target: increase the maximum number of buckets
[openocd.git] / src / target / target.c
blobab35d6abe1903663958f39b19e966c0f69cb7ceb
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
76 /* targets */
77 extern struct target_type arm7tdmi_target;
78 extern struct target_type arm720t_target;
79 extern struct target_type arm9tdmi_target;
80 extern struct target_type arm920t_target;
81 extern struct target_type arm966e_target;
82 extern struct target_type arm946e_target;
83 extern struct target_type arm926ejs_target;
84 extern struct target_type fa526_target;
85 extern struct target_type feroceon_target;
86 extern struct target_type dragonite_target;
87 extern struct target_type xscale_target;
88 extern struct target_type cortexm3_target;
89 extern struct target_type cortexa8_target;
90 extern struct target_type cortexr4_target;
91 extern struct target_type arm11_target;
92 extern struct target_type mips_m4k_target;
93 extern struct target_type avr_target;
94 extern struct target_type dsp563xx_target;
95 extern struct target_type dsp5680xx_target;
96 extern struct target_type testee_target;
97 extern struct target_type avr32_ap7k_target;
98 extern struct target_type hla_target;
99 extern struct target_type nds32_v2_target;
100 extern struct target_type nds32_v3_target;
101 extern struct target_type nds32_v3m_target;
103 static struct target_type *target_types[] = {
104 &arm7tdmi_target,
105 &arm9tdmi_target,
106 &arm920t_target,
107 &arm720t_target,
108 &arm966e_target,
109 &arm946e_target,
110 &arm926ejs_target,
111 &fa526_target,
112 &feroceon_target,
113 &dragonite_target,
114 &xscale_target,
115 &cortexm3_target,
116 &cortexa8_target,
117 &cortexr4_target,
118 &arm11_target,
119 &mips_m4k_target,
120 &avr_target,
121 &dsp563xx_target,
122 &dsp5680xx_target,
123 &testee_target,
124 &avr32_ap7k_target,
125 &hla_target,
126 &nds32_v2_target,
127 &nds32_v3_target,
128 &nds32_v3m_target,
129 NULL,
132 struct target *all_targets;
133 static struct target_event_callback *target_event_callbacks;
134 static struct target_timer_callback *target_timer_callbacks;
135 static const int polling_interval = 100;
137 static const Jim_Nvp nvp_assert[] = {
138 { .name = "assert", NVP_ASSERT },
139 { .name = "deassert", NVP_DEASSERT },
140 { .name = "T", NVP_ASSERT },
141 { .name = "F", NVP_DEASSERT },
142 { .name = "t", NVP_ASSERT },
143 { .name = "f", NVP_DEASSERT },
144 { .name = NULL, .value = -1 }
147 static const Jim_Nvp nvp_error_target[] = {
148 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
149 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
150 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
151 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
152 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
153 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
154 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
155 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
156 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
157 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
158 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
159 { .value = -1, .name = NULL }
162 static const char *target_strerror_safe(int err)
164 const Jim_Nvp *n;
166 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
167 if (n->name == NULL)
168 return "unknown";
169 else
170 return n->name;
173 static const Jim_Nvp nvp_target_event[] = {
175 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
176 { .value = TARGET_EVENT_HALTED, .name = "halted" },
177 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
178 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
179 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
181 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
182 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
184 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
185 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
186 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
187 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
188 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
189 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
190 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
191 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
192 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
193 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
194 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
195 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
197 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
198 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
200 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
201 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
203 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
204 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
206 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
207 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
209 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
210 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
212 { .name = NULL, .value = -1 }
215 static const Jim_Nvp nvp_target_state[] = {
216 { .name = "unknown", .value = TARGET_UNKNOWN },
217 { .name = "running", .value = TARGET_RUNNING },
218 { .name = "halted", .value = TARGET_HALTED },
219 { .name = "reset", .value = TARGET_RESET },
220 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
221 { .name = NULL, .value = -1 },
224 static const Jim_Nvp nvp_target_debug_reason[] = {
225 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
226 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
227 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
228 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
229 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
230 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
231 { .name = "program-exit" , .value = DBG_REASON_EXIT },
232 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
233 { .name = NULL, .value = -1 },
236 static const Jim_Nvp nvp_target_endian[] = {
237 { .name = "big", .value = TARGET_BIG_ENDIAN },
238 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
239 { .name = "be", .value = TARGET_BIG_ENDIAN },
240 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
241 { .name = NULL, .value = -1 },
244 static const Jim_Nvp nvp_reset_modes[] = {
245 { .name = "unknown", .value = RESET_UNKNOWN },
246 { .name = "run" , .value = RESET_RUN },
247 { .name = "halt" , .value = RESET_HALT },
248 { .name = "init" , .value = RESET_INIT },
249 { .name = NULL , .value = -1 },
252 const char *debug_reason_name(struct target *t)
254 const char *cp;
256 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
257 t->debug_reason)->name;
258 if (!cp) {
259 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
260 cp = "(*BUG*unknown*BUG*)";
262 return cp;
265 const char *target_state_name(struct target *t)
267 const char *cp;
268 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
269 if (!cp) {
270 LOG_ERROR("Invalid target state: %d", (int)(t->state));
271 cp = "(*BUG*unknown*BUG*)";
273 return cp;
276 /* determine the number of the new target */
277 static int new_target_number(void)
279 struct target *t;
280 int x;
282 /* number is 0 based */
283 x = -1;
284 t = all_targets;
285 while (t) {
286 if (x < t->target_number)
287 x = t->target_number;
288 t = t->next;
290 return x + 1;
293 /* read a uint32_t from a buffer in target memory endianness */
294 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
296 if (target->endianness == TARGET_LITTLE_ENDIAN)
297 return le_to_h_u32(buffer);
298 else
299 return be_to_h_u32(buffer);
302 /* read a uint24_t from a buffer in target memory endianness */
303 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
305 if (target->endianness == TARGET_LITTLE_ENDIAN)
306 return le_to_h_u24(buffer);
307 else
308 return be_to_h_u24(buffer);
311 /* read a uint16_t from a buffer in target memory endianness */
312 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
314 if (target->endianness == TARGET_LITTLE_ENDIAN)
315 return le_to_h_u16(buffer);
316 else
317 return be_to_h_u16(buffer);
320 /* read a uint8_t from a buffer in target memory endianness */
321 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
323 return *buffer & 0x0ff;
326 /* write a uint32_t to a buffer in target memory endianness */
327 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
329 if (target->endianness == TARGET_LITTLE_ENDIAN)
330 h_u32_to_le(buffer, value);
331 else
332 h_u32_to_be(buffer, value);
335 /* write a uint24_t to a buffer in target memory endianness */
336 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
338 if (target->endianness == TARGET_LITTLE_ENDIAN)
339 h_u24_to_le(buffer, value);
340 else
341 h_u24_to_be(buffer, value);
344 /* write a uint16_t to a buffer in target memory endianness */
345 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
347 if (target->endianness == TARGET_LITTLE_ENDIAN)
348 h_u16_to_le(buffer, value);
349 else
350 h_u16_to_be(buffer, value);
353 /* write a uint8_t to a buffer in target memory endianness */
354 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
356 *buffer = value;
359 /* write a uint32_t array to a buffer in target memory endianness */
360 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
362 uint32_t i;
363 for (i = 0; i < count; i++)
364 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
367 /* write a uint16_t array to a buffer in target memory endianness */
368 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
370 uint32_t i;
371 for (i = 0; i < count; i++)
372 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
375 /* write a uint32_t array to a buffer in target memory endianness */
376 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
378 uint32_t i;
379 for (i = 0; i < count; i++)
380 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
383 /* write a uint16_t array to a buffer in target memory endianness */
384 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
386 uint32_t i;
387 for (i = 0; i < count; i++)
388 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
391 /* return a pointer to a configured target; id is name or number */
392 struct target *get_target(const char *id)
394 struct target *target;
396 /* try as tcltarget name */
397 for (target = all_targets; target; target = target->next) {
398 if (target_name(target) == NULL)
399 continue;
400 if (strcmp(id, target_name(target)) == 0)
401 return target;
404 /* It's OK to remove this fallback sometime after August 2010 or so */
406 /* no match, try as number */
407 unsigned num;
408 if (parse_uint(id, &num) != ERROR_OK)
409 return NULL;
411 for (target = all_targets; target; target = target->next) {
412 if (target->target_number == (int)num) {
413 LOG_WARNING("use '%s' as target identifier, not '%u'",
414 target_name(target), num);
415 return target;
419 return NULL;
422 /* returns a pointer to the n-th configured target */
423 static struct target *get_target_by_num(int num)
425 struct target *target = all_targets;
427 while (target) {
428 if (target->target_number == num)
429 return target;
430 target = target->next;
433 return NULL;
436 struct target *get_current_target(struct command_context *cmd_ctx)
438 struct target *target = get_target_by_num(cmd_ctx->current_target);
440 if (target == NULL) {
441 LOG_ERROR("BUG: current_target out of bounds");
442 exit(-1);
445 return target;
448 int target_poll(struct target *target)
450 int retval;
452 /* We can't poll until after examine */
453 if (!target_was_examined(target)) {
454 /* Fail silently lest we pollute the log */
455 return ERROR_FAIL;
458 retval = target->type->poll(target);
459 if (retval != ERROR_OK)
460 return retval;
462 if (target->halt_issued) {
463 if (target->state == TARGET_HALTED)
464 target->halt_issued = false;
465 else {
466 long long t = timeval_ms() - target->halt_issued_time;
467 if (t > DEFAULT_HALT_TIMEOUT) {
468 target->halt_issued = false;
469 LOG_INFO("Halt timed out, wake up GDB.");
470 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
475 return ERROR_OK;
478 int target_halt(struct target *target)
480 int retval;
481 /* We can't poll until after examine */
482 if (!target_was_examined(target)) {
483 LOG_ERROR("Target not examined yet");
484 return ERROR_FAIL;
487 retval = target->type->halt(target);
488 if (retval != ERROR_OK)
489 return retval;
491 target->halt_issued = true;
492 target->halt_issued_time = timeval_ms();
494 return ERROR_OK;
498 * Make the target (re)start executing using its saved execution
499 * context (possibly with some modifications).
501 * @param target Which target should start executing.
502 * @param current True to use the target's saved program counter instead
503 * of the address parameter
504 * @param address Optionally used as the program counter.
505 * @param handle_breakpoints True iff breakpoints at the resumption PC
506 * should be skipped. (For example, maybe execution was stopped by
507 * such a breakpoint, in which case it would be counterprodutive to
508 * let it re-trigger.
509 * @param debug_execution False if all working areas allocated by OpenOCD
510 * should be released and/or restored to their original contents.
511 * (This would for example be true to run some downloaded "helper"
512 * algorithm code, which resides in one such working buffer and uses
513 * another for data storage.)
515 * @todo Resolve the ambiguity about what the "debug_execution" flag
516 * signifies. For example, Target implementations don't agree on how
517 * it relates to invalidation of the register cache, or to whether
518 * breakpoints and watchpoints should be enabled. (It would seem wrong
519 * to enable breakpoints when running downloaded "helper" algorithms
520 * (debug_execution true), since the breakpoints would be set to match
521 * target firmware being debugged, not the helper algorithm.... and
522 * enabling them could cause such helpers to malfunction (for example,
523 * by overwriting data with a breakpoint instruction. On the other
524 * hand the infrastructure for running such helpers might use this
525 * procedure but rely on hardware breakpoint to detect termination.)
527 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
529 int retval;
531 /* We can't poll until after examine */
532 if (!target_was_examined(target)) {
533 LOG_ERROR("Target not examined yet");
534 return ERROR_FAIL;
537 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
539 /* note that resume *must* be asynchronous. The CPU can halt before
540 * we poll. The CPU can even halt at the current PC as a result of
541 * a software breakpoint being inserted by (a bug?) the application.
543 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
544 if (retval != ERROR_OK)
545 return retval;
547 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
549 return retval;
552 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
554 char buf[100];
555 int retval;
556 Jim_Nvp *n;
557 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
558 if (n->name == NULL) {
559 LOG_ERROR("invalid reset mode");
560 return ERROR_FAIL;
563 /* disable polling during reset to make reset event scripts
564 * more predictable, i.e. dr/irscan & pathmove in events will
565 * not have JTAG operations injected into the middle of a sequence.
567 bool save_poll = jtag_poll_get_enabled();
569 jtag_poll_set_enabled(false);
571 sprintf(buf, "ocd_process_reset %s", n->name);
572 retval = Jim_Eval(cmd_ctx->interp, buf);
574 jtag_poll_set_enabled(save_poll);
576 if (retval != JIM_OK) {
577 Jim_MakeErrorMessage(cmd_ctx->interp);
578 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
579 return ERROR_FAIL;
582 /* We want any events to be processed before the prompt */
583 retval = target_call_timer_callbacks_now();
585 struct target *target;
586 for (target = all_targets; target; target = target->next) {
587 target->type->check_reset(target);
588 target->running_alg = false;
591 return retval;
594 static int identity_virt2phys(struct target *target,
595 uint32_t virtual, uint32_t *physical)
597 *physical = virtual;
598 return ERROR_OK;
601 static int no_mmu(struct target *target, int *enabled)
603 *enabled = 0;
604 return ERROR_OK;
607 static int default_examine(struct target *target)
609 target_set_examined(target);
610 return ERROR_OK;
613 /* no check by default */
614 static int default_check_reset(struct target *target)
616 return ERROR_OK;
619 int target_examine_one(struct target *target)
621 return target->type->examine(target);
624 static int jtag_enable_callback(enum jtag_event event, void *priv)
626 struct target *target = priv;
628 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
629 return ERROR_OK;
631 jtag_unregister_event_callback(jtag_enable_callback, target);
633 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
635 int retval = target_examine_one(target);
636 if (retval != ERROR_OK)
637 return retval;
639 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
641 return retval;
644 /* Targets that correctly implement init + examine, i.e.
645 * no communication with target during init:
647 * XScale
649 int target_examine(void)
651 int retval = ERROR_OK;
652 struct target *target;
654 for (target = all_targets; target; target = target->next) {
655 /* defer examination, but don't skip it */
656 if (!target->tap->enabled) {
657 jtag_register_event_callback(jtag_enable_callback,
658 target);
659 continue;
662 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
664 retval = target_examine_one(target);
665 if (retval != ERROR_OK)
666 return retval;
668 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
670 return retval;
673 const char *target_type_name(struct target *target)
675 return target->type->name;
678 static int target_soft_reset_halt(struct target *target)
680 if (!target_was_examined(target)) {
681 LOG_ERROR("Target not examined yet");
682 return ERROR_FAIL;
684 if (!target->type->soft_reset_halt) {
685 LOG_ERROR("Target %s does not support soft_reset_halt",
686 target_name(target));
687 return ERROR_FAIL;
689 return target->type->soft_reset_halt(target);
693 * Downloads a target-specific native code algorithm to the target,
694 * and executes it. * Note that some targets may need to set up, enable,
695 * and tear down a breakpoint (hard or * soft) to detect algorithm
696 * termination, while others may support lower overhead schemes where
697 * soft breakpoints embedded in the algorithm automatically terminate the
698 * algorithm.
700 * @param target used to run the algorithm
701 * @param arch_info target-specific description of the algorithm.
703 int target_run_algorithm(struct target *target,
704 int num_mem_params, struct mem_param *mem_params,
705 int num_reg_params, struct reg_param *reg_param,
706 uint32_t entry_point, uint32_t exit_point,
707 int timeout_ms, void *arch_info)
709 int retval = ERROR_FAIL;
711 if (!target_was_examined(target)) {
712 LOG_ERROR("Target not examined yet");
713 goto done;
715 if (!target->type->run_algorithm) {
716 LOG_ERROR("Target type '%s' does not support %s",
717 target_type_name(target), __func__);
718 goto done;
721 target->running_alg = true;
722 retval = target->type->run_algorithm(target,
723 num_mem_params, mem_params,
724 num_reg_params, reg_param,
725 entry_point, exit_point, timeout_ms, arch_info);
726 target->running_alg = false;
728 done:
729 return retval;
733 * Downloads a target-specific native code algorithm to the target,
734 * executes and leaves it running.
736 * @param target used to run the algorithm
737 * @param arch_info target-specific description of the algorithm.
739 int target_start_algorithm(struct target *target,
740 int num_mem_params, struct mem_param *mem_params,
741 int num_reg_params, struct reg_param *reg_params,
742 uint32_t entry_point, uint32_t exit_point,
743 void *arch_info)
745 int retval = ERROR_FAIL;
747 if (!target_was_examined(target)) {
748 LOG_ERROR("Target not examined yet");
749 goto done;
751 if (!target->type->start_algorithm) {
752 LOG_ERROR("Target type '%s' does not support %s",
753 target_type_name(target), __func__);
754 goto done;
756 if (target->running_alg) {
757 LOG_ERROR("Target is already running an algorithm");
758 goto done;
761 target->running_alg = true;
762 retval = target->type->start_algorithm(target,
763 num_mem_params, mem_params,
764 num_reg_params, reg_params,
765 entry_point, exit_point, arch_info);
767 done:
768 return retval;
772 * Waits for an algorithm started with target_start_algorithm() to complete.
774 * @param target used to run the algorithm
775 * @param arch_info target-specific description of the algorithm.
777 int target_wait_algorithm(struct target *target,
778 int num_mem_params, struct mem_param *mem_params,
779 int num_reg_params, struct reg_param *reg_params,
780 uint32_t exit_point, int timeout_ms,
781 void *arch_info)
783 int retval = ERROR_FAIL;
785 if (!target->type->wait_algorithm) {
786 LOG_ERROR("Target type '%s' does not support %s",
787 target_type_name(target), __func__);
788 goto done;
790 if (!target->running_alg) {
791 LOG_ERROR("Target is not running an algorithm");
792 goto done;
795 retval = target->type->wait_algorithm(target,
796 num_mem_params, mem_params,
797 num_reg_params, reg_params,
798 exit_point, timeout_ms, arch_info);
799 if (retval != ERROR_TARGET_TIMEOUT)
800 target->running_alg = false;
802 done:
803 return retval;
807 * Executes a target-specific native code algorithm in the target.
808 * It differs from target_run_algorithm in that the algorithm is asynchronous.
809 * Because of this it requires an compliant algorithm:
810 * see contrib/loaders/flash/stm32f1x.S for example.
812 * @param target used to run the algorithm
815 int target_run_flash_async_algorithm(struct target *target,
816 uint8_t *buffer, uint32_t count, int block_size,
817 int num_mem_params, struct mem_param *mem_params,
818 int num_reg_params, struct reg_param *reg_params,
819 uint32_t buffer_start, uint32_t buffer_size,
820 uint32_t entry_point, uint32_t exit_point, void *arch_info)
822 int retval;
823 int timeout = 0;
825 /* Set up working area. First word is write pointer, second word is read pointer,
826 * rest is fifo data area. */
827 uint32_t wp_addr = buffer_start;
828 uint32_t rp_addr = buffer_start + 4;
829 uint32_t fifo_start_addr = buffer_start + 8;
830 uint32_t fifo_end_addr = buffer_start + buffer_size;
832 uint32_t wp = fifo_start_addr;
833 uint32_t rp = fifo_start_addr;
835 /* validate block_size is 2^n */
836 assert(!block_size || !(block_size & (block_size - 1)));
838 retval = target_write_u32(target, wp_addr, wp);
839 if (retval != ERROR_OK)
840 return retval;
841 retval = target_write_u32(target, rp_addr, rp);
842 if (retval != ERROR_OK)
843 return retval;
845 /* Start up algorithm on target and let it idle while writing the first chunk */
846 retval = target_start_algorithm(target, num_mem_params, mem_params,
847 num_reg_params, reg_params,
848 entry_point,
849 exit_point,
850 arch_info);
852 if (retval != ERROR_OK) {
853 LOG_ERROR("error starting target flash write algorithm");
854 return retval;
857 while (count > 0) {
859 retval = target_read_u32(target, rp_addr, &rp);
860 if (retval != ERROR_OK) {
861 LOG_ERROR("failed to get read pointer");
862 break;
865 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
867 if (rp == 0) {
868 LOG_ERROR("flash write algorithm aborted by target");
869 retval = ERROR_FLASH_OPERATION_FAILED;
870 break;
873 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
874 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
875 break;
878 /* Count the number of bytes available in the fifo without
879 * crossing the wrap around. Make sure to not fill it completely,
880 * because that would make wp == rp and that's the empty condition. */
881 uint32_t thisrun_bytes;
882 if (rp > wp)
883 thisrun_bytes = rp - wp - block_size;
884 else if (rp > fifo_start_addr)
885 thisrun_bytes = fifo_end_addr - wp;
886 else
887 thisrun_bytes = fifo_end_addr - wp - block_size;
889 if (thisrun_bytes == 0) {
890 /* Throttle polling a bit if transfer is (much) faster than flash
891 * programming. The exact delay shouldn't matter as long as it's
892 * less than buffer size / flash speed. This is very unlikely to
893 * run when using high latency connections such as USB. */
894 alive_sleep(10);
896 /* to stop an infinite loop on some targets check and increment a timeout
897 * this issue was observed on a stellaris using the new ICDI interface */
898 if (timeout++ >= 500) {
899 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
900 return ERROR_FLASH_OPERATION_FAILED;
902 continue;
905 /* reset our timeout */
906 timeout = 0;
908 /* Limit to the amount of data we actually want to write */
909 if (thisrun_bytes > count * block_size)
910 thisrun_bytes = count * block_size;
912 /* Write data to fifo */
913 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
914 if (retval != ERROR_OK)
915 break;
917 /* Update counters and wrap write pointer */
918 buffer += thisrun_bytes;
919 count -= thisrun_bytes / block_size;
920 wp += thisrun_bytes;
921 if (wp >= fifo_end_addr)
922 wp = fifo_start_addr;
924 /* Store updated write pointer to target */
925 retval = target_write_u32(target, wp_addr, wp);
926 if (retval != ERROR_OK)
927 break;
930 if (retval != ERROR_OK) {
931 /* abort flash write algorithm on target */
932 target_write_u32(target, wp_addr, 0);
935 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
936 num_reg_params, reg_params,
937 exit_point,
938 10000,
939 arch_info);
941 if (retval2 != ERROR_OK) {
942 LOG_ERROR("error waiting for target flash write algorithm");
943 retval = retval2;
946 return retval;
949 int target_read_memory(struct target *target,
950 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
952 if (!target_was_examined(target)) {
953 LOG_ERROR("Target not examined yet");
954 return ERROR_FAIL;
956 return target->type->read_memory(target, address, size, count, buffer);
959 int target_read_phys_memory(struct target *target,
960 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
962 if (!target_was_examined(target)) {
963 LOG_ERROR("Target not examined yet");
964 return ERROR_FAIL;
966 return target->type->read_phys_memory(target, address, size, count, buffer);
969 int target_write_memory(struct target *target,
970 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
972 if (!target_was_examined(target)) {
973 LOG_ERROR("Target not examined yet");
974 return ERROR_FAIL;
976 return target->type->write_memory(target, address, size, count, buffer);
979 int target_write_phys_memory(struct target *target,
980 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
982 if (!target_was_examined(target)) {
983 LOG_ERROR("Target not examined yet");
984 return ERROR_FAIL;
986 return target->type->write_phys_memory(target, address, size, count, buffer);
989 int target_add_breakpoint(struct target *target,
990 struct breakpoint *breakpoint)
992 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
993 LOG_WARNING("target %s is not halted", target_name(target));
994 return ERROR_TARGET_NOT_HALTED;
996 return target->type->add_breakpoint(target, breakpoint);
999 int target_add_context_breakpoint(struct target *target,
1000 struct breakpoint *breakpoint)
1002 if (target->state != TARGET_HALTED) {
1003 LOG_WARNING("target %s is not halted", target_name(target));
1004 return ERROR_TARGET_NOT_HALTED;
1006 return target->type->add_context_breakpoint(target, breakpoint);
1009 int target_add_hybrid_breakpoint(struct target *target,
1010 struct breakpoint *breakpoint)
1012 if (target->state != TARGET_HALTED) {
1013 LOG_WARNING("target %s is not halted", target_name(target));
1014 return ERROR_TARGET_NOT_HALTED;
1016 return target->type->add_hybrid_breakpoint(target, breakpoint);
1019 int target_remove_breakpoint(struct target *target,
1020 struct breakpoint *breakpoint)
1022 return target->type->remove_breakpoint(target, breakpoint);
1025 int target_add_watchpoint(struct target *target,
1026 struct watchpoint *watchpoint)
1028 if (target->state != TARGET_HALTED) {
1029 LOG_WARNING("target %s is not halted", target_name(target));
1030 return ERROR_TARGET_NOT_HALTED;
1032 return target->type->add_watchpoint(target, watchpoint);
1034 int target_remove_watchpoint(struct target *target,
1035 struct watchpoint *watchpoint)
1037 return target->type->remove_watchpoint(target, watchpoint);
1039 int target_hit_watchpoint(struct target *target,
1040 struct watchpoint **hit_watchpoint)
1042 if (target->state != TARGET_HALTED) {
1043 LOG_WARNING("target %s is not halted", target->cmd_name);
1044 return ERROR_TARGET_NOT_HALTED;
1047 if (target->type->hit_watchpoint == NULL) {
1048 /* For backward compatible, if hit_watchpoint is not implemented,
1049 * return ERROR_FAIL such that gdb_server will not take the nonsense
1050 * information. */
1051 return ERROR_FAIL;
1054 return target->type->hit_watchpoint(target, hit_watchpoint);
1057 int target_get_gdb_reg_list(struct target *target,
1058 struct reg **reg_list[], int *reg_list_size,
1059 enum target_register_class reg_class)
1061 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1063 int target_step(struct target *target,
1064 int current, uint32_t address, int handle_breakpoints)
1066 return target->type->step(target, current, address, handle_breakpoints);
1069 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1071 if (target->state != TARGET_HALTED) {
1072 LOG_WARNING("target %s is not halted", target->cmd_name);
1073 return ERROR_TARGET_NOT_HALTED;
1075 return target->type->get_gdb_fileio_info(target, fileio_info);
1078 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1080 if (target->state != TARGET_HALTED) {
1081 LOG_WARNING("target %s is not halted", target->cmd_name);
1082 return ERROR_TARGET_NOT_HALTED;
1084 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1088 * Reset the @c examined flag for the given target.
1089 * Pure paranoia -- targets are zeroed on allocation.
1091 static void target_reset_examined(struct target *target)
1093 target->examined = false;
1096 static int err_read_phys_memory(struct target *target, uint32_t address,
1097 uint32_t size, uint32_t count, uint8_t *buffer)
1099 LOG_ERROR("Not implemented: %s", __func__);
1100 return ERROR_FAIL;
1103 static int err_write_phys_memory(struct target *target, uint32_t address,
1104 uint32_t size, uint32_t count, const uint8_t *buffer)
1106 LOG_ERROR("Not implemented: %s", __func__);
1107 return ERROR_FAIL;
1110 static int handle_target(void *priv);
1112 static int target_init_one(struct command_context *cmd_ctx,
1113 struct target *target)
1115 target_reset_examined(target);
1117 struct target_type *type = target->type;
1118 if (type->examine == NULL)
1119 type->examine = default_examine;
1121 if (type->check_reset == NULL)
1122 type->check_reset = default_check_reset;
1124 assert(type->init_target != NULL);
1126 int retval = type->init_target(cmd_ctx, target);
1127 if (ERROR_OK != retval) {
1128 LOG_ERROR("target '%s' init failed", target_name(target));
1129 return retval;
1132 /* Sanity-check MMU support ... stub in what we must, to help
1133 * implement it in stages, but warn if we need to do so.
1135 if (type->mmu) {
1136 if (type->write_phys_memory == NULL) {
1137 LOG_ERROR("type '%s' is missing write_phys_memory",
1138 type->name);
1139 type->write_phys_memory = err_write_phys_memory;
1141 if (type->read_phys_memory == NULL) {
1142 LOG_ERROR("type '%s' is missing read_phys_memory",
1143 type->name);
1144 type->read_phys_memory = err_read_phys_memory;
1146 if (type->virt2phys == NULL) {
1147 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1148 type->virt2phys = identity_virt2phys;
1150 } else {
1151 /* Make sure no-MMU targets all behave the same: make no
1152 * distinction between physical and virtual addresses, and
1153 * ensure that virt2phys() is always an identity mapping.
1155 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1156 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1158 type->mmu = no_mmu;
1159 type->write_phys_memory = type->write_memory;
1160 type->read_phys_memory = type->read_memory;
1161 type->virt2phys = identity_virt2phys;
1164 if (target->type->read_buffer == NULL)
1165 target->type->read_buffer = target_read_buffer_default;
1167 if (target->type->write_buffer == NULL)
1168 target->type->write_buffer = target_write_buffer_default;
1170 if (target->type->get_gdb_fileio_info == NULL)
1171 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1173 if (target->type->gdb_fileio_end == NULL)
1174 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1176 return ERROR_OK;
1179 static int target_init(struct command_context *cmd_ctx)
1181 struct target *target;
1182 int retval;
1184 for (target = all_targets; target; target = target->next) {
1185 retval = target_init_one(cmd_ctx, target);
1186 if (ERROR_OK != retval)
1187 return retval;
1190 if (!all_targets)
1191 return ERROR_OK;
1193 retval = target_register_user_commands(cmd_ctx);
1194 if (ERROR_OK != retval)
1195 return retval;
1197 retval = target_register_timer_callback(&handle_target,
1198 polling_interval, 1, cmd_ctx->interp);
1199 if (ERROR_OK != retval)
1200 return retval;
1202 return ERROR_OK;
1205 COMMAND_HANDLER(handle_target_init_command)
1207 int retval;
1209 if (CMD_ARGC != 0)
1210 return ERROR_COMMAND_SYNTAX_ERROR;
1212 static bool target_initialized;
1213 if (target_initialized) {
1214 LOG_INFO("'target init' has already been called");
1215 return ERROR_OK;
1217 target_initialized = true;
1219 retval = command_run_line(CMD_CTX, "init_targets");
1220 if (ERROR_OK != retval)
1221 return retval;
1223 retval = command_run_line(CMD_CTX, "init_board");
1224 if (ERROR_OK != retval)
1225 return retval;
1227 LOG_DEBUG("Initializing targets...");
1228 return target_init(CMD_CTX);
1231 int target_register_event_callback(int (*callback)(struct target *target,
1232 enum target_event event, void *priv), void *priv)
1234 struct target_event_callback **callbacks_p = &target_event_callbacks;
1236 if (callback == NULL)
1237 return ERROR_COMMAND_SYNTAX_ERROR;
1239 if (*callbacks_p) {
1240 while ((*callbacks_p)->next)
1241 callbacks_p = &((*callbacks_p)->next);
1242 callbacks_p = &((*callbacks_p)->next);
1245 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1246 (*callbacks_p)->callback = callback;
1247 (*callbacks_p)->priv = priv;
1248 (*callbacks_p)->next = NULL;
1250 return ERROR_OK;
1253 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1255 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1256 struct timeval now;
1258 if (callback == NULL)
1259 return ERROR_COMMAND_SYNTAX_ERROR;
1261 if (*callbacks_p) {
1262 while ((*callbacks_p)->next)
1263 callbacks_p = &((*callbacks_p)->next);
1264 callbacks_p = &((*callbacks_p)->next);
1267 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1268 (*callbacks_p)->callback = callback;
1269 (*callbacks_p)->periodic = periodic;
1270 (*callbacks_p)->time_ms = time_ms;
1272 gettimeofday(&now, NULL);
1273 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1274 time_ms -= (time_ms % 1000);
1275 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1276 if ((*callbacks_p)->when.tv_usec > 1000000) {
1277 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1278 (*callbacks_p)->when.tv_sec += 1;
1281 (*callbacks_p)->priv = priv;
1282 (*callbacks_p)->next = NULL;
1284 return ERROR_OK;
1287 int target_unregister_event_callback(int (*callback)(struct target *target,
1288 enum target_event event, void *priv), void *priv)
1290 struct target_event_callback **p = &target_event_callbacks;
1291 struct target_event_callback *c = target_event_callbacks;
1293 if (callback == NULL)
1294 return ERROR_COMMAND_SYNTAX_ERROR;
1296 while (c) {
1297 struct target_event_callback *next = c->next;
1298 if ((c->callback == callback) && (c->priv == priv)) {
1299 *p = next;
1300 free(c);
1301 return ERROR_OK;
1302 } else
1303 p = &(c->next);
1304 c = next;
1307 return ERROR_OK;
1310 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1312 struct target_timer_callback **p = &target_timer_callbacks;
1313 struct target_timer_callback *c = target_timer_callbacks;
1315 if (callback == NULL)
1316 return ERROR_COMMAND_SYNTAX_ERROR;
1318 while (c) {
1319 struct target_timer_callback *next = c->next;
1320 if ((c->callback == callback) && (c->priv == priv)) {
1321 *p = next;
1322 free(c);
1323 return ERROR_OK;
1324 } else
1325 p = &(c->next);
1326 c = next;
1329 return ERROR_OK;
1332 int target_call_event_callbacks(struct target *target, enum target_event event)
1334 struct target_event_callback *callback = target_event_callbacks;
1335 struct target_event_callback *next_callback;
1337 if (event == TARGET_EVENT_HALTED) {
1338 /* execute early halted first */
1339 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1342 LOG_DEBUG("target event %i (%s)", event,
1343 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1345 target_handle_event(target, event);
1347 while (callback) {
1348 next_callback = callback->next;
1349 callback->callback(target, event, callback->priv);
1350 callback = next_callback;
1353 return ERROR_OK;
1356 static int target_timer_callback_periodic_restart(
1357 struct target_timer_callback *cb, struct timeval *now)
1359 int time_ms = cb->time_ms;
1360 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1361 time_ms -= (time_ms % 1000);
1362 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1363 if (cb->when.tv_usec > 1000000) {
1364 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1365 cb->when.tv_sec += 1;
1367 return ERROR_OK;
1370 static int target_call_timer_callback(struct target_timer_callback *cb,
1371 struct timeval *now)
1373 cb->callback(cb->priv);
1375 if (cb->periodic)
1376 return target_timer_callback_periodic_restart(cb, now);
1378 return target_unregister_timer_callback(cb->callback, cb->priv);
1381 static int target_call_timer_callbacks_check_time(int checktime)
1383 keep_alive();
1385 struct timeval now;
1386 gettimeofday(&now, NULL);
1388 struct target_timer_callback *callback = target_timer_callbacks;
1389 while (callback) {
1390 /* cleaning up may unregister and free this callback */
1391 struct target_timer_callback *next_callback = callback->next;
1393 bool call_it = callback->callback &&
1394 ((!checktime && callback->periodic) ||
1395 now.tv_sec > callback->when.tv_sec ||
1396 (now.tv_sec == callback->when.tv_sec &&
1397 now.tv_usec >= callback->when.tv_usec));
1399 if (call_it) {
1400 int retval = target_call_timer_callback(callback, &now);
1401 if (retval != ERROR_OK)
1402 return retval;
1405 callback = next_callback;
1408 return ERROR_OK;
1411 int target_call_timer_callbacks(void)
1413 return target_call_timer_callbacks_check_time(1);
1416 /* invoke periodic callbacks immediately */
1417 int target_call_timer_callbacks_now(void)
1419 return target_call_timer_callbacks_check_time(0);
1422 /* Prints the working area layout for debug purposes */
1423 static void print_wa_layout(struct target *target)
1425 struct working_area *c = target->working_areas;
1427 while (c) {
1428 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1429 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1430 c->address, c->address + c->size - 1, c->size);
1431 c = c->next;
1435 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1436 static void target_split_working_area(struct working_area *area, uint32_t size)
1438 assert(area->free); /* Shouldn't split an allocated area */
1439 assert(size <= area->size); /* Caller should guarantee this */
1441 /* Split only if not already the right size */
1442 if (size < area->size) {
1443 struct working_area *new_wa = malloc(sizeof(*new_wa));
1445 if (new_wa == NULL)
1446 return;
1448 new_wa->next = area->next;
1449 new_wa->size = area->size - size;
1450 new_wa->address = area->address + size;
1451 new_wa->backup = NULL;
1452 new_wa->user = NULL;
1453 new_wa->free = true;
1455 area->next = new_wa;
1456 area->size = size;
1458 /* If backup memory was allocated to this area, it has the wrong size
1459 * now so free it and it will be reallocated if/when needed */
1460 if (area->backup) {
1461 free(area->backup);
1462 area->backup = NULL;
1467 /* Merge all adjacent free areas into one */
1468 static void target_merge_working_areas(struct target *target)
1470 struct working_area *c = target->working_areas;
1472 while (c && c->next) {
1473 assert(c->next->address == c->address + c->size); /* This is an invariant */
1475 /* Find two adjacent free areas */
1476 if (c->free && c->next->free) {
1477 /* Merge the last into the first */
1478 c->size += c->next->size;
1480 /* Remove the last */
1481 struct working_area *to_be_freed = c->next;
1482 c->next = c->next->next;
1483 if (to_be_freed->backup)
1484 free(to_be_freed->backup);
1485 free(to_be_freed);
1487 /* If backup memory was allocated to the remaining area, it's has
1488 * the wrong size now */
1489 if (c->backup) {
1490 free(c->backup);
1491 c->backup = NULL;
1493 } else {
1494 c = c->next;
1499 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1501 /* Reevaluate working area address based on MMU state*/
1502 if (target->working_areas == NULL) {
1503 int retval;
1504 int enabled;
1506 retval = target->type->mmu(target, &enabled);
1507 if (retval != ERROR_OK)
1508 return retval;
1510 if (!enabled) {
1511 if (target->working_area_phys_spec) {
1512 LOG_DEBUG("MMU disabled, using physical "
1513 "address for working memory 0x%08"PRIx32,
1514 target->working_area_phys);
1515 target->working_area = target->working_area_phys;
1516 } else {
1517 LOG_ERROR("No working memory available. "
1518 "Specify -work-area-phys to target.");
1519 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1521 } else {
1522 if (target->working_area_virt_spec) {
1523 LOG_DEBUG("MMU enabled, using virtual "
1524 "address for working memory 0x%08"PRIx32,
1525 target->working_area_virt);
1526 target->working_area = target->working_area_virt;
1527 } else {
1528 LOG_ERROR("No working memory available. "
1529 "Specify -work-area-virt to target.");
1530 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1534 /* Set up initial working area on first call */
1535 struct working_area *new_wa = malloc(sizeof(*new_wa));
1536 if (new_wa) {
1537 new_wa->next = NULL;
1538 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1539 new_wa->address = target->working_area;
1540 new_wa->backup = NULL;
1541 new_wa->user = NULL;
1542 new_wa->free = true;
1545 target->working_areas = new_wa;
1548 /* only allocate multiples of 4 byte */
1549 if (size % 4)
1550 size = (size + 3) & (~3UL);
1552 struct working_area *c = target->working_areas;
1554 /* Find the first large enough working area */
1555 while (c) {
1556 if (c->free && c->size >= size)
1557 break;
1558 c = c->next;
1561 if (c == NULL)
1562 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1564 /* Split the working area into the requested size */
1565 target_split_working_area(c, size);
1567 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1569 if (target->backup_working_area) {
1570 if (c->backup == NULL) {
1571 c->backup = malloc(c->size);
1572 if (c->backup == NULL)
1573 return ERROR_FAIL;
1576 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1577 if (retval != ERROR_OK)
1578 return retval;
1581 /* mark as used, and return the new (reused) area */
1582 c->free = false;
1583 *area = c;
1585 /* user pointer */
1586 c->user = area;
1588 print_wa_layout(target);
1590 return ERROR_OK;
1593 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1595 int retval;
1597 retval = target_alloc_working_area_try(target, size, area);
1598 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1599 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1600 return retval;
1604 static int target_restore_working_area(struct target *target, struct working_area *area)
1606 int retval = ERROR_OK;
1608 if (target->backup_working_area && area->backup != NULL) {
1609 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1610 if (retval != ERROR_OK)
1611 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1612 area->size, area->address);
1615 return retval;
1618 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1619 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1621 int retval = ERROR_OK;
1623 if (area->free)
1624 return retval;
1626 if (restore) {
1627 retval = target_restore_working_area(target, area);
1628 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1629 if (retval != ERROR_OK)
1630 return retval;
1633 area->free = true;
1635 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1636 area->size, area->address);
1638 /* mark user pointer invalid */
1639 /* TODO: Is this really safe? It points to some previous caller's memory.
1640 * How could we know that the area pointer is still in that place and not
1641 * some other vital data? What's the purpose of this, anyway? */
1642 *area->user = NULL;
1643 area->user = NULL;
1645 target_merge_working_areas(target);
1647 print_wa_layout(target);
1649 return retval;
1652 int target_free_working_area(struct target *target, struct working_area *area)
1654 return target_free_working_area_restore(target, area, 1);
1657 /* free resources and restore memory, if restoring memory fails,
1658 * free up resources anyway
1660 static void target_free_all_working_areas_restore(struct target *target, int restore)
1662 struct working_area *c = target->working_areas;
1664 LOG_DEBUG("freeing all working areas");
1666 /* Loop through all areas, restoring the allocated ones and marking them as free */
1667 while (c) {
1668 if (!c->free) {
1669 if (restore)
1670 target_restore_working_area(target, c);
1671 c->free = true;
1672 *c->user = NULL; /* Same as above */
1673 c->user = NULL;
1675 c = c->next;
1678 /* Run a merge pass to combine all areas into one */
1679 target_merge_working_areas(target);
1681 print_wa_layout(target);
1684 void target_free_all_working_areas(struct target *target)
1686 target_free_all_working_areas_restore(target, 1);
1689 /* Find the largest number of bytes that can be allocated */
1690 uint32_t target_get_working_area_avail(struct target *target)
1692 struct working_area *c = target->working_areas;
1693 uint32_t max_size = 0;
1695 if (c == NULL)
1696 return target->working_area_size;
1698 while (c) {
1699 if (c->free && max_size < c->size)
1700 max_size = c->size;
1702 c = c->next;
1705 return max_size;
1708 int target_arch_state(struct target *target)
1710 int retval;
1711 if (target == NULL) {
1712 LOG_USER("No target has been configured");
1713 return ERROR_OK;
1716 LOG_USER("target state: %s", target_state_name(target));
1718 if (target->state != TARGET_HALTED)
1719 return ERROR_OK;
1721 retval = target->type->arch_state(target);
1722 return retval;
1725 static int target_get_gdb_fileio_info_default(struct target *target,
1726 struct gdb_fileio_info *fileio_info)
1728 /* If target does not support semi-hosting function, target
1729 has no need to provide .get_gdb_fileio_info callback.
1730 It just return ERROR_FAIL and gdb_server will return "Txx"
1731 as target halted every time. */
1732 return ERROR_FAIL;
1735 static int target_gdb_fileio_end_default(struct target *target,
1736 int retcode, int fileio_errno, bool ctrl_c)
1738 return ERROR_OK;
1741 /* Single aligned words are guaranteed to use 16 or 32 bit access
1742 * mode respectively, otherwise data is handled as quickly as
1743 * possible
1745 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1747 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1748 (int)size, (unsigned)address);
1750 if (!target_was_examined(target)) {
1751 LOG_ERROR("Target not examined yet");
1752 return ERROR_FAIL;
1755 if (size == 0)
1756 return ERROR_OK;
1758 if ((address + size - 1) < address) {
1759 /* GDB can request this when e.g. PC is 0xfffffffc*/
1760 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1761 (unsigned)address,
1762 (unsigned)size);
1763 return ERROR_FAIL;
1766 return target->type->write_buffer(target, address, size, buffer);
1769 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1771 uint32_t size;
1773 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1774 * will have something to do with the size we leave to it. */
1775 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1776 if (address & size) {
1777 int retval = target_write_memory(target, address, size, 1, buffer);
1778 if (retval != ERROR_OK)
1779 return retval;
1780 address += size;
1781 count -= size;
1782 buffer += size;
1786 /* Write the data with as large access size as possible. */
1787 for (; size > 0; size /= 2) {
1788 uint32_t aligned = count - count % size;
1789 if (aligned > 0) {
1790 int retval = target_write_memory(target, address, size, aligned / size, buffer);
1791 if (retval != ERROR_OK)
1792 return retval;
1793 address += aligned;
1794 count -= aligned;
1795 buffer += aligned;
1799 return ERROR_OK;
1802 /* Single aligned words are guaranteed to use 16 or 32 bit access
1803 * mode respectively, otherwise data is handled as quickly as
1804 * possible
1806 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1808 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1809 (int)size, (unsigned)address);
1811 if (!target_was_examined(target)) {
1812 LOG_ERROR("Target not examined yet");
1813 return ERROR_FAIL;
1816 if (size == 0)
1817 return ERROR_OK;
1819 if ((address + size - 1) < address) {
1820 /* GDB can request this when e.g. PC is 0xfffffffc*/
1821 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1822 address,
1823 size);
1824 return ERROR_FAIL;
1827 return target->type->read_buffer(target, address, size, buffer);
1830 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1832 uint32_t size;
1834 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1835 * will have something to do with the size we leave to it. */
1836 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1837 if (address & size) {
1838 int retval = target_read_memory(target, address, size, 1, buffer);
1839 if (retval != ERROR_OK)
1840 return retval;
1841 address += size;
1842 count -= size;
1843 buffer += size;
1847 /* Read the data with as large access size as possible. */
1848 for (; size > 0; size /= 2) {
1849 uint32_t aligned = count - count % size;
1850 if (aligned > 0) {
1851 int retval = target_read_memory(target, address, size, aligned / size, buffer);
1852 if (retval != ERROR_OK)
1853 return retval;
1854 address += aligned;
1855 count -= aligned;
1856 buffer += aligned;
1860 return ERROR_OK;
1863 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1865 uint8_t *buffer;
1866 int retval;
1867 uint32_t i;
1868 uint32_t checksum = 0;
1869 if (!target_was_examined(target)) {
1870 LOG_ERROR("Target not examined yet");
1871 return ERROR_FAIL;
1874 retval = target->type->checksum_memory(target, address, size, &checksum);
1875 if (retval != ERROR_OK) {
1876 buffer = malloc(size);
1877 if (buffer == NULL) {
1878 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1879 return ERROR_COMMAND_SYNTAX_ERROR;
1881 retval = target_read_buffer(target, address, size, buffer);
1882 if (retval != ERROR_OK) {
1883 free(buffer);
1884 return retval;
1887 /* convert to target endianness */
1888 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1889 uint32_t target_data;
1890 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1891 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1894 retval = image_calculate_checksum(buffer, size, &checksum);
1895 free(buffer);
1898 *crc = checksum;
1900 return retval;
1903 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1905 int retval;
1906 if (!target_was_examined(target)) {
1907 LOG_ERROR("Target not examined yet");
1908 return ERROR_FAIL;
1911 if (target->type->blank_check_memory == 0)
1912 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1914 retval = target->type->blank_check_memory(target, address, size, blank);
1916 return retval;
1919 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1921 uint8_t value_buf[4];
1922 if (!target_was_examined(target)) {
1923 LOG_ERROR("Target not examined yet");
1924 return ERROR_FAIL;
1927 int retval = target_read_memory(target, address, 4, 1, value_buf);
1929 if (retval == ERROR_OK) {
1930 *value = target_buffer_get_u32(target, value_buf);
1931 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1932 address,
1933 *value);
1934 } else {
1935 *value = 0x0;
1936 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1937 address);
1940 return retval;
1943 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1945 uint8_t value_buf[2];
1946 if (!target_was_examined(target)) {
1947 LOG_ERROR("Target not examined yet");
1948 return ERROR_FAIL;
1951 int retval = target_read_memory(target, address, 2, 1, value_buf);
1953 if (retval == ERROR_OK) {
1954 *value = target_buffer_get_u16(target, value_buf);
1955 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1956 address,
1957 *value);
1958 } else {
1959 *value = 0x0;
1960 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1961 address);
1964 return retval;
1967 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1969 int retval = target_read_memory(target, address, 1, 1, value);
1970 if (!target_was_examined(target)) {
1971 LOG_ERROR("Target not examined yet");
1972 return ERROR_FAIL;
1975 if (retval == ERROR_OK) {
1976 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1977 address,
1978 *value);
1979 } else {
1980 *value = 0x0;
1981 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1982 address);
1985 return retval;
1988 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1990 int retval;
1991 uint8_t value_buf[4];
1992 if (!target_was_examined(target)) {
1993 LOG_ERROR("Target not examined yet");
1994 return ERROR_FAIL;
1997 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1998 address,
1999 value);
2001 target_buffer_set_u32(target, value_buf, value);
2002 retval = target_write_memory(target, address, 4, 1, value_buf);
2003 if (retval != ERROR_OK)
2004 LOG_DEBUG("failed: %i", retval);
2006 return retval;
2009 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2011 int retval;
2012 uint8_t value_buf[2];
2013 if (!target_was_examined(target)) {
2014 LOG_ERROR("Target not examined yet");
2015 return ERROR_FAIL;
2018 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2019 address,
2020 value);
2022 target_buffer_set_u16(target, value_buf, value);
2023 retval = target_write_memory(target, address, 2, 1, value_buf);
2024 if (retval != ERROR_OK)
2025 LOG_DEBUG("failed: %i", retval);
2027 return retval;
2030 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2032 int retval;
2033 if (!target_was_examined(target)) {
2034 LOG_ERROR("Target not examined yet");
2035 return ERROR_FAIL;
2038 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2039 address, value);
2041 retval = target_write_memory(target, address, 1, 1, &value);
2042 if (retval != ERROR_OK)
2043 LOG_DEBUG("failed: %i", retval);
2045 return retval;
2048 static int find_target(struct command_context *cmd_ctx, const char *name)
2050 struct target *target = get_target(name);
2051 if (target == NULL) {
2052 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2053 return ERROR_FAIL;
2055 if (!target->tap->enabled) {
2056 LOG_USER("Target: TAP %s is disabled, "
2057 "can't be the current target\n",
2058 target->tap->dotted_name);
2059 return ERROR_FAIL;
2062 cmd_ctx->current_target = target->target_number;
2063 return ERROR_OK;
2067 COMMAND_HANDLER(handle_targets_command)
2069 int retval = ERROR_OK;
2070 if (CMD_ARGC == 1) {
2071 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2072 if (retval == ERROR_OK) {
2073 /* we're done! */
2074 return retval;
2078 struct target *target = all_targets;
2079 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2080 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2081 while (target) {
2082 const char *state;
2083 char marker = ' ';
2085 if (target->tap->enabled)
2086 state = target_state_name(target);
2087 else
2088 state = "tap-disabled";
2090 if (CMD_CTX->current_target == target->target_number)
2091 marker = '*';
2093 /* keep columns lined up to match the headers above */
2094 command_print(CMD_CTX,
2095 "%2d%c %-18s %-10s %-6s %-18s %s",
2096 target->target_number,
2097 marker,
2098 target_name(target),
2099 target_type_name(target),
2100 Jim_Nvp_value2name_simple(nvp_target_endian,
2101 target->endianness)->name,
2102 target->tap->dotted_name,
2103 state);
2104 target = target->next;
2107 return retval;
2110 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2112 static int powerDropout;
2113 static int srstAsserted;
2115 static int runPowerRestore;
2116 static int runPowerDropout;
2117 static int runSrstAsserted;
2118 static int runSrstDeasserted;
2120 static int sense_handler(void)
2122 static int prevSrstAsserted;
2123 static int prevPowerdropout;
2125 int retval = jtag_power_dropout(&powerDropout);
2126 if (retval != ERROR_OK)
2127 return retval;
2129 int powerRestored;
2130 powerRestored = prevPowerdropout && !powerDropout;
2131 if (powerRestored)
2132 runPowerRestore = 1;
2134 long long current = timeval_ms();
2135 static long long lastPower;
2136 int waitMore = lastPower + 2000 > current;
2137 if (powerDropout && !waitMore) {
2138 runPowerDropout = 1;
2139 lastPower = current;
2142 retval = jtag_srst_asserted(&srstAsserted);
2143 if (retval != ERROR_OK)
2144 return retval;
2146 int srstDeasserted;
2147 srstDeasserted = prevSrstAsserted && !srstAsserted;
2149 static long long lastSrst;
2150 waitMore = lastSrst + 2000 > current;
2151 if (srstDeasserted && !waitMore) {
2152 runSrstDeasserted = 1;
2153 lastSrst = current;
2156 if (!prevSrstAsserted && srstAsserted)
2157 runSrstAsserted = 1;
2159 prevSrstAsserted = srstAsserted;
2160 prevPowerdropout = powerDropout;
2162 if (srstDeasserted || powerRestored) {
2163 /* Other than logging the event we can't do anything here.
2164 * Issuing a reset is a particularly bad idea as we might
2165 * be inside a reset already.
2169 return ERROR_OK;
2172 /* process target state changes */
2173 static int handle_target(void *priv)
2175 Jim_Interp *interp = (Jim_Interp *)priv;
2176 int retval = ERROR_OK;
2178 if (!is_jtag_poll_safe()) {
2179 /* polling is disabled currently */
2180 return ERROR_OK;
2183 /* we do not want to recurse here... */
2184 static int recursive;
2185 if (!recursive) {
2186 recursive = 1;
2187 sense_handler();
2188 /* danger! running these procedures can trigger srst assertions and power dropouts.
2189 * We need to avoid an infinite loop/recursion here and we do that by
2190 * clearing the flags after running these events.
2192 int did_something = 0;
2193 if (runSrstAsserted) {
2194 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2195 Jim_Eval(interp, "srst_asserted");
2196 did_something = 1;
2198 if (runSrstDeasserted) {
2199 Jim_Eval(interp, "srst_deasserted");
2200 did_something = 1;
2202 if (runPowerDropout) {
2203 LOG_INFO("Power dropout detected, running power_dropout proc.");
2204 Jim_Eval(interp, "power_dropout");
2205 did_something = 1;
2207 if (runPowerRestore) {
2208 Jim_Eval(interp, "power_restore");
2209 did_something = 1;
2212 if (did_something) {
2213 /* clear detect flags */
2214 sense_handler();
2217 /* clear action flags */
2219 runSrstAsserted = 0;
2220 runSrstDeasserted = 0;
2221 runPowerRestore = 0;
2222 runPowerDropout = 0;
2224 recursive = 0;
2227 /* Poll targets for state changes unless that's globally disabled.
2228 * Skip targets that are currently disabled.
2230 for (struct target *target = all_targets;
2231 is_jtag_poll_safe() && target;
2232 target = target->next) {
2233 if (!target->tap->enabled)
2234 continue;
2236 if (target->backoff.times > target->backoff.count) {
2237 /* do not poll this time as we failed previously */
2238 target->backoff.count++;
2239 continue;
2241 target->backoff.count = 0;
2243 /* only poll target if we've got power and srst isn't asserted */
2244 if (!powerDropout && !srstAsserted) {
2245 /* polling may fail silently until the target has been examined */
2246 retval = target_poll(target);
2247 if (retval != ERROR_OK) {
2248 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2249 if (target->backoff.times * polling_interval < 5000) {
2250 target->backoff.times *= 2;
2251 target->backoff.times++;
2253 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2254 target_name(target),
2255 target->backoff.times * polling_interval);
2257 /* Tell GDB to halt the debugger. This allows the user to
2258 * run monitor commands to handle the situation.
2260 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2261 return retval;
2263 /* Since we succeeded, we reset backoff count */
2264 if (target->backoff.times > 0)
2265 LOG_USER("Polling target %s succeeded again", target_name(target));
2266 target->backoff.times = 0;
2270 return retval;
2273 COMMAND_HANDLER(handle_reg_command)
2275 struct target *target;
2276 struct reg *reg = NULL;
2277 unsigned count = 0;
2278 char *value;
2280 LOG_DEBUG("-");
2282 target = get_current_target(CMD_CTX);
2284 /* list all available registers for the current target */
2285 if (CMD_ARGC == 0) {
2286 struct reg_cache *cache = target->reg_cache;
2288 count = 0;
2289 while (cache) {
2290 unsigned i;
2292 command_print(CMD_CTX, "===== %s", cache->name);
2294 for (i = 0, reg = cache->reg_list;
2295 i < cache->num_regs;
2296 i++, reg++, count++) {
2297 /* only print cached values if they are valid */
2298 if (reg->valid) {
2299 value = buf_to_str(reg->value,
2300 reg->size, 16);
2301 command_print(CMD_CTX,
2302 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2303 count, reg->name,
2304 reg->size, value,
2305 reg->dirty
2306 ? " (dirty)"
2307 : "");
2308 free(value);
2309 } else {
2310 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2311 count, reg->name,
2312 reg->size) ;
2315 cache = cache->next;
2318 return ERROR_OK;
2321 /* access a single register by its ordinal number */
2322 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2323 unsigned num;
2324 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2326 struct reg_cache *cache = target->reg_cache;
2327 count = 0;
2328 while (cache) {
2329 unsigned i;
2330 for (i = 0; i < cache->num_regs; i++) {
2331 if (count++ == num) {
2332 reg = &cache->reg_list[i];
2333 break;
2336 if (reg)
2337 break;
2338 cache = cache->next;
2341 if (!reg) {
2342 command_print(CMD_CTX, "%i is out of bounds, the current target "
2343 "has only %i registers (0 - %i)", num, count, count - 1);
2344 return ERROR_OK;
2346 } else {
2347 /* access a single register by its name */
2348 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2350 if (!reg) {
2351 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2352 return ERROR_OK;
2356 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2358 /* display a register */
2359 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2360 && (CMD_ARGV[1][0] <= '9')))) {
2361 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2362 reg->valid = 0;
2364 if (reg->valid == 0)
2365 reg->type->get(reg);
2366 value = buf_to_str(reg->value, reg->size, 16);
2367 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2368 free(value);
2369 return ERROR_OK;
2372 /* set register value */
2373 if (CMD_ARGC == 2) {
2374 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2375 if (buf == NULL)
2376 return ERROR_FAIL;
2377 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2379 reg->type->set(reg, buf);
2381 value = buf_to_str(reg->value, reg->size, 16);
2382 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2383 free(value);
2385 free(buf);
2387 return ERROR_OK;
2390 return ERROR_COMMAND_SYNTAX_ERROR;
2393 COMMAND_HANDLER(handle_poll_command)
2395 int retval = ERROR_OK;
2396 struct target *target = get_current_target(CMD_CTX);
2398 if (CMD_ARGC == 0) {
2399 command_print(CMD_CTX, "background polling: %s",
2400 jtag_poll_get_enabled() ? "on" : "off");
2401 command_print(CMD_CTX, "TAP: %s (%s)",
2402 target->tap->dotted_name,
2403 target->tap->enabled ? "enabled" : "disabled");
2404 if (!target->tap->enabled)
2405 return ERROR_OK;
2406 retval = target_poll(target);
2407 if (retval != ERROR_OK)
2408 return retval;
2409 retval = target_arch_state(target);
2410 if (retval != ERROR_OK)
2411 return retval;
2412 } else if (CMD_ARGC == 1) {
2413 bool enable;
2414 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2415 jtag_poll_set_enabled(enable);
2416 } else
2417 return ERROR_COMMAND_SYNTAX_ERROR;
2419 return retval;
2422 COMMAND_HANDLER(handle_wait_halt_command)
2424 if (CMD_ARGC > 1)
2425 return ERROR_COMMAND_SYNTAX_ERROR;
2427 unsigned ms = DEFAULT_HALT_TIMEOUT;
2428 if (1 == CMD_ARGC) {
2429 int retval = parse_uint(CMD_ARGV[0], &ms);
2430 if (ERROR_OK != retval)
2431 return ERROR_COMMAND_SYNTAX_ERROR;
2434 struct target *target = get_current_target(CMD_CTX);
2435 return target_wait_state(target, TARGET_HALTED, ms);
2438 /* wait for target state to change. The trick here is to have a low
2439 * latency for short waits and not to suck up all the CPU time
2440 * on longer waits.
2442 * After 500ms, keep_alive() is invoked
2444 int target_wait_state(struct target *target, enum target_state state, int ms)
2446 int retval;
2447 long long then = 0, cur;
2448 int once = 1;
2450 for (;;) {
2451 retval = target_poll(target);
2452 if (retval != ERROR_OK)
2453 return retval;
2454 if (target->state == state)
2455 break;
2456 cur = timeval_ms();
2457 if (once) {
2458 once = 0;
2459 then = timeval_ms();
2460 LOG_DEBUG("waiting for target %s...",
2461 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2464 if (cur-then > 500)
2465 keep_alive();
2467 if ((cur-then) > ms) {
2468 LOG_ERROR("timed out while waiting for target %s",
2469 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2470 return ERROR_FAIL;
2474 return ERROR_OK;
2477 COMMAND_HANDLER(handle_halt_command)
2479 LOG_DEBUG("-");
2481 struct target *target = get_current_target(CMD_CTX);
2482 int retval = target_halt(target);
2483 if (ERROR_OK != retval)
2484 return retval;
2486 if (CMD_ARGC == 1) {
2487 unsigned wait_local;
2488 retval = parse_uint(CMD_ARGV[0], &wait_local);
2489 if (ERROR_OK != retval)
2490 return ERROR_COMMAND_SYNTAX_ERROR;
2491 if (!wait_local)
2492 return ERROR_OK;
2495 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2498 COMMAND_HANDLER(handle_soft_reset_halt_command)
2500 struct target *target = get_current_target(CMD_CTX);
2502 LOG_USER("requesting target halt and executing a soft reset");
2504 target_soft_reset_halt(target);
2506 return ERROR_OK;
2509 COMMAND_HANDLER(handle_reset_command)
2511 if (CMD_ARGC > 1)
2512 return ERROR_COMMAND_SYNTAX_ERROR;
2514 enum target_reset_mode reset_mode = RESET_RUN;
2515 if (CMD_ARGC == 1) {
2516 const Jim_Nvp *n;
2517 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2518 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2519 return ERROR_COMMAND_SYNTAX_ERROR;
2520 reset_mode = n->value;
2523 /* reset *all* targets */
2524 return target_process_reset(CMD_CTX, reset_mode);
2528 COMMAND_HANDLER(handle_resume_command)
2530 int current = 1;
2531 if (CMD_ARGC > 1)
2532 return ERROR_COMMAND_SYNTAX_ERROR;
2534 struct target *target = get_current_target(CMD_CTX);
2536 /* with no CMD_ARGV, resume from current pc, addr = 0,
2537 * with one arguments, addr = CMD_ARGV[0],
2538 * handle breakpoints, not debugging */
2539 uint32_t addr = 0;
2540 if (CMD_ARGC == 1) {
2541 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2542 current = 0;
2545 return target_resume(target, current, addr, 1, 0);
2548 COMMAND_HANDLER(handle_step_command)
2550 if (CMD_ARGC > 1)
2551 return ERROR_COMMAND_SYNTAX_ERROR;
2553 LOG_DEBUG("-");
2555 /* with no CMD_ARGV, step from current pc, addr = 0,
2556 * with one argument addr = CMD_ARGV[0],
2557 * handle breakpoints, debugging */
2558 uint32_t addr = 0;
2559 int current_pc = 1;
2560 if (CMD_ARGC == 1) {
2561 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2562 current_pc = 0;
2565 struct target *target = get_current_target(CMD_CTX);
2567 return target->type->step(target, current_pc, addr, 1);
2570 static void handle_md_output(struct command_context *cmd_ctx,
2571 struct target *target, uint32_t address, unsigned size,
2572 unsigned count, const uint8_t *buffer)
2574 const unsigned line_bytecnt = 32;
2575 unsigned line_modulo = line_bytecnt / size;
2577 char output[line_bytecnt * 4 + 1];
2578 unsigned output_len = 0;
2580 const char *value_fmt;
2581 switch (size) {
2582 case 4:
2583 value_fmt = "%8.8x ";
2584 break;
2585 case 2:
2586 value_fmt = "%4.4x ";
2587 break;
2588 case 1:
2589 value_fmt = "%2.2x ";
2590 break;
2591 default:
2592 /* "can't happen", caller checked */
2593 LOG_ERROR("invalid memory read size: %u", size);
2594 return;
2597 for (unsigned i = 0; i < count; i++) {
2598 if (i % line_modulo == 0) {
2599 output_len += snprintf(output + output_len,
2600 sizeof(output) - output_len,
2601 "0x%8.8x: ",
2602 (unsigned)(address + (i*size)));
2605 uint32_t value = 0;
2606 const uint8_t *value_ptr = buffer + i * size;
2607 switch (size) {
2608 case 4:
2609 value = target_buffer_get_u32(target, value_ptr);
2610 break;
2611 case 2:
2612 value = target_buffer_get_u16(target, value_ptr);
2613 break;
2614 case 1:
2615 value = *value_ptr;
2617 output_len += snprintf(output + output_len,
2618 sizeof(output) - output_len,
2619 value_fmt, value);
2621 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2622 command_print(cmd_ctx, "%s", output);
2623 output_len = 0;
2628 COMMAND_HANDLER(handle_md_command)
2630 if (CMD_ARGC < 1)
2631 return ERROR_COMMAND_SYNTAX_ERROR;
2633 unsigned size = 0;
2634 switch (CMD_NAME[2]) {
2635 case 'w':
2636 size = 4;
2637 break;
2638 case 'h':
2639 size = 2;
2640 break;
2641 case 'b':
2642 size = 1;
2643 break;
2644 default:
2645 return ERROR_COMMAND_SYNTAX_ERROR;
2648 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2649 int (*fn)(struct target *target,
2650 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2651 if (physical) {
2652 CMD_ARGC--;
2653 CMD_ARGV++;
2654 fn = target_read_phys_memory;
2655 } else
2656 fn = target_read_memory;
2657 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2658 return ERROR_COMMAND_SYNTAX_ERROR;
2660 uint32_t address;
2661 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2663 unsigned count = 1;
2664 if (CMD_ARGC == 2)
2665 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2667 uint8_t *buffer = calloc(count, size);
2669 struct target *target = get_current_target(CMD_CTX);
2670 int retval = fn(target, address, size, count, buffer);
2671 if (ERROR_OK == retval)
2672 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2674 free(buffer);
2676 return retval;
2679 typedef int (*target_write_fn)(struct target *target,
2680 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2682 static int target_write_memory_fast(struct target *target,
2683 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2685 return target_write_buffer(target, address, size * count, buffer);
2688 static int target_fill_mem(struct target *target,
2689 uint32_t address,
2690 target_write_fn fn,
2691 unsigned data_size,
2692 /* value */
2693 uint32_t b,
2694 /* count */
2695 unsigned c)
2697 /* We have to write in reasonably large chunks to be able
2698 * to fill large memory areas with any sane speed */
2699 const unsigned chunk_size = 16384;
2700 uint8_t *target_buf = malloc(chunk_size * data_size);
2701 if (target_buf == NULL) {
2702 LOG_ERROR("Out of memory");
2703 return ERROR_FAIL;
2706 for (unsigned i = 0; i < chunk_size; i++) {
2707 switch (data_size) {
2708 case 4:
2709 target_buffer_set_u32(target, target_buf + i * data_size, b);
2710 break;
2711 case 2:
2712 target_buffer_set_u16(target, target_buf + i * data_size, b);
2713 break;
2714 case 1:
2715 target_buffer_set_u8(target, target_buf + i * data_size, b);
2716 break;
2717 default:
2718 exit(-1);
2722 int retval = ERROR_OK;
2724 for (unsigned x = 0; x < c; x += chunk_size) {
2725 unsigned current;
2726 current = c - x;
2727 if (current > chunk_size)
2728 current = chunk_size;
2729 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2730 if (retval != ERROR_OK)
2731 break;
2732 /* avoid GDB timeouts */
2733 keep_alive();
2735 free(target_buf);
2737 return retval;
2741 COMMAND_HANDLER(handle_mw_command)
2743 if (CMD_ARGC < 2)
2744 return ERROR_COMMAND_SYNTAX_ERROR;
2745 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2746 target_write_fn fn;
2747 if (physical) {
2748 CMD_ARGC--;
2749 CMD_ARGV++;
2750 fn = target_write_phys_memory;
2751 } else
2752 fn = target_write_memory_fast;
2753 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2754 return ERROR_COMMAND_SYNTAX_ERROR;
2756 uint32_t address;
2757 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2759 uint32_t value;
2760 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2762 unsigned count = 1;
2763 if (CMD_ARGC == 3)
2764 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2766 struct target *target = get_current_target(CMD_CTX);
2767 unsigned wordsize;
2768 switch (CMD_NAME[2]) {
2769 case 'w':
2770 wordsize = 4;
2771 break;
2772 case 'h':
2773 wordsize = 2;
2774 break;
2775 case 'b':
2776 wordsize = 1;
2777 break;
2778 default:
2779 return ERROR_COMMAND_SYNTAX_ERROR;
2782 return target_fill_mem(target, address, fn, wordsize, value, count);
2785 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2786 uint32_t *min_address, uint32_t *max_address)
2788 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2789 return ERROR_COMMAND_SYNTAX_ERROR;
2791 /* a base address isn't always necessary,
2792 * default to 0x0 (i.e. don't relocate) */
2793 if (CMD_ARGC >= 2) {
2794 uint32_t addr;
2795 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2796 image->base_address = addr;
2797 image->base_address_set = 1;
2798 } else
2799 image->base_address_set = 0;
2801 image->start_address_set = 0;
2803 if (CMD_ARGC >= 4)
2804 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2805 if (CMD_ARGC == 5) {
2806 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2807 /* use size (given) to find max (required) */
2808 *max_address += *min_address;
2811 if (*min_address > *max_address)
2812 return ERROR_COMMAND_SYNTAX_ERROR;
2814 return ERROR_OK;
2817 COMMAND_HANDLER(handle_load_image_command)
2819 uint8_t *buffer;
2820 size_t buf_cnt;
2821 uint32_t image_size;
2822 uint32_t min_address = 0;
2823 uint32_t max_address = 0xffffffff;
2824 int i;
2825 struct image image;
2827 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2828 &image, &min_address, &max_address);
2829 if (ERROR_OK != retval)
2830 return retval;
2832 struct target *target = get_current_target(CMD_CTX);
2834 struct duration bench;
2835 duration_start(&bench);
2837 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2838 return ERROR_OK;
2840 image_size = 0x0;
2841 retval = ERROR_OK;
2842 for (i = 0; i < image.num_sections; i++) {
2843 buffer = malloc(image.sections[i].size);
2844 if (buffer == NULL) {
2845 command_print(CMD_CTX,
2846 "error allocating buffer for section (%d bytes)",
2847 (int)(image.sections[i].size));
2848 break;
2851 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2852 if (retval != ERROR_OK) {
2853 free(buffer);
2854 break;
2857 uint32_t offset = 0;
2858 uint32_t length = buf_cnt;
2860 /* DANGER!!! beware of unsigned comparision here!!! */
2862 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2863 (image.sections[i].base_address < max_address)) {
2865 if (image.sections[i].base_address < min_address) {
2866 /* clip addresses below */
2867 offset += min_address-image.sections[i].base_address;
2868 length -= offset;
2871 if (image.sections[i].base_address + buf_cnt > max_address)
2872 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2874 retval = target_write_buffer(target,
2875 image.sections[i].base_address + offset, length, buffer + offset);
2876 if (retval != ERROR_OK) {
2877 free(buffer);
2878 break;
2880 image_size += length;
2881 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2882 (unsigned int)length,
2883 image.sections[i].base_address + offset);
2886 free(buffer);
2889 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2890 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2891 "in %fs (%0.3f KiB/s)", image_size,
2892 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2895 image_close(&image);
2897 return retval;
2901 COMMAND_HANDLER(handle_dump_image_command)
2903 struct fileio fileio;
2904 uint8_t *buffer;
2905 int retval, retvaltemp;
2906 uint32_t address, size;
2907 struct duration bench;
2908 struct target *target = get_current_target(CMD_CTX);
2910 if (CMD_ARGC != 3)
2911 return ERROR_COMMAND_SYNTAX_ERROR;
2913 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2914 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2916 uint32_t buf_size = (size > 4096) ? 4096 : size;
2917 buffer = malloc(buf_size);
2918 if (!buffer)
2919 return ERROR_FAIL;
2921 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2922 if (retval != ERROR_OK) {
2923 free(buffer);
2924 return retval;
2927 duration_start(&bench);
2929 while (size > 0) {
2930 size_t size_written;
2931 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2932 retval = target_read_buffer(target, address, this_run_size, buffer);
2933 if (retval != ERROR_OK)
2934 break;
2936 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2937 if (retval != ERROR_OK)
2938 break;
2940 size -= this_run_size;
2941 address += this_run_size;
2944 free(buffer);
2946 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2947 int filesize;
2948 retval = fileio_size(&fileio, &filesize);
2949 if (retval != ERROR_OK)
2950 return retval;
2951 command_print(CMD_CTX,
2952 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2953 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2956 retvaltemp = fileio_close(&fileio);
2957 if (retvaltemp != ERROR_OK)
2958 return retvaltemp;
2960 return retval;
2963 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2965 uint8_t *buffer;
2966 size_t buf_cnt;
2967 uint32_t image_size;
2968 int i;
2969 int retval;
2970 uint32_t checksum = 0;
2971 uint32_t mem_checksum = 0;
2973 struct image image;
2975 struct target *target = get_current_target(CMD_CTX);
2977 if (CMD_ARGC < 1)
2978 return ERROR_COMMAND_SYNTAX_ERROR;
2980 if (!target) {
2981 LOG_ERROR("no target selected");
2982 return ERROR_FAIL;
2985 struct duration bench;
2986 duration_start(&bench);
2988 if (CMD_ARGC >= 2) {
2989 uint32_t addr;
2990 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2991 image.base_address = addr;
2992 image.base_address_set = 1;
2993 } else {
2994 image.base_address_set = 0;
2995 image.base_address = 0x0;
2998 image.start_address_set = 0;
3000 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3001 if (retval != ERROR_OK)
3002 return retval;
3004 image_size = 0x0;
3005 int diffs = 0;
3006 retval = ERROR_OK;
3007 for (i = 0; i < image.num_sections; i++) {
3008 buffer = malloc(image.sections[i].size);
3009 if (buffer == NULL) {
3010 command_print(CMD_CTX,
3011 "error allocating buffer for section (%d bytes)",
3012 (int)(image.sections[i].size));
3013 break;
3015 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3016 if (retval != ERROR_OK) {
3017 free(buffer);
3018 break;
3021 if (verify) {
3022 /* calculate checksum of image */
3023 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3024 if (retval != ERROR_OK) {
3025 free(buffer);
3026 break;
3029 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3030 if (retval != ERROR_OK) {
3031 free(buffer);
3032 break;
3035 if (checksum != mem_checksum) {
3036 /* failed crc checksum, fall back to a binary compare */
3037 uint8_t *data;
3039 if (diffs == 0)
3040 LOG_ERROR("checksum mismatch - attempting binary compare");
3042 data = (uint8_t *)malloc(buf_cnt);
3044 /* Can we use 32bit word accesses? */
3045 int size = 1;
3046 int count = buf_cnt;
3047 if ((count % 4) == 0) {
3048 size *= 4;
3049 count /= 4;
3051 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3052 if (retval == ERROR_OK) {
3053 uint32_t t;
3054 for (t = 0; t < buf_cnt; t++) {
3055 if (data[t] != buffer[t]) {
3056 command_print(CMD_CTX,
3057 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3058 diffs,
3059 (unsigned)(t + image.sections[i].base_address),
3060 data[t],
3061 buffer[t]);
3062 if (diffs++ >= 127) {
3063 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3064 free(data);
3065 free(buffer);
3066 goto done;
3069 keep_alive();
3072 free(data);
3074 } else {
3075 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3076 image.sections[i].base_address,
3077 buf_cnt);
3080 free(buffer);
3081 image_size += buf_cnt;
3083 if (diffs > 0)
3084 command_print(CMD_CTX, "No more differences found.");
3085 done:
3086 if (diffs > 0)
3087 retval = ERROR_FAIL;
3088 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3089 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3090 "in %fs (%0.3f KiB/s)", image_size,
3091 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3094 image_close(&image);
3096 return retval;
3099 COMMAND_HANDLER(handle_verify_image_command)
3101 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3104 COMMAND_HANDLER(handle_test_image_command)
3106 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3109 static int handle_bp_command_list(struct command_context *cmd_ctx)
3111 struct target *target = get_current_target(cmd_ctx);
3112 struct breakpoint *breakpoint = target->breakpoints;
3113 while (breakpoint) {
3114 if (breakpoint->type == BKPT_SOFT) {
3115 char *buf = buf_to_str(breakpoint->orig_instr,
3116 breakpoint->length, 16);
3117 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3118 breakpoint->address,
3119 breakpoint->length,
3120 breakpoint->set, buf);
3121 free(buf);
3122 } else {
3123 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3124 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3125 breakpoint->asid,
3126 breakpoint->length, breakpoint->set);
3127 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3128 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3129 breakpoint->address,
3130 breakpoint->length, breakpoint->set);
3131 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3132 breakpoint->asid);
3133 } else
3134 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3135 breakpoint->address,
3136 breakpoint->length, breakpoint->set);
3139 breakpoint = breakpoint->next;
3141 return ERROR_OK;
3144 static int handle_bp_command_set(struct command_context *cmd_ctx,
3145 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3147 struct target *target = get_current_target(cmd_ctx);
3149 if (asid == 0) {
3150 int retval = breakpoint_add(target, addr, length, hw);
3151 if (ERROR_OK == retval)
3152 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3153 else {
3154 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3155 return retval;
3157 } else if (addr == 0) {
3158 int retval = context_breakpoint_add(target, asid, length, hw);
3159 if (ERROR_OK == retval)
3160 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3161 else {
3162 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3163 return retval;
3165 } else {
3166 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3167 if (ERROR_OK == retval)
3168 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3169 else {
3170 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3171 return retval;
3174 return ERROR_OK;
3177 COMMAND_HANDLER(handle_bp_command)
3179 uint32_t addr;
3180 uint32_t asid;
3181 uint32_t length;
3182 int hw = BKPT_SOFT;
3184 switch (CMD_ARGC) {
3185 case 0:
3186 return handle_bp_command_list(CMD_CTX);
3188 case 2:
3189 asid = 0;
3190 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3191 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3192 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3194 case 3:
3195 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3196 hw = BKPT_HARD;
3197 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3199 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3201 asid = 0;
3202 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3203 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3204 hw = BKPT_HARD;
3205 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3206 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3207 addr = 0;
3208 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3211 case 4:
3212 hw = BKPT_HARD;
3213 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3214 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3215 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3216 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3218 default:
3219 return ERROR_COMMAND_SYNTAX_ERROR;
3223 COMMAND_HANDLER(handle_rbp_command)
3225 if (CMD_ARGC != 1)
3226 return ERROR_COMMAND_SYNTAX_ERROR;
3228 uint32_t addr;
3229 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3231 struct target *target = get_current_target(CMD_CTX);
3232 breakpoint_remove(target, addr);
3234 return ERROR_OK;
3237 COMMAND_HANDLER(handle_wp_command)
3239 struct target *target = get_current_target(CMD_CTX);
3241 if (CMD_ARGC == 0) {
3242 struct watchpoint *watchpoint = target->watchpoints;
3244 while (watchpoint) {
3245 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3246 ", len: 0x%8.8" PRIx32
3247 ", r/w/a: %i, value: 0x%8.8" PRIx32
3248 ", mask: 0x%8.8" PRIx32,
3249 watchpoint->address,
3250 watchpoint->length,
3251 (int)watchpoint->rw,
3252 watchpoint->value,
3253 watchpoint->mask);
3254 watchpoint = watchpoint->next;
3256 return ERROR_OK;
3259 enum watchpoint_rw type = WPT_ACCESS;
3260 uint32_t addr = 0;
3261 uint32_t length = 0;
3262 uint32_t data_value = 0x0;
3263 uint32_t data_mask = 0xffffffff;
3265 switch (CMD_ARGC) {
3266 case 5:
3267 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3268 /* fall through */
3269 case 4:
3270 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3271 /* fall through */
3272 case 3:
3273 switch (CMD_ARGV[2][0]) {
3274 case 'r':
3275 type = WPT_READ;
3276 break;
3277 case 'w':
3278 type = WPT_WRITE;
3279 break;
3280 case 'a':
3281 type = WPT_ACCESS;
3282 break;
3283 default:
3284 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3285 return ERROR_COMMAND_SYNTAX_ERROR;
3287 /* fall through */
3288 case 2:
3289 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3290 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3291 break;
3293 default:
3294 return ERROR_COMMAND_SYNTAX_ERROR;
3297 int retval = watchpoint_add(target, addr, length, type,
3298 data_value, data_mask);
3299 if (ERROR_OK != retval)
3300 LOG_ERROR("Failure setting watchpoints");
3302 return retval;
3305 COMMAND_HANDLER(handle_rwp_command)
3307 if (CMD_ARGC != 1)
3308 return ERROR_COMMAND_SYNTAX_ERROR;
3310 uint32_t addr;
3311 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3313 struct target *target = get_current_target(CMD_CTX);
3314 watchpoint_remove(target, addr);
3316 return ERROR_OK;
3320 * Translate a virtual address to a physical address.
3322 * The low-level target implementation must have logged a detailed error
3323 * which is forwarded to telnet/GDB session.
3325 COMMAND_HANDLER(handle_virt2phys_command)
3327 if (CMD_ARGC != 1)
3328 return ERROR_COMMAND_SYNTAX_ERROR;
3330 uint32_t va;
3331 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3332 uint32_t pa;
3334 struct target *target = get_current_target(CMD_CTX);
3335 int retval = target->type->virt2phys(target, va, &pa);
3336 if (retval == ERROR_OK)
3337 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3339 return retval;
3342 static void writeData(FILE *f, const void *data, size_t len)
3344 size_t written = fwrite(data, 1, len, f);
3345 if (written != len)
3346 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3349 static void writeLong(FILE *f, int l)
3351 int i;
3352 for (i = 0; i < 4; i++) {
3353 char c = (l >> (i*8))&0xff;
3354 writeData(f, &c, 1);
3359 static void writeString(FILE *f, char *s)
3361 writeData(f, s, strlen(s));
3364 /* Dump a gmon.out histogram file. */
3365 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3367 uint32_t i;
3368 FILE *f = fopen(filename, "w");
3369 if (f == NULL)
3370 return;
3371 writeString(f, "gmon");
3372 writeLong(f, 0x00000001); /* Version */
3373 writeLong(f, 0); /* padding */
3374 writeLong(f, 0); /* padding */
3375 writeLong(f, 0); /* padding */
3377 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3378 writeData(f, &zero, 1);
3380 /* figure out bucket size */
3381 uint32_t min = samples[0];
3382 uint32_t max = samples[0];
3383 for (i = 0; i < sampleNum; i++) {
3384 if (min > samples[i])
3385 min = samples[i];
3386 if (max < samples[i])
3387 max = samples[i];
3390 /* max should be (largest sample + 1)
3391 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3392 max++;
3394 int addressSpace = max - min;
3395 assert(addressSpace >= 2);
3397 /* FIXME: What is the reasonable number of buckets?
3398 * The profiling result will be more accurate if there are enough buckets. */
3399 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3400 uint32_t numBuckets = addressSpace;
3401 if (numBuckets > maxBuckets)
3402 numBuckets = maxBuckets;
3403 int *buckets = malloc(sizeof(int) * numBuckets);
3404 if (buckets == NULL) {
3405 fclose(f);
3406 return;
3408 memset(buckets, 0, sizeof(int) * numBuckets);
3409 for (i = 0; i < sampleNum; i++) {
3410 uint32_t address = samples[i];
3411 long long a = address - min;
3412 long long b = numBuckets;
3413 long long c = addressSpace;
3414 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3415 buckets[index_t]++;
3418 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3419 writeLong(f, min); /* low_pc */
3420 writeLong(f, max); /* high_pc */
3421 writeLong(f, numBuckets); /* # of buckets */
3422 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3423 writeString(f, "seconds");
3424 for (i = 0; i < (15-strlen("seconds")); i++)
3425 writeData(f, &zero, 1);
3426 writeString(f, "s");
3428 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3430 char *data = malloc(2 * numBuckets);
3431 if (data != NULL) {
3432 for (i = 0; i < numBuckets; i++) {
3433 int val;
3434 val = buckets[i];
3435 if (val > 65535)
3436 val = 65535;
3437 data[i * 2] = val&0xff;
3438 data[i * 2 + 1] = (val >> 8) & 0xff;
3440 free(buckets);
3441 writeData(f, data, numBuckets * 2);
3442 free(data);
3443 } else
3444 free(buckets);
3446 fclose(f);
3449 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3450 * which will be used as a random sampling of PC */
3451 COMMAND_HANDLER(handle_profile_command)
3453 struct target *target = get_current_target(CMD_CTX);
3454 struct timeval timeout, now;
3456 gettimeofday(&timeout, NULL);
3457 if (CMD_ARGC != 2)
3458 return ERROR_COMMAND_SYNTAX_ERROR;
3459 unsigned offset;
3460 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3462 timeval_add_time(&timeout, offset, 0);
3465 * @todo: Some cores let us sample the PC without the
3466 * annoying halt/resume step; for example, ARMv7 PCSR.
3467 * Provide a way to use that more efficient mechanism.
3470 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3472 static const int maxSample = 10000;
3473 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3474 if (samples == NULL)
3475 return ERROR_OK;
3477 int numSamples = 0;
3478 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3479 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3481 int retval = ERROR_OK;
3482 for (;;) {
3483 target_poll(target);
3484 if (target->state == TARGET_HALTED) {
3485 uint32_t t = *((uint32_t *)reg->value);
3486 samples[numSamples++] = t;
3487 /* current pc, addr = 0, do not handle breakpoints, not debugging */
3488 retval = target_resume(target, 1, 0, 0, 0);
3489 target_poll(target);
3490 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3491 } else if (target->state == TARGET_RUNNING) {
3492 /* We want to quickly sample the PC. */
3493 retval = target_halt(target);
3494 if (retval != ERROR_OK) {
3495 free(samples);
3496 return retval;
3498 } else {
3499 command_print(CMD_CTX, "Target not halted or running");
3500 retval = ERROR_OK;
3501 break;
3503 if (retval != ERROR_OK)
3504 break;
3506 gettimeofday(&now, NULL);
3507 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3508 && (now.tv_usec >= timeout.tv_usec))) {
3509 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3510 retval = target_poll(target);
3511 if (retval != ERROR_OK) {
3512 free(samples);
3513 return retval;
3515 if (target->state == TARGET_HALTED) {
3516 /* current pc, addr = 0, do not handle
3517 * breakpoints, not debugging */
3518 target_resume(target, 1, 0, 0, 0);
3520 retval = target_poll(target);
3521 if (retval != ERROR_OK) {
3522 free(samples);
3523 return retval;
3525 writeGmon(samples, numSamples, CMD_ARGV[1]);
3526 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3527 break;
3530 free(samples);
3532 return retval;
3535 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3537 char *namebuf;
3538 Jim_Obj *nameObjPtr, *valObjPtr;
3539 int result;
3541 namebuf = alloc_printf("%s(%d)", varname, idx);
3542 if (!namebuf)
3543 return JIM_ERR;
3545 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3546 valObjPtr = Jim_NewIntObj(interp, val);
3547 if (!nameObjPtr || !valObjPtr) {
3548 free(namebuf);
3549 return JIM_ERR;
3552 Jim_IncrRefCount(nameObjPtr);
3553 Jim_IncrRefCount(valObjPtr);
3554 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3555 Jim_DecrRefCount(interp, nameObjPtr);
3556 Jim_DecrRefCount(interp, valObjPtr);
3557 free(namebuf);
3558 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3559 return result;
3562 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3564 struct command_context *context;
3565 struct target *target;
3567 context = current_command_context(interp);
3568 assert(context != NULL);
3570 target = get_current_target(context);
3571 if (target == NULL) {
3572 LOG_ERROR("mem2array: no current target");
3573 return JIM_ERR;
3576 return target_mem2array(interp, target, argc - 1, argv + 1);
3579 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3581 long l;
3582 uint32_t width;
3583 int len;
3584 uint32_t addr;
3585 uint32_t count;
3586 uint32_t v;
3587 const char *varname;
3588 int n, e, retval;
3589 uint32_t i;
3591 /* argv[1] = name of array to receive the data
3592 * argv[2] = desired width
3593 * argv[3] = memory address
3594 * argv[4] = count of times to read
3596 if (argc != 4) {
3597 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3598 return JIM_ERR;
3600 varname = Jim_GetString(argv[0], &len);
3601 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3603 e = Jim_GetLong(interp, argv[1], &l);
3604 width = l;
3605 if (e != JIM_OK)
3606 return e;
3608 e = Jim_GetLong(interp, argv[2], &l);
3609 addr = l;
3610 if (e != JIM_OK)
3611 return e;
3612 e = Jim_GetLong(interp, argv[3], &l);
3613 len = l;
3614 if (e != JIM_OK)
3615 return e;
3616 switch (width) {
3617 case 8:
3618 width = 1;
3619 break;
3620 case 16:
3621 width = 2;
3622 break;
3623 case 32:
3624 width = 4;
3625 break;
3626 default:
3627 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3628 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3629 return JIM_ERR;
3631 if (len == 0) {
3632 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3633 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3634 return JIM_ERR;
3636 if ((addr + (len * width)) < addr) {
3637 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3638 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3639 return JIM_ERR;
3641 /* absurd transfer size? */
3642 if (len > 65536) {
3643 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3644 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3645 return JIM_ERR;
3648 if ((width == 1) ||
3649 ((width == 2) && ((addr & 1) == 0)) ||
3650 ((width == 4) && ((addr & 3) == 0))) {
3651 /* all is well */
3652 } else {
3653 char buf[100];
3654 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3655 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3656 addr,
3657 width);
3658 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3659 return JIM_ERR;
3662 /* Transfer loop */
3664 /* index counter */
3665 n = 0;
3667 size_t buffersize = 4096;
3668 uint8_t *buffer = malloc(buffersize);
3669 if (buffer == NULL)
3670 return JIM_ERR;
3672 /* assume ok */
3673 e = JIM_OK;
3674 while (len) {
3675 /* Slurp... in buffer size chunks */
3677 count = len; /* in objects.. */
3678 if (count > (buffersize / width))
3679 count = (buffersize / width);
3681 retval = target_read_memory(target, addr, width, count, buffer);
3682 if (retval != ERROR_OK) {
3683 /* BOO !*/
3684 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3685 (unsigned int)addr,
3686 (int)width,
3687 (int)count);
3688 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3689 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3690 e = JIM_ERR;
3691 break;
3692 } else {
3693 v = 0; /* shut up gcc */
3694 for (i = 0; i < count ; i++, n++) {
3695 switch (width) {
3696 case 4:
3697 v = target_buffer_get_u32(target, &buffer[i*width]);
3698 break;
3699 case 2:
3700 v = target_buffer_get_u16(target, &buffer[i*width]);
3701 break;
3702 case 1:
3703 v = buffer[i] & 0x0ff;
3704 break;
3706 new_int_array_element(interp, varname, n, v);
3708 len -= count;
3712 free(buffer);
3714 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3716 return e;
3719 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3721 char *namebuf;
3722 Jim_Obj *nameObjPtr, *valObjPtr;
3723 int result;
3724 long l;
3726 namebuf = alloc_printf("%s(%d)", varname, idx);
3727 if (!namebuf)
3728 return JIM_ERR;
3730 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3731 if (!nameObjPtr) {
3732 free(namebuf);
3733 return JIM_ERR;
3736 Jim_IncrRefCount(nameObjPtr);
3737 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3738 Jim_DecrRefCount(interp, nameObjPtr);
3739 free(namebuf);
3740 if (valObjPtr == NULL)
3741 return JIM_ERR;
3743 result = Jim_GetLong(interp, valObjPtr, &l);
3744 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3745 *val = l;
3746 return result;
3749 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3751 struct command_context *context;
3752 struct target *target;
3754 context = current_command_context(interp);
3755 assert(context != NULL);
3757 target = get_current_target(context);
3758 if (target == NULL) {
3759 LOG_ERROR("array2mem: no current target");
3760 return JIM_ERR;
3763 return target_array2mem(interp, target, argc-1, argv + 1);
3766 static int target_array2mem(Jim_Interp *interp, struct target *target,
3767 int argc, Jim_Obj *const *argv)
3769 long l;
3770 uint32_t width;
3771 int len;
3772 uint32_t addr;
3773 uint32_t count;
3774 uint32_t v;
3775 const char *varname;
3776 int n, e, retval;
3777 uint32_t i;
3779 /* argv[1] = name of array to get the data
3780 * argv[2] = desired width
3781 * argv[3] = memory address
3782 * argv[4] = count to write
3784 if (argc != 4) {
3785 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3786 return JIM_ERR;
3788 varname = Jim_GetString(argv[0], &len);
3789 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3791 e = Jim_GetLong(interp, argv[1], &l);
3792 width = l;
3793 if (e != JIM_OK)
3794 return e;
3796 e = Jim_GetLong(interp, argv[2], &l);
3797 addr = l;
3798 if (e != JIM_OK)
3799 return e;
3800 e = Jim_GetLong(interp, argv[3], &l);
3801 len = l;
3802 if (e != JIM_OK)
3803 return e;
3804 switch (width) {
3805 case 8:
3806 width = 1;
3807 break;
3808 case 16:
3809 width = 2;
3810 break;
3811 case 32:
3812 width = 4;
3813 break;
3814 default:
3815 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3816 Jim_AppendStrings(interp, Jim_GetResult(interp),
3817 "Invalid width param, must be 8/16/32", NULL);
3818 return JIM_ERR;
3820 if (len == 0) {
3821 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3822 Jim_AppendStrings(interp, Jim_GetResult(interp),
3823 "array2mem: zero width read?", NULL);
3824 return JIM_ERR;
3826 if ((addr + (len * width)) < addr) {
3827 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3828 Jim_AppendStrings(interp, Jim_GetResult(interp),
3829 "array2mem: addr + len - wraps to zero?", NULL);
3830 return JIM_ERR;
3832 /* absurd transfer size? */
3833 if (len > 65536) {
3834 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3835 Jim_AppendStrings(interp, Jim_GetResult(interp),
3836 "array2mem: absurd > 64K item request", NULL);
3837 return JIM_ERR;
3840 if ((width == 1) ||
3841 ((width == 2) && ((addr & 1) == 0)) ||
3842 ((width == 4) && ((addr & 3) == 0))) {
3843 /* all is well */
3844 } else {
3845 char buf[100];
3846 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3847 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3848 (unsigned int)addr,
3849 (int)width);
3850 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3851 return JIM_ERR;
3854 /* Transfer loop */
3856 /* index counter */
3857 n = 0;
3858 /* assume ok */
3859 e = JIM_OK;
3861 size_t buffersize = 4096;
3862 uint8_t *buffer = malloc(buffersize);
3863 if (buffer == NULL)
3864 return JIM_ERR;
3866 while (len) {
3867 /* Slurp... in buffer size chunks */
3869 count = len; /* in objects.. */
3870 if (count > (buffersize / width))
3871 count = (buffersize / width);
3873 v = 0; /* shut up gcc */
3874 for (i = 0; i < count; i++, n++) {
3875 get_int_array_element(interp, varname, n, &v);
3876 switch (width) {
3877 case 4:
3878 target_buffer_set_u32(target, &buffer[i * width], v);
3879 break;
3880 case 2:
3881 target_buffer_set_u16(target, &buffer[i * width], v);
3882 break;
3883 case 1:
3884 buffer[i] = v & 0x0ff;
3885 break;
3888 len -= count;
3890 retval = target_write_memory(target, addr, width, count, buffer);
3891 if (retval != ERROR_OK) {
3892 /* BOO !*/
3893 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3894 (unsigned int)addr,
3895 (int)width,
3896 (int)count);
3897 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3898 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3899 e = JIM_ERR;
3900 break;
3904 free(buffer);
3906 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3908 return e;
3911 /* FIX? should we propagate errors here rather than printing them
3912 * and continuing?
3914 void target_handle_event(struct target *target, enum target_event e)
3916 struct target_event_action *teap;
3918 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3919 if (teap->event == e) {
3920 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3921 target->target_number,
3922 target_name(target),
3923 target_type_name(target),
3925 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3926 Jim_GetString(teap->body, NULL));
3927 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3928 Jim_MakeErrorMessage(teap->interp);
3929 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3936 * Returns true only if the target has a handler for the specified event.
3938 bool target_has_event_action(struct target *target, enum target_event event)
3940 struct target_event_action *teap;
3942 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3943 if (teap->event == event)
3944 return true;
3946 return false;
3949 enum target_cfg_param {
3950 TCFG_TYPE,
3951 TCFG_EVENT,
3952 TCFG_WORK_AREA_VIRT,
3953 TCFG_WORK_AREA_PHYS,
3954 TCFG_WORK_AREA_SIZE,
3955 TCFG_WORK_AREA_BACKUP,
3956 TCFG_ENDIAN,
3957 TCFG_VARIANT,
3958 TCFG_COREID,
3959 TCFG_CHAIN_POSITION,
3960 TCFG_DBGBASE,
3961 TCFG_RTOS,
3964 static Jim_Nvp nvp_config_opts[] = {
3965 { .name = "-type", .value = TCFG_TYPE },
3966 { .name = "-event", .value = TCFG_EVENT },
3967 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3968 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3969 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3970 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3971 { .name = "-endian" , .value = TCFG_ENDIAN },
3972 { .name = "-variant", .value = TCFG_VARIANT },
3973 { .name = "-coreid", .value = TCFG_COREID },
3974 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3975 { .name = "-dbgbase", .value = TCFG_DBGBASE },
3976 { .name = "-rtos", .value = TCFG_RTOS },
3977 { .name = NULL, .value = -1 }
3980 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3982 Jim_Nvp *n;
3983 Jim_Obj *o;
3984 jim_wide w;
3985 char *cp;
3986 int e;
3988 /* parse config or cget options ... */
3989 while (goi->argc > 0) {
3990 Jim_SetEmptyResult(goi->interp);
3991 /* Jim_GetOpt_Debug(goi); */
3993 if (target->type->target_jim_configure) {
3994 /* target defines a configure function */
3995 /* target gets first dibs on parameters */
3996 e = (*(target->type->target_jim_configure))(target, goi);
3997 if (e == JIM_OK) {
3998 /* more? */
3999 continue;
4001 if (e == JIM_ERR) {
4002 /* An error */
4003 return e;
4005 /* otherwise we 'continue' below */
4007 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4008 if (e != JIM_OK) {
4009 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4010 return e;
4012 switch (n->value) {
4013 case TCFG_TYPE:
4014 /* not setable */
4015 if (goi->isconfigure) {
4016 Jim_SetResultFormatted(goi->interp,
4017 "not settable: %s", n->name);
4018 return JIM_ERR;
4019 } else {
4020 no_params:
4021 if (goi->argc != 0) {
4022 Jim_WrongNumArgs(goi->interp,
4023 goi->argc, goi->argv,
4024 "NO PARAMS");
4025 return JIM_ERR;
4028 Jim_SetResultString(goi->interp,
4029 target_type_name(target), -1);
4030 /* loop for more */
4031 break;
4032 case TCFG_EVENT:
4033 if (goi->argc == 0) {
4034 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4035 return JIM_ERR;
4038 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4039 if (e != JIM_OK) {
4040 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4041 return e;
4044 if (goi->isconfigure) {
4045 if (goi->argc != 1) {
4046 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4047 return JIM_ERR;
4049 } else {
4050 if (goi->argc != 0) {
4051 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4052 return JIM_ERR;
4057 struct target_event_action *teap;
4059 teap = target->event_action;
4060 /* replace existing? */
4061 while (teap) {
4062 if (teap->event == (enum target_event)n->value)
4063 break;
4064 teap = teap->next;
4067 if (goi->isconfigure) {
4068 bool replace = true;
4069 if (teap == NULL) {
4070 /* create new */
4071 teap = calloc(1, sizeof(*teap));
4072 replace = false;
4074 teap->event = n->value;
4075 teap->interp = goi->interp;
4076 Jim_GetOpt_Obj(goi, &o);
4077 if (teap->body)
4078 Jim_DecrRefCount(teap->interp, teap->body);
4079 teap->body = Jim_DuplicateObj(goi->interp, o);
4081 * FIXME:
4082 * Tcl/TK - "tk events" have a nice feature.
4083 * See the "BIND" command.
4084 * We should support that here.
4085 * You can specify %X and %Y in the event code.
4086 * The idea is: %T - target name.
4087 * The idea is: %N - target number
4088 * The idea is: %E - event name.
4090 Jim_IncrRefCount(teap->body);
4092 if (!replace) {
4093 /* add to head of event list */
4094 teap->next = target->event_action;
4095 target->event_action = teap;
4097 Jim_SetEmptyResult(goi->interp);
4098 } else {
4099 /* get */
4100 if (teap == NULL)
4101 Jim_SetEmptyResult(goi->interp);
4102 else
4103 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4106 /* loop for more */
4107 break;
4109 case TCFG_WORK_AREA_VIRT:
4110 if (goi->isconfigure) {
4111 target_free_all_working_areas(target);
4112 e = Jim_GetOpt_Wide(goi, &w);
4113 if (e != JIM_OK)
4114 return e;
4115 target->working_area_virt = w;
4116 target->working_area_virt_spec = true;
4117 } else {
4118 if (goi->argc != 0)
4119 goto no_params;
4121 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4122 /* loop for more */
4123 break;
4125 case TCFG_WORK_AREA_PHYS:
4126 if (goi->isconfigure) {
4127 target_free_all_working_areas(target);
4128 e = Jim_GetOpt_Wide(goi, &w);
4129 if (e != JIM_OK)
4130 return e;
4131 target->working_area_phys = w;
4132 target->working_area_phys_spec = true;
4133 } else {
4134 if (goi->argc != 0)
4135 goto no_params;
4137 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4138 /* loop for more */
4139 break;
4141 case TCFG_WORK_AREA_SIZE:
4142 if (goi->isconfigure) {
4143 target_free_all_working_areas(target);
4144 e = Jim_GetOpt_Wide(goi, &w);
4145 if (e != JIM_OK)
4146 return e;
4147 target->working_area_size = w;
4148 } else {
4149 if (goi->argc != 0)
4150 goto no_params;
4152 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4153 /* loop for more */
4154 break;
4156 case TCFG_WORK_AREA_BACKUP:
4157 if (goi->isconfigure) {
4158 target_free_all_working_areas(target);
4159 e = Jim_GetOpt_Wide(goi, &w);
4160 if (e != JIM_OK)
4161 return e;
4162 /* make this exactly 1 or 0 */
4163 target->backup_working_area = (!!w);
4164 } else {
4165 if (goi->argc != 0)
4166 goto no_params;
4168 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4169 /* loop for more e*/
4170 break;
4173 case TCFG_ENDIAN:
4174 if (goi->isconfigure) {
4175 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4176 if (e != JIM_OK) {
4177 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4178 return e;
4180 target->endianness = n->value;
4181 } else {
4182 if (goi->argc != 0)
4183 goto no_params;
4185 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4186 if (n->name == NULL) {
4187 target->endianness = TARGET_LITTLE_ENDIAN;
4188 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4190 Jim_SetResultString(goi->interp, n->name, -1);
4191 /* loop for more */
4192 break;
4194 case TCFG_VARIANT:
4195 if (goi->isconfigure) {
4196 if (goi->argc < 1) {
4197 Jim_SetResultFormatted(goi->interp,
4198 "%s ?STRING?",
4199 n->name);
4200 return JIM_ERR;
4202 if (target->variant)
4203 free((void *)(target->variant));
4204 e = Jim_GetOpt_String(goi, &cp, NULL);
4205 if (e != JIM_OK)
4206 return e;
4207 target->variant = strdup(cp);
4208 } else {
4209 if (goi->argc != 0)
4210 goto no_params;
4212 Jim_SetResultString(goi->interp, target->variant, -1);
4213 /* loop for more */
4214 break;
4216 case TCFG_COREID:
4217 if (goi->isconfigure) {
4218 e = Jim_GetOpt_Wide(goi, &w);
4219 if (e != JIM_OK)
4220 return e;
4221 target->coreid = (int32_t)w;
4222 } else {
4223 if (goi->argc != 0)
4224 goto no_params;
4226 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4227 /* loop for more */
4228 break;
4230 case TCFG_CHAIN_POSITION:
4231 if (goi->isconfigure) {
4232 Jim_Obj *o_t;
4233 struct jtag_tap *tap;
4234 target_free_all_working_areas(target);
4235 e = Jim_GetOpt_Obj(goi, &o_t);
4236 if (e != JIM_OK)
4237 return e;
4238 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4239 if (tap == NULL)
4240 return JIM_ERR;
4241 /* make this exactly 1 or 0 */
4242 target->tap = tap;
4243 } else {
4244 if (goi->argc != 0)
4245 goto no_params;
4247 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4248 /* loop for more e*/
4249 break;
4250 case TCFG_DBGBASE:
4251 if (goi->isconfigure) {
4252 e = Jim_GetOpt_Wide(goi, &w);
4253 if (e != JIM_OK)
4254 return e;
4255 target->dbgbase = (uint32_t)w;
4256 target->dbgbase_set = true;
4257 } else {
4258 if (goi->argc != 0)
4259 goto no_params;
4261 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4262 /* loop for more */
4263 break;
4265 case TCFG_RTOS:
4266 /* RTOS */
4268 int result = rtos_create(goi, target);
4269 if (result != JIM_OK)
4270 return result;
4272 /* loop for more */
4273 break;
4275 } /* while (goi->argc) */
4278 /* done - we return */
4279 return JIM_OK;
4282 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4284 Jim_GetOptInfo goi;
4286 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4287 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4288 int need_args = 1 + goi.isconfigure;
4289 if (goi.argc < need_args) {
4290 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4291 goi.isconfigure
4292 ? "missing: -option VALUE ..."
4293 : "missing: -option ...");
4294 return JIM_ERR;
4296 struct target *target = Jim_CmdPrivData(goi.interp);
4297 return target_configure(&goi, target);
4300 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4302 const char *cmd_name = Jim_GetString(argv[0], NULL);
4304 Jim_GetOptInfo goi;
4305 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4307 if (goi.argc < 2 || goi.argc > 4) {
4308 Jim_SetResultFormatted(goi.interp,
4309 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4310 return JIM_ERR;
4313 target_write_fn fn;
4314 fn = target_write_memory_fast;
4316 int e;
4317 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4318 /* consume it */
4319 struct Jim_Obj *obj;
4320 e = Jim_GetOpt_Obj(&goi, &obj);
4321 if (e != JIM_OK)
4322 return e;
4324 fn = target_write_phys_memory;
4327 jim_wide a;
4328 e = Jim_GetOpt_Wide(&goi, &a);
4329 if (e != JIM_OK)
4330 return e;
4332 jim_wide b;
4333 e = Jim_GetOpt_Wide(&goi, &b);
4334 if (e != JIM_OK)
4335 return e;
4337 jim_wide c = 1;
4338 if (goi.argc == 1) {
4339 e = Jim_GetOpt_Wide(&goi, &c);
4340 if (e != JIM_OK)
4341 return e;
4344 /* all args must be consumed */
4345 if (goi.argc != 0)
4346 return JIM_ERR;
4348 struct target *target = Jim_CmdPrivData(goi.interp);
4349 unsigned data_size;
4350 if (strcasecmp(cmd_name, "mww") == 0)
4351 data_size = 4;
4352 else if (strcasecmp(cmd_name, "mwh") == 0)
4353 data_size = 2;
4354 else if (strcasecmp(cmd_name, "mwb") == 0)
4355 data_size = 1;
4356 else {
4357 LOG_ERROR("command '%s' unknown: ", cmd_name);
4358 return JIM_ERR;
4361 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4365 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4367 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4368 * mdh [phys] <address> [<count>] - for 16 bit reads
4369 * mdb [phys] <address> [<count>] - for 8 bit reads
4371 * Count defaults to 1.
4373 * Calls target_read_memory or target_read_phys_memory depending on
4374 * the presence of the "phys" argument
4375 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4376 * to int representation in base16.
4377 * Also outputs read data in a human readable form using command_print
4379 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4380 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4381 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4382 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4383 * on success, with [<count>] number of elements.
4385 * In case of little endian target:
4386 * Example1: "mdw 0x00000000" returns "10123456"
4387 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4388 * Example3: "mdb 0x00000000" returns "56"
4389 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4390 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4392 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4394 const char *cmd_name = Jim_GetString(argv[0], NULL);
4396 Jim_GetOptInfo goi;
4397 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4399 if ((goi.argc < 1) || (goi.argc > 3)) {
4400 Jim_SetResultFormatted(goi.interp,
4401 "usage: %s [phys] <address> [<count>]", cmd_name);
4402 return JIM_ERR;
4405 int (*fn)(struct target *target,
4406 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4407 fn = target_read_memory;
4409 int e;
4410 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4411 /* consume it */
4412 struct Jim_Obj *obj;
4413 e = Jim_GetOpt_Obj(&goi, &obj);
4414 if (e != JIM_OK)
4415 return e;
4417 fn = target_read_phys_memory;
4420 /* Read address parameter */
4421 jim_wide addr;
4422 e = Jim_GetOpt_Wide(&goi, &addr);
4423 if (e != JIM_OK)
4424 return JIM_ERR;
4426 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4427 jim_wide count;
4428 if (goi.argc == 1) {
4429 e = Jim_GetOpt_Wide(&goi, &count);
4430 if (e != JIM_OK)
4431 return JIM_ERR;
4432 } else
4433 count = 1;
4435 /* all args must be consumed */
4436 if (goi.argc != 0)
4437 return JIM_ERR;
4439 jim_wide dwidth = 1; /* shut up gcc */
4440 if (strcasecmp(cmd_name, "mdw") == 0)
4441 dwidth = 4;
4442 else if (strcasecmp(cmd_name, "mdh") == 0)
4443 dwidth = 2;
4444 else if (strcasecmp(cmd_name, "mdb") == 0)
4445 dwidth = 1;
4446 else {
4447 LOG_ERROR("command '%s' unknown: ", cmd_name);
4448 return JIM_ERR;
4451 /* convert count to "bytes" */
4452 int bytes = count * dwidth;
4454 struct target *target = Jim_CmdPrivData(goi.interp);
4455 uint8_t target_buf[32];
4456 jim_wide x, y, z;
4457 while (bytes > 0) {
4458 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4460 /* Try to read out next block */
4461 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4463 if (e != ERROR_OK) {
4464 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4465 return JIM_ERR;
4468 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4469 switch (dwidth) {
4470 case 4:
4471 for (x = 0; x < 16 && x < y; x += 4) {
4472 z = target_buffer_get_u32(target, &(target_buf[x]));
4473 command_print_sameline(NULL, "%08x ", (int)(z));
4475 for (; (x < 16) ; x += 4)
4476 command_print_sameline(NULL, " ");
4477 break;
4478 case 2:
4479 for (x = 0; x < 16 && x < y; x += 2) {
4480 z = target_buffer_get_u16(target, &(target_buf[x]));
4481 command_print_sameline(NULL, "%04x ", (int)(z));
4483 for (; (x < 16) ; x += 2)
4484 command_print_sameline(NULL, " ");
4485 break;
4486 case 1:
4487 default:
4488 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4489 z = target_buffer_get_u8(target, &(target_buf[x]));
4490 command_print_sameline(NULL, "%02x ", (int)(z));
4492 for (; (x < 16) ; x += 1)
4493 command_print_sameline(NULL, " ");
4494 break;
4496 /* ascii-ify the bytes */
4497 for (x = 0 ; x < y ; x++) {
4498 if ((target_buf[x] >= 0x20) &&
4499 (target_buf[x] <= 0x7e)) {
4500 /* good */
4501 } else {
4502 /* smack it */
4503 target_buf[x] = '.';
4506 /* space pad */
4507 while (x < 16) {
4508 target_buf[x] = ' ';
4509 x++;
4511 /* terminate */
4512 target_buf[16] = 0;
4513 /* print - with a newline */
4514 command_print_sameline(NULL, "%s\n", target_buf);
4515 /* NEXT... */
4516 bytes -= 16;
4517 addr += 16;
4519 return JIM_OK;
4522 static int jim_target_mem2array(Jim_Interp *interp,
4523 int argc, Jim_Obj *const *argv)
4525 struct target *target = Jim_CmdPrivData(interp);
4526 return target_mem2array(interp, target, argc - 1, argv + 1);
4529 static int jim_target_array2mem(Jim_Interp *interp,
4530 int argc, Jim_Obj *const *argv)
4532 struct target *target = Jim_CmdPrivData(interp);
4533 return target_array2mem(interp, target, argc - 1, argv + 1);
4536 static int jim_target_tap_disabled(Jim_Interp *interp)
4538 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4539 return JIM_ERR;
4542 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4544 if (argc != 1) {
4545 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4546 return JIM_ERR;
4548 struct target *target = Jim_CmdPrivData(interp);
4549 if (!target->tap->enabled)
4550 return jim_target_tap_disabled(interp);
4552 int e = target->type->examine(target);
4553 if (e != ERROR_OK)
4554 return JIM_ERR;
4555 return JIM_OK;
4558 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4560 if (argc != 1) {
4561 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4562 return JIM_ERR;
4564 struct target *target = Jim_CmdPrivData(interp);
4566 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4567 return JIM_ERR;
4569 return JIM_OK;
4572 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4574 if (argc != 1) {
4575 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4576 return JIM_ERR;
4578 struct target *target = Jim_CmdPrivData(interp);
4579 if (!target->tap->enabled)
4580 return jim_target_tap_disabled(interp);
4582 int e;
4583 if (!(target_was_examined(target)))
4584 e = ERROR_TARGET_NOT_EXAMINED;
4585 else
4586 e = target->type->poll(target);
4587 if (e != ERROR_OK)
4588 return JIM_ERR;
4589 return JIM_OK;
4592 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4594 Jim_GetOptInfo goi;
4595 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4597 if (goi.argc != 2) {
4598 Jim_WrongNumArgs(interp, 0, argv,
4599 "([tT]|[fF]|assert|deassert) BOOL");
4600 return JIM_ERR;
4603 Jim_Nvp *n;
4604 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4605 if (e != JIM_OK) {
4606 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4607 return e;
4609 /* the halt or not param */
4610 jim_wide a;
4611 e = Jim_GetOpt_Wide(&goi, &a);
4612 if (e != JIM_OK)
4613 return e;
4615 struct target *target = Jim_CmdPrivData(goi.interp);
4616 if (!target->tap->enabled)
4617 return jim_target_tap_disabled(interp);
4618 if (!(target_was_examined(target))) {
4619 LOG_ERROR("Target not examined yet");
4620 return ERROR_TARGET_NOT_EXAMINED;
4622 if (!target->type->assert_reset || !target->type->deassert_reset) {
4623 Jim_SetResultFormatted(interp,
4624 "No target-specific reset for %s",
4625 target_name(target));
4626 return JIM_ERR;
4628 /* determine if we should halt or not. */
4629 target->reset_halt = !!a;
4630 /* When this happens - all workareas are invalid. */
4631 target_free_all_working_areas_restore(target, 0);
4633 /* do the assert */
4634 if (n->value == NVP_ASSERT)
4635 e = target->type->assert_reset(target);
4636 else
4637 e = target->type->deassert_reset(target);
4638 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4641 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4643 if (argc != 1) {
4644 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4645 return JIM_ERR;
4647 struct target *target = Jim_CmdPrivData(interp);
4648 if (!target->tap->enabled)
4649 return jim_target_tap_disabled(interp);
4650 int e = target->type->halt(target);
4651 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4654 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4656 Jim_GetOptInfo goi;
4657 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4659 /* params: <name> statename timeoutmsecs */
4660 if (goi.argc != 2) {
4661 const char *cmd_name = Jim_GetString(argv[0], NULL);
4662 Jim_SetResultFormatted(goi.interp,
4663 "%s <state_name> <timeout_in_msec>", cmd_name);
4664 return JIM_ERR;
4667 Jim_Nvp *n;
4668 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4669 if (e != JIM_OK) {
4670 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4671 return e;
4673 jim_wide a;
4674 e = Jim_GetOpt_Wide(&goi, &a);
4675 if (e != JIM_OK)
4676 return e;
4677 struct target *target = Jim_CmdPrivData(interp);
4678 if (!target->tap->enabled)
4679 return jim_target_tap_disabled(interp);
4681 e = target_wait_state(target, n->value, a);
4682 if (e != ERROR_OK) {
4683 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4684 Jim_SetResultFormatted(goi.interp,
4685 "target: %s wait %s fails (%#s) %s",
4686 target_name(target), n->name,
4687 eObj, target_strerror_safe(e));
4688 Jim_FreeNewObj(interp, eObj);
4689 return JIM_ERR;
4691 return JIM_OK;
4693 /* List for human, Events defined for this target.
4694 * scripts/programs should use 'name cget -event NAME'
4696 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4698 struct command_context *cmd_ctx = current_command_context(interp);
4699 assert(cmd_ctx != NULL);
4701 struct target *target = Jim_CmdPrivData(interp);
4702 struct target_event_action *teap = target->event_action;
4703 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4704 target->target_number,
4705 target_name(target));
4706 command_print(cmd_ctx, "%-25s | Body", "Event");
4707 command_print(cmd_ctx, "------------------------- | "
4708 "----------------------------------------");
4709 while (teap) {
4710 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4711 command_print(cmd_ctx, "%-25s | %s",
4712 opt->name, Jim_GetString(teap->body, NULL));
4713 teap = teap->next;
4715 command_print(cmd_ctx, "***END***");
4716 return JIM_OK;
4718 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4720 if (argc != 1) {
4721 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4722 return JIM_ERR;
4724 struct target *target = Jim_CmdPrivData(interp);
4725 Jim_SetResultString(interp, target_state_name(target), -1);
4726 return JIM_OK;
4728 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4730 Jim_GetOptInfo goi;
4731 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4732 if (goi.argc != 1) {
4733 const char *cmd_name = Jim_GetString(argv[0], NULL);
4734 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4735 return JIM_ERR;
4737 Jim_Nvp *n;
4738 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4739 if (e != JIM_OK) {
4740 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4741 return e;
4743 struct target *target = Jim_CmdPrivData(interp);
4744 target_handle_event(target, n->value);
4745 return JIM_OK;
4748 static const struct command_registration target_instance_command_handlers[] = {
4750 .name = "configure",
4751 .mode = COMMAND_CONFIG,
4752 .jim_handler = jim_target_configure,
4753 .help = "configure a new target for use",
4754 .usage = "[target_attribute ...]",
4757 .name = "cget",
4758 .mode = COMMAND_ANY,
4759 .jim_handler = jim_target_configure,
4760 .help = "returns the specified target attribute",
4761 .usage = "target_attribute",
4764 .name = "mww",
4765 .mode = COMMAND_EXEC,
4766 .jim_handler = jim_target_mw,
4767 .help = "Write 32-bit word(s) to target memory",
4768 .usage = "address data [count]",
4771 .name = "mwh",
4772 .mode = COMMAND_EXEC,
4773 .jim_handler = jim_target_mw,
4774 .help = "Write 16-bit half-word(s) to target memory",
4775 .usage = "address data [count]",
4778 .name = "mwb",
4779 .mode = COMMAND_EXEC,
4780 .jim_handler = jim_target_mw,
4781 .help = "Write byte(s) to target memory",
4782 .usage = "address data [count]",
4785 .name = "mdw",
4786 .mode = COMMAND_EXEC,
4787 .jim_handler = jim_target_md,
4788 .help = "Display target memory as 32-bit words",
4789 .usage = "address [count]",
4792 .name = "mdh",
4793 .mode = COMMAND_EXEC,
4794 .jim_handler = jim_target_md,
4795 .help = "Display target memory as 16-bit half-words",
4796 .usage = "address [count]",
4799 .name = "mdb",
4800 .mode = COMMAND_EXEC,
4801 .jim_handler = jim_target_md,
4802 .help = "Display target memory as 8-bit bytes",
4803 .usage = "address [count]",
4806 .name = "array2mem",
4807 .mode = COMMAND_EXEC,
4808 .jim_handler = jim_target_array2mem,
4809 .help = "Writes Tcl array of 8/16/32 bit numbers "
4810 "to target memory",
4811 .usage = "arrayname bitwidth address count",
4814 .name = "mem2array",
4815 .mode = COMMAND_EXEC,
4816 .jim_handler = jim_target_mem2array,
4817 .help = "Loads Tcl array of 8/16/32 bit numbers "
4818 "from target memory",
4819 .usage = "arrayname bitwidth address count",
4822 .name = "eventlist",
4823 .mode = COMMAND_EXEC,
4824 .jim_handler = jim_target_event_list,
4825 .help = "displays a table of events defined for this target",
4828 .name = "curstate",
4829 .mode = COMMAND_EXEC,
4830 .jim_handler = jim_target_current_state,
4831 .help = "displays the current state of this target",
4834 .name = "arp_examine",
4835 .mode = COMMAND_EXEC,
4836 .jim_handler = jim_target_examine,
4837 .help = "used internally for reset processing",
4840 .name = "arp_halt_gdb",
4841 .mode = COMMAND_EXEC,
4842 .jim_handler = jim_target_halt_gdb,
4843 .help = "used internally for reset processing to halt GDB",
4846 .name = "arp_poll",
4847 .mode = COMMAND_EXEC,
4848 .jim_handler = jim_target_poll,
4849 .help = "used internally for reset processing",
4852 .name = "arp_reset",
4853 .mode = COMMAND_EXEC,
4854 .jim_handler = jim_target_reset,
4855 .help = "used internally for reset processing",
4858 .name = "arp_halt",
4859 .mode = COMMAND_EXEC,
4860 .jim_handler = jim_target_halt,
4861 .help = "used internally for reset processing",
4864 .name = "arp_waitstate",
4865 .mode = COMMAND_EXEC,
4866 .jim_handler = jim_target_wait_state,
4867 .help = "used internally for reset processing",
4870 .name = "invoke-event",
4871 .mode = COMMAND_EXEC,
4872 .jim_handler = jim_target_invoke_event,
4873 .help = "invoke handler for specified event",
4874 .usage = "event_name",
4876 COMMAND_REGISTRATION_DONE
4879 static int target_create(Jim_GetOptInfo *goi)
4881 Jim_Obj *new_cmd;
4882 Jim_Cmd *cmd;
4883 const char *cp;
4884 char *cp2;
4885 int e;
4886 int x;
4887 struct target *target;
4888 struct command_context *cmd_ctx;
4890 cmd_ctx = current_command_context(goi->interp);
4891 assert(cmd_ctx != NULL);
4893 if (goi->argc < 3) {
4894 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4895 return JIM_ERR;
4898 /* COMMAND */
4899 Jim_GetOpt_Obj(goi, &new_cmd);
4900 /* does this command exist? */
4901 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4902 if (cmd) {
4903 cp = Jim_GetString(new_cmd, NULL);
4904 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4905 return JIM_ERR;
4908 /* TYPE */
4909 e = Jim_GetOpt_String(goi, &cp2, NULL);
4910 if (e != JIM_OK)
4911 return e;
4912 cp = cp2;
4913 /* now does target type exist */
4914 for (x = 0 ; target_types[x] ; x++) {
4915 if (0 == strcmp(cp, target_types[x]->name)) {
4916 /* found */
4917 break;
4920 /* check for deprecated name */
4921 if (target_types[x]->deprecated_name) {
4922 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
4923 /* found */
4924 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
4925 break;
4929 if (target_types[x] == NULL) {
4930 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4931 for (x = 0 ; target_types[x] ; x++) {
4932 if (target_types[x + 1]) {
4933 Jim_AppendStrings(goi->interp,
4934 Jim_GetResult(goi->interp),
4935 target_types[x]->name,
4936 ", ", NULL);
4937 } else {
4938 Jim_AppendStrings(goi->interp,
4939 Jim_GetResult(goi->interp),
4940 " or ",
4941 target_types[x]->name, NULL);
4944 return JIM_ERR;
4947 /* Create it */
4948 target = calloc(1, sizeof(struct target));
4949 /* set target number */
4950 target->target_number = new_target_number();
4952 /* allocate memory for each unique target type */
4953 target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4955 memcpy(target->type, target_types[x], sizeof(struct target_type));
4957 /* will be set by "-endian" */
4958 target->endianness = TARGET_ENDIAN_UNKNOWN;
4960 /* default to first core, override with -coreid */
4961 target->coreid = 0;
4963 target->working_area = 0x0;
4964 target->working_area_size = 0x0;
4965 target->working_areas = NULL;
4966 target->backup_working_area = 0;
4968 target->state = TARGET_UNKNOWN;
4969 target->debug_reason = DBG_REASON_UNDEFINED;
4970 target->reg_cache = NULL;
4971 target->breakpoints = NULL;
4972 target->watchpoints = NULL;
4973 target->next = NULL;
4974 target->arch_info = NULL;
4976 target->display = 1;
4978 target->halt_issued = false;
4980 /* initialize trace information */
4981 target->trace_info = malloc(sizeof(struct trace));
4982 target->trace_info->num_trace_points = 0;
4983 target->trace_info->trace_points_size = 0;
4984 target->trace_info->trace_points = NULL;
4985 target->trace_info->trace_history_size = 0;
4986 target->trace_info->trace_history = NULL;
4987 target->trace_info->trace_history_pos = 0;
4988 target->trace_info->trace_history_overflowed = 0;
4990 target->dbgmsg = NULL;
4991 target->dbg_msg_enabled = 0;
4993 target->endianness = TARGET_ENDIAN_UNKNOWN;
4995 target->rtos = NULL;
4996 target->rtos_auto_detect = false;
4998 /* Do the rest as "configure" options */
4999 goi->isconfigure = 1;
5000 e = target_configure(goi, target);
5002 if (target->tap == NULL) {
5003 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5004 e = JIM_ERR;
5007 if (e != JIM_OK) {
5008 free(target->type);
5009 free(target);
5010 return e;
5013 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5014 /* default endian to little if not specified */
5015 target->endianness = TARGET_LITTLE_ENDIAN;
5018 /* incase variant is not set */
5019 if (!target->variant)
5020 target->variant = strdup("");
5022 cp = Jim_GetString(new_cmd, NULL);
5023 target->cmd_name = strdup(cp);
5025 /* create the target specific commands */
5026 if (target->type->commands) {
5027 e = register_commands(cmd_ctx, NULL, target->type->commands);
5028 if (ERROR_OK != e)
5029 LOG_ERROR("unable to register '%s' commands", cp);
5031 if (target->type->target_create)
5032 (*(target->type->target_create))(target, goi->interp);
5034 /* append to end of list */
5036 struct target **tpp;
5037 tpp = &(all_targets);
5038 while (*tpp)
5039 tpp = &((*tpp)->next);
5040 *tpp = target;
5043 /* now - create the new target name command */
5044 const struct command_registration target_subcommands[] = {
5046 .chain = target_instance_command_handlers,
5049 .chain = target->type->commands,
5051 COMMAND_REGISTRATION_DONE
5053 const struct command_registration target_commands[] = {
5055 .name = cp,
5056 .mode = COMMAND_ANY,
5057 .help = "target command group",
5058 .usage = "",
5059 .chain = target_subcommands,
5061 COMMAND_REGISTRATION_DONE
5063 e = register_commands(cmd_ctx, NULL, target_commands);
5064 if (ERROR_OK != e)
5065 return JIM_ERR;
5067 struct command *c = command_find_in_context(cmd_ctx, cp);
5068 assert(c);
5069 command_set_handler_data(c, target);
5071 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5074 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5076 if (argc != 1) {
5077 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5078 return JIM_ERR;
5080 struct command_context *cmd_ctx = current_command_context(interp);
5081 assert(cmd_ctx != NULL);
5083 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5084 return JIM_OK;
5087 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5089 if (argc != 1) {
5090 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5091 return JIM_ERR;
5093 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5094 for (unsigned x = 0; NULL != target_types[x]; x++) {
5095 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5096 Jim_NewStringObj(interp, target_types[x]->name, -1));
5098 return JIM_OK;
5101 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5103 if (argc != 1) {
5104 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5105 return JIM_ERR;
5107 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5108 struct target *target = all_targets;
5109 while (target) {
5110 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5111 Jim_NewStringObj(interp, target_name(target), -1));
5112 target = target->next;
5114 return JIM_OK;
5117 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5119 int i;
5120 const char *targetname;
5121 int retval, len;
5122 struct target *target = (struct target *) NULL;
5123 struct target_list *head, *curr, *new;
5124 curr = (struct target_list *) NULL;
5125 head = (struct target_list *) NULL;
5127 retval = 0;
5128 LOG_DEBUG("%d", argc);
5129 /* argv[1] = target to associate in smp
5130 * argv[2] = target to assoicate in smp
5131 * argv[3] ...
5134 for (i = 1; i < argc; i++) {
5136 targetname = Jim_GetString(argv[i], &len);
5137 target = get_target(targetname);
5138 LOG_DEBUG("%s ", targetname);
5139 if (target) {
5140 new = malloc(sizeof(struct target_list));
5141 new->target = target;
5142 new->next = (struct target_list *)NULL;
5143 if (head == (struct target_list *)NULL) {
5144 head = new;
5145 curr = head;
5146 } else {
5147 curr->next = new;
5148 curr = new;
5152 /* now parse the list of cpu and put the target in smp mode*/
5153 curr = head;
5155 while (curr != (struct target_list *)NULL) {
5156 target = curr->target;
5157 target->smp = 1;
5158 target->head = head;
5159 curr = curr->next;
5162 if (target && target->rtos)
5163 retval = rtos_smp_init(head->target);
5165 return retval;
5169 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5171 Jim_GetOptInfo goi;
5172 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5173 if (goi.argc < 3) {
5174 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5175 "<name> <target_type> [<target_options> ...]");
5176 return JIM_ERR;
5178 return target_create(&goi);
5181 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5183 Jim_GetOptInfo goi;
5184 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5186 /* It's OK to remove this mechanism sometime after August 2010 or so */
5187 LOG_WARNING("don't use numbers as target identifiers; use names");
5188 if (goi.argc != 1) {
5189 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5190 return JIM_ERR;
5192 jim_wide w;
5193 int e = Jim_GetOpt_Wide(&goi, &w);
5194 if (e != JIM_OK)
5195 return JIM_ERR;
5197 struct target *target;
5198 for (target = all_targets; NULL != target; target = target->next) {
5199 if (target->target_number != w)
5200 continue;
5202 Jim_SetResultString(goi.interp, target_name(target), -1);
5203 return JIM_OK;
5206 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5207 Jim_SetResultFormatted(goi.interp,
5208 "Target: number %#s does not exist", wObj);
5209 Jim_FreeNewObj(interp, wObj);
5211 return JIM_ERR;
5214 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5216 if (argc != 1) {
5217 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5218 return JIM_ERR;
5220 unsigned count = 0;
5221 struct target *target = all_targets;
5222 while (NULL != target) {
5223 target = target->next;
5224 count++;
5226 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5227 return JIM_OK;
5230 static const struct command_registration target_subcommand_handlers[] = {
5232 .name = "init",
5233 .mode = COMMAND_CONFIG,
5234 .handler = handle_target_init_command,
5235 .help = "initialize targets",
5238 .name = "create",
5239 /* REVISIT this should be COMMAND_CONFIG ... */
5240 .mode = COMMAND_ANY,
5241 .jim_handler = jim_target_create,
5242 .usage = "name type '-chain-position' name [options ...]",
5243 .help = "Creates and selects a new target",
5246 .name = "current",
5247 .mode = COMMAND_ANY,
5248 .jim_handler = jim_target_current,
5249 .help = "Returns the currently selected target",
5252 .name = "types",
5253 .mode = COMMAND_ANY,
5254 .jim_handler = jim_target_types,
5255 .help = "Returns the available target types as "
5256 "a list of strings",
5259 .name = "names",
5260 .mode = COMMAND_ANY,
5261 .jim_handler = jim_target_names,
5262 .help = "Returns the names of all targets as a list of strings",
5265 .name = "number",
5266 .mode = COMMAND_ANY,
5267 .jim_handler = jim_target_number,
5268 .usage = "number",
5269 .help = "Returns the name of the numbered target "
5270 "(DEPRECATED)",
5273 .name = "count",
5274 .mode = COMMAND_ANY,
5275 .jim_handler = jim_target_count,
5276 .help = "Returns the number of targets as an integer "
5277 "(DEPRECATED)",
5280 .name = "smp",
5281 .mode = COMMAND_ANY,
5282 .jim_handler = jim_target_smp,
5283 .usage = "targetname1 targetname2 ...",
5284 .help = "gather several target in a smp list"
5287 COMMAND_REGISTRATION_DONE
5290 struct FastLoad {
5291 uint32_t address;
5292 uint8_t *data;
5293 int length;
5297 static int fastload_num;
5298 static struct FastLoad *fastload;
5300 static void free_fastload(void)
5302 if (fastload != NULL) {
5303 int i;
5304 for (i = 0; i < fastload_num; i++) {
5305 if (fastload[i].data)
5306 free(fastload[i].data);
5308 free(fastload);
5309 fastload = NULL;
5313 COMMAND_HANDLER(handle_fast_load_image_command)
5315 uint8_t *buffer;
5316 size_t buf_cnt;
5317 uint32_t image_size;
5318 uint32_t min_address = 0;
5319 uint32_t max_address = 0xffffffff;
5320 int i;
5322 struct image image;
5324 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5325 &image, &min_address, &max_address);
5326 if (ERROR_OK != retval)
5327 return retval;
5329 struct duration bench;
5330 duration_start(&bench);
5332 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5333 if (retval != ERROR_OK)
5334 return retval;
5336 image_size = 0x0;
5337 retval = ERROR_OK;
5338 fastload_num = image.num_sections;
5339 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5340 if (fastload == NULL) {
5341 command_print(CMD_CTX, "out of memory");
5342 image_close(&image);
5343 return ERROR_FAIL;
5345 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5346 for (i = 0; i < image.num_sections; i++) {
5347 buffer = malloc(image.sections[i].size);
5348 if (buffer == NULL) {
5349 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5350 (int)(image.sections[i].size));
5351 retval = ERROR_FAIL;
5352 break;
5355 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5356 if (retval != ERROR_OK) {
5357 free(buffer);
5358 break;
5361 uint32_t offset = 0;
5362 uint32_t length = buf_cnt;
5364 /* DANGER!!! beware of unsigned comparision here!!! */
5366 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5367 (image.sections[i].base_address < max_address)) {
5368 if (image.sections[i].base_address < min_address) {
5369 /* clip addresses below */
5370 offset += min_address-image.sections[i].base_address;
5371 length -= offset;
5374 if (image.sections[i].base_address + buf_cnt > max_address)
5375 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5377 fastload[i].address = image.sections[i].base_address + offset;
5378 fastload[i].data = malloc(length);
5379 if (fastload[i].data == NULL) {
5380 free(buffer);
5381 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5382 length);
5383 retval = ERROR_FAIL;
5384 break;
5386 memcpy(fastload[i].data, buffer + offset, length);
5387 fastload[i].length = length;
5389 image_size += length;
5390 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5391 (unsigned int)length,
5392 ((unsigned int)(image.sections[i].base_address + offset)));
5395 free(buffer);
5398 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5399 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5400 "in %fs (%0.3f KiB/s)", image_size,
5401 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5403 command_print(CMD_CTX,
5404 "WARNING: image has not been loaded to target!"
5405 "You can issue a 'fast_load' to finish loading.");
5408 image_close(&image);
5410 if (retval != ERROR_OK)
5411 free_fastload();
5413 return retval;
5416 COMMAND_HANDLER(handle_fast_load_command)
5418 if (CMD_ARGC > 0)
5419 return ERROR_COMMAND_SYNTAX_ERROR;
5420 if (fastload == NULL) {
5421 LOG_ERROR("No image in memory");
5422 return ERROR_FAIL;
5424 int i;
5425 int ms = timeval_ms();
5426 int size = 0;
5427 int retval = ERROR_OK;
5428 for (i = 0; i < fastload_num; i++) {
5429 struct target *target = get_current_target(CMD_CTX);
5430 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5431 (unsigned int)(fastload[i].address),
5432 (unsigned int)(fastload[i].length));
5433 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5434 if (retval != ERROR_OK)
5435 break;
5436 size += fastload[i].length;
5438 if (retval == ERROR_OK) {
5439 int after = timeval_ms();
5440 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5442 return retval;
5445 static const struct command_registration target_command_handlers[] = {
5447 .name = "targets",
5448 .handler = handle_targets_command,
5449 .mode = COMMAND_ANY,
5450 .help = "change current default target (one parameter) "
5451 "or prints table of all targets (no parameters)",
5452 .usage = "[target]",
5455 .name = "target",
5456 .mode = COMMAND_CONFIG,
5457 .help = "configure target",
5459 .chain = target_subcommand_handlers,
5461 COMMAND_REGISTRATION_DONE
5464 int target_register_commands(struct command_context *cmd_ctx)
5466 return register_commands(cmd_ctx, NULL, target_command_handlers);
5469 static bool target_reset_nag = true;
5471 bool get_target_reset_nag(void)
5473 return target_reset_nag;
5476 COMMAND_HANDLER(handle_target_reset_nag)
5478 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5479 &target_reset_nag, "Nag after each reset about options to improve "
5480 "performance");
5483 COMMAND_HANDLER(handle_ps_command)
5485 struct target *target = get_current_target(CMD_CTX);
5486 char *display;
5487 if (target->state != TARGET_HALTED) {
5488 LOG_INFO("target not halted !!");
5489 return ERROR_OK;
5492 if ((target->rtos) && (target->rtos->type)
5493 && (target->rtos->type->ps_command)) {
5494 display = target->rtos->type->ps_command(target);
5495 command_print(CMD_CTX, "%s", display);
5496 free(display);
5497 return ERROR_OK;
5498 } else {
5499 LOG_INFO("failed");
5500 return ERROR_TARGET_FAILURE;
5504 static const struct command_registration target_exec_command_handlers[] = {
5506 .name = "fast_load_image",
5507 .handler = handle_fast_load_image_command,
5508 .mode = COMMAND_ANY,
5509 .help = "Load image into server memory for later use by "
5510 "fast_load; primarily for profiling",
5511 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5512 "[min_address [max_length]]",
5515 .name = "fast_load",
5516 .handler = handle_fast_load_command,
5517 .mode = COMMAND_EXEC,
5518 .help = "loads active fast load image to current target "
5519 "- mainly for profiling purposes",
5520 .usage = "",
5523 .name = "profile",
5524 .handler = handle_profile_command,
5525 .mode = COMMAND_EXEC,
5526 .usage = "seconds filename",
5527 .help = "profiling samples the CPU PC",
5529 /** @todo don't register virt2phys() unless target supports it */
5531 .name = "virt2phys",
5532 .handler = handle_virt2phys_command,
5533 .mode = COMMAND_ANY,
5534 .help = "translate a virtual address into a physical address",
5535 .usage = "virtual_address",
5538 .name = "reg",
5539 .handler = handle_reg_command,
5540 .mode = COMMAND_EXEC,
5541 .help = "display or set a register; with no arguments, "
5542 "displays all registers and their values",
5543 .usage = "[(register_name|register_number) [value]]",
5546 .name = "poll",
5547 .handler = handle_poll_command,
5548 .mode = COMMAND_EXEC,
5549 .help = "poll target state; or reconfigure background polling",
5550 .usage = "['on'|'off']",
5553 .name = "wait_halt",
5554 .handler = handle_wait_halt_command,
5555 .mode = COMMAND_EXEC,
5556 .help = "wait up to the specified number of milliseconds "
5557 "(default 5000) for a previously requested halt",
5558 .usage = "[milliseconds]",
5561 .name = "halt",
5562 .handler = handle_halt_command,
5563 .mode = COMMAND_EXEC,
5564 .help = "request target to halt, then wait up to the specified"
5565 "number of milliseconds (default 5000) for it to complete",
5566 .usage = "[milliseconds]",
5569 .name = "resume",
5570 .handler = handle_resume_command,
5571 .mode = COMMAND_EXEC,
5572 .help = "resume target execution from current PC or address",
5573 .usage = "[address]",
5576 .name = "reset",
5577 .handler = handle_reset_command,
5578 .mode = COMMAND_EXEC,
5579 .usage = "[run|halt|init]",
5580 .help = "Reset all targets into the specified mode."
5581 "Default reset mode is run, if not given.",
5584 .name = "soft_reset_halt",
5585 .handler = handle_soft_reset_halt_command,
5586 .mode = COMMAND_EXEC,
5587 .usage = "",
5588 .help = "halt the target and do a soft reset",
5591 .name = "step",
5592 .handler = handle_step_command,
5593 .mode = COMMAND_EXEC,
5594 .help = "step one instruction from current PC or address",
5595 .usage = "[address]",
5598 .name = "mdw",
5599 .handler = handle_md_command,
5600 .mode = COMMAND_EXEC,
5601 .help = "display memory words",
5602 .usage = "['phys'] address [count]",
5605 .name = "mdh",
5606 .handler = handle_md_command,
5607 .mode = COMMAND_EXEC,
5608 .help = "display memory half-words",
5609 .usage = "['phys'] address [count]",
5612 .name = "mdb",
5613 .handler = handle_md_command,
5614 .mode = COMMAND_EXEC,
5615 .help = "display memory bytes",
5616 .usage = "['phys'] address [count]",
5619 .name = "mww",
5620 .handler = handle_mw_command,
5621 .mode = COMMAND_EXEC,
5622 .help = "write memory word",
5623 .usage = "['phys'] address value [count]",
5626 .name = "mwh",
5627 .handler = handle_mw_command,
5628 .mode = COMMAND_EXEC,
5629 .help = "write memory half-word",
5630 .usage = "['phys'] address value [count]",
5633 .name = "mwb",
5634 .handler = handle_mw_command,
5635 .mode = COMMAND_EXEC,
5636 .help = "write memory byte",
5637 .usage = "['phys'] address value [count]",
5640 .name = "bp",
5641 .handler = handle_bp_command,
5642 .mode = COMMAND_EXEC,
5643 .help = "list or set hardware or software breakpoint",
5644 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5647 .name = "rbp",
5648 .handler = handle_rbp_command,
5649 .mode = COMMAND_EXEC,
5650 .help = "remove breakpoint",
5651 .usage = "address",
5654 .name = "wp",
5655 .handler = handle_wp_command,
5656 .mode = COMMAND_EXEC,
5657 .help = "list (no params) or create watchpoints",
5658 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5661 .name = "rwp",
5662 .handler = handle_rwp_command,
5663 .mode = COMMAND_EXEC,
5664 .help = "remove watchpoint",
5665 .usage = "address",
5668 .name = "load_image",
5669 .handler = handle_load_image_command,
5670 .mode = COMMAND_EXEC,
5671 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5672 "[min_address] [max_length]",
5675 .name = "dump_image",
5676 .handler = handle_dump_image_command,
5677 .mode = COMMAND_EXEC,
5678 .usage = "filename address size",
5681 .name = "verify_image",
5682 .handler = handle_verify_image_command,
5683 .mode = COMMAND_EXEC,
5684 .usage = "filename [offset [type]]",
5687 .name = "test_image",
5688 .handler = handle_test_image_command,
5689 .mode = COMMAND_EXEC,
5690 .usage = "filename [offset [type]]",
5693 .name = "mem2array",
5694 .mode = COMMAND_EXEC,
5695 .jim_handler = jim_mem2array,
5696 .help = "read 8/16/32 bit memory and return as a TCL array "
5697 "for script processing",
5698 .usage = "arrayname bitwidth address count",
5701 .name = "array2mem",
5702 .mode = COMMAND_EXEC,
5703 .jim_handler = jim_array2mem,
5704 .help = "convert a TCL array to memory locations "
5705 "and write the 8/16/32 bit values",
5706 .usage = "arrayname bitwidth address count",
5709 .name = "reset_nag",
5710 .handler = handle_target_reset_nag,
5711 .mode = COMMAND_ANY,
5712 .help = "Nag after each reset about options that could have been "
5713 "enabled to improve performance. ",
5714 .usage = "['enable'|'disable']",
5717 .name = "ps",
5718 .handler = handle_ps_command,
5719 .mode = COMMAND_EXEC,
5720 .help = "list all tasks ",
5721 .usage = " ",
5724 COMMAND_REGISTRATION_DONE
5726 static int target_register_user_commands(struct command_context *cmd_ctx)
5728 int retval = ERROR_OK;
5729 retval = target_request_register_commands(cmd_ctx);
5730 if (retval != ERROR_OK)
5731 return retval;
5733 retval = trace_register_commands(cmd_ctx);
5734 if (retval != ERROR_OK)
5735 return retval;
5738 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);