1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * Copyright (C) 2008 by Hongtao Zheng *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
28 ***************************************************************************/
33 #include "embeddedice.h"
34 #include "target_request.h"
35 #include "arm7_9_common.h"
36 #include "time_support.h"
37 #include "arm_simulator.h"
40 int arm7_9_debug_entry(target_t
*target
);
41 int arm7_9_enable_sw_bkpts(struct target_s
*target
);
43 /* command handler forward declarations */
44 int handle_arm7_9_write_xpsr_command(struct command_context_s
*cmd_ctx
, char *cmd
, char **args
, int argc
);
45 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s
*cmd_ctx
, char *cmd
, char **args
, int argc
);
46 int handle_arm7_9_read_core_reg_command(struct command_context_s
*cmd_ctx
, char *cmd
, char **args
, int argc
);
47 int handle_arm7_9_write_core_reg_command(struct command_context_s
*cmd_ctx
, char *cmd
, char **args
, int argc
);
48 int handle_arm7_9_dbgrq_command(struct command_context_s
*cmd_ctx
, char *cmd
, char **args
, int argc
);
49 int handle_arm7_9_fast_memory_access_command(struct command_context_s
*cmd_ctx
, char *cmd
, char **args
, int argc
);
50 int handle_arm7_9_dcc_downloads_command(struct command_context_s
*cmd_ctx
, char *cmd
, char **args
, int argc
);
51 int handle_arm7_9_etm_command(struct command_context_s
*cmd_ctx
, char *cmd
, char **args
, int argc
);
54 * Clear watchpoints for an ARM7/9 target.
56 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
57 * @return JTAG error status after executing queue
59 static int arm7_9_clear_watchpoints(arm7_9_common_t
*arm7_9
)
61 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
62 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
63 arm7_9
->sw_breakpoints_added
= 0;
65 arm7_9
->wp1_used
= arm7_9
->wp1_used_default
;
66 arm7_9
->wp_available
= arm7_9
->wp_available_max
;
68 return jtag_execute_queue();
72 * Assign a watchpoint to one of the two available hardware comparators in an
73 * ARM7 or ARM9 target.
75 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
76 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
78 static void arm7_9_assign_wp(arm7_9_common_t
*arm7_9
, breakpoint_t
*breakpoint
)
80 if (!arm7_9
->wp0_used
)
84 arm7_9
->wp_available
--;
86 else if (!arm7_9
->wp1_used
)
90 arm7_9
->wp_available
--;
94 LOG_ERROR("BUG: no hardware comparator available");
99 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
101 * @param arm7_9 Pointer to common struct for ARM7/9 targets
102 * @return Error codes if there is a problem finding a watchpoint or the result
103 * of executing the JTAG queue
105 static int arm7_9_set_software_breakpoints(arm7_9_common_t
*arm7_9
)
107 if (arm7_9
->sw_breakpoints_added
)
111 if (arm7_9
->wp_available
< 1)
113 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
114 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
116 arm7_9
->wp_available
--;
118 /* pick a breakpoint unit */
119 if (!arm7_9
->wp0_used
)
121 arm7_9
->sw_breakpoints_added
= 1;
122 arm7_9
->wp0_used
= 3;
123 } else if (!arm7_9
->wp1_used
)
125 arm7_9
->sw_breakpoints_added
= 2;
126 arm7_9
->wp1_used
= 3;
130 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
134 if (arm7_9
->sw_breakpoints_added
== 1)
136 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], arm7_9
->arm_bkpt
);
137 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0x0);
138 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffffu
);
139 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
140 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
142 else if (arm7_9
->sw_breakpoints_added
== 2)
144 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], arm7_9
->arm_bkpt
);
145 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0x0);
146 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0xffffffffu
);
147 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
148 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
152 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
156 return jtag_execute_queue();
160 * Setup the common pieces for an ARM7/9 target after reset or on startup.
162 * @param target Pointer to an ARM7/9 target to setup
163 * @return Result of clearing the watchpoints on the target
165 int arm7_9_setup(target_t
*target
)
167 armv4_5_common_t
*armv4_5
= target
->arch_info
;
168 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
170 return arm7_9_clear_watchpoints(arm7_9
);
174 * Retrieves the architecture information pointers for ARMv4/5 and ARM7/9
175 * targets. A return of ERROR_OK signifies that the target is a valid target
176 * and that the pointers have been set properly.
178 * @param target Pointer to the target device to get the pointers from
179 * @param armv4_5_p Pointer to be filled in with the common struct for ARMV4/5
181 * @param arm7_9_p Pointer to be filled in with the common struct for ARM7/9
183 * @return ERROR_OK if successful
185 int arm7_9_get_arch_pointers(target_t
*target
, armv4_5_common_t
**armv4_5_p
, arm7_9_common_t
**arm7_9_p
)
187 armv4_5_common_t
*armv4_5
= target
->arch_info
;
188 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
190 if (armv4_5
->common_magic
!= ARMV4_5_COMMON_MAGIC
)
195 if (arm7_9
->common_magic
!= ARM7_9_COMMON_MAGIC
)
200 *armv4_5_p
= armv4_5
;
207 * Set either a hardware or software breakpoint on an ARM7/9 target. The
208 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
209 * might have erased the values in Embedded ICE.
211 * @param target Pointer to the target device to set the breakpoints on
212 * @param breakpoint Pointer to the breakpoint to be set
213 * @return For hardware breakpoints, this is the result of executing the JTAG
214 * queue. For software breakpoints, this will be the status of the
215 * required memory reads and writes
217 int arm7_9_set_breakpoint(struct target_s
*target
, breakpoint_t
*breakpoint
)
219 armv4_5_common_t
*armv4_5
= target
->arch_info
;
220 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
221 int retval
= ERROR_OK
;
223 if (target
->state
!= TARGET_HALTED
)
225 LOG_WARNING("target not halted");
226 return ERROR_TARGET_NOT_HALTED
;
229 if (breakpoint
->type
== BKPT_HARD
)
231 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
232 uint32_t mask
= (breakpoint
->length
== 4) ? 0x3u
: 0x1u
;
234 /* reassign a hw breakpoint */
235 if (breakpoint
->set
== 0)
237 arm7_9_assign_wp(arm7_9
, breakpoint
);
240 if (breakpoint
->set
== 1)
242 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], breakpoint
->address
);
243 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
244 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffffu
);
245 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
246 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
248 else if (breakpoint
->set
== 2)
250 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], breakpoint
->address
);
251 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
252 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffffu
);
253 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
254 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
258 LOG_ERROR("BUG: no hardware comparator available");
262 retval
= jtag_execute_queue();
264 else if (breakpoint
->type
== BKPT_SOFT
)
266 if ((retval
= arm7_9_set_software_breakpoints(arm7_9
)) != ERROR_OK
)
269 /* did we already set this breakpoint? */
273 if (breakpoint
->length
== 4)
275 uint32_t verify
= 0xffffffff;
276 /* keep the original instruction in target endianness */
277 if ((retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
281 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
282 if ((retval
= target_write_u32(target
, breakpoint
->address
, arm7_9
->arm_bkpt
)) != ERROR_OK
)
287 if ((retval
= target_read_u32(target
, breakpoint
->address
, &verify
)) != ERROR_OK
)
291 if (verify
!= arm7_9
->arm_bkpt
)
293 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32
" - check that memory is read/writable", breakpoint
->address
);
299 uint16_t verify
= 0xffff;
300 /* keep the original instruction in target endianness */
301 if ((retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
305 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
306 if ((retval
= target_write_u16(target
, breakpoint
->address
, arm7_9
->thumb_bkpt
)) != ERROR_OK
)
311 if ((retval
= target_read_u16(target
, breakpoint
->address
, &verify
)) != ERROR_OK
)
315 if (verify
!= arm7_9
->thumb_bkpt
)
317 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32
" - check that memory is read/writable", breakpoint
->address
);
328 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
329 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
330 * will be updated. Otherwise, the software breakpoint will be restored to its
331 * original instruction if it hasn't already been modified.
333 * @param target Pointer to ARM7/9 target to unset the breakpoint from
334 * @param breakpoint Pointer to breakpoint to be unset
335 * @return For hardware breakpoints, this is the result of executing the JTAG
336 * queue. For software breakpoints, this will be the status of the
337 * required memory reads and writes
339 int arm7_9_unset_breakpoint(struct target_s
*target
, breakpoint_t
*breakpoint
)
341 int retval
= ERROR_OK
;
343 armv4_5_common_t
*armv4_5
= target
->arch_info
;
344 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
346 if (!breakpoint
->set
)
348 LOG_WARNING("breakpoint not set");
352 if (breakpoint
->type
== BKPT_HARD
)
354 if (breakpoint
->set
== 1)
356 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
357 arm7_9
->wp0_used
= 0;
358 arm7_9
->wp_available
++;
360 else if (breakpoint
->set
== 2)
362 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
363 arm7_9
->wp1_used
= 0;
364 arm7_9
->wp_available
++;
366 retval
= jtag_execute_queue();
371 /* restore original instruction (kept in target endianness) */
372 if (breakpoint
->length
== 4)
374 uint32_t current_instr
;
375 /* check that user program as not modified breakpoint instruction */
376 if ((retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, (uint8_t*)¤t_instr
)) != ERROR_OK
)
380 if (current_instr
== arm7_9
->arm_bkpt
)
381 if ((retval
= target_write_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
388 uint16_t current_instr
;
389 /* check that user program as not modified breakpoint instruction */
390 if ((retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, (uint8_t*)¤t_instr
)) != ERROR_OK
)
394 if (current_instr
== arm7_9
->thumb_bkpt
)
395 if ((retval
= target_write_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
407 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
408 * dangling breakpoints and that the desired breakpoint can be added.
410 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
411 * @param breakpoint Pointer to the breakpoint to be added
412 * @return An error status if there is a problem adding the breakpoint or the
413 * result of setting the breakpoint
415 int arm7_9_add_breakpoint(struct target_s
*target
, breakpoint_t
*breakpoint
)
417 armv4_5_common_t
*armv4_5
= target
->arch_info
;
418 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
420 if (target
->state
!= TARGET_HALTED
)
422 LOG_WARNING("target not halted");
423 return ERROR_TARGET_NOT_HALTED
;
426 if (arm7_9
->breakpoint_count
== 0)
428 /* make sure we don't have any dangling breakpoints. This is vital upon
429 * GDB connect/disconnect
431 arm7_9_clear_watchpoints(arm7_9
);
434 if ((breakpoint
->type
== BKPT_HARD
) && (arm7_9
->wp_available
< 1))
436 LOG_INFO("no watchpoint unit available for hardware breakpoint");
437 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
440 if ((breakpoint
->length
!= 2) && (breakpoint
->length
!= 4))
442 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
443 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
446 if (breakpoint
->type
== BKPT_HARD
)
448 arm7_9_assign_wp(arm7_9
, breakpoint
);
451 arm7_9
->breakpoint_count
++;
453 return arm7_9_set_breakpoint(target
, breakpoint
);
457 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
458 * dangling breakpoints and updates available watchpoints if it is a hardware
461 * @param target Pointer to the target to have a breakpoint removed
462 * @param breakpoint Pointer to the breakpoint to be removed
463 * @return Error status if there was a problem unsetting the breakpoint or the
464 * watchpoints could not be cleared
466 int arm7_9_remove_breakpoint(struct target_s
*target
, breakpoint_t
*breakpoint
)
468 int retval
= ERROR_OK
;
469 armv4_5_common_t
*armv4_5
= target
->arch_info
;
470 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
472 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
477 if (breakpoint
->type
== BKPT_HARD
)
478 arm7_9
->wp_available
++;
480 arm7_9
->breakpoint_count
--;
481 if (arm7_9
->breakpoint_count
== 0)
483 /* make sure we don't have any dangling breakpoints */
484 if ((retval
= arm7_9_clear_watchpoints(arm7_9
)) != ERROR_OK
)
494 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
495 * considered a bug to call this function when there are no available watchpoint
498 * @param target Pointer to an ARM7/9 target to set a watchpoint on
499 * @param watchpoint Pointer to the watchpoint to be set
500 * @return Error status if watchpoint set fails or the result of executing the
503 int arm7_9_set_watchpoint(struct target_s
*target
, watchpoint_t
*watchpoint
)
505 int retval
= ERROR_OK
;
506 armv4_5_common_t
*armv4_5
= target
->arch_info
;
507 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
511 mask
= watchpoint
->length
- 1;
513 if (target
->state
!= TARGET_HALTED
)
515 LOG_WARNING("target not halted");
516 return ERROR_TARGET_NOT_HALTED
;
519 if (watchpoint
->rw
== WPT_ACCESS
)
524 if (!arm7_9
->wp0_used
)
526 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], watchpoint
->address
);
527 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
528 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], watchpoint
->mask
);
529 if (watchpoint
->mask
!= 0xffffffffu
)
530 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], watchpoint
->value
);
531 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
532 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
534 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
539 arm7_9
->wp0_used
= 2;
541 else if (!arm7_9
->wp1_used
)
543 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], watchpoint
->address
);
544 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
545 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], watchpoint
->mask
);
546 if (watchpoint
->mask
!= 0xffffffffu
)
547 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], watchpoint
->value
);
548 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
549 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
551 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
556 arm7_9
->wp1_used
= 2;
560 LOG_ERROR("BUG: no hardware comparator available");
568 * Unset an existing watchpoint and clear the used watchpoint unit.
570 * @param target Pointer to the target to have the watchpoint removed
571 * @param watchpoint Pointer to the watchpoint to be removed
572 * @return Error status while trying to unset the watchpoint or the result of
573 * executing the JTAG queue
575 int arm7_9_unset_watchpoint(struct target_s
*target
, watchpoint_t
*watchpoint
)
577 int retval
= ERROR_OK
;
578 armv4_5_common_t
*armv4_5
= target
->arch_info
;
579 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
581 if (target
->state
!= TARGET_HALTED
)
583 LOG_WARNING("target not halted");
584 return ERROR_TARGET_NOT_HALTED
;
587 if (!watchpoint
->set
)
589 LOG_WARNING("breakpoint not set");
593 if (watchpoint
->set
== 1)
595 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
596 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
600 arm7_9
->wp0_used
= 0;
602 else if (watchpoint
->set
== 2)
604 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
605 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
609 arm7_9
->wp1_used
= 0;
617 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
618 * available, an error response is returned.
620 * @param target Pointer to the ARM7/9 target to add a watchpoint to
621 * @param watchpoint Pointer to the watchpoint to be added
622 * @return Error status while trying to add the watchpoint
624 int arm7_9_add_watchpoint(struct target_s
*target
, watchpoint_t
*watchpoint
)
626 armv4_5_common_t
*armv4_5
= target
->arch_info
;
627 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
629 if (target
->state
!= TARGET_HALTED
)
631 LOG_WARNING("target not halted");
632 return ERROR_TARGET_NOT_HALTED
;
635 if (arm7_9
->wp_available
< 1)
637 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
640 if ((watchpoint
->length
!= 1) && (watchpoint
->length
!= 2) && (watchpoint
->length
!= 4))
642 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
645 arm7_9
->wp_available
--;
651 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
652 * the used watchpoint unit will be reopened.
654 * @param target Pointer to the target to remove a watchpoint from
655 * @param watchpoint Pointer to the watchpoint to be removed
656 * @return Result of trying to unset the watchpoint
658 int arm7_9_remove_watchpoint(struct target_s
*target
, watchpoint_t
*watchpoint
)
660 int retval
= ERROR_OK
;
661 armv4_5_common_t
*armv4_5
= target
->arch_info
;
662 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
666 if ((retval
= arm7_9_unset_watchpoint(target
, watchpoint
)) != ERROR_OK
)
672 arm7_9
->wp_available
++;
678 * Restarts the target by sending a RESTART instruction and moving the JTAG
679 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
680 * asserted by the processor.
682 * @param target Pointer to target to issue commands to
683 * @return Error status if there is a timeout or a problem while executing the
686 int arm7_9_execute_sys_speed(struct target_s
*target
)
690 armv4_5_common_t
*armv4_5
= target
->arch_info
;
691 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
692 arm_jtag_t
*jtag_info
= &arm7_9
->jtag_info
;
693 reg_t
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
695 /* set RESTART instruction */
696 jtag_set_end_state(TAP_IDLE
);
697 if (arm7_9
->need_bypass_before_restart
) {
698 arm7_9
->need_bypass_before_restart
= 0;
699 arm_jtag_set_instr(jtag_info
, 0xf, NULL
);
701 arm_jtag_set_instr(jtag_info
, 0x4, NULL
);
703 long long then
= timeval_ms();
705 while (!(timeout
= ((timeval_ms()-then
) > 1000)))
707 /* read debug status register */
708 embeddedice_read_reg(dbg_stat
);
709 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
711 if ((buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
712 && (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_SYSCOMP
, 1)))
714 if (debug_level
>= 3)
724 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32
"", buf_get_u32(dbg_stat
->value
, 0, dbg_stat
->size
));
725 return ERROR_TARGET_TIMEOUT
;
732 * Restarts the target by sending a RESTART instruction and moving the JTAG
733 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
734 * waiting until they are.
736 * @param target Pointer to the target to issue commands to
737 * @return Always ERROR_OK
739 int arm7_9_execute_fast_sys_speed(struct target_s
*target
)
742 static uint8_t check_value
[4], check_mask
[4];
744 armv4_5_common_t
*armv4_5
= target
->arch_info
;
745 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
746 arm_jtag_t
*jtag_info
= &arm7_9
->jtag_info
;
747 reg_t
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
749 /* set RESTART instruction */
750 jtag_set_end_state(TAP_IDLE
);
751 if (arm7_9
->need_bypass_before_restart
) {
752 arm7_9
->need_bypass_before_restart
= 0;
753 arm_jtag_set_instr(jtag_info
, 0xf, NULL
);
755 arm_jtag_set_instr(jtag_info
, 0x4, NULL
);
759 /* check for DBGACK and SYSCOMP set (others don't care) */
761 /* NB! These are constants that must be available until after next jtag_execute() and
762 * we evaluate the values upon first execution in lieu of setting up these constants
763 * during early setup.
765 buf_set_u32(check_value
, 0, 32, 0x9);
766 buf_set_u32(check_mask
, 0, 32, 0x9);
770 /* read debug status register */
771 embeddedice_read_reg_w_check(dbg_stat
, check_value
, check_mask
);
777 * Get some data from the ARM7/9 target.
779 * @param target Pointer to the ARM7/9 target to read data from
780 * @param size The number of 32bit words to be read
781 * @param buffer Pointer to the buffer that will hold the data
782 * @return The result of receiving data from the Embedded ICE unit
784 int arm7_9_target_request_data(target_t
*target
, uint32_t size
, uint8_t *buffer
)
786 armv4_5_common_t
*armv4_5
= target
->arch_info
;
787 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
788 arm_jtag_t
*jtag_info
= &arm7_9
->jtag_info
;
790 int retval
= ERROR_OK
;
793 data
= malloc(size
* (sizeof(uint32_t)));
795 retval
= embeddedice_receive(jtag_info
, data
, size
);
797 /* return the 32-bit ints in the 8-bit array */
798 for (i
= 0; i
< size
; i
++)
800 h_u32_to_le(buffer
+ (i
* 4), data
[i
]);
809 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
810 * target is running and the DCC control register has the W bit high, this will
811 * execute the request on the target.
813 * @param priv Void pointer expected to be a target_t pointer
814 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
815 * from the Embedded ICE unit
817 int arm7_9_handle_target_request(void *priv
)
819 int retval
= ERROR_OK
;
820 target_t
*target
= priv
;
821 if (!target_was_examined(target
))
823 armv4_5_common_t
*armv4_5
= target
->arch_info
;
824 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
825 arm_jtag_t
*jtag_info
= &arm7_9
->jtag_info
;
826 reg_t
*dcc_control
= &arm7_9
->eice_cache
->reg_list
[EICE_COMMS_CTRL
];
828 if (!target
->dbg_msg_enabled
)
831 if (target
->state
== TARGET_RUNNING
)
833 /* read DCC control register */
834 embeddedice_read_reg(dcc_control
);
835 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
841 if (buf_get_u32(dcc_control
->value
, 1, 1) == 1)
845 if ((retval
= embeddedice_receive(jtag_info
, &request
, 1)) != ERROR_OK
)
849 if ((retval
= target_request(target
, request
)) != ERROR_OK
)
860 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
861 * is manipulated to the right halted state based on its current state. This is
865 * <tr><th > State</th><th > Action</th></tr>
866 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
867 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
868 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
869 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
872 * If the target does not end up in the halted state, a warning is produced. If
873 * DBGACK is cleared, then the target is expected to either be running or
876 * @param target Pointer to the ARM7/9 target to poll
877 * @return ERROR_OK or an error status if a command fails
879 int arm7_9_poll(target_t
*target
)
882 armv4_5_common_t
*armv4_5
= target
->arch_info
;
883 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
884 reg_t
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
886 /* read debug status register */
887 embeddedice_read_reg(dbg_stat
);
888 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
893 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
895 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
896 if (target
->state
== TARGET_UNKNOWN
)
898 target
->state
= TARGET_RUNNING
;
899 LOG_WARNING("DBGACK set while target was in unknown state. Reset or initialize target.");
901 if ((target
->state
== TARGET_RUNNING
) || (target
->state
== TARGET_RESET
))
904 if (target
->state
== TARGET_RESET
)
906 if (target
->reset_halt
)
908 enum reset_types jtag_reset_config
= jtag_get_reset_config();
909 if ((jtag_reset_config
& RESET_SRST_PULLS_TRST
) == 0)
916 target
->state
= TARGET_HALTED
;
918 if ((retval
= arm7_9_debug_entry(target
)) != ERROR_OK
)
923 reg_t
*reg
= register_get_by_name(target
->reg_cache
, "pc", 1);
924 uint32_t t
=*((uint32_t *)reg
->value
);
927 LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
931 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
936 if (target
->state
== TARGET_DEBUG_RUNNING
)
938 target
->state
= TARGET_HALTED
;
939 if ((retval
= arm7_9_debug_entry(target
)) != ERROR_OK
)
942 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_HALTED
)) != ERROR_OK
)
947 if (target
->state
!= TARGET_HALTED
)
949 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target
->state
);
954 if (target
->state
!= TARGET_DEBUG_RUNNING
)
955 target
->state
= TARGET_RUNNING
;
962 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
963 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
964 * affected) completely stop the JTAG clock while the core is held in reset
965 * (SRST). It isn't possible to program the halt condition once reset is
966 * asserted, hence a hook that allows the target to set up its reset-halt
967 * condition is setup prior to asserting reset.
969 * @param target Pointer to an ARM7/9 target to assert reset on
970 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
972 int arm7_9_assert_reset(target_t
*target
)
974 armv4_5_common_t
*armv4_5
= target
->arch_info
;
975 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
976 LOG_DEBUG("target->state: %s",
977 Jim_Nvp_value2name_simple(nvp_target_state
,target
->state
)->name
);
979 enum reset_types jtag_reset_config
= jtag_get_reset_config();
980 if (!(jtag_reset_config
& RESET_HAS_SRST
))
982 LOG_ERROR("Can't assert SRST");
986 if (target
->reset_halt
)
989 * Some targets do not support communication while SRST is asserted. We need to
990 * set up the reset vector catch here.
992 * If TRST is asserted, then these settings will be reset anyway, so setting them
995 if (arm7_9
->has_vector_catch
)
997 /* program vector catch register to catch reset vector */
998 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
], 0x1);
1002 /* program watchpoint unit to match on reset vector address */
1003 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], 0x0);
1004 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0x3);
1005 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1006 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1007 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1011 /* here we should issue an SRST only, but we may have to assert TRST as well */
1012 if (jtag_reset_config
& RESET_SRST_PULLS_TRST
)
1014 jtag_add_reset(1, 1);
1017 jtag_add_reset(0, 1);
1020 target
->state
= TARGET_RESET
;
1021 jtag_add_sleep(50000);
1023 armv4_5_invalidate_core_regs(target
);
1025 if ((target
->reset_halt
) && ((jtag_reset_config
& RESET_SRST_PULLS_TRST
) == 0))
1027 /* debug entry was already prepared in arm7_9_assert_reset() */
1028 target
->debug_reason
= DBG_REASON_DBGRQ
;
1035 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1036 * and the target is being reset into a halt, a warning will be triggered
1037 * because it is not possible to reset into a halted mode in this case. The
1038 * target is halted using the target's functions.
1040 * @param target Pointer to the target to have the reset deasserted
1041 * @return ERROR_OK or an error from polling or halting the target
1043 int arm7_9_deassert_reset(target_t
*target
)
1045 int retval
= ERROR_OK
;
1046 LOG_DEBUG("target->state: %s",
1047 Jim_Nvp_value2name_simple(nvp_target_state
,target
->state
)->name
);
1049 /* deassert reset lines */
1050 jtag_add_reset(0, 0);
1052 enum reset_types jtag_reset_config
= jtag_get_reset_config();
1053 if (target
->reset_halt
&& (jtag_reset_config
& RESET_SRST_PULLS_TRST
) != 0)
1055 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1056 /* set up embedded ice registers again */
1057 if ((retval
= target_examine_one(target
)) != ERROR_OK
)
1060 if ((retval
= target_poll(target
)) != ERROR_OK
)
1065 if ((retval
= target_halt(target
)) != ERROR_OK
)
1075 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1076 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1077 * vector catch was used, it is restored. Otherwise, the control value is
1078 * restored and the watchpoint unit is restored if it was in use.
1080 * @param target Pointer to the ARM7/9 target to have halt cleared
1081 * @return Always ERROR_OK
1083 int arm7_9_clear_halt(target_t
*target
)
1085 armv4_5_common_t
*armv4_5
= target
->arch_info
;
1086 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
1087 reg_t
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1089 /* we used DBGRQ only if we didn't come out of reset */
1090 if (!arm7_9
->debug_entry_from_reset
&& arm7_9
->use_dbgrq
)
1092 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1094 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1095 embeddedice_store_reg(dbg_ctrl
);
1099 if (arm7_9
->debug_entry_from_reset
&& arm7_9
->has_vector_catch
)
1101 /* if we came out of reset, and vector catch is supported, we used
1102 * vector catch to enter debug state
1103 * restore the register in that case
1105 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
]);
1109 /* restore registers if watchpoint unit 0 was in use
1111 if (arm7_9
->wp0_used
)
1113 if (arm7_9
->debug_entry_from_reset
)
1115 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
]);
1117 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
1118 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
1119 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
1121 /* control value always has to be restored, as it was either disabled,
1122 * or enabled with possibly different bits
1124 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
1132 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1133 * and then there is a wait until the processor shows the halt. This wait can
1134 * timeout and results in an error being returned. The software reset involves
1135 * clearing the halt, updating the debug control register, changing to ARM mode,
1136 * reset of the program counter, and reset of all of the registers.
1138 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1139 * @return Error status if any of the commands fail, otherwise ERROR_OK
1141 int arm7_9_soft_reset_halt(struct target_s
*target
)
1143 armv4_5_common_t
*armv4_5
= target
->arch_info
;
1144 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
1145 reg_t
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1146 reg_t
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1150 if ((retval
= target_halt(target
)) != ERROR_OK
)
1153 long long then
= timeval_ms();
1155 while (!(timeout
= ((timeval_ms()-then
) > 1000)))
1157 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1) != 0)
1159 embeddedice_read_reg(dbg_stat
);
1160 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1162 if (debug_level
>= 3)
1172 LOG_ERROR("Failed to halt CPU after 1 sec");
1173 return ERROR_TARGET_TIMEOUT
;
1175 target
->state
= TARGET_HALTED
;
1177 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1178 * ensure that DBGRQ is cleared
1180 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1181 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1182 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1183 embeddedice_store_reg(dbg_ctrl
);
1185 if ((retval
= arm7_9_clear_halt(target
)) != ERROR_OK
)
1190 /* if the target is in Thumb state, change to ARM state */
1191 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1))
1193 uint32_t r0_thumb
, pc_thumb
;
1194 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1195 /* Entered debug from Thumb mode */
1196 armv4_5
->core_state
= ARMV4_5_STATE_THUMB
;
1197 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1200 /* all register content is now invalid */
1201 if ((retval
= armv4_5_invalidate_core_regs(target
)) != ERROR_OK
)
1206 /* SVC, ARM state, IRQ and FIQ disabled */
1207 buf_set_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8, 0xd3);
1208 armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].dirty
= 1;
1209 armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].valid
= 1;
1211 /* start fetching from 0x0 */
1212 buf_set_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32, 0x0);
1213 armv4_5
->core_cache
->reg_list
[15].dirty
= 1;
1214 armv4_5
->core_cache
->reg_list
[15].valid
= 1;
1216 armv4_5
->core_mode
= ARMV4_5_MODE_SVC
;
1217 armv4_5
->core_state
= ARMV4_5_STATE_ARM
;
1219 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
1222 /* reset registers */
1223 for (i
= 0; i
<= 14; i
++)
1225 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).value
, 0, 32, 0xffffffff);
1226 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).dirty
= 1;
1227 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).valid
= 1;
1230 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
1239 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1240 * line or by programming a watchpoint to trigger on any address. It is
1241 * considered a bug to call this function while the target is in the
1242 * TARGET_RESET state.
1244 * @param target Pointer to the ARM7/9 target to be halted
1245 * @return Always ERROR_OK
1247 int arm7_9_halt(target_t
*target
)
1249 if (target
->state
== TARGET_RESET
)
1251 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1255 armv4_5_common_t
*armv4_5
= target
->arch_info
;
1256 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
1257 reg_t
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1259 LOG_DEBUG("target->state: %s",
1260 Jim_Nvp_value2name_simple(nvp_target_state
,target
->state
)->name
);
1262 if (target
->state
== TARGET_HALTED
)
1264 LOG_DEBUG("target was already halted");
1268 if (target
->state
== TARGET_UNKNOWN
)
1270 LOG_WARNING("target was in unknown state when halt was requested");
1273 if (arm7_9
->use_dbgrq
)
1275 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1277 if (arm7_9
->set_special_dbgrq
) {
1278 arm7_9
->set_special_dbgrq(target
);
1280 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 1);
1281 embeddedice_store_reg(dbg_ctrl
);
1286 /* program watchpoint unit to match on any address
1288 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1289 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1290 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1291 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1294 target
->debug_reason
= DBG_REASON_DBGRQ
;
1300 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1301 * ARM. The JTAG queue is then executed and the reason for debug entry is
1302 * examined. Once done, the target is verified to be halted and the processor
1303 * is forced into ARM mode. The core registers are saved for the current core
1304 * mode and the program counter (register 15) is updated as needed. The core
1305 * registers and CPSR and SPSR are saved for restoration later.
1307 * @param target Pointer to target that is entering debug mode
1308 * @return Error code if anything fails, otherwise ERROR_OK
1310 int arm7_9_debug_entry(target_t
*target
)
1313 uint32_t context
[16];
1314 uint32_t* context_p
[16];
1315 uint32_t r0_thumb
, pc_thumb
;
1318 /* get pointers to arch-specific information */
1319 armv4_5_common_t
*armv4_5
= target
->arch_info
;
1320 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
1321 reg_t
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1322 reg_t
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1324 #ifdef _DEBUG_ARM7_9_
1328 if (arm7_9
->pre_debug_entry
)
1329 arm7_9
->pre_debug_entry(target
);
1331 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1332 * ensure that DBGRQ is cleared
1334 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1335 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1336 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1337 embeddedice_store_reg(dbg_ctrl
);
1339 if ((retval
= arm7_9_clear_halt(target
)) != ERROR_OK
)
1344 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1349 if ((retval
= arm7_9
->examine_debug_reason(target
)) != ERROR_OK
)
1353 if (target
->state
!= TARGET_HALTED
)
1355 LOG_WARNING("target not halted");
1356 return ERROR_TARGET_NOT_HALTED
;
1359 /* if the target is in Thumb state, change to ARM state */
1360 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1))
1362 LOG_DEBUG("target entered debug from Thumb state");
1363 /* Entered debug from Thumb mode */
1364 armv4_5
->core_state
= ARMV4_5_STATE_THUMB
;
1365 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1366 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
", pc_thumb: 0x%8.8" PRIx32
"", r0_thumb
, pc_thumb
);
1370 LOG_DEBUG("target entered debug from ARM state");
1371 /* Entered debug from ARM mode */
1372 armv4_5
->core_state
= ARMV4_5_STATE_ARM
;
1375 for (i
= 0; i
< 16; i
++)
1376 context_p
[i
] = &context
[i
];
1377 /* save core registers (r0 - r15 of current core mode) */
1378 arm7_9
->read_core_regs(target
, 0xffff, context_p
);
1380 arm7_9
->read_xpsr(target
, &cpsr
, 0);
1382 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1385 /* if the core has been executing in Thumb state, set the T bit */
1386 if (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
1389 buf_set_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 32, cpsr
);
1390 armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].dirty
= 0;
1391 armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].valid
= 1;
1393 armv4_5
->core_mode
= cpsr
& 0x1f;
1395 if (armv4_5_mode_to_number(armv4_5
->core_mode
) == -1)
1397 target
->state
= TARGET_UNKNOWN
;
1398 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1399 return ERROR_TARGET_FAILURE
;
1402 LOG_DEBUG("target entered debug state in %s mode", armv4_5_mode_strings
[armv4_5_mode_to_number(armv4_5
->core_mode
)]);
1404 if (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
1406 LOG_DEBUG("thumb state, applying fixups");
1407 context
[0] = r0_thumb
;
1408 context
[15] = pc_thumb
;
1409 } else if (armv4_5
->core_state
== ARMV4_5_STATE_ARM
)
1411 /* adjust value stored by STM */
1412 context
[15] -= 3 * 4;
1415 if ((target
->debug_reason
== DBG_REASON_BREAKPOINT
)
1416 || (target
->debug_reason
== DBG_REASON_SINGLESTEP
)
1417 || (target
->debug_reason
== DBG_REASON_WATCHPOINT
)
1418 || (target
->debug_reason
== DBG_REASON_WPTANDBKPT
)
1419 || ((target
->debug_reason
== DBG_REASON_DBGRQ
) && (arm7_9
->use_dbgrq
== 0)))
1420 context
[15] -= 3 * ((armv4_5
->core_state
== ARMV4_5_STATE_ARM
) ? 4 : 2);
1421 else if (target
->debug_reason
== DBG_REASON_DBGRQ
)
1422 context
[15] -= arm7_9
->dbgreq_adjust_pc
* ((armv4_5
->core_state
== ARMV4_5_STATE_ARM
) ? 4 : 2);
1425 LOG_ERROR("unknown debug reason: %i", target
->debug_reason
);
1428 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
1431 for (i
= 0; i
<= 15; i
++)
1433 LOG_DEBUG("r%i: 0x%8.8" PRIx32
"", i
, context
[i
]);
1434 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).value
, 0, 32, context
[i
]);
1435 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).dirty
= 0;
1436 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).valid
= 1;
1439 LOG_DEBUG("entered debug state at PC 0x%" PRIx32
"", context
[15]);
1441 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
1444 /* exceptions other than USR & SYS have a saved program status register */
1445 if ((armv4_5
->core_mode
!= ARMV4_5_MODE_USR
) && (armv4_5
->core_mode
!= ARMV4_5_MODE_SYS
))
1448 arm7_9
->read_xpsr(target
, &spsr
, 1);
1449 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1453 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 16).value
, 0, 32, spsr
);
1454 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 16).dirty
= 0;
1455 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 16).valid
= 1;
1458 /* r0 and r15 (pc) have to be restored later */
1459 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 0).dirty
= ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 0).valid
;
1460 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 15).dirty
= ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 15).valid
;
1462 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1465 if (arm7_9
->post_debug_entry
)
1466 arm7_9
->post_debug_entry(target
);
1472 * Validate the full context for an ARM7/9 target in all processor modes. If
1473 * there are any invalid registers for the target, they will all be read. This
1476 * @param target Pointer to the ARM7/9 target to capture the full context from
1477 * @return Error if the target is not halted, has an invalid core mode, or if
1478 * the JTAG queue fails to execute
1480 int arm7_9_full_context(target_t
*target
)
1484 armv4_5_common_t
*armv4_5
= target
->arch_info
;
1485 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
1489 if (target
->state
!= TARGET_HALTED
)
1491 LOG_WARNING("target not halted");
1492 return ERROR_TARGET_NOT_HALTED
;
1495 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
1498 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1499 * SYS shares registers with User, so we don't touch SYS
1501 for (i
= 0; i
< 6; i
++)
1504 uint32_t* reg_p
[16];
1508 /* check if there are invalid registers in the current mode
1510 for (j
= 0; j
<= 16; j
++)
1512 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1520 /* change processor mode (and mask T bit) */
1521 tmp_cpsr
= buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & 0xE0;
1522 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1524 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1526 for (j
= 0; j
< 15; j
++)
1528 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1530 reg_p
[j
] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).value
;
1532 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
= 1;
1533 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).dirty
= 0;
1537 /* if only the PSR is invalid, mask is all zeroes */
1539 arm7_9
->read_core_regs(target
, mask
, reg_p
);
1541 /* check if the PSR has to be read */
1542 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).valid
== 0)
1544 arm7_9
->read_xpsr(target
, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).value
, 1);
1545 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).valid
= 1;
1546 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).dirty
= 0;
1551 /* restore processor mode (mask T bit) */
1552 arm7_9
->write_xpsr_im8(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & ~0x20, 0, 0);
1554 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1562 * Restore the processor context on an ARM7/9 target. The full processor
1563 * context is analyzed to see if any of the registers are dirty on this end, but
1564 * have a valid new value. If this is the case, the processor is changed to the
1565 * appropriate mode and the new register values are written out to the
1566 * processor. If there happens to be a dirty register with an invalid value, an
1567 * error will be logged.
1569 * @param target Pointer to the ARM7/9 target to have its context restored
1570 * @return Error status if the target is not halted or the core mode in the
1571 * armv4_5 struct is invalid.
1573 int arm7_9_restore_context(target_t
*target
)
1575 armv4_5_common_t
*armv4_5
= target
->arch_info
;
1576 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
1578 armv4_5_core_reg_t
*reg_arch_info
;
1579 enum armv4_5_mode current_mode
= armv4_5
->core_mode
;
1586 if (target
->state
!= TARGET_HALTED
)
1588 LOG_WARNING("target not halted");
1589 return ERROR_TARGET_NOT_HALTED
;
1592 if (arm7_9
->pre_restore_context
)
1593 arm7_9
->pre_restore_context(target
);
1595 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
1598 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1599 * SYS shares registers with User, so we don't touch SYS
1601 for (i
= 0; i
< 6; i
++)
1603 LOG_DEBUG("examining %s mode", armv4_5_mode_strings
[i
]);
1606 /* check if there are dirty registers in the current mode
1608 for (j
= 0; j
<= 16; j
++)
1610 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
);
1611 reg_arch_info
= reg
->arch_info
;
1612 if (reg
->dirty
== 1)
1614 if (reg
->valid
== 1)
1617 LOG_DEBUG("examining dirty reg: %s", reg
->name
);
1618 if ((reg_arch_info
->mode
!= ARMV4_5_MODE_ANY
)
1619 && (reg_arch_info
->mode
!= current_mode
)
1620 && !((reg_arch_info
->mode
== ARMV4_5_MODE_USR
) && (armv4_5
->core_mode
== ARMV4_5_MODE_SYS
))
1621 && !((reg_arch_info
->mode
== ARMV4_5_MODE_SYS
) && (armv4_5
->core_mode
== ARMV4_5_MODE_USR
)))
1624 LOG_DEBUG("require mode change");
1629 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg
->name
);
1636 uint32_t mask
= 0x0;
1644 /* change processor mode (mask T bit) */
1645 tmp_cpsr
= buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & 0xE0;
1646 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1648 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1649 current_mode
= armv4_5_number_to_mode(i
);
1652 for (j
= 0; j
<= 14; j
++)
1654 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
);
1655 reg_arch_info
= reg
->arch_info
;
1658 if (reg
->dirty
== 1)
1660 regs
[j
] = buf_get_u32(reg
->value
, 0, 32);
1665 LOG_DEBUG("writing register %i of mode %s with value 0x%8.8" PRIx32
"", j
, armv4_5_mode_strings
[i
], regs
[j
]);
1671 arm7_9
->write_core_regs(target
, mask
, regs
);
1674 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16);
1675 reg_arch_info
= reg
->arch_info
;
1676 if ((reg
->dirty
) && (reg_arch_info
->mode
!= ARMV4_5_MODE_ANY
))
1678 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32
"", i
, buf_get_u32(reg
->value
, 0, 32));
1679 arm7_9
->write_xpsr(target
, buf_get_u32(reg
->value
, 0, 32), 1);
1684 if ((armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].dirty
== 0) && (armv4_5
->core_mode
!= current_mode
))
1686 /* restore processor mode (mask T bit) */
1689 tmp_cpsr
= buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & 0xE0;
1690 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1692 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr
));
1693 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1695 else if (armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].dirty
== 1)
1697 /* CPSR has been changed, full restore necessary (mask T bit) */
1698 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32
"", buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 32));
1699 arm7_9
->write_xpsr(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 32) & ~0x20, 0);
1700 armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].dirty
= 0;
1701 armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].valid
= 1;
1705 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32
"", buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32));
1706 arm7_9
->write_pc(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32));
1707 armv4_5
->core_cache
->reg_list
[15].dirty
= 0;
1709 if (arm7_9
->post_restore_context
)
1710 arm7_9
->post_restore_context(target
);
1716 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1717 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1720 * @param target Pointer to the ARM7/9 target to be restarted
1721 * @return Result of executing the JTAG queue
1723 int arm7_9_restart_core(struct target_s
*target
)
1725 armv4_5_common_t
*armv4_5
= target
->arch_info
;
1726 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
1727 arm_jtag_t
*jtag_info
= &arm7_9
->jtag_info
;
1729 /* set RESTART instruction */
1730 jtag_set_end_state(TAP_IDLE
);
1731 if (arm7_9
->need_bypass_before_restart
) {
1732 arm7_9
->need_bypass_before_restart
= 0;
1733 arm_jtag_set_instr(jtag_info
, 0xf, NULL
);
1735 arm_jtag_set_instr(jtag_info
, 0x4, NULL
);
1737 jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE
));
1738 return jtag_execute_queue();
1742 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1743 * iterated through and are set on the target if they aren't already set.
1745 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1747 void arm7_9_enable_watchpoints(struct target_s
*target
)
1749 watchpoint_t
*watchpoint
= target
->watchpoints
;
1753 if (watchpoint
->set
== 0)
1754 arm7_9_set_watchpoint(target
, watchpoint
);
1755 watchpoint
= watchpoint
->next
;
1760 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1761 * iterated through and are set on the target.
1763 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1765 void arm7_9_enable_breakpoints(struct target_s
*target
)
1767 breakpoint_t
*breakpoint
= target
->breakpoints
;
1769 /* set any pending breakpoints */
1772 arm7_9_set_breakpoint(target
, breakpoint
);
1773 breakpoint
= breakpoint
->next
;
1777 int arm7_9_resume(struct target_s
*target
, int current
, uint32_t address
, int handle_breakpoints
, int debug_execution
)
1779 armv4_5_common_t
*armv4_5
= target
->arch_info
;
1780 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
1781 breakpoint_t
*breakpoint
= target
->breakpoints
;
1782 reg_t
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1783 int err
, retval
= ERROR_OK
;
1787 if (target
->state
!= TARGET_HALTED
)
1789 LOG_WARNING("target not halted");
1790 return ERROR_TARGET_NOT_HALTED
;
1793 if (!debug_execution
)
1795 target_free_all_working_areas(target
);
1798 /* current = 1: continue on current pc, otherwise continue at <address> */
1800 buf_set_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32, address
);
1802 uint32_t current_pc
;
1803 current_pc
= buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32);
1805 /* the front-end may request us not to handle breakpoints */
1806 if (handle_breakpoints
)
1808 if ((breakpoint
= breakpoint_find(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32))))
1810 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32
"", breakpoint
->address
);
1811 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1816 /* calculate PC of next instruction */
1818 if ((retval
= arm_simulate_step(target
, &next_pc
)) != ERROR_OK
)
1820 uint32_t current_opcode
;
1821 target_read_u32(target
, current_pc
, ¤t_opcode
);
1822 LOG_ERROR("BUG: couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"", current_opcode
);
1826 LOG_DEBUG("enable single-step");
1827 arm7_9
->enable_single_step(target
, next_pc
);
1829 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
1831 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
1836 if (armv4_5
->core_state
== ARMV4_5_STATE_ARM
)
1837 arm7_9
->branch_resume(target
);
1838 else if (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
1840 arm7_9
->branch_resume_thumb(target
);
1844 LOG_ERROR("unhandled core state");
1848 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1849 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1850 err
= arm7_9_execute_sys_speed(target
);
1852 LOG_DEBUG("disable single-step");
1853 arm7_9
->disable_single_step(target
);
1855 if (err
!= ERROR_OK
)
1857 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1861 target
->state
= TARGET_UNKNOWN
;
1865 arm7_9_debug_entry(target
);
1866 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32
"", buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32));
1868 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32
"", breakpoint
->address
);
1869 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1876 /* enable any pending breakpoints and watchpoints */
1877 arm7_9_enable_breakpoints(target
);
1878 arm7_9_enable_watchpoints(target
);
1880 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
1885 if (armv4_5
->core_state
== ARMV4_5_STATE_ARM
)
1887 arm7_9
->branch_resume(target
);
1889 else if (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
1891 arm7_9
->branch_resume_thumb(target
);
1895 LOG_ERROR("unhandled core state");
1899 /* deassert DBGACK and INTDIS */
1900 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1901 /* INTDIS only when we really resume, not during debug execution */
1902 if (!debug_execution
)
1903 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 0);
1904 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1906 if ((retval
= arm7_9_restart_core(target
)) != ERROR_OK
)
1911 target
->debug_reason
= DBG_REASON_NOTHALTED
;
1913 if (!debug_execution
)
1915 /* registers are now invalid */
1916 armv4_5_invalidate_core_regs(target
);
1917 target
->state
= TARGET_RUNNING
;
1918 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
)) != ERROR_OK
)
1925 target
->state
= TARGET_DEBUG_RUNNING
;
1926 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_RESUMED
)) != ERROR_OK
)
1932 LOG_DEBUG("target resumed");
1937 void arm7_9_enable_eice_step(target_t
*target
, uint32_t next_pc
)
1939 armv4_5_common_t
*armv4_5
= target
->arch_info
;
1940 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
1942 uint32_t current_pc
;
1943 current_pc
= buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32);
1945 if (next_pc
!= current_pc
)
1947 /* setup an inverse breakpoint on the current PC
1948 * - comparator 1 matches the current address
1949 * - rangeout from comparator 1 is connected to comparator 0 rangein
1950 * - comparator 0 matches any address, as long as rangein is low */
1951 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1952 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1953 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1954 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~(EICE_W_CTRL_RANGE
| EICE_W_CTRL_nOPC
) & 0xff);
1955 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], current_pc
);
1956 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1957 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1958 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
1959 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1963 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1964 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1965 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
1966 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff);
1967 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], next_pc
);
1968 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1969 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1970 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1971 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1975 void arm7_9_disable_eice_step(target_t
*target
)
1977 armv4_5_common_t
*armv4_5
= target
->arch_info
;
1978 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
1980 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
1981 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
1982 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
1983 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
1984 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
]);
1985 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
]);
1986 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
]);
1987 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
]);
1988 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
]);
1991 int arm7_9_step(struct target_s
*target
, int current
, uint32_t address
, int handle_breakpoints
)
1993 armv4_5_common_t
*armv4_5
= target
->arch_info
;
1994 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
1995 breakpoint_t
*breakpoint
= NULL
;
1998 if (target
->state
!= TARGET_HALTED
)
2000 LOG_WARNING("target not halted");
2001 return ERROR_TARGET_NOT_HALTED
;
2004 /* current = 1: continue on current pc, otherwise continue at <address> */
2006 buf_set_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32, address
);
2008 uint32_t current_pc
;
2009 current_pc
= buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32);
2011 /* the front-end may request us not to handle breakpoints */
2012 if (handle_breakpoints
)
2013 if ((breakpoint
= breakpoint_find(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32))))
2014 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
2019 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
2021 /* calculate PC of next instruction */
2023 if ((retval
= arm_simulate_step(target
, &next_pc
)) != ERROR_OK
)
2025 uint32_t current_opcode
;
2026 target_read_u32(target
, current_pc
, ¤t_opcode
);
2027 LOG_ERROR("BUG: couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"", current_opcode
);
2031 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
2036 arm7_9
->enable_single_step(target
, next_pc
);
2038 if (armv4_5
->core_state
== ARMV4_5_STATE_ARM
)
2040 arm7_9
->branch_resume(target
);
2042 else if (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
2044 arm7_9
->branch_resume_thumb(target
);
2048 LOG_ERROR("unhandled core state");
2052 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
)) != ERROR_OK
)
2057 err
= arm7_9_execute_sys_speed(target
);
2058 arm7_9
->disable_single_step(target
);
2060 /* registers are now invalid */
2061 armv4_5_invalidate_core_regs(target
);
2063 if (err
!= ERROR_OK
)
2065 target
->state
= TARGET_UNKNOWN
;
2067 arm7_9_debug_entry(target
);
2068 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
2072 LOG_DEBUG("target stepped");
2076 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
2084 int arm7_9_read_core_reg(struct target_s
*target
, int num
, enum armv4_5_mode mode
)
2086 uint32_t* reg_p
[16];
2089 armv4_5_common_t
*armv4_5
= target
->arch_info
;
2090 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
2092 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
2095 enum armv4_5_mode reg_mode
= ((armv4_5_core_reg_t
*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).arch_info
)->mode
;
2097 if ((num
< 0) || (num
> 16))
2098 return ERROR_INVALID_ARGUMENTS
;
2100 if ((mode
!= ARMV4_5_MODE_ANY
)
2101 && (mode
!= armv4_5
->core_mode
)
2102 && (reg_mode
!= ARMV4_5_MODE_ANY
))
2106 /* change processor mode (mask T bit) */
2107 tmp_cpsr
= buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & 0xE0;
2110 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2113 if ((num
>= 0) && (num
<= 15))
2115 /* read a normal core register */
2116 reg_p
[num
] = &value
;
2118 arm7_9
->read_core_regs(target
, 1 << num
, reg_p
);
2122 /* read a program status register
2123 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2125 armv4_5_core_reg_t
*arch_info
= ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).arch_info
;
2126 int spsr
= (arch_info
->mode
== ARMV4_5_MODE_ANY
) ? 0 : 1;
2128 arm7_9
->read_xpsr(target
, &value
, spsr
);
2131 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2136 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).valid
= 1;
2137 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).dirty
= 0;
2138 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).value
, 0, 32, value
);
2140 if ((mode
!= ARMV4_5_MODE_ANY
)
2141 && (mode
!= armv4_5
->core_mode
)
2142 && (reg_mode
!= ARMV4_5_MODE_ANY
)) {
2143 /* restore processor mode (mask T bit) */
2144 arm7_9
->write_xpsr_im8(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & ~0x20, 0, 0);
2150 int arm7_9_write_core_reg(struct target_s
*target
, int num
, enum armv4_5_mode mode
, uint32_t value
)
2153 armv4_5_common_t
*armv4_5
= target
->arch_info
;
2154 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
2156 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
2159 enum armv4_5_mode reg_mode
= ((armv4_5_core_reg_t
*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).arch_info
)->mode
;
2161 if ((num
< 0) || (num
> 16))
2162 return ERROR_INVALID_ARGUMENTS
;
2164 if ((mode
!= ARMV4_5_MODE_ANY
)
2165 && (mode
!= armv4_5
->core_mode
)
2166 && (reg_mode
!= ARMV4_5_MODE_ANY
)) {
2169 /* change processor mode (mask T bit) */
2170 tmp_cpsr
= buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & 0xE0;
2173 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2176 if ((num
>= 0) && (num
<= 15))
2178 /* write a normal core register */
2181 arm7_9
->write_core_regs(target
, 1 << num
, reg
);
2185 /* write a program status register
2186 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2188 armv4_5_core_reg_t
*arch_info
= ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).arch_info
;
2189 int spsr
= (arch_info
->mode
== ARMV4_5_MODE_ANY
) ? 0 : 1;
2191 /* if we're writing the CPSR, mask the T bit */
2195 arm7_9
->write_xpsr(target
, value
, spsr
);
2198 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).valid
= 1;
2199 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).dirty
= 0;
2201 if ((mode
!= ARMV4_5_MODE_ANY
)
2202 && (mode
!= armv4_5
->core_mode
)
2203 && (reg_mode
!= ARMV4_5_MODE_ANY
)) {
2204 /* restore processor mode (mask T bit) */
2205 arm7_9
->write_xpsr_im8(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & ~0x20, 0, 0);
2208 return jtag_execute_queue();
2211 int arm7_9_read_memory(struct target_s
*target
, uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
2213 armv4_5_common_t
*armv4_5
= target
->arch_info
;
2214 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
2217 uint32_t num_accesses
= 0;
2218 int thisrun_accesses
;
2224 LOG_DEBUG("address: 0x%8.8" PRIx32
", size: 0x%8.8" PRIx32
", count: 0x%8.8" PRIx32
"", address
, size
, count
);
2226 if (target
->state
!= TARGET_HALTED
)
2228 LOG_WARNING("target not halted");
2229 return ERROR_TARGET_NOT_HALTED
;
2232 /* sanitize arguments */
2233 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2234 return ERROR_INVALID_ARGUMENTS
;
2236 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2237 return ERROR_TARGET_UNALIGNED_ACCESS
;
2239 /* load the base register with the address of the first word */
2241 arm7_9
->write_core_regs(target
, 0x1, reg
);
2248 while (num_accesses
< count
)
2251 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2252 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2254 if (last_reg
<= thisrun_accesses
)
2255 last_reg
= thisrun_accesses
;
2257 arm7_9
->load_word_regs(target
, reg_list
);
2259 /* fast memory reads are only safe when the target is running
2260 * from a sufficiently high clock (32 kHz is usually too slow)
2262 if (arm7_9
->fast_memory_access
)
2263 retval
= arm7_9_execute_fast_sys_speed(target
);
2265 retval
= arm7_9_execute_sys_speed(target
);
2266 if (retval
!= ERROR_OK
)
2269 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 4);
2271 /* advance buffer, count number of accesses */
2272 buffer
+= thisrun_accesses
* 4;
2273 num_accesses
+= thisrun_accesses
;
2275 if ((j
++%1024) == 0)
2282 while (num_accesses
< count
)
2285 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2286 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2288 for (i
= 1; i
<= thisrun_accesses
; i
++)
2292 arm7_9
->load_hword_reg(target
, i
);
2293 /* fast memory reads are only safe when the target is running
2294 * from a sufficiently high clock (32 kHz is usually too slow)
2296 if (arm7_9
->fast_memory_access
)
2297 retval
= arm7_9_execute_fast_sys_speed(target
);
2299 retval
= arm7_9_execute_sys_speed(target
);
2300 if (retval
!= ERROR_OK
)
2307 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 2);
2309 /* advance buffer, count number of accesses */
2310 buffer
+= thisrun_accesses
* 2;
2311 num_accesses
+= thisrun_accesses
;
2313 if ((j
++%1024) == 0)
2320 while (num_accesses
< count
)
2323 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2324 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2326 for (i
= 1; i
<= thisrun_accesses
; i
++)
2330 arm7_9
->load_byte_reg(target
, i
);
2331 /* fast memory reads are only safe when the target is running
2332 * from a sufficiently high clock (32 kHz is usually too slow)
2334 if (arm7_9
->fast_memory_access
)
2335 retval
= arm7_9_execute_fast_sys_speed(target
);
2337 retval
= arm7_9_execute_sys_speed(target
);
2338 if (retval
!= ERROR_OK
)
2344 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 1);
2346 /* advance buffer, count number of accesses */
2347 buffer
+= thisrun_accesses
* 1;
2348 num_accesses
+= thisrun_accesses
;
2350 if ((j
++%1024) == 0)
2357 LOG_ERROR("BUG: we shouldn't get here");
2362 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
2365 for (i
= 0; i
<= last_reg
; i
++)
2366 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).dirty
= ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).valid
;
2368 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2369 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2371 LOG_ERROR("JTAG error while reading cpsr");
2372 return ERROR_TARGET_DATA_ABORT
;
2375 if (((cpsr
& 0x1f) == ARMV4_5_MODE_ABT
) && (armv4_5
->core_mode
!= ARMV4_5_MODE_ABT
))
2377 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")", address
, size
, count
);
2379 arm7_9
->write_xpsr_im8(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & ~0x20, 0, 0);
2381 return ERROR_TARGET_DATA_ABORT
;
2387 int arm7_9_write_memory(struct target_s
*target
, uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
2389 armv4_5_common_t
*armv4_5
= target
->arch_info
;
2390 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
2391 reg_t
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
2394 uint32_t num_accesses
= 0;
2395 int thisrun_accesses
;
2401 #ifdef _DEBUG_ARM7_9_
2402 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address
, size
, count
);
2405 if (target
->state
!= TARGET_HALTED
)
2407 LOG_WARNING("target not halted");
2408 return ERROR_TARGET_NOT_HALTED
;
2411 /* sanitize arguments */
2412 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2413 return ERROR_INVALID_ARGUMENTS
;
2415 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2416 return ERROR_TARGET_UNALIGNED_ACCESS
;
2418 /* load the base register with the address of the first word */
2420 arm7_9
->write_core_regs(target
, 0x1, reg
);
2422 /* Clear DBGACK, to make sure memory fetches work as expected */
2423 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
2424 embeddedice_store_reg(dbg_ctrl
);
2429 while (num_accesses
< count
)
2432 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2433 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2435 for (i
= 1; i
<= thisrun_accesses
; i
++)
2439 reg
[i
] = target_buffer_get_u32(target
, buffer
);
2443 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2445 arm7_9
->store_word_regs(target
, reg_list
);
2447 /* fast memory writes are only safe when the target is running
2448 * from a sufficiently high clock (32 kHz is usually too slow)
2450 if (arm7_9
->fast_memory_access
)
2451 retval
= arm7_9_execute_fast_sys_speed(target
);
2453 retval
= arm7_9_execute_sys_speed(target
);
2454 if (retval
!= ERROR_OK
)
2459 num_accesses
+= thisrun_accesses
;
2463 while (num_accesses
< count
)
2466 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2467 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2469 for (i
= 1; i
<= thisrun_accesses
; i
++)
2473 reg
[i
] = target_buffer_get_u16(target
, buffer
) & 0xffff;
2477 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2479 for (i
= 1; i
<= thisrun_accesses
; i
++)
2481 arm7_9
->store_hword_reg(target
, i
);
2483 /* fast memory writes are only safe when the target is running
2484 * from a sufficiently high clock (32 kHz is usually too slow)
2486 if (arm7_9
->fast_memory_access
)
2487 retval
= arm7_9_execute_fast_sys_speed(target
);
2489 retval
= arm7_9_execute_sys_speed(target
);
2490 if (retval
!= ERROR_OK
)
2496 num_accesses
+= thisrun_accesses
;
2500 while (num_accesses
< count
)
2503 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2504 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2506 for (i
= 1; i
<= thisrun_accesses
; i
++)
2510 reg
[i
] = *buffer
++ & 0xff;
2513 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2515 for (i
= 1; i
<= thisrun_accesses
; i
++)
2517 arm7_9
->store_byte_reg(target
, i
);
2518 /* fast memory writes are only safe when the target is running
2519 * from a sufficiently high clock (32 kHz is usually too slow)
2521 if (arm7_9
->fast_memory_access
)
2522 retval
= arm7_9_execute_fast_sys_speed(target
);
2524 retval
= arm7_9_execute_sys_speed(target
);
2525 if (retval
!= ERROR_OK
)
2532 num_accesses
+= thisrun_accesses
;
2536 LOG_ERROR("BUG: we shouldn't get here");
2542 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
2543 embeddedice_store_reg(dbg_ctrl
);
2545 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
2548 for (i
= 0; i
<= last_reg
; i
++)
2549 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).dirty
= ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).valid
;
2551 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2552 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2554 LOG_ERROR("JTAG error while reading cpsr");
2555 return ERROR_TARGET_DATA_ABORT
;
2558 if (((cpsr
& 0x1f) == ARMV4_5_MODE_ABT
) && (armv4_5
->core_mode
!= ARMV4_5_MODE_ABT
))
2560 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")", address
, size
, count
);
2562 arm7_9
->write_xpsr_im8(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & ~0x20, 0, 0);
2564 return ERROR_TARGET_DATA_ABORT
;
2570 static int dcc_count
;
2571 static uint8_t *dcc_buffer
;
2573 static int arm7_9_dcc_completion(struct target_s
*target
, uint32_t exit_point
, int timeout_ms
, void *arch_info
)
2575 int retval
= ERROR_OK
;
2576 armv4_5_common_t
*armv4_5
= target
->arch_info
;
2577 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
2579 if ((retval
= target_wait_state(target
, TARGET_DEBUG_RUNNING
, 500)) != ERROR_OK
)
2582 int little
= target
->endianness
== TARGET_LITTLE_ENDIAN
;
2583 int count
= dcc_count
;
2584 uint8_t *buffer
= dcc_buffer
;
2587 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2588 * core function repeated. */
2589 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2592 embeddedice_reg_t
*ice_reg
= arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
].arch_info
;
2593 uint8_t reg_addr
= ice_reg
->addr
& 0x1f;
2595 tap
= ice_reg
->jtag_info
->tap
;
2597 embeddedice_write_dcc(tap
, reg_addr
, buffer
, little
, count
-2);
2598 buffer
+= (count
-2)*4;
2600 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2604 for (i
= 0; i
< count
; i
++)
2606 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2611 if ((retval
= target_halt(target
))!= ERROR_OK
)
2615 return target_wait_state(target
, TARGET_HALTED
, 500);
2618 static const uint32_t dcc_code
[] =
2620 /* MRC TST BNE MRC STR B */
2621 0xee101e10, 0xe3110001, 0x0afffffc, 0xee111e10, 0xe4801004, 0xeafffff9
2624 int armv4_5_run_algorithm_inner(struct target_s
*target
, int num_mem_params
, mem_param_t
*mem_params
, int num_reg_params
, reg_param_t
*reg_params
, uint32_t entry_point
, uint32_t exit_point
, int timeout_ms
, void *arch_info
, int (*run_it
)(struct target_s
*target
, uint32_t exit_point
, int timeout_ms
, void *arch_info
));
2626 int arm7_9_bulk_write_memory(target_t
*target
, uint32_t address
, uint32_t count
, uint8_t *buffer
)
2629 armv4_5_common_t
*armv4_5
= target
->arch_info
;
2630 arm7_9_common_t
*arm7_9
= armv4_5
->arch_info
;
2633 if (!arm7_9
->dcc_downloads
)
2634 return target_write_memory(target
, address
, 4, count
, buffer
);
2636 /* regrab previously allocated working_area, or allocate a new one */
2637 if (!arm7_9
->dcc_working_area
)
2639 uint8_t dcc_code_buf
[6 * 4];
2641 /* make sure we have a working area */
2642 if (target_alloc_working_area(target
, 24, &arm7_9
->dcc_working_area
) != ERROR_OK
)
2644 LOG_INFO("no working area available, falling back to memory writes");
2645 return target_write_memory(target
, address
, 4, count
, buffer
);
2648 /* copy target instructions to target endianness */
2649 for (i
= 0; i
< 6; i
++)
2651 target_buffer_set_u32(target
, dcc_code_buf
+ i
*4, dcc_code
[i
]);
2654 /* write DCC code to working area */
2655 if ((retval
= target_write_memory(target
, arm7_9
->dcc_working_area
->address
, 4, 6, dcc_code_buf
)) != ERROR_OK
)
2661 armv4_5_algorithm_t armv4_5_info
;
2662 reg_param_t reg_params
[1];
2664 armv4_5_info
.common_magic
= ARMV4_5_COMMON_MAGIC
;
2665 armv4_5_info
.core_mode
= ARMV4_5_MODE_SVC
;
2666 armv4_5_info
.core_state
= ARMV4_5_STATE_ARM
;
2668 init_reg_param(®_params
[0], "r0", 32, PARAM_IN_OUT
);
2670 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
2673 dcc_buffer
= buffer
;
2674 retval
= armv4_5_run_algorithm_inner(target
, 0, NULL
, 1, reg_params
,
2675 arm7_9
->dcc_working_area
->address
, arm7_9
->dcc_working_area
->address
+ 6*4, 20*1000, &armv4_5_info
, arm7_9_dcc_completion
);
2677 if (retval
== ERROR_OK
)
2679 uint32_t endaddress
= buf_get_u32(reg_params
[0].value
, 0, 32);
2680 if (endaddress
!= (address
+ count
*4))
2682 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32
" got 0x%0" PRIx32
"", (address
+ count
*4), endaddress
);
2683 retval
= ERROR_FAIL
;
2687 destroy_reg_param(®_params
[0]);
2692 int arm7_9_checksum_memory(struct target_s
*target
, uint32_t address
, uint32_t count
, uint32_t* checksum
)
2694 working_area_t
*crc_algorithm
;
2695 armv4_5_algorithm_t armv4_5_info
;
2696 reg_param_t reg_params
[2];
2699 uint32_t arm7_9_crc_code
[] = {
2700 0xE1A02000, /* mov r2, r0 */
2701 0xE3E00000, /* mov r0, #0xffffffff */
2702 0xE1A03001, /* mov r3, r1 */
2703 0xE3A04000, /* mov r4, #0 */
2704 0xEA00000B, /* b ncomp */
2706 0xE7D21004, /* ldrb r1, [r2, r4] */
2707 0xE59F7030, /* ldr r7, CRC32XOR */
2708 0xE0200C01, /* eor r0, r0, r1, asl 24 */
2709 0xE3A05000, /* mov r5, #0 */
2711 0xE3500000, /* cmp r0, #0 */
2712 0xE1A06080, /* mov r6, r0, asl #1 */
2713 0xE2855001, /* add r5, r5, #1 */
2714 0xE1A00006, /* mov r0, r6 */
2715 0xB0260007, /* eorlt r0, r6, r7 */
2716 0xE3550008, /* cmp r5, #8 */
2717 0x1AFFFFF8, /* bne loop */
2718 0xE2844001, /* add r4, r4, #1 */
2720 0xE1540003, /* cmp r4, r3 */
2721 0x1AFFFFF1, /* bne nbyte */
2723 0xEAFFFFFE, /* b end */
2724 0x04C11DB7 /* CRC32XOR: .word 0x04C11DB7 */
2729 if (target_alloc_working_area(target
, sizeof(arm7_9_crc_code
), &crc_algorithm
) != ERROR_OK
)
2731 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2734 /* convert flash writing code into a buffer in target endianness */
2735 for (i
= 0; i
< (sizeof(arm7_9_crc_code
)/sizeof(uint32_t)); i
++)
2737 if ((retval
= target_write_u32(target
, crc_algorithm
->address
+ i
*sizeof(uint32_t), arm7_9_crc_code
[i
])) != ERROR_OK
)
2743 armv4_5_info
.common_magic
= ARMV4_5_COMMON_MAGIC
;
2744 armv4_5_info
.core_mode
= ARMV4_5_MODE_SVC
;
2745 armv4_5_info
.core_state
= ARMV4_5_STATE_ARM
;
2747 init_reg_param(®_params
[0], "r0", 32, PARAM_IN_OUT
);
2748 init_reg_param(®_params
[1], "r1", 32, PARAM_OUT
);
2750 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
2751 buf_set_u32(reg_params
[1].value
, 0, 32, count
);
2753 if ((retval
= target_run_algorithm(target
, 0, NULL
, 2, reg_params
,
2754 crc_algorithm
->address
, crc_algorithm
->address
+ (sizeof(arm7_9_crc_code
) - 8), 20000, &armv4_5_info
)) != ERROR_OK
)
2756 LOG_ERROR("error executing arm7_9 crc algorithm");
2757 destroy_reg_param(®_params
[0]);
2758 destroy_reg_param(®_params
[1]);
2759 target_free_working_area(target
, crc_algorithm
);
2763 *checksum
= buf_get_u32(reg_params
[0].value
, 0, 32);
2765 destroy_reg_param(®_params
[0]);
2766 destroy_reg_param(®_params
[1]);
2768 target_free_working_area(target
, crc_algorithm
);
2773 int arm7_9_blank_check_memory(struct target_s
*target
, uint32_t address
, uint32_t count
, uint32_t* blank
)
2775 working_area_t
*erase_check_algorithm
;
2776 reg_param_t reg_params
[3];
2777 armv4_5_algorithm_t armv4_5_info
;
2781 uint32_t erase_check_code
[] =
2784 0xe4d03001, /* ldrb r3, [r0], #1 */
2785 0xe0022003, /* and r2, r2, r3 */
2786 0xe2511001, /* subs r1, r1, #1 */
2787 0x1afffffb, /* bne loop */
2789 0xeafffffe /* b end */
2792 /* make sure we have a working area */
2793 if (target_alloc_working_area(target
, sizeof(erase_check_code
), &erase_check_algorithm
) != ERROR_OK
)
2795 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2798 /* convert flash writing code into a buffer in target endianness */
2799 for (i
= 0; i
< (sizeof(erase_check_code
)/sizeof(uint32_t)); i
++)
2800 if ((retval
= target_write_u32(target
, erase_check_algorithm
->address
+ i
*sizeof(uint32_t), erase_check_code
[i
])) != ERROR_OK
)
2805 armv4_5_info
.common_magic
= ARMV4_5_COMMON_MAGIC
;
2806 armv4_5_info
.core_mode
= ARMV4_5_MODE_SVC
;
2807 armv4_5_info
.core_state
= ARMV4_5_STATE_ARM
;
2809 init_reg_param(®_params
[0], "r0", 32, PARAM_OUT
);
2810 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
2812 init_reg_param(®_params
[1], "r1", 32, PARAM_OUT
);
2813 buf_set_u32(reg_params
[1].value
, 0, 32, count
);
2815 init_reg_param(®_params
[2], "r2", 32, PARAM_IN_OUT
);
2816 buf_set_u32(reg_params
[2].value
, 0, 32, 0xff);
2818 if ((retval
= target_run_algorithm(target
, 0, NULL
, 3, reg_params
,
2819 erase_check_algorithm
->address
, erase_check_algorithm
->address
+ (sizeof(erase_check_code
) - 4), 10000, &armv4_5_info
)) != ERROR_OK
)
2821 destroy_reg_param(®_params
[0]);
2822 destroy_reg_param(®_params
[1]);
2823 destroy_reg_param(®_params
[2]);
2824 target_free_working_area(target
, erase_check_algorithm
);
2828 *blank
= buf_get_u32(reg_params
[2].value
, 0, 32);
2830 destroy_reg_param(®_params
[0]);
2831 destroy_reg_param(®_params
[1]);
2832 destroy_reg_param(®_params
[2]);
2834 target_free_working_area(target
, erase_check_algorithm
);
2839 int arm7_9_register_commands(struct command_context_s
*cmd_ctx
)
2841 command_t
*arm7_9_cmd
;
2843 arm7_9_cmd
= register_command(cmd_ctx
, NULL
, "arm7_9", NULL
, COMMAND_ANY
, "arm7/9 specific commands");
2845 register_command(cmd_ctx
, arm7_9_cmd
, "write_xpsr", handle_arm7_9_write_xpsr_command
, COMMAND_EXEC
, "write program status register <value> <not cpsr | spsr>");
2846 register_command(cmd_ctx
, arm7_9_cmd
, "write_xpsr_im8", handle_arm7_9_write_xpsr_im8_command
, COMMAND_EXEC
, "write program status register <8bit immediate> <rotate> <not cpsr | spsr>");
2848 register_command(cmd_ctx
, arm7_9_cmd
, "write_core_reg", handle_arm7_9_write_core_reg_command
, COMMAND_EXEC
, "write core register <num> <mode> <value>");
2850 register_command(cmd_ctx
, arm7_9_cmd
, "dbgrq", handle_arm7_9_dbgrq_command
,
2851 COMMAND_ANY
, "use EmbeddedICE dbgrq instead of breakpoint for target halt requests <enable | disable>");
2852 register_command(cmd_ctx
, arm7_9_cmd
, "fast_memory_access", handle_arm7_9_fast_memory_access_command
,
2853 COMMAND_ANY
, "use fast memory accesses instead of slower but potentially safer accesses <enable | disable>");
2854 register_command(cmd_ctx
, arm7_9_cmd
, "dcc_downloads", handle_arm7_9_dcc_downloads_command
,
2855 COMMAND_ANY
, "use DCC downloads for larger memory writes <enable | disable>");
2857 armv4_5_register_commands(cmd_ctx
);
2859 etm_register_commands(cmd_ctx
);
2864 int handle_arm7_9_write_xpsr_command(struct command_context_s
*cmd_ctx
, char *cmd
, char **args
, int argc
)
2869 target_t
*target
= get_current_target(cmd_ctx
);
2870 armv4_5_common_t
*armv4_5
;
2871 arm7_9_common_t
*arm7_9
;
2873 if (arm7_9_get_arch_pointers(target
, &armv4_5
, &arm7_9
) != ERROR_OK
)
2875 command_print(cmd_ctx
, "current target isn't an ARM7/ARM9 target");
2879 if (target
->state
!= TARGET_HALTED
)
2881 command_print(cmd_ctx
, "can't write registers while running");
2887 command_print(cmd_ctx
, "usage: write_xpsr <value> <not cpsr | spsr>");
2891 value
= strtoul(args
[0], NULL
, 0);
2892 spsr
= strtol(args
[1], NULL
, 0);
2894 /* if we're writing the CPSR, mask the T bit */
2898 arm7_9
->write_xpsr(target
, value
, spsr
);
2899 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2901 LOG_ERROR("JTAG error while writing to xpsr");
2908 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s
*cmd_ctx
, char *cmd
, char **args
, int argc
)
2914 target_t
*target
= get_current_target(cmd_ctx
);
2915 armv4_5_common_t
*armv4_5
;
2916 arm7_9_common_t
*arm7_9
;
2918 if (arm7_9_get_arch_pointers(target
, &armv4_5
, &arm7_9
) != ERROR_OK
)
2920 command_print(cmd_ctx
, "current target isn't an ARM7/ARM9 target");
2924 if (target
->state
!= TARGET_HALTED
)
2926 command_print(cmd_ctx
, "can't write registers while running");
2932 command_print(cmd_ctx
, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr | spsr>");
2936 value
= strtoul(args
[0], NULL
, 0);
2937 rotate
= strtol(args
[1], NULL
, 0);
2938 spsr
= strtol(args
[2], NULL
, 0);
2940 arm7_9
->write_xpsr_im8(target
, value
, rotate
, spsr
);
2941 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2943 LOG_ERROR("JTAG error while writing 8-bit immediate to xpsr");
2950 int handle_arm7_9_write_core_reg_command(struct command_context_s
*cmd_ctx
, char *cmd
, char **args
, int argc
)
2955 target_t
*target
= get_current_target(cmd_ctx
);
2956 armv4_5_common_t
*armv4_5
;
2957 arm7_9_common_t
*arm7_9
;
2959 if (arm7_9_get_arch_pointers(target
, &armv4_5
, &arm7_9
) != ERROR_OK
)
2961 command_print(cmd_ctx
, "current target isn't an ARM7/ARM9 target");
2965 if (target
->state
!= TARGET_HALTED
)
2967 command_print(cmd_ctx
, "can't write registers while running");
2973 command_print(cmd_ctx
, "usage: write_core_reg <num> <mode> <value>");
2977 num
= strtol(args
[0], NULL
, 0);
2978 mode
= strtoul(args
[1], NULL
, 0);
2979 value
= strtoul(args
[2], NULL
, 0);
2981 return arm7_9_write_core_reg(target
, num
, mode
, value
);
2984 int handle_arm7_9_dbgrq_command(struct command_context_s
*cmd_ctx
, char *cmd
, char **args
, int argc
)
2986 target_t
*target
= get_current_target(cmd_ctx
);
2987 armv4_5_common_t
*armv4_5
;
2988 arm7_9_common_t
*arm7_9
;
2990 if (arm7_9_get_arch_pointers(target
, &armv4_5
, &arm7_9
) != ERROR_OK
)
2992 command_print(cmd_ctx
, "current target isn't an ARM7/ARM9 target");
2998 if (strcmp("enable", args
[0]) == 0)
3000 arm7_9
->use_dbgrq
= 1;
3002 else if (strcmp("disable", args
[0]) == 0)
3004 arm7_9
->use_dbgrq
= 0;
3008 command_print(cmd_ctx
, "usage: arm7_9 dbgrq <enable | disable>");
3012 command_print(cmd_ctx
, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9
->use_dbgrq
) ? "enabled" : "disabled");
3017 int handle_arm7_9_fast_memory_access_command(struct command_context_s
*cmd_ctx
, char *cmd
, char **args
, int argc
)
3019 target_t
*target
= get_current_target(cmd_ctx
);
3020 armv4_5_common_t
*armv4_5
;
3021 arm7_9_common_t
*arm7_9
;
3023 if (arm7_9_get_arch_pointers(target
, &armv4_5
, &arm7_9
) != ERROR_OK
)
3025 command_print(cmd_ctx
, "current target isn't an ARM7/ARM9 target");
3031 if (strcmp("enable", args
[0]) == 0)
3033 arm7_9
->fast_memory_access
= 1;
3035 else if (strcmp("disable", args
[0]) == 0)
3037 arm7_9
->fast_memory_access
= 0;
3041 command_print(cmd_ctx
, "usage: arm7_9 fast_memory_access <enable | disable>");
3045 command_print(cmd_ctx
, "fast memory access is %s", (arm7_9
->fast_memory_access
) ? "enabled" : "disabled");
3050 int handle_arm7_9_dcc_downloads_command(struct command_context_s
*cmd_ctx
, char *cmd
, char **args
, int argc
)
3052 target_t
*target
= get_current_target(cmd_ctx
);
3053 armv4_5_common_t
*armv4_5
;
3054 arm7_9_common_t
*arm7_9
;
3056 if (arm7_9_get_arch_pointers(target
, &armv4_5
, &arm7_9
) != ERROR_OK
)
3058 command_print(cmd_ctx
, "current target isn't an ARM7/ARM9 target");
3064 if (strcmp("enable", args
[0]) == 0)
3066 arm7_9
->dcc_downloads
= 1;
3068 else if (strcmp("disable", args
[0]) == 0)
3070 arm7_9
->dcc_downloads
= 0;
3074 command_print(cmd_ctx
, "usage: arm7_9 dcc_downloads <enable | disable>");
3078 command_print(cmd_ctx
, "dcc downloads are %s", (arm7_9
->dcc_downloads
) ? "enabled" : "disabled");
3083 int arm7_9_init_arch_info(target_t
*target
, arm7_9_common_t
*arm7_9
)
3085 int retval
= ERROR_OK
;
3086 armv4_5_common_t
*armv4_5
= &arm7_9
->armv4_5_common
;
3088 arm7_9
->common_magic
= ARM7_9_COMMON_MAGIC
;
3090 if ((retval
= arm_jtag_setup_connection(&arm7_9
->jtag_info
)) != ERROR_OK
)
3095 arm7_9
->wp_available
= 0; /* this is set up in arm7_9_clear_watchpoints() */
3096 arm7_9
->wp_available_max
= 2;
3097 arm7_9
->sw_breakpoints_added
= 0;
3098 arm7_9
->breakpoint_count
= 0;
3099 arm7_9
->wp0_used
= 0;
3100 arm7_9
->wp1_used
= 0;
3101 arm7_9
->wp1_used_default
= 0;
3102 arm7_9
->use_dbgrq
= 0;
3104 arm7_9
->etm_ctx
= NULL
;
3105 arm7_9
->has_single_step
= 0;
3106 arm7_9
->has_monitor_mode
= 0;
3107 arm7_9
->has_vector_catch
= 0;
3109 arm7_9
->debug_entry_from_reset
= 0;
3111 arm7_9
->dcc_working_area
= NULL
;
3113 arm7_9
->fast_memory_access
= fast_and_dangerous
;
3114 arm7_9
->dcc_downloads
= fast_and_dangerous
;
3116 arm7_9
->need_bypass_before_restart
= 0;
3118 armv4_5
->arch_info
= arm7_9
;
3119 armv4_5
->read_core_reg
= arm7_9_read_core_reg
;
3120 armv4_5
->write_core_reg
= arm7_9_write_core_reg
;
3121 armv4_5
->full_context
= arm7_9_full_context
;
3123 if ((retval
= armv4_5_init_arch_info(target
, armv4_5
)) != ERROR_OK
)
3128 if ((retval
= target_register_timer_callback(arm7_9_handle_target_request
, 1, 1, target
)) != ERROR_OK
)