv7m_msp_reg_map[ARMV7M_NUM_CORE_REGS] = {
70 ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
71 ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
72 ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
73 ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
74 ARMV7M_xPSR,
78 * These registers are not memory-mapped. The ARMv7-M profile includes
79 * memory mapped registers too, such as for the NVIC (interrupt controller)
80 * and SysTick (timer) modules; those can mostly be treated as peripherals.
82 * The ARMv6-M profile is almost identical in this respect, except that it
83 * doesn't include basepri or faultmask registers.
85 static const struct {
86 unsigned id;
87 const char *name;
88 unsigned bits;
89 enum reg_type type;
90 const char *group;
91 const char *feature;
92 } armv7m_regs[] = {
93 { ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
94 { ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
95 { ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
96 { ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
97 { ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
98 { ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
99 { ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
100 { ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
101 { ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
102 { ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
103 { ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
104 { ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
105 { ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
106 { ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" },
107 { ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
108 { ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" },
109 { ARMV7M_xPSR, "xPSR", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
111 { ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
112 { ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
114 /* A working register for packing/unpacking special regs, hidden from gdb */
115 { ARMV7M_PMSK_BPRI_FLTMSK_CTRL, "pmsk_bpri_fltmsk_ctrl", 32, REG_TYPE_INT, NULL, NULL },
117 /* WARNING: If you use armv7m_write_core_reg() on one of 4 following
118 * special registers, the new data go to ARMV7M_PMSK_BPRI_FLTMSK_CTRL
119 * cache only and are not flushed to CPU HW register.
120 * To trigger write to CPU HW register, add
121 * armv7m_write_core_reg(,,ARMV7M_PMSK_BPRI_FLTMSK_CTRL,);
123 { ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
124 { ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
125 { ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
126 { ARMV7M_CONTROL, "control", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
128 { ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
129 { ARMV7M_D1, "d1", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
130 { ARMV7M_D2, "d2", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
131 { ARMV7M_D3, "d3", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
132 { ARMV7M_D4, "d4", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
133 { ARMV7M_D5, "d5", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
134 { ARMV7M_D6, "d6", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
135 { ARMV7M_D7, "d7", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
136 { ARMV7M_D8, "d8", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
137 { ARMV7M_D9, "d9", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
138 { ARMV7M_D10, "d10", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
139 { ARMV7M_D11, "d11", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
140 { ARMV7M_D12, "d12", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
141 { ARMV7M_D13, "d13", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
142 { ARMV7M_D14, "d14", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
143 { ARMV7M_D15, "d15", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
145 { ARMV7M_FPSCR, "fpscr", 32, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp" },
148 #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
151 * Restores target context using the cache of core registers set up
152 * by armv7m_build_reg_cache(), calling optional core-specific hooks.
154 int armv7m_restore_context(struct target *target)
156 int i;
157 struct armv7m_common *armv7m = target_to_armv7m(target);
158 struct reg_cache *cache = armv7m->arm.core_cache;
160 LOG_DEBUG(" ");
162 if (armv7m->pre_restore_context)
163 armv7m->pre_restore_context(target);
165 /* The descending order of register writes is crucial for correct
166 * packing of ARMV7M_PMSK_BPRI_FLTMSK_CTRL!
167 * See also comments in the register table above */
168 for (i = cache->num_regs - 1; i >= 0; i--) {
169 struct reg *r = &cache->reg_list[i];
171 if (r->exist && r->dirty)
172 armv7m->arm.write_core_reg(target, r, i, ARM_MODE_ANY, r->value);
175 return ERROR_OK;
178 /* Core state functions */
181 * Maps ISR number (from xPSR) to name.
182 * Note that while names and meanings for the first sixteen are standardized
183 * (with zero not a true exception), external interrupts are only numbered.
184 * They are assigned by vendors, which generally assign different numbers to
185 * peripherals (such as UART0 or a USB peripheral controller).
187 const char *armv7m_exception_string(int number)
189 static char enamebuf[32];
191 if ((number < 0) | (number > 511))
192 return "Invalid exception";
193 if (number < 16)
194 return armv7m_exception_strings[number];
195 sprintf(enamebuf, "External Interrupt(%i)", number - 16);
196 return enamebuf;
199 static int armv7m_get_core_reg(struct reg *reg)
201 int retval;
202 struct arm_reg *armv7m_reg = reg->arch_info;
203 struct target *target = armv7m_reg->target;
204 struct arm *arm = target_to_arm(target);
206 if (target->state != TARGET_HALTED)
207 return ERROR_TARGET_NOT_HALTED;
209 retval = arm->read_core_reg(target, reg, reg->number, arm->core_mode);
211 return retval;
214 static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
216 struct arm_reg *armv7m_reg = reg->arch_info;
217 struct target *target = armv7m_reg->target;
219 if (target->state != TARGET_HALTED)
220 return ERROR_TARGET_NOT_HALTED;
222 buf_cpy(buf, reg->value, reg->size);
223 reg->dirty = true;
224 reg->valid = true;
226 return ERROR_OK;
229 static uint32_t armv7m_map_id_to_regsel(unsigned int arm_reg_id)
231 switch (arm_reg_id) {
232 case ARMV7M_R0 ... ARMV7M_R14:
233 case ARMV7M_PC:
234 case ARMV7M_xPSR:
235 case ARMV7M_MSP:
236 case ARMV7M_PSP:
237 /* NOTE: we "know" here that the register identifiers
238 * match the Cortex-M DCRSR.REGSEL selectors values
239 * for R0..R14, PC, xPSR, MSP, and PSP.
241 return arm_reg_id;
243 case ARMV7M_PMSK_BPRI_FLTMSK_CTRL:
244 return ARMV7M_REGSEL_PMSK_BPRI_FLTMSK_CTRL;
246 case ARMV7M_FPSCR:
247 return ARMV7M_REGSEL_FPSCR;
249 case ARMV7M_D0 ... ARMV7M_D15:
250 return ARMV7M_REGSEL_S0 + 2 * (arm_reg_id - ARMV7M_D0);
252 default:
253 LOG_ERROR("Bad register ID %u", arm_reg_id);
254 return arm_reg_id;
258 static bool armv7m_map_reg_packing(unsigned int arm_reg_id,
259 unsigned int *reg32_id, uint32_t *offset)
261 switch (arm_reg_id) {
263 case ARMV7M_PRIMASK:
264 *reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
265 *offset = 0;
266 return true;
267 case ARMV7M_BASEPRI:
268 *reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
269 *offset = 1;
270 return true;
271 case ARMV7M_FAULTMASK:
272 *reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
273 *offset = 2;
274 return true;
275 case ARMV7M_CONTROL:
276 *reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
277 *offset = 3;
278 return true;
280 default:
281 return false;
285 static int armv7m_read_core_reg(struct target *target, struct reg *r,
286 int num, enum arm_mode mode)
288 uint32_t reg_value;
289 int retval;
290 struct armv7m_common *armv7m = target_to_armv7m(target);
292 assert(num < (int)armv7m->arm.core_cache->num_regs);
293 assert(num == (int)r->number);
295 /* If a code calls read_reg, it expects the cache is no more dirty.
296 * Clear the dirty flag regardless of the later read succeeds or not
297 * to prevent unwanted cache flush after a read error */
298 r->dirty = false;
300 if (r->size <= 8) {
301 /* any 8-bit or shorter register is packed */
302 uint32_t offset = 0; /* silence false gcc warning */
303 unsigned int reg32_id;
305 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
306 assert(is_packed);
307 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
309 /* Read 32-bit container register if not cached */
310 if (!r32->valid) {
311 retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
312 if (retval != ERROR_OK)
313 return retval;
316 /* Copy required bits of 32-bit container register */
317 buf_cpy(r32->value + offset, r->value, r->size);
319 } else {
320 assert(r->size == 32 || r->size == 64);
322 struct arm_reg *armv7m_core_reg = r->arch_info;
323 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
325 retval = armv7m->load_core_reg_u32(target, regsel, &reg_value);
326 if (retval != ERROR_OK)
327 return retval;
328 buf_set_u32(r->value, 0, 32, reg_value);
330 if (r->size == 64) {
331 retval = armv7m->load_core_reg_u32(target, regsel + 1, &reg_value);
332 if (retval != ERROR_OK) {
333 r->valid = false;
334 return retval;
336 buf_set_u32(r->value + 4, 0, 32, reg_value);
338 uint64_t q = buf_get_u64(r->value, 0, 64);
339 LOG_DEBUG("read %s value 0x%016" PRIx64, r->name, q);
340 } else {
341 LOG_DEBUG("read %s value 0x%08" PRIx32, r->name, reg_value);
345 r->valid = true;
347 return ERROR_OK;
350 static int armv7m_write_core_reg(struct target *target, struct reg *r,
351 int num, enum arm_mode mode, uint8_t *value)
353 int retval;
354 uint32_t t;
355 struct armv7m_common *armv7m = target_to_armv7m(target);
357 assert(num < (int)armv7m->arm.core_cache->num_regs);
358 assert(num == (int)r->number);
360 if (value != r->value) {
361 /* If we are not flushing the cache, store the new value to the cache */
362 buf_cpy(value, r->value, r->size);
365 if (r->size <= 8) {
366 /* any 8-bit or shorter register is packed */
367 uint32_t offset = 0; /* silence false gcc warning */
368 unsigned int reg32_id;
370 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
371 assert(is_packed);
372 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
374 if (!r32->valid) {
375 /* Before merging with other parts ensure the 32-bit register is valid */
376 retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
377 if (retval != ERROR_OK)
378 return retval;
381 /* Write a part to the 32-bit container register */
382 buf_cpy(value, r32->value + offset, r->size);
383 r32->dirty = true;
385 } else {
386 assert(r->size == 32 || r->size == 64);
388 struct arm_reg *armv7m_core_reg = r->arch_info;
389 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
391 t = buf_get_u32(value, 0, 32);
392 retval = armv7m->store_core_reg_u32(target, regsel, t);
393 if (retval != ERROR_OK)
394 goto out_error;
396 if (r->size == 64) {
397 t = buf_get_u32(value + 4, 0, 32);
398 retval = armv7m->store_core_reg_u32(target, regsel + 1, t);
399 if (retval != ERROR_OK)
400 goto out_error;
402 uint64_t q = buf_get_u64(value, 0, 64);
403 LOG_DEBUG("write %s value 0x%016" PRIx64, r->name, q);
404 } else {
405 LOG_DEBUG("write %s value 0x%08" PRIx32, r->name, t);
409 r->valid = true;
410 r->dirty = false;
412 return ERROR_OK;
414 out_error:
415 r->dirty = true;
416 LOG_ERROR("Error setting register %s", r->name);
417 return retval;
421 * Returns generic ARM userspace registers to GDB.
423 int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
424 int *reg_list_size, enum target_register_class reg_class)
426 struct armv7m_common *armv7m = target_to_armv7m(target);
427 int i, size;
429 if (reg_class == REG_CLASS_ALL)
430 size = armv7m->arm.core_cache->num_regs;
431 else
432 size = ARMV7M_NUM_CORE_REGS;
434 *reg_list = malloc(sizeof(struct reg *) * size);
435 if (*reg_list == NULL)
436 return ERROR_FAIL;
438 for (i = 0; i < size; i++)
439 (*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
441 *reg_list_size = size;
443 return ERROR_OK;
446 /** Runs a Thumb algorithm in the target. */
447 int armv7m_run_algorithm(struct target *target,
448 int num_mem_params, struct mem_param *mem_params,
449 int num_reg_params, struct reg_param *reg_params,
450 target_addr_t entry_point, target_addr_t exit_point,
451 int timeout_ms, void *arch_info)
453 int retval;
455 retval = armv7m_start_algorithm(target,
456 num_mem_params, mem_params,
457 num_reg_params, reg_params,
458 entry_point, exit_point,
459 arch_info);
461 if (retval == ERROR_OK)
462 retval = armv7m_wait_algorithm(target,
463 num_mem_params, mem_params,
464 num_reg_params, reg_params,
465 exit_point, timeout_ms,
466 arch_info);
468 return retval;
471 /** Starts a Thumb algorithm in the target. */
472 int armv7m_start_algorithm(struct target *target,
473 int num_mem_params, struct mem_param *mem_params,
474 int num_reg_params, struct reg_param *reg_params,
475 target_addr_t entry_point, target_addr_t exit_point,
476 void *arch_info)
478 struct armv7m_common *armv7m = target_to_armv7m(target);
479 struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
480 enum arm_mode core_mode = armv7m->arm.core_mode;
481 int retval = ERROR_OK;
483 /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
484 * at the exit point */
486 if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
487 LOG_ERROR("current target isn't an ARMV7M target");
488 return ERROR_TARGET_INVALID;
491 if (target->state != TARGET_HALTED) {
492 LOG_WARNING("target not halted");
493 return ERROR_TARGET_NOT_HALTED;
496 /* Store all non-debug execution registers to armv7m_algorithm_info context */
497 for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) {
499 armv7m_algorithm_info->context[i] = buf_get_u32(
500 armv7m->arm.core_cache->reg_list[i].value,
502 32);
505 for (int i = 0; i < num_mem_params; i++) {
506 if (mem_params[i].direction == PARAM_IN)
507 continue;
508 retval = target_write_buffer(target, mem_params[i].address,
509 mem_params[i].size,
510 mem_params[i].value);
511 if (retval != ERROR_OK)
512 return retval;
515 for (int i = 0; i < num_reg_params; i++) {
516 if (reg_params[i].direction == PARAM_IN)
517 continue;
519 struct reg *reg =
520 register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, 0);
521 /* uint32_t regvalue; */
523 if (!reg) {
524 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
525 return ERROR_COMMAND_SYNTAX_ERROR;
528 if (reg->size != reg_params[i].size) {
529 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
530 reg_params[i].reg_name);
531 return ERROR_COMMAND_SYNTAX_ERROR;
534 /* regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
535 armv7m_set_core_reg(reg, reg_params[i].value);
540 * Ensure xPSR.T is set to avoid trying to run things in arm
541 * (non-thumb) mode, which armv7m does not support.
543 * We do this by setting the entirety of xPSR, which should
544 * remove all the unknowns about xPSR state.
546 * Because xPSR.T is populated on reset from the vector table,
547 * it might be 0 if the vector table has "bad" data in it.
549 struct reg *reg = &armv7m->arm.core_cache->reg_list[ARMV7M_xPSR];
550 buf_set_u32(reg->value, 0, 32, 0x01000000);
551 reg->valid = true;
552 reg->dirty = true;
555 if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
556 armv7m_algorithm_info->core_mode != core_mode) {
558 /* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
559 if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
560 armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
561 LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
564 LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
565 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
566 0, 1, armv7m_algorithm_info->core_mode);
567 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
568 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
571 /* save previous core mode */
572 armv7m_algorithm_info->core_mode = core_mode;
574 retval = target_resume(target, 0, entry_point, 1, 1);
576 return retval;
579 /** Waits for an algorithm in the target. */
580 int armv7m_wait_algorithm(struct target *target,
581 int num_mem_params, struct mem_param *mem_params,
582 int num_reg_params, struct reg_param *reg_params,
583 target_addr_t exit_point, int timeout_ms,
584 void *arch_info)
586 struct armv7m_common *armv7m = target_to_armv7m(target);
587 struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
588 int retval = ERROR_OK;
590 /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
591 * at the exit point */
593 if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
594 LOG_ERROR("current target isn't an ARMV7M target");
595 return ERROR_TARGET_INVALID;
598 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
599 /* If the target fails to halt due to the breakpoint, force a halt */
600 if (retval != ERROR_OK || target->state != TARGET_HALTED) {
601 retval = target_halt(target);
602 if (retval != ERROR_OK)
603 return retval;
604 retval = target_wait_state(target, TARGET_HALTED, 500);
605 if (retval != ERROR_OK)
606 return retval;
607 return ERROR_TARGET_TIMEOUT;
610 if (exit_point) {
611 /* PC value has been cached in cortex_m_debug_entry() */
612 uint32_t pc = buf_get_u32(armv7m->arm.pc->value, 0, 32);
613 if (pc != exit_point) {
614 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" TARGET_PRIxADDR,
615 pc, exit_point);
616 return ERROR_TARGET_ALGO_EXIT;
620 /* Read memory values to mem_params[] */
621 for (int i = 0; i < num_mem_params; i++) {
622 if (mem_params[i].direction != PARAM_OUT) {
623 retval = target_read_buffer(target, mem_params[i].address,
624 mem_params[i].size,
625 mem_params[i].value);
626 if (retval != ERROR_OK)
627 return retval;
631 /* Copy core register values to reg_params[] */
632 for (int i = 0; i < num_reg_params; i++) {
633 if (reg_params[i].direction != PARAM_OUT) {
634 struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
635 reg_params[i].reg_name,
638 if (!reg) {
639 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
640 return ERROR_COMMAND_SYNTAX_ERROR;
643 if (reg->size != reg_params[i].size) {
644 LOG_ERROR(
645 "BUG: register '%s' size doesn't match reg_params[i].size",
646 reg_params[i].reg_name);
647 return ERROR_COMMAND_SYNTAX_ERROR;
650 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
654 for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) {
655 uint32_t regvalue;
656 regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
657 if (regvalue != armv7m_algorithm_info->context[i]) {
658 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
659 armv7m->arm.core_cache->reg_list[i].name,
660 armv7m_algorithm_info->context[i]);
661 buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
662 0, 32, armv7m_algorithm_info->context[i]);
663 armv7m->arm.core_cache->reg_list[i].valid = true;
664 armv7m->arm.core_cache->reg_list[i].dirty = true;
668 /* restore previous core mode */
669 if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
670 LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
671 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
672 0, 1, armv7m_algorithm_info->core_mode);
673 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
674 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
677 armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
679 return retval;
682 /** Logs summary of ARMv7-M state for a halted target. */
683 int armv7m_arch_state(struct target *target)
685 struct armv7m_common *armv7m = target_to_armv7m(target);
686 struct arm *arm = &armv7m->arm;
687 uint32_t ctrl, sp;
689 /* avoid filling log waiting for fileio reply */
690 if (target->semihosting && target->semihosting->hit_fileio)
691 return ERROR_OK;
693 ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
694 sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
696 LOG_USER("target halted due to %s, current mode: %s %s\n"
697 "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s",
698 debug_reason_name(target),
699 arm_mode_name(arm->core_mode),
700 armv7m_exception_string(armv7m->exception_number),
701 buf_get_u32(arm->cpsr->value, 0, 32),
702 buf_get_u32(arm->pc->value, 0, 32),
703 (ctrl & 0x02) ? 'p' : 'm',
705 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
706 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
708 return ERROR_OK;
711 static const struct reg_arch_type armv7m_reg_type = {
712 .get = armv7m_get_core_reg,
713 .set = armv7m_set_core_reg,
716 /** Builds cache of architecturally defined registers. */
717 struct reg_cache *armv7m_build_reg_cache(struct target *target)
719 struct armv7m_common *armv7m = target_to_armv7m(target);
720 struct arm *arm = &armv7m->arm;
721 int num_regs = ARMV7M_NUM_REGS;
722 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
723 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
724 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
725 struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
726 struct reg_feature *feature;
727 int i;
729 /* Build the process context cache */
730 cache->name = "arm v7m registers";
731 cache->next = NULL;
732 cache->reg_list = reg_list;
733 cache->num_regs = num_regs;
734 (*cache_p) = cache;
736 for (i = 0; i < num_regs; i++) {
737 arch_info[i].num = armv7m_regs[i].id;
738 arch_info[i].target = target;
739 arch_info[i].arm = arm;
741 reg_list[i].name = armv7m_regs[i].name;
742 reg_list[i].size = armv7m_regs[i].bits;
743 reg_list[i].value = arch_info[i].value;
744 reg_list[i].dirty = false;
745 reg_list[i].valid = false;
746 reg_list[i].hidden = i == ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
747 reg_list[i].type = &armv7m_reg_type;
748 reg_list[i].arch_info = &arch_info[i];
750 reg_list[i].group = armv7m_regs[i].group;
751 reg_list[i].number = i;
752 reg_list[i].exist = true;
753 reg_list[i].caller_save = true; /* gdb defaults to true */
755 if (reg_list[i].hidden)
756 continue;
758 feature = calloc(1, sizeof(struct reg_feature));
759 if (feature) {
760 feature->name = armv7m_regs[i].feature;
761 reg_list[i].feature = feature;
762 } else
763 LOG_ERROR("unable to allocate feature list");
765 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
766 if (reg_list[i].reg_data_type)
767 reg_list[i].reg_data_type->type = armv7m_regs[i].type;
768 else
769 LOG_ERROR("unable to allocate reg type list");
772 arm->cpsr = reg_list + ARMV7M_xPSR;
773 arm->pc = reg_list + ARMV7M_PC;
774 arm->core_cache = cache;
776 return cache;
779 void armv7m_free_reg_cache(struct target *target)
781 struct armv7m_common *armv7m = target_to_armv7m(target);
782 struct arm *arm = &armv7m->arm;
783 struct reg_cache *cache;
784 struct reg *reg;
785 unsigned int i;
787 cache = arm->core_cache;
789 if (!cache)
790 return;
792 for (i = 0; i < cache->num_regs; i++) {
793 reg = &cache->reg_list[i];
795 free(reg->feature);
796 free(reg->reg_data_type);
799 free(cache->reg_list[0].arch_info);
800 free(cache->reg_list);
801 free(cache);
803 arm->core_cache = NULL;
806 static int armv7m_setup_semihosting(struct target *target, int enable)
808 /* nothing todo for armv7m */
809 return ERROR_OK;
812 /** Sets up target as a generic ARMv7-M core */
813 int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
815 struct arm *arm = &armv7m->arm;
817 armv7m->common_magic = ARMV7M_COMMON_MAGIC;
818 armv7m->fp_feature = FP_NONE;
819 armv7m->trace_config.trace_bus_id = 1;
820 /* Enable stimulus port #0 by default */
821 armv7m->trace_config.itm_ter[0] = 1;
823 arm->core_type = ARM_CORE_TYPE_M_PROFILE;
824 arm->arch_info = armv7m;
825 arm->setup_semihosting = armv7m_setup_semihosting;
827 arm->read_core_reg = armv7m_read_core_reg;
828 arm->write_core_reg = armv7m_write_core_reg;
830 return arm_init_arch_info(target, arm);
833 /** Generates a CRC32 checksum of a memory region. */
834 int armv7m_checksum_memory(struct target *target,
835 target_addr_t address, uint32_t count, uint32_t *checksum)
837 struct working_area *crc_algorithm;
838 struct armv7m_algorithm armv7m_info;
839 struct reg_param reg_params[2];
840 int retval;
842 static const uint8_t cortex_m_crc_code[] = {
843 #include "../../contrib/loaders/checksum/armv7m_crc.inc"
846 retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm);
847 if (retval != ERROR_OK)
848 return retval;
850 retval = target_write_buffer(target, crc_algorithm->address,
851 sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code);
852 if (retval != ERROR_OK)
853 goto cleanup;
855 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
856 armv7m_info.core_mode = ARM_MODE_THREAD;
858 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
859 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
861 buf_set_u32(reg_params[0].value, 0, 32, address);
862 buf_set_u32(reg_params[1].value, 0, 32, count);
864 int timeout = 20000 * (1 + (count / (1024 * 1024)));
866 retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
867 crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6),
868 timeout, &armv7m_info);
870 if (retval == ERROR_OK)
871 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
872 else
873 LOG_ERROR("error executing cortex_m crc algorithm");
875 destroy_reg_param(&reg_params[0]);
876 destroy_reg_param(&reg_params[1]);
878 cleanup:
879 target_free_working_area(target, crc_algorithm);
881 return retval;
884 /** Checks an array of memory regions whether they are erased. */
885 int armv7m_blank_check_memory(struct target *target,
886 struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
888 struct working_area *erase_check_algorithm;
889 struct working_area *erase_check_params;
890 struct reg_param reg_params[2];
891 struct armv7m_algorithm armv7m_info;
892 int retval;
894 static bool timed_out;
896 static const uint8_t erase_check_code[] = {
897 #include "../../contrib/loaders/erase_check/armv7m_erase_check.inc"
900 const uint32_t code_size = sizeof(erase_check_code);
902 /* make sure we have a working area */
903 if (target_alloc_working_area(target, code_size,
904 &erase_check_algorithm) != ERROR_OK)
905 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
907 retval = target_write_buffer(target, erase_check_algorithm->address,
908 code_size, erase_check_code);
909 if (retval != ERROR_OK)
910 goto cleanup1;
912 /* prepare blocks array for algo */
913 struct algo_block {
914 union {
915 uint32_t size;
916 uint32_t result;
918 uint32_t address;
921 uint32_t avail = target_get_working_area_avail(target);
922 int blocks_to_check = avail / sizeof(struct algo_block) - 1;
923 if (num_blocks < blocks_to_check)
924 blocks_to_check = num_blocks;
926 struct algo_block *params = malloc((blocks_to_check+1)*sizeof(struct algo_block));
927 if (params == NULL) {
928 retval = ERROR_FAIL;
929 goto cleanup1;
932 int i;
933 uint32_t total_size = 0;
934 for (i = 0; i < blocks_to_check; i++) {
935 total_size += blocks[i].size;
936 target_buffer_set_u32(target, (uint8_t *)&(params[i].size),
937 blocks[i].size / sizeof(uint32_t));
938 target_buffer_set_u32(target, (uint8_t *)&(params[i].address),
939 blocks[i].address);
941 target_buffer_set_u32(target, (uint8_t *)&(params[blocks_to_check].size), 0);
943 uint32_t param_size = (blocks_to_check + 1) * sizeof(struct algo_block);
944 if (target_alloc_working_area(target, param_size,
945 &erase_check_params) != ERROR_OK) {
946 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
947 goto cleanup2;
950 retval = target_write_buffer(target, erase_check_params->address,
951 param_size, (uint8_t *)params);
952 if (retval != ERROR_OK)
953 goto cleanup3;
955 uint32_t erased_word = erased_value | (erased_value << 8)
956 | (erased_value << 16) | (erased_value << 24);
958 LOG_DEBUG("Starting erase check of %d blocks, parameters@"
959 TARGET_ADDR_FMT, blocks_to_check, erase_check_params->address);
961 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
962 armv7m_info.core_mode = ARM_MODE_THREAD;
964 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
965 buf_set_u32(reg_params[0].value, 0, 32, erase_check_params->address);
967 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
968 buf_set_u32(reg_params[1].value, 0, 32, erased_word);
970 /* assume CPU clk at least 1 MHz */
971 int timeout = (timed_out ? 30000 : 2000) + total_size * 3 / 1000;
973 retval = target_run_algorithm(target,
974 0, NULL,
975 ARRAY_SIZE(reg_params), reg_params,
976 erase_check_algorithm->address,
977 erase_check_algorithm->address + (code_size - 2),
978 timeout,
979 &armv7m_info);
981 timed_out = retval == ERROR_TARGET_TIMEOUT;
982 if (retval != ERROR_OK && !timed_out)
983 goto cleanup4;
985 retval = target_read_buffer(target, erase_check_params->address,
986 param_size, (uint8_t *)params);
987 if (retval != ERROR_OK)
988 goto cleanup4;
990 for (i = 0; i < blocks_to_check; i++) {
991 uint32_t result = target_buffer_get_u32(target,
992 (uint8_t *)&(params[i].result));
993 if (result != 0 && result != 1)
994 break;
996 blocks[i].result = result;
998 if (i && timed_out)
999 LOG_INFO("Slow CPU clock: %d blocks checked, %d remain. Continuing...", i, num_blocks-i);
1001 retval = i; /* return number of blocks really checked */
1003 cleanup4:
1004 destroy_reg_param(&reg_params[0]);
1005 destroy_reg_param(&reg_params[1]);
1007 cleanup3:
1008 target_free_working_area(target, erase_check_params);
1009 cleanup2:
1010 free(params);
1011 cleanup1:
1012 target_free_working_area(target, erase_check_algorithm);
1014 return retval;
1017 int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
1019 struct armv7m_common *armv7m = target_to_armv7m(target);
1020 struct reg *r = armv7m->arm.pc;
1021 bool result = false;
1024 /* if we halted last time due to a bkpt instruction
1025 * then we have to manually step over it, otherwise
1026 * the core will break again */
1028 if (target->debug_reason == DBG_REASON_BREAKPOINT) {
1029 uint16_t op;
1030 uint32_t pc = buf_get_u32(r->value, 0, 32);
1032 pc &= ~1;
1033 if (target_read_u16(target, pc, &op) == ERROR_OK) {
1034 if ((op & 0xFF00) == 0xBE00) {
1035 pc = buf_get_u32(r->value, 0, 32) + 2;
1036 buf_set_u32(r->value, 0, 32, pc);
1037 r->dirty = true;
1038 r->valid = true;
1039 result = true;
1040 LOG_DEBUG("Skipping over BKPT instruction");
1045 if (inst_found)
1046 *inst_found = result;
1048 return ERROR_OK;
1051 const struct command_registration armv7m_command_handlers[] = {
1053 .chain = arm_command_handlers,
1055 COMMAND_REGISTRATION_DONE