rtos: Destroy RTOS and fix memory leak
[openocd.git] / src / target / target.c
blobb77400c1f02b2dca2baf0564ffbf09edd40d7961
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type mips_mips64_target;
98 extern struct target_type avr_target;
99 extern struct target_type dsp563xx_target;
100 extern struct target_type dsp5680xx_target;
101 extern struct target_type testee_target;
102 extern struct target_type avr32_ap7k_target;
103 extern struct target_type hla_target;
104 extern struct target_type nds32_v2_target;
105 extern struct target_type nds32_v3_target;
106 extern struct target_type nds32_v3m_target;
107 extern struct target_type or1k_target;
108 extern struct target_type quark_x10xx_target;
109 extern struct target_type quark_d20xx_target;
110 extern struct target_type stm8_target;
111 extern struct target_type riscv_target;
112 extern struct target_type mem_ap_target;
113 extern struct target_type esirisc_target;
114 extern struct target_type arcv2_target;
116 static struct target_type *target_types[] = {
117 &arm7tdmi_target,
118 &arm9tdmi_target,
119 &arm920t_target,
120 &arm720t_target,
121 &arm966e_target,
122 &arm946e_target,
123 &arm926ejs_target,
124 &fa526_target,
125 &feroceon_target,
126 &dragonite_target,
127 &xscale_target,
128 &cortexm_target,
129 &cortexa_target,
130 &cortexr4_target,
131 &arm11_target,
132 &ls1_sap_target,
133 &mips_m4k_target,
134 &avr_target,
135 &dsp563xx_target,
136 &dsp5680xx_target,
137 &testee_target,
138 &avr32_ap7k_target,
139 &hla_target,
140 &nds32_v2_target,
141 &nds32_v3_target,
142 &nds32_v3m_target,
143 &or1k_target,
144 &quark_x10xx_target,
145 &quark_d20xx_target,
146 &stm8_target,
147 &riscv_target,
148 &mem_ap_target,
149 &esirisc_target,
150 &arcv2_target,
151 #if BUILD_TARGET64
152 &aarch64_target,
153 &mips_mips64_target,
154 #endif
155 NULL,
158 struct target *all_targets;
159 static struct target_event_callback *target_event_callbacks;
160 static struct target_timer_callback *target_timer_callbacks;
161 LIST_HEAD(target_reset_callback_list);
162 LIST_HEAD(target_trace_callback_list);
163 static const int polling_interval = 100;
165 static const Jim_Nvp nvp_assert[] = {
166 { .name = "assert", NVP_ASSERT },
167 { .name = "deassert", NVP_DEASSERT },
168 { .name = "T", NVP_ASSERT },
169 { .name = "F", NVP_DEASSERT },
170 { .name = "t", NVP_ASSERT },
171 { .name = "f", NVP_DEASSERT },
172 { .name = NULL, .value = -1 }
175 static const Jim_Nvp nvp_error_target[] = {
176 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
177 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
178 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
179 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
180 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
181 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
182 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
183 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
184 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
185 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
186 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
187 { .value = -1, .name = NULL }
190 static const char *target_strerror_safe(int err)
192 const Jim_Nvp *n;
194 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
195 if (n->name == NULL)
196 return "unknown";
197 else
198 return n->name;
201 static const Jim_Nvp nvp_target_event[] = {
203 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
204 { .value = TARGET_EVENT_HALTED, .name = "halted" },
205 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
206 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
207 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
209 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
210 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
212 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
213 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
214 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
215 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
216 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
217 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
218 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
219 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
221 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
222 { .value = TARGET_EVENT_EXAMINE_FAIL, .name = "examine-fail" },
223 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
225 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
226 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
228 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
229 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
231 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
232 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
234 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
235 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
237 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
239 { .name = NULL, .value = -1 }
242 static const Jim_Nvp nvp_target_state[] = {
243 { .name = "unknown", .value = TARGET_UNKNOWN },
244 { .name = "running", .value = TARGET_RUNNING },
245 { .name = "halted", .value = TARGET_HALTED },
246 { .name = "reset", .value = TARGET_RESET },
247 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
248 { .name = NULL, .value = -1 },
251 static const Jim_Nvp nvp_target_debug_reason[] = {
252 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
253 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
254 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
255 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
256 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
257 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
258 { .name = "program-exit" , .value = DBG_REASON_EXIT },
259 { .name = "exception-catch" , .value = DBG_REASON_EXC_CATCH },
260 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
261 { .name = NULL, .value = -1 },
264 static const Jim_Nvp nvp_target_endian[] = {
265 { .name = "big", .value = TARGET_BIG_ENDIAN },
266 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
267 { .name = "be", .value = TARGET_BIG_ENDIAN },
268 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
269 { .name = NULL, .value = -1 },
272 static const Jim_Nvp nvp_reset_modes[] = {
273 { .name = "unknown", .value = RESET_UNKNOWN },
274 { .name = "run" , .value = RESET_RUN },
275 { .name = "halt" , .value = RESET_HALT },
276 { .name = "init" , .value = RESET_INIT },
277 { .name = NULL , .value = -1 },
280 const char *debug_reason_name(struct target *t)
282 const char *cp;
284 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
285 t->debug_reason)->name;
286 if (!cp) {
287 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
288 cp = "(*BUG*unknown*BUG*)";
290 return cp;
293 const char *target_state_name(struct target *t)
295 const char *cp;
296 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
297 if (!cp) {
298 LOG_ERROR("Invalid target state: %d", (int)(t->state));
299 cp = "(*BUG*unknown*BUG*)";
302 if (!target_was_examined(t) && t->defer_examine)
303 cp = "examine deferred";
305 return cp;
308 const char *target_event_name(enum target_event event)
310 const char *cp;
311 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
312 if (!cp) {
313 LOG_ERROR("Invalid target event: %d", (int)(event));
314 cp = "(*BUG*unknown*BUG*)";
316 return cp;
319 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
321 const char *cp;
322 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
323 if (!cp) {
324 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
325 cp = "(*BUG*unknown*BUG*)";
327 return cp;
330 /* determine the number of the new target */
331 static int new_target_number(void)
333 struct target *t;
334 int x;
336 /* number is 0 based */
337 x = -1;
338 t = all_targets;
339 while (t) {
340 if (x < t->target_number)
341 x = t->target_number;
342 t = t->next;
344 return x + 1;
347 /* read a uint64_t from a buffer in target memory endianness */
348 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
350 if (target->endianness == TARGET_LITTLE_ENDIAN)
351 return le_to_h_u64(buffer);
352 else
353 return be_to_h_u64(buffer);
356 /* read a uint32_t from a buffer in target memory endianness */
357 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
359 if (target->endianness == TARGET_LITTLE_ENDIAN)
360 return le_to_h_u32(buffer);
361 else
362 return be_to_h_u32(buffer);
365 /* read a uint24_t from a buffer in target memory endianness */
366 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
368 if (target->endianness == TARGET_LITTLE_ENDIAN)
369 return le_to_h_u24(buffer);
370 else
371 return be_to_h_u24(buffer);
374 /* read a uint16_t from a buffer in target memory endianness */
375 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
377 if (target->endianness == TARGET_LITTLE_ENDIAN)
378 return le_to_h_u16(buffer);
379 else
380 return be_to_h_u16(buffer);
383 /* write a uint64_t to a buffer in target memory endianness */
384 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
386 if (target->endianness == TARGET_LITTLE_ENDIAN)
387 h_u64_to_le(buffer, value);
388 else
389 h_u64_to_be(buffer, value);
392 /* write a uint32_t to a buffer in target memory endianness */
393 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
395 if (target->endianness == TARGET_LITTLE_ENDIAN)
396 h_u32_to_le(buffer, value);
397 else
398 h_u32_to_be(buffer, value);
401 /* write a uint24_t to a buffer in target memory endianness */
402 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
404 if (target->endianness == TARGET_LITTLE_ENDIAN)
405 h_u24_to_le(buffer, value);
406 else
407 h_u24_to_be(buffer, value);
410 /* write a uint16_t to a buffer in target memory endianness */
411 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
413 if (target->endianness == TARGET_LITTLE_ENDIAN)
414 h_u16_to_le(buffer, value);
415 else
416 h_u16_to_be(buffer, value);
419 /* write a uint8_t to a buffer in target memory endianness */
420 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
422 *buffer = value;
425 /* write a uint64_t array to a buffer in target memory endianness */
426 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
428 uint32_t i;
429 for (i = 0; i < count; i++)
430 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
433 /* write a uint32_t array to a buffer in target memory endianness */
434 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
436 uint32_t i;
437 for (i = 0; i < count; i++)
438 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
441 /* write a uint16_t array to a buffer in target memory endianness */
442 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
444 uint32_t i;
445 for (i = 0; i < count; i++)
446 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
449 /* write a uint64_t array to a buffer in target memory endianness */
450 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
452 uint32_t i;
453 for (i = 0; i < count; i++)
454 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
457 /* write a uint32_t array to a buffer in target memory endianness */
458 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
460 uint32_t i;
461 for (i = 0; i < count; i++)
462 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
465 /* write a uint16_t array to a buffer in target memory endianness */
466 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
468 uint32_t i;
469 for (i = 0; i < count; i++)
470 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
473 /* return a pointer to a configured target; id is name or number */
474 struct target *get_target(const char *id)
476 struct target *target;
478 /* try as tcltarget name */
479 for (target = all_targets; target; target = target->next) {
480 if (target_name(target) == NULL)
481 continue;
482 if (strcmp(id, target_name(target)) == 0)
483 return target;
486 /* It's OK to remove this fallback sometime after August 2010 or so */
488 /* no match, try as number */
489 unsigned num;
490 if (parse_uint(id, &num) != ERROR_OK)
491 return NULL;
493 for (target = all_targets; target; target = target->next) {
494 if (target->target_number == (int)num) {
495 LOG_WARNING("use '%s' as target identifier, not '%u'",
496 target_name(target), num);
497 return target;
501 return NULL;
504 /* returns a pointer to the n-th configured target */
505 struct target *get_target_by_num(int num)
507 struct target *target = all_targets;
509 while (target) {
510 if (target->target_number == num)
511 return target;
512 target = target->next;
515 return NULL;
518 struct target *get_current_target(struct command_context *cmd_ctx)
520 struct target *target = get_current_target_or_null(cmd_ctx);
522 if (target == NULL) {
523 LOG_ERROR("BUG: current_target out of bounds");
524 exit(-1);
527 return target;
530 struct target *get_current_target_or_null(struct command_context *cmd_ctx)
532 return cmd_ctx->current_target_override
533 ? cmd_ctx->current_target_override
534 : cmd_ctx->current_target;
537 int target_poll(struct target *target)
539 int retval;
541 /* We can't poll until after examine */
542 if (!target_was_examined(target)) {
543 /* Fail silently lest we pollute the log */
544 return ERROR_FAIL;
547 retval = target->type->poll(target);
548 if (retval != ERROR_OK)
549 return retval;
551 if (target->halt_issued) {
552 if (target->state == TARGET_HALTED)
553 target->halt_issued = false;
554 else {
555 int64_t t = timeval_ms() - target->halt_issued_time;
556 if (t > DEFAULT_HALT_TIMEOUT) {
557 target->halt_issued = false;
558 LOG_INFO("Halt timed out, wake up GDB.");
559 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
564 return ERROR_OK;
567 int target_halt(struct target *target)
569 int retval;
570 /* We can't poll until after examine */
571 if (!target_was_examined(target)) {
572 LOG_ERROR("Target not examined yet");
573 return ERROR_FAIL;
576 retval = target->type->halt(target);
577 if (retval != ERROR_OK)
578 return retval;
580 target->halt_issued = true;
581 target->halt_issued_time = timeval_ms();
583 return ERROR_OK;
587 * Make the target (re)start executing using its saved execution
588 * context (possibly with some modifications).
590 * @param target Which target should start executing.
591 * @param current True to use the target's saved program counter instead
592 * of the address parameter
593 * @param address Optionally used as the program counter.
594 * @param handle_breakpoints True iff breakpoints at the resumption PC
595 * should be skipped. (For example, maybe execution was stopped by
596 * such a breakpoint, in which case it would be counterprodutive to
597 * let it re-trigger.
598 * @param debug_execution False if all working areas allocated by OpenOCD
599 * should be released and/or restored to their original contents.
600 * (This would for example be true to run some downloaded "helper"
601 * algorithm code, which resides in one such working buffer and uses
602 * another for data storage.)
604 * @todo Resolve the ambiguity about what the "debug_execution" flag
605 * signifies. For example, Target implementations don't agree on how
606 * it relates to invalidation of the register cache, or to whether
607 * breakpoints and watchpoints should be enabled. (It would seem wrong
608 * to enable breakpoints when running downloaded "helper" algorithms
609 * (debug_execution true), since the breakpoints would be set to match
610 * target firmware being debugged, not the helper algorithm.... and
611 * enabling them could cause such helpers to malfunction (for example,
612 * by overwriting data with a breakpoint instruction. On the other
613 * hand the infrastructure for running such helpers might use this
614 * procedure but rely on hardware breakpoint to detect termination.)
616 int target_resume(struct target *target, int current, target_addr_t address,
617 int handle_breakpoints, int debug_execution)
619 int retval;
621 /* We can't poll until after examine */
622 if (!target_was_examined(target)) {
623 LOG_ERROR("Target not examined yet");
624 return ERROR_FAIL;
627 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
629 /* note that resume *must* be asynchronous. The CPU can halt before
630 * we poll. The CPU can even halt at the current PC as a result of
631 * a software breakpoint being inserted by (a bug?) the application.
633 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
634 if (retval != ERROR_OK)
635 return retval;
637 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
639 return retval;
642 static int target_process_reset(struct command_invocation *cmd, enum target_reset_mode reset_mode)
644 char buf[100];
645 int retval;
646 Jim_Nvp *n;
647 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
648 if (n->name == NULL) {
649 LOG_ERROR("invalid reset mode");
650 return ERROR_FAIL;
653 struct target *target;
654 for (target = all_targets; target; target = target->next)
655 target_call_reset_callbacks(target, reset_mode);
657 /* disable polling during reset to make reset event scripts
658 * more predictable, i.e. dr/irscan & pathmove in events will
659 * not have JTAG operations injected into the middle of a sequence.
661 bool save_poll = jtag_poll_get_enabled();
663 jtag_poll_set_enabled(false);
665 sprintf(buf, "ocd_process_reset %s", n->name);
666 retval = Jim_Eval(cmd->ctx->interp, buf);
668 jtag_poll_set_enabled(save_poll);
670 if (retval != JIM_OK) {
671 Jim_MakeErrorMessage(cmd->ctx->interp);
672 command_print(cmd, "%s", Jim_GetString(Jim_GetResult(cmd->ctx->interp), NULL));
673 return ERROR_FAIL;
676 /* We want any events to be processed before the prompt */
677 retval = target_call_timer_callbacks_now();
679 for (target = all_targets; target; target = target->next) {
680 target->type->check_reset(target);
681 target->running_alg = false;
684 return retval;
687 static int identity_virt2phys(struct target *target,
688 target_addr_t virtual, target_addr_t *physical)
690 *physical = virtual;
691 return ERROR_OK;
694 static int no_mmu(struct target *target, int *enabled)
696 *enabled = 0;
697 return ERROR_OK;
700 static int default_examine(struct target *target)
702 target_set_examined(target);
703 return ERROR_OK;
706 /* no check by default */
707 static int default_check_reset(struct target *target)
709 return ERROR_OK;
712 /* Equvivalent Tcl code arp_examine_one is in src/target/startup.tcl
713 * Keep in sync */
714 int target_examine_one(struct target *target)
716 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
718 int retval = target->type->examine(target);
719 if (retval != ERROR_OK) {
720 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_FAIL);
721 return retval;
724 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
726 return ERROR_OK;
729 static int jtag_enable_callback(enum jtag_event event, void *priv)
731 struct target *target = priv;
733 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
734 return ERROR_OK;
736 jtag_unregister_event_callback(jtag_enable_callback, target);
738 return target_examine_one(target);
741 /* Targets that correctly implement init + examine, i.e.
742 * no communication with target during init:
744 * XScale
746 int target_examine(void)
748 int retval = ERROR_OK;
749 struct target *target;
751 for (target = all_targets; target; target = target->next) {
752 /* defer examination, but don't skip it */
753 if (!target->tap->enabled) {
754 jtag_register_event_callback(jtag_enable_callback,
755 target);
756 continue;
759 if (target->defer_examine)
760 continue;
762 retval = target_examine_one(target);
763 if (retval != ERROR_OK)
764 return retval;
766 return retval;
769 const char *target_type_name(struct target *target)
771 return target->type->name;
774 static int target_soft_reset_halt(struct target *target)
776 if (!target_was_examined(target)) {
777 LOG_ERROR("Target not examined yet");
778 return ERROR_FAIL;
780 if (!target->type->soft_reset_halt) {
781 LOG_ERROR("Target %s does not support soft_reset_halt",
782 target_name(target));
783 return ERROR_FAIL;
785 return target->type->soft_reset_halt(target);
789 * Downloads a target-specific native code algorithm to the target,
790 * and executes it. * Note that some targets may need to set up, enable,
791 * and tear down a breakpoint (hard or * soft) to detect algorithm
792 * termination, while others may support lower overhead schemes where
793 * soft breakpoints embedded in the algorithm automatically terminate the
794 * algorithm.
796 * @param target used to run the algorithm
797 * @param arch_info target-specific description of the algorithm.
799 int target_run_algorithm(struct target *target,
800 int num_mem_params, struct mem_param *mem_params,
801 int num_reg_params, struct reg_param *reg_param,
802 uint32_t entry_point, uint32_t exit_point,
803 int timeout_ms, void *arch_info)
805 int retval = ERROR_FAIL;
807 if (!target_was_examined(target)) {
808 LOG_ERROR("Target not examined yet");
809 goto done;
811 if (!target->type->run_algorithm) {
812 LOG_ERROR("Target type '%s' does not support %s",
813 target_type_name(target), __func__);
814 goto done;
817 target->running_alg = true;
818 retval = target->type->run_algorithm(target,
819 num_mem_params, mem_params,
820 num_reg_params, reg_param,
821 entry_point, exit_point, timeout_ms, arch_info);
822 target->running_alg = false;
824 done:
825 return retval;
829 * Executes a target-specific native code algorithm and leaves it running.
831 * @param target used to run the algorithm
832 * @param arch_info target-specific description of the algorithm.
834 int target_start_algorithm(struct target *target,
835 int num_mem_params, struct mem_param *mem_params,
836 int num_reg_params, struct reg_param *reg_params,
837 uint32_t entry_point, uint32_t exit_point,
838 void *arch_info)
840 int retval = ERROR_FAIL;
842 if (!target_was_examined(target)) {
843 LOG_ERROR("Target not examined yet");
844 goto done;
846 if (!target->type->start_algorithm) {
847 LOG_ERROR("Target type '%s' does not support %s",
848 target_type_name(target), __func__);
849 goto done;
851 if (target->running_alg) {
852 LOG_ERROR("Target is already running an algorithm");
853 goto done;
856 target->running_alg = true;
857 retval = target->type->start_algorithm(target,
858 num_mem_params, mem_params,
859 num_reg_params, reg_params,
860 entry_point, exit_point, arch_info);
862 done:
863 return retval;
867 * Waits for an algorithm started with target_start_algorithm() to complete.
869 * @param target used to run the algorithm
870 * @param arch_info target-specific description of the algorithm.
872 int target_wait_algorithm(struct target *target,
873 int num_mem_params, struct mem_param *mem_params,
874 int num_reg_params, struct reg_param *reg_params,
875 uint32_t exit_point, int timeout_ms,
876 void *arch_info)
878 int retval = ERROR_FAIL;
880 if (!target->type->wait_algorithm) {
881 LOG_ERROR("Target type '%s' does not support %s",
882 target_type_name(target), __func__);
883 goto done;
885 if (!target->running_alg) {
886 LOG_ERROR("Target is not running an algorithm");
887 goto done;
890 retval = target->type->wait_algorithm(target,
891 num_mem_params, mem_params,
892 num_reg_params, reg_params,
893 exit_point, timeout_ms, arch_info);
894 if (retval != ERROR_TARGET_TIMEOUT)
895 target->running_alg = false;
897 done:
898 return retval;
902 * Streams data to a circular buffer on target intended for consumption by code
903 * running asynchronously on target.
905 * This is intended for applications where target-specific native code runs
906 * on the target, receives data from the circular buffer, does something with
907 * it (most likely writing it to a flash memory), and advances the circular
908 * buffer pointer.
910 * This assumes that the helper algorithm has already been loaded to the target,
911 * but has not been started yet. Given memory and register parameters are passed
912 * to the algorithm.
914 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
915 * following format:
917 * [buffer_start + 0, buffer_start + 4):
918 * Write Pointer address (aka head). Written and updated by this
919 * routine when new data is written to the circular buffer.
920 * [buffer_start + 4, buffer_start + 8):
921 * Read Pointer address (aka tail). Updated by code running on the
922 * target after it consumes data.
923 * [buffer_start + 8, buffer_start + buffer_size):
924 * Circular buffer contents.
926 * See contrib/loaders/flash/stm32f1x.S for an example.
928 * @param target used to run the algorithm
929 * @param buffer address on the host where data to be sent is located
930 * @param count number of blocks to send
931 * @param block_size size in bytes of each block
932 * @param num_mem_params count of memory-based params to pass to algorithm
933 * @param mem_params memory-based params to pass to algorithm
934 * @param num_reg_params count of register-based params to pass to algorithm
935 * @param reg_params memory-based params to pass to algorithm
936 * @param buffer_start address on the target of the circular buffer structure
937 * @param buffer_size size of the circular buffer structure
938 * @param entry_point address on the target to execute to start the algorithm
939 * @param exit_point address at which to set a breakpoint to catch the
940 * end of the algorithm; can be 0 if target triggers a breakpoint itself
943 int target_run_flash_async_algorithm(struct target *target,
944 const uint8_t *buffer, uint32_t count, int block_size,
945 int num_mem_params, struct mem_param *mem_params,
946 int num_reg_params, struct reg_param *reg_params,
947 uint32_t buffer_start, uint32_t buffer_size,
948 uint32_t entry_point, uint32_t exit_point, void *arch_info)
950 int retval;
951 int timeout = 0;
953 const uint8_t *buffer_orig = buffer;
955 /* Set up working area. First word is write pointer, second word is read pointer,
956 * rest is fifo data area. */
957 uint32_t wp_addr = buffer_start;
958 uint32_t rp_addr = buffer_start + 4;
959 uint32_t fifo_start_addr = buffer_start + 8;
960 uint32_t fifo_end_addr = buffer_start + buffer_size;
962 uint32_t wp = fifo_start_addr;
963 uint32_t rp = fifo_start_addr;
965 /* validate block_size is 2^n */
966 assert(!block_size || !(block_size & (block_size - 1)));
968 retval = target_write_u32(target, wp_addr, wp);
969 if (retval != ERROR_OK)
970 return retval;
971 retval = target_write_u32(target, rp_addr, rp);
972 if (retval != ERROR_OK)
973 return retval;
975 /* Start up algorithm on target and let it idle while writing the first chunk */
976 retval = target_start_algorithm(target, num_mem_params, mem_params,
977 num_reg_params, reg_params,
978 entry_point,
979 exit_point,
980 arch_info);
982 if (retval != ERROR_OK) {
983 LOG_ERROR("error starting target flash write algorithm");
984 return retval;
987 while (count > 0) {
989 retval = target_read_u32(target, rp_addr, &rp);
990 if (retval != ERROR_OK) {
991 LOG_ERROR("failed to get read pointer");
992 break;
995 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
996 (size_t) (buffer - buffer_orig), count, wp, rp);
998 if (rp == 0) {
999 LOG_ERROR("flash write algorithm aborted by target");
1000 retval = ERROR_FLASH_OPERATION_FAILED;
1001 break;
1004 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
1005 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
1006 break;
1009 /* Count the number of bytes available in the fifo without
1010 * crossing the wrap around. Make sure to not fill it completely,
1011 * because that would make wp == rp and that's the empty condition. */
1012 uint32_t thisrun_bytes;
1013 if (rp > wp)
1014 thisrun_bytes = rp - wp - block_size;
1015 else if (rp > fifo_start_addr)
1016 thisrun_bytes = fifo_end_addr - wp;
1017 else
1018 thisrun_bytes = fifo_end_addr - wp - block_size;
1020 if (thisrun_bytes == 0) {
1021 /* Throttle polling a bit if transfer is (much) faster than flash
1022 * programming. The exact delay shouldn't matter as long as it's
1023 * less than buffer size / flash speed. This is very unlikely to
1024 * run when using high latency connections such as USB. */
1025 alive_sleep(10);
1027 /* to stop an infinite loop on some targets check and increment a timeout
1028 * this issue was observed on a stellaris using the new ICDI interface */
1029 if (timeout++ >= 500) {
1030 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1031 return ERROR_FLASH_OPERATION_FAILED;
1033 continue;
1036 /* reset our timeout */
1037 timeout = 0;
1039 /* Limit to the amount of data we actually want to write */
1040 if (thisrun_bytes > count * block_size)
1041 thisrun_bytes = count * block_size;
1043 /* Write data to fifo */
1044 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1045 if (retval != ERROR_OK)
1046 break;
1048 /* Update counters and wrap write pointer */
1049 buffer += thisrun_bytes;
1050 count -= thisrun_bytes / block_size;
1051 wp += thisrun_bytes;
1052 if (wp >= fifo_end_addr)
1053 wp = fifo_start_addr;
1055 /* Store updated write pointer to target */
1056 retval = target_write_u32(target, wp_addr, wp);
1057 if (retval != ERROR_OK)
1058 break;
1060 /* Avoid GDB timeouts */
1061 keep_alive();
1064 if (retval != ERROR_OK) {
1065 /* abort flash write algorithm on target */
1066 target_write_u32(target, wp_addr, 0);
1069 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1070 num_reg_params, reg_params,
1071 exit_point,
1072 10000,
1073 arch_info);
1075 if (retval2 != ERROR_OK) {
1076 LOG_ERROR("error waiting for target flash write algorithm");
1077 retval = retval2;
1080 if (retval == ERROR_OK) {
1081 /* check if algorithm set rp = 0 after fifo writer loop finished */
1082 retval = target_read_u32(target, rp_addr, &rp);
1083 if (retval == ERROR_OK && rp == 0) {
1084 LOG_ERROR("flash write algorithm aborted by target");
1085 retval = ERROR_FLASH_OPERATION_FAILED;
1089 return retval;
1092 int target_read_memory(struct target *target,
1093 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1095 if (!target_was_examined(target)) {
1096 LOG_ERROR("Target not examined yet");
1097 return ERROR_FAIL;
1099 if (!target->type->read_memory) {
1100 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1101 return ERROR_FAIL;
1103 return target->type->read_memory(target, address, size, count, buffer);
1106 int target_read_phys_memory(struct target *target,
1107 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1109 if (!target_was_examined(target)) {
1110 LOG_ERROR("Target not examined yet");
1111 return ERROR_FAIL;
1113 if (!target->type->read_phys_memory) {
1114 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1115 return ERROR_FAIL;
1117 return target->type->read_phys_memory(target, address, size, count, buffer);
1120 int target_write_memory(struct target *target,
1121 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1123 if (!target_was_examined(target)) {
1124 LOG_ERROR("Target not examined yet");
1125 return ERROR_FAIL;
1127 if (!target->type->write_memory) {
1128 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1129 return ERROR_FAIL;
1131 return target->type->write_memory(target, address, size, count, buffer);
1134 int target_write_phys_memory(struct target *target,
1135 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1137 if (!target_was_examined(target)) {
1138 LOG_ERROR("Target not examined yet");
1139 return ERROR_FAIL;
1141 if (!target->type->write_phys_memory) {
1142 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1143 return ERROR_FAIL;
1145 return target->type->write_phys_memory(target, address, size, count, buffer);
1148 int target_add_breakpoint(struct target *target,
1149 struct breakpoint *breakpoint)
1151 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1152 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1153 return ERROR_TARGET_NOT_HALTED;
1155 return target->type->add_breakpoint(target, breakpoint);
1158 int target_add_context_breakpoint(struct target *target,
1159 struct breakpoint *breakpoint)
1161 if (target->state != TARGET_HALTED) {
1162 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1163 return ERROR_TARGET_NOT_HALTED;
1165 return target->type->add_context_breakpoint(target, breakpoint);
1168 int target_add_hybrid_breakpoint(struct target *target,
1169 struct breakpoint *breakpoint)
1171 if (target->state != TARGET_HALTED) {
1172 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1173 return ERROR_TARGET_NOT_HALTED;
1175 return target->type->add_hybrid_breakpoint(target, breakpoint);
1178 int target_remove_breakpoint(struct target *target,
1179 struct breakpoint *breakpoint)
1181 return target->type->remove_breakpoint(target, breakpoint);
1184 int target_add_watchpoint(struct target *target,
1185 struct watchpoint *watchpoint)
1187 if (target->state != TARGET_HALTED) {
1188 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1189 return ERROR_TARGET_NOT_HALTED;
1191 return target->type->add_watchpoint(target, watchpoint);
1193 int target_remove_watchpoint(struct target *target,
1194 struct watchpoint *watchpoint)
1196 return target->type->remove_watchpoint(target, watchpoint);
1198 int target_hit_watchpoint(struct target *target,
1199 struct watchpoint **hit_watchpoint)
1201 if (target->state != TARGET_HALTED) {
1202 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1203 return ERROR_TARGET_NOT_HALTED;
1206 if (target->type->hit_watchpoint == NULL) {
1207 /* For backward compatible, if hit_watchpoint is not implemented,
1208 * return ERROR_FAIL such that gdb_server will not take the nonsense
1209 * information. */
1210 return ERROR_FAIL;
1213 return target->type->hit_watchpoint(target, hit_watchpoint);
1216 const char *target_get_gdb_arch(struct target *target)
1218 if (target->type->get_gdb_arch == NULL)
1219 return NULL;
1220 return target->type->get_gdb_arch(target);
1223 int target_get_gdb_reg_list(struct target *target,
1224 struct reg **reg_list[], int *reg_list_size,
1225 enum target_register_class reg_class)
1227 int result = target->type->get_gdb_reg_list(target, reg_list,
1228 reg_list_size, reg_class);
1229 if (result != ERROR_OK) {
1230 *reg_list = NULL;
1231 *reg_list_size = 0;
1233 return result;
1236 int target_get_gdb_reg_list_noread(struct target *target,
1237 struct reg **reg_list[], int *reg_list_size,
1238 enum target_register_class reg_class)
1240 if (target->type->get_gdb_reg_list_noread &&
1241 target->type->get_gdb_reg_list_noread(target, reg_list,
1242 reg_list_size, reg_class) == ERROR_OK)
1243 return ERROR_OK;
1244 return target_get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1247 bool target_supports_gdb_connection(struct target *target)
1250 * based on current code, we can simply exclude all the targets that
1251 * don't provide get_gdb_reg_list; this could change with new targets.
1253 return !!target->type->get_gdb_reg_list;
1256 int target_step(struct target *target,
1257 int current, target_addr_t address, int handle_breakpoints)
1259 return target->type->step(target, current, address, handle_breakpoints);
1262 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1264 if (target->state != TARGET_HALTED) {
1265 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1266 return ERROR_TARGET_NOT_HALTED;
1268 return target->type->get_gdb_fileio_info(target, fileio_info);
1271 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1273 if (target->state != TARGET_HALTED) {
1274 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1275 return ERROR_TARGET_NOT_HALTED;
1277 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1280 target_addr_t target_address_max(struct target *target)
1282 unsigned bits = target_address_bits(target);
1283 if (sizeof(target_addr_t) * 8 == bits)
1284 return (target_addr_t) -1;
1285 else
1286 return (((target_addr_t) 1) << bits) - 1;
1289 unsigned target_address_bits(struct target *target)
1291 if (target->type->address_bits)
1292 return target->type->address_bits(target);
1293 return 32;
1296 int target_profiling(struct target *target, uint32_t *samples,
1297 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1299 if (target->state != TARGET_HALTED) {
1300 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1301 return ERROR_TARGET_NOT_HALTED;
1303 return target->type->profiling(target, samples, max_num_samples,
1304 num_samples, seconds);
1308 * Reset the @c examined flag for the given target.
1309 * Pure paranoia -- targets are zeroed on allocation.
1311 static void target_reset_examined(struct target *target)
1313 target->examined = false;
1316 static int handle_target(void *priv);
1318 static int target_init_one(struct command_context *cmd_ctx,
1319 struct target *target)
1321 target_reset_examined(target);
1323 struct target_type *type = target->type;
1324 if (type->examine == NULL)
1325 type->examine = default_examine;
1327 if (type->check_reset == NULL)
1328 type->check_reset = default_check_reset;
1330 assert(type->init_target != NULL);
1332 int retval = type->init_target(cmd_ctx, target);
1333 if (ERROR_OK != retval) {
1334 LOG_ERROR("target '%s' init failed", target_name(target));
1335 return retval;
1338 /* Sanity-check MMU support ... stub in what we must, to help
1339 * implement it in stages, but warn if we need to do so.
1341 if (type->mmu) {
1342 if (type->virt2phys == NULL) {
1343 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1344 type->virt2phys = identity_virt2phys;
1346 } else {
1347 /* Make sure no-MMU targets all behave the same: make no
1348 * distinction between physical and virtual addresses, and
1349 * ensure that virt2phys() is always an identity mapping.
1351 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1352 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1354 type->mmu = no_mmu;
1355 type->write_phys_memory = type->write_memory;
1356 type->read_phys_memory = type->read_memory;
1357 type->virt2phys = identity_virt2phys;
1360 if (target->type->read_buffer == NULL)
1361 target->type->read_buffer = target_read_buffer_default;
1363 if (target->type->write_buffer == NULL)
1364 target->type->write_buffer = target_write_buffer_default;
1366 if (target->type->get_gdb_fileio_info == NULL)
1367 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1369 if (target->type->gdb_fileio_end == NULL)
1370 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1372 if (target->type->profiling == NULL)
1373 target->type->profiling = target_profiling_default;
1375 return ERROR_OK;
1378 static int target_init(struct command_context *cmd_ctx)
1380 struct target *target;
1381 int retval;
1383 for (target = all_targets; target; target = target->next) {
1384 retval = target_init_one(cmd_ctx, target);
1385 if (ERROR_OK != retval)
1386 return retval;
1389 if (!all_targets)
1390 return ERROR_OK;
1392 retval = target_register_user_commands(cmd_ctx);
1393 if (ERROR_OK != retval)
1394 return retval;
1396 retval = target_register_timer_callback(&handle_target,
1397 polling_interval, TARGET_TIMER_TYPE_PERIODIC, cmd_ctx->interp);
1398 if (ERROR_OK != retval)
1399 return retval;
1401 return ERROR_OK;
1404 COMMAND_HANDLER(handle_target_init_command)
1406 int retval;
1408 if (CMD_ARGC != 0)
1409 return ERROR_COMMAND_SYNTAX_ERROR;
1411 static bool target_initialized;
1412 if (target_initialized) {
1413 LOG_INFO("'target init' has already been called");
1414 return ERROR_OK;
1416 target_initialized = true;
1418 retval = command_run_line(CMD_CTX, "init_targets");
1419 if (ERROR_OK != retval)
1420 return retval;
1422 retval = command_run_line(CMD_CTX, "init_target_events");
1423 if (ERROR_OK != retval)
1424 return retval;
1426 retval = command_run_line(CMD_CTX, "init_board");
1427 if (ERROR_OK != retval)
1428 return retval;
1430 LOG_DEBUG("Initializing targets...");
1431 return target_init(CMD_CTX);
1434 int target_register_event_callback(int (*callback)(struct target *target,
1435 enum target_event event, void *priv), void *priv)
1437 struct target_event_callback **callbacks_p = &target_event_callbacks;
1439 if (callback == NULL)
1440 return ERROR_COMMAND_SYNTAX_ERROR;
1442 if (*callbacks_p) {
1443 while ((*callbacks_p)->next)
1444 callbacks_p = &((*callbacks_p)->next);
1445 callbacks_p = &((*callbacks_p)->next);
1448 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1449 (*callbacks_p)->callback = callback;
1450 (*callbacks_p)->priv = priv;
1451 (*callbacks_p)->next = NULL;
1453 return ERROR_OK;
1456 int target_register_reset_callback(int (*callback)(struct target *target,
1457 enum target_reset_mode reset_mode, void *priv), void *priv)
1459 struct target_reset_callback *entry;
1461 if (callback == NULL)
1462 return ERROR_COMMAND_SYNTAX_ERROR;
1464 entry = malloc(sizeof(struct target_reset_callback));
1465 if (entry == NULL) {
1466 LOG_ERROR("error allocating buffer for reset callback entry");
1467 return ERROR_COMMAND_SYNTAX_ERROR;
1470 entry->callback = callback;
1471 entry->priv = priv;
1472 list_add(&entry->list, &target_reset_callback_list);
1475 return ERROR_OK;
1478 int target_register_trace_callback(int (*callback)(struct target *target,
1479 size_t len, uint8_t *data, void *priv), void *priv)
1481 struct target_trace_callback *entry;
1483 if (callback == NULL)
1484 return ERROR_COMMAND_SYNTAX_ERROR;
1486 entry = malloc(sizeof(struct target_trace_callback));
1487 if (entry == NULL) {
1488 LOG_ERROR("error allocating buffer for trace callback entry");
1489 return ERROR_COMMAND_SYNTAX_ERROR;
1492 entry->callback = callback;
1493 entry->priv = priv;
1494 list_add(&entry->list, &target_trace_callback_list);
1497 return ERROR_OK;
1500 int target_register_timer_callback(int (*callback)(void *priv),
1501 unsigned int time_ms, enum target_timer_type type, void *priv)
1503 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1505 if (callback == NULL)
1506 return ERROR_COMMAND_SYNTAX_ERROR;
1508 if (*callbacks_p) {
1509 while ((*callbacks_p)->next)
1510 callbacks_p = &((*callbacks_p)->next);
1511 callbacks_p = &((*callbacks_p)->next);
1514 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1515 (*callbacks_p)->callback = callback;
1516 (*callbacks_p)->type = type;
1517 (*callbacks_p)->time_ms = time_ms;
1518 (*callbacks_p)->removed = false;
1520 gettimeofday(&(*callbacks_p)->when, NULL);
1521 timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1523 (*callbacks_p)->priv = priv;
1524 (*callbacks_p)->next = NULL;
1526 return ERROR_OK;
1529 int target_unregister_event_callback(int (*callback)(struct target *target,
1530 enum target_event event, void *priv), void *priv)
1532 struct target_event_callback **p = &target_event_callbacks;
1533 struct target_event_callback *c = target_event_callbacks;
1535 if (callback == NULL)
1536 return ERROR_COMMAND_SYNTAX_ERROR;
1538 while (c) {
1539 struct target_event_callback *next = c->next;
1540 if ((c->callback == callback) && (c->priv == priv)) {
1541 *p = next;
1542 free(c);
1543 return ERROR_OK;
1544 } else
1545 p = &(c->next);
1546 c = next;
1549 return ERROR_OK;
1552 int target_unregister_reset_callback(int (*callback)(struct target *target,
1553 enum target_reset_mode reset_mode, void *priv), void *priv)
1555 struct target_reset_callback *entry;
1557 if (callback == NULL)
1558 return ERROR_COMMAND_SYNTAX_ERROR;
1560 list_for_each_entry(entry, &target_reset_callback_list, list) {
1561 if (entry->callback == callback && entry->priv == priv) {
1562 list_del(&entry->list);
1563 free(entry);
1564 break;
1568 return ERROR_OK;
1571 int target_unregister_trace_callback(int (*callback)(struct target *target,
1572 size_t len, uint8_t *data, void *priv), void *priv)
1574 struct target_trace_callback *entry;
1576 if (callback == NULL)
1577 return ERROR_COMMAND_SYNTAX_ERROR;
1579 list_for_each_entry(entry, &target_trace_callback_list, list) {
1580 if (entry->callback == callback && entry->priv == priv) {
1581 list_del(&entry->list);
1582 free(entry);
1583 break;
1587 return ERROR_OK;
1590 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1592 if (callback == NULL)
1593 return ERROR_COMMAND_SYNTAX_ERROR;
1595 for (struct target_timer_callback *c = target_timer_callbacks;
1596 c; c = c->next) {
1597 if ((c->callback == callback) && (c->priv == priv)) {
1598 c->removed = true;
1599 return ERROR_OK;
1603 return ERROR_FAIL;
1606 int target_call_event_callbacks(struct target *target, enum target_event event)
1608 struct target_event_callback *callback = target_event_callbacks;
1609 struct target_event_callback *next_callback;
1611 if (event == TARGET_EVENT_HALTED) {
1612 /* execute early halted first */
1613 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1616 LOG_DEBUG("target event %i (%s) for core %s", event,
1617 Jim_Nvp_value2name_simple(nvp_target_event, event)->name,
1618 target_name(target));
1620 target_handle_event(target, event);
1622 while (callback) {
1623 next_callback = callback->next;
1624 callback->callback(target, event, callback->priv);
1625 callback = next_callback;
1628 return ERROR_OK;
1631 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1633 struct target_reset_callback *callback;
1635 LOG_DEBUG("target reset %i (%s)", reset_mode,
1636 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1638 list_for_each_entry(callback, &target_reset_callback_list, list)
1639 callback->callback(target, reset_mode, callback->priv);
1641 return ERROR_OK;
1644 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1646 struct target_trace_callback *callback;
1648 list_for_each_entry(callback, &target_trace_callback_list, list)
1649 callback->callback(target, len, data, callback->priv);
1651 return ERROR_OK;
1654 static int target_timer_callback_periodic_restart(
1655 struct target_timer_callback *cb, struct timeval *now)
1657 cb->when = *now;
1658 timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1659 return ERROR_OK;
1662 static int target_call_timer_callback(struct target_timer_callback *cb,
1663 struct timeval *now)
1665 cb->callback(cb->priv);
1667 if (cb->type == TARGET_TIMER_TYPE_PERIODIC)
1668 return target_timer_callback_periodic_restart(cb, now);
1670 return target_unregister_timer_callback(cb->callback, cb->priv);
1673 static int target_call_timer_callbacks_check_time(int checktime)
1675 static bool callback_processing;
1677 /* Do not allow nesting */
1678 if (callback_processing)
1679 return ERROR_OK;
1681 callback_processing = true;
1683 keep_alive();
1685 struct timeval now;
1686 gettimeofday(&now, NULL);
1688 /* Store an address of the place containing a pointer to the
1689 * next item; initially, that's a standalone "root of the
1690 * list" variable. */
1691 struct target_timer_callback **callback = &target_timer_callbacks;
1692 while (callback && *callback) {
1693 if ((*callback)->removed) {
1694 struct target_timer_callback *p = *callback;
1695 *callback = (*callback)->next;
1696 free(p);
1697 continue;
1700 bool call_it = (*callback)->callback &&
1701 ((!checktime && (*callback)->type == TARGET_TIMER_TYPE_PERIODIC) ||
1702 timeval_compare(&now, &(*callback)->when) >= 0);
1704 if (call_it)
1705 target_call_timer_callback(*callback, &now);
1707 callback = &(*callback)->next;
1710 callback_processing = false;
1711 return ERROR_OK;
1714 int target_call_timer_callbacks(void)
1716 return target_call_timer_callbacks_check_time(1);
1719 /* invoke periodic callbacks immediately */
1720 int target_call_timer_callbacks_now(void)
1722 return target_call_timer_callbacks_check_time(0);
1725 /* Prints the working area layout for debug purposes */
1726 static void print_wa_layout(struct target *target)
1728 struct working_area *c = target->working_areas;
1730 while (c) {
1731 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1732 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1733 c->address, c->address + c->size - 1, c->size);
1734 c = c->next;
1738 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1739 static void target_split_working_area(struct working_area *area, uint32_t size)
1741 assert(area->free); /* Shouldn't split an allocated area */
1742 assert(size <= area->size); /* Caller should guarantee this */
1744 /* Split only if not already the right size */
1745 if (size < area->size) {
1746 struct working_area *new_wa = malloc(sizeof(*new_wa));
1748 if (new_wa == NULL)
1749 return;
1751 new_wa->next = area->next;
1752 new_wa->size = area->size - size;
1753 new_wa->address = area->address + size;
1754 new_wa->backup = NULL;
1755 new_wa->user = NULL;
1756 new_wa->free = true;
1758 area->next = new_wa;
1759 area->size = size;
1761 /* If backup memory was allocated to this area, it has the wrong size
1762 * now so free it and it will be reallocated if/when needed */
1763 if (area->backup) {
1764 free(area->backup);
1765 area->backup = NULL;
1770 /* Merge all adjacent free areas into one */
1771 static void target_merge_working_areas(struct target *target)
1773 struct working_area *c = target->working_areas;
1775 while (c && c->next) {
1776 assert(c->next->address == c->address + c->size); /* This is an invariant */
1778 /* Find two adjacent free areas */
1779 if (c->free && c->next->free) {
1780 /* Merge the last into the first */
1781 c->size += c->next->size;
1783 /* Remove the last */
1784 struct working_area *to_be_freed = c->next;
1785 c->next = c->next->next;
1786 if (to_be_freed->backup)
1787 free(to_be_freed->backup);
1788 free(to_be_freed);
1790 /* If backup memory was allocated to the remaining area, it's has
1791 * the wrong size now */
1792 if (c->backup) {
1793 free(c->backup);
1794 c->backup = NULL;
1796 } else {
1797 c = c->next;
1802 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1804 /* Reevaluate working area address based on MMU state*/
1805 if (target->working_areas == NULL) {
1806 int retval;
1807 int enabled;
1809 retval = target->type->mmu(target, &enabled);
1810 if (retval != ERROR_OK)
1811 return retval;
1813 if (!enabled) {
1814 if (target->working_area_phys_spec) {
1815 LOG_DEBUG("MMU disabled, using physical "
1816 "address for working memory " TARGET_ADDR_FMT,
1817 target->working_area_phys);
1818 target->working_area = target->working_area_phys;
1819 } else {
1820 LOG_ERROR("No working memory available. "
1821 "Specify -work-area-phys to target.");
1822 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1824 } else {
1825 if (target->working_area_virt_spec) {
1826 LOG_DEBUG("MMU enabled, using virtual "
1827 "address for working memory " TARGET_ADDR_FMT,
1828 target->working_area_virt);
1829 target->working_area = target->working_area_virt;
1830 } else {
1831 LOG_ERROR("No working memory available. "
1832 "Specify -work-area-virt to target.");
1833 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1837 /* Set up initial working area on first call */
1838 struct working_area *new_wa = malloc(sizeof(*new_wa));
1839 if (new_wa) {
1840 new_wa->next = NULL;
1841 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1842 new_wa->address = target->working_area;
1843 new_wa->backup = NULL;
1844 new_wa->user = NULL;
1845 new_wa->free = true;
1848 target->working_areas = new_wa;
1851 /* only allocate multiples of 4 byte */
1852 if (size % 4)
1853 size = (size + 3) & (~3UL);
1855 struct working_area *c = target->working_areas;
1857 /* Find the first large enough working area */
1858 while (c) {
1859 if (c->free && c->size >= size)
1860 break;
1861 c = c->next;
1864 if (c == NULL)
1865 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1867 /* Split the working area into the requested size */
1868 target_split_working_area(c, size);
1870 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1871 size, c->address);
1873 if (target->backup_working_area) {
1874 if (c->backup == NULL) {
1875 c->backup = malloc(c->size);
1876 if (c->backup == NULL)
1877 return ERROR_FAIL;
1880 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1881 if (retval != ERROR_OK)
1882 return retval;
1885 /* mark as used, and return the new (reused) area */
1886 c->free = false;
1887 *area = c;
1889 /* user pointer */
1890 c->user = area;
1892 print_wa_layout(target);
1894 return ERROR_OK;
1897 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1899 int retval;
1901 retval = target_alloc_working_area_try(target, size, area);
1902 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1903 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1904 return retval;
1908 static int target_restore_working_area(struct target *target, struct working_area *area)
1910 int retval = ERROR_OK;
1912 if (target->backup_working_area && area->backup != NULL) {
1913 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1914 if (retval != ERROR_OK)
1915 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1916 area->size, area->address);
1919 return retval;
1922 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1923 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1925 int retval = ERROR_OK;
1927 if (area->free)
1928 return retval;
1930 if (restore) {
1931 retval = target_restore_working_area(target, area);
1932 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1933 if (retval != ERROR_OK)
1934 return retval;
1937 area->free = true;
1939 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1940 area->size, area->address);
1942 /* mark user pointer invalid */
1943 /* TODO: Is this really safe? It points to some previous caller's memory.
1944 * How could we know that the area pointer is still in that place and not
1945 * some other vital data? What's the purpose of this, anyway? */
1946 *area->user = NULL;
1947 area->user = NULL;
1949 target_merge_working_areas(target);
1951 print_wa_layout(target);
1953 return retval;
1956 int target_free_working_area(struct target *target, struct working_area *area)
1958 return target_free_working_area_restore(target, area, 1);
1961 /* free resources and restore memory, if restoring memory fails,
1962 * free up resources anyway
1964 static void target_free_all_working_areas_restore(struct target *target, int restore)
1966 struct working_area *c = target->working_areas;
1968 LOG_DEBUG("freeing all working areas");
1970 /* Loop through all areas, restoring the allocated ones and marking them as free */
1971 while (c) {
1972 if (!c->free) {
1973 if (restore)
1974 target_restore_working_area(target, c);
1975 c->free = true;
1976 *c->user = NULL; /* Same as above */
1977 c->user = NULL;
1979 c = c->next;
1982 /* Run a merge pass to combine all areas into one */
1983 target_merge_working_areas(target);
1985 print_wa_layout(target);
1988 void target_free_all_working_areas(struct target *target)
1990 target_free_all_working_areas_restore(target, 1);
1992 /* Now we have none or only one working area marked as free */
1993 if (target->working_areas) {
1994 /* Free the last one to allow on-the-fly moving and resizing */
1995 free(target->working_areas->backup);
1996 free(target->working_areas);
1997 target->working_areas = NULL;
2001 /* Find the largest number of bytes that can be allocated */
2002 uint32_t target_get_working_area_avail(struct target *target)
2004 struct working_area *c = target->working_areas;
2005 uint32_t max_size = 0;
2007 if (c == NULL)
2008 return target->working_area_size;
2010 while (c) {
2011 if (c->free && max_size < c->size)
2012 max_size = c->size;
2014 c = c->next;
2017 return max_size;
2020 static void target_destroy(struct target *target)
2022 if (target->type->deinit_target)
2023 target->type->deinit_target(target);
2025 if (target->semihosting)
2026 free(target->semihosting);
2028 jtag_unregister_event_callback(jtag_enable_callback, target);
2030 struct target_event_action *teap = target->event_action;
2031 while (teap) {
2032 struct target_event_action *next = teap->next;
2033 Jim_DecrRefCount(teap->interp, teap->body);
2034 free(teap);
2035 teap = next;
2038 target_free_all_working_areas(target);
2040 /* release the targets SMP list */
2041 if (target->smp) {
2042 struct target_list *head = target->head;
2043 while (head != NULL) {
2044 struct target_list *pos = head->next;
2045 head->target->smp = 0;
2046 free(head);
2047 head = pos;
2049 target->smp = 0;
2052 rtos_destroy(target);
2054 free(target->gdb_port_override);
2055 free(target->type);
2056 free(target->trace_info);
2057 free(target->fileio_info);
2058 free(target->cmd_name);
2059 free(target);
2062 void target_quit(void)
2064 struct target_event_callback *pe = target_event_callbacks;
2065 while (pe) {
2066 struct target_event_callback *t = pe->next;
2067 free(pe);
2068 pe = t;
2070 target_event_callbacks = NULL;
2072 struct target_timer_callback *pt = target_timer_callbacks;
2073 while (pt) {
2074 struct target_timer_callback *t = pt->next;
2075 free(pt);
2076 pt = t;
2078 target_timer_callbacks = NULL;
2080 for (struct target *target = all_targets; target;) {
2081 struct target *tmp;
2083 tmp = target->next;
2084 target_destroy(target);
2085 target = tmp;
2088 all_targets = NULL;
2091 int target_arch_state(struct target *target)
2093 int retval;
2094 if (target == NULL) {
2095 LOG_WARNING("No target has been configured");
2096 return ERROR_OK;
2099 if (target->state != TARGET_HALTED)
2100 return ERROR_OK;
2102 retval = target->type->arch_state(target);
2103 return retval;
2106 static int target_get_gdb_fileio_info_default(struct target *target,
2107 struct gdb_fileio_info *fileio_info)
2109 /* If target does not support semi-hosting function, target
2110 has no need to provide .get_gdb_fileio_info callback.
2111 It just return ERROR_FAIL and gdb_server will return "Txx"
2112 as target halted every time. */
2113 return ERROR_FAIL;
2116 static int target_gdb_fileio_end_default(struct target *target,
2117 int retcode, int fileio_errno, bool ctrl_c)
2119 return ERROR_OK;
2122 static int target_profiling_default(struct target *target, uint32_t *samples,
2123 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2125 struct timeval timeout, now;
2127 gettimeofday(&timeout, NULL);
2128 timeval_add_time(&timeout, seconds, 0);
2130 LOG_INFO("Starting profiling. Halting and resuming the"
2131 " target as often as we can...");
2133 uint32_t sample_count = 0;
2134 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2135 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2137 int retval = ERROR_OK;
2138 for (;;) {
2139 target_poll(target);
2140 if (target->state == TARGET_HALTED) {
2141 uint32_t t = buf_get_u32(reg->value, 0, 32);
2142 samples[sample_count++] = t;
2143 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2144 retval = target_resume(target, 1, 0, 0, 0);
2145 target_poll(target);
2146 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2147 } else if (target->state == TARGET_RUNNING) {
2148 /* We want to quickly sample the PC. */
2149 retval = target_halt(target);
2150 } else {
2151 LOG_INFO("Target not halted or running");
2152 retval = ERROR_OK;
2153 break;
2156 if (retval != ERROR_OK)
2157 break;
2159 gettimeofday(&now, NULL);
2160 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2161 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2162 break;
2166 *num_samples = sample_count;
2167 return retval;
2170 /* Single aligned words are guaranteed to use 16 or 32 bit access
2171 * mode respectively, otherwise data is handled as quickly as
2172 * possible
2174 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2176 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2177 size, address);
2179 if (!target_was_examined(target)) {
2180 LOG_ERROR("Target not examined yet");
2181 return ERROR_FAIL;
2184 if (size == 0)
2185 return ERROR_OK;
2187 if ((address + size - 1) < address) {
2188 /* GDB can request this when e.g. PC is 0xfffffffc */
2189 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2190 address,
2191 size);
2192 return ERROR_FAIL;
2195 return target->type->write_buffer(target, address, size, buffer);
2198 static int target_write_buffer_default(struct target *target,
2199 target_addr_t address, uint32_t count, const uint8_t *buffer)
2201 uint32_t size;
2203 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2204 * will have something to do with the size we leave to it. */
2205 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2206 if (address & size) {
2207 int retval = target_write_memory(target, address, size, 1, buffer);
2208 if (retval != ERROR_OK)
2209 return retval;
2210 address += size;
2211 count -= size;
2212 buffer += size;
2216 /* Write the data with as large access size as possible. */
2217 for (; size > 0; size /= 2) {
2218 uint32_t aligned = count - count % size;
2219 if (aligned > 0) {
2220 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2221 if (retval != ERROR_OK)
2222 return retval;
2223 address += aligned;
2224 count -= aligned;
2225 buffer += aligned;
2229 return ERROR_OK;
2232 /* Single aligned words are guaranteed to use 16 or 32 bit access
2233 * mode respectively, otherwise data is handled as quickly as
2234 * possible
2236 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2238 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2239 size, address);
2241 if (!target_was_examined(target)) {
2242 LOG_ERROR("Target not examined yet");
2243 return ERROR_FAIL;
2246 if (size == 0)
2247 return ERROR_OK;
2249 if ((address + size - 1) < address) {
2250 /* GDB can request this when e.g. PC is 0xfffffffc */
2251 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2252 address,
2253 size);
2254 return ERROR_FAIL;
2257 return target->type->read_buffer(target, address, size, buffer);
2260 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2262 uint32_t size;
2264 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2265 * will have something to do with the size we leave to it. */
2266 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2267 if (address & size) {
2268 int retval = target_read_memory(target, address, size, 1, buffer);
2269 if (retval != ERROR_OK)
2270 return retval;
2271 address += size;
2272 count -= size;
2273 buffer += size;
2277 /* Read the data with as large access size as possible. */
2278 for (; size > 0; size /= 2) {
2279 uint32_t aligned = count - count % size;
2280 if (aligned > 0) {
2281 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2282 if (retval != ERROR_OK)
2283 return retval;
2284 address += aligned;
2285 count -= aligned;
2286 buffer += aligned;
2290 return ERROR_OK;
2293 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t *crc)
2295 uint8_t *buffer;
2296 int retval;
2297 uint32_t i;
2298 uint32_t checksum = 0;
2299 if (!target_was_examined(target)) {
2300 LOG_ERROR("Target not examined yet");
2301 return ERROR_FAIL;
2304 retval = target->type->checksum_memory(target, address, size, &checksum);
2305 if (retval != ERROR_OK) {
2306 buffer = malloc(size);
2307 if (buffer == NULL) {
2308 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2309 return ERROR_COMMAND_SYNTAX_ERROR;
2311 retval = target_read_buffer(target, address, size, buffer);
2312 if (retval != ERROR_OK) {
2313 free(buffer);
2314 return retval;
2317 /* convert to target endianness */
2318 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2319 uint32_t target_data;
2320 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2321 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2324 retval = image_calculate_checksum(buffer, size, &checksum);
2325 free(buffer);
2328 *crc = checksum;
2330 return retval;
2333 int target_blank_check_memory(struct target *target,
2334 struct target_memory_check_block *blocks, int num_blocks,
2335 uint8_t erased_value)
2337 if (!target_was_examined(target)) {
2338 LOG_ERROR("Target not examined yet");
2339 return ERROR_FAIL;
2342 if (target->type->blank_check_memory == NULL)
2343 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2345 return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2348 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2350 uint8_t value_buf[8];
2351 if (!target_was_examined(target)) {
2352 LOG_ERROR("Target not examined yet");
2353 return ERROR_FAIL;
2356 int retval = target_read_memory(target, address, 8, 1, value_buf);
2358 if (retval == ERROR_OK) {
2359 *value = target_buffer_get_u64(target, value_buf);
2360 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2361 address,
2362 *value);
2363 } else {
2364 *value = 0x0;
2365 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2366 address);
2369 return retval;
2372 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2374 uint8_t value_buf[4];
2375 if (!target_was_examined(target)) {
2376 LOG_ERROR("Target not examined yet");
2377 return ERROR_FAIL;
2380 int retval = target_read_memory(target, address, 4, 1, value_buf);
2382 if (retval == ERROR_OK) {
2383 *value = target_buffer_get_u32(target, value_buf);
2384 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2385 address,
2386 *value);
2387 } else {
2388 *value = 0x0;
2389 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2390 address);
2393 return retval;
2396 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2398 uint8_t value_buf[2];
2399 if (!target_was_examined(target)) {
2400 LOG_ERROR("Target not examined yet");
2401 return ERROR_FAIL;
2404 int retval = target_read_memory(target, address, 2, 1, value_buf);
2406 if (retval == ERROR_OK) {
2407 *value = target_buffer_get_u16(target, value_buf);
2408 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2409 address,
2410 *value);
2411 } else {
2412 *value = 0x0;
2413 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2414 address);
2417 return retval;
2420 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2422 if (!target_was_examined(target)) {
2423 LOG_ERROR("Target not examined yet");
2424 return ERROR_FAIL;
2427 int retval = target_read_memory(target, address, 1, 1, value);
2429 if (retval == ERROR_OK) {
2430 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2431 address,
2432 *value);
2433 } else {
2434 *value = 0x0;
2435 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2436 address);
2439 return retval;
2442 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2444 int retval;
2445 uint8_t value_buf[8];
2446 if (!target_was_examined(target)) {
2447 LOG_ERROR("Target not examined yet");
2448 return ERROR_FAIL;
2451 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2452 address,
2453 value);
2455 target_buffer_set_u64(target, value_buf, value);
2456 retval = target_write_memory(target, address, 8, 1, value_buf);
2457 if (retval != ERROR_OK)
2458 LOG_DEBUG("failed: %i", retval);
2460 return retval;
2463 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2465 int retval;
2466 uint8_t value_buf[4];
2467 if (!target_was_examined(target)) {
2468 LOG_ERROR("Target not examined yet");
2469 return ERROR_FAIL;
2472 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2473 address,
2474 value);
2476 target_buffer_set_u32(target, value_buf, value);
2477 retval = target_write_memory(target, address, 4, 1, value_buf);
2478 if (retval != ERROR_OK)
2479 LOG_DEBUG("failed: %i", retval);
2481 return retval;
2484 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2486 int retval;
2487 uint8_t value_buf[2];
2488 if (!target_was_examined(target)) {
2489 LOG_ERROR("Target not examined yet");
2490 return ERROR_FAIL;
2493 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2494 address,
2495 value);
2497 target_buffer_set_u16(target, value_buf, value);
2498 retval = target_write_memory(target, address, 2, 1, value_buf);
2499 if (retval != ERROR_OK)
2500 LOG_DEBUG("failed: %i", retval);
2502 return retval;
2505 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2507 int retval;
2508 if (!target_was_examined(target)) {
2509 LOG_ERROR("Target not examined yet");
2510 return ERROR_FAIL;
2513 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2514 address, value);
2516 retval = target_write_memory(target, address, 1, 1, &value);
2517 if (retval != ERROR_OK)
2518 LOG_DEBUG("failed: %i", retval);
2520 return retval;
2523 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2525 int retval;
2526 uint8_t value_buf[8];
2527 if (!target_was_examined(target)) {
2528 LOG_ERROR("Target not examined yet");
2529 return ERROR_FAIL;
2532 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2533 address,
2534 value);
2536 target_buffer_set_u64(target, value_buf, value);
2537 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2538 if (retval != ERROR_OK)
2539 LOG_DEBUG("failed: %i", retval);
2541 return retval;
2544 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2546 int retval;
2547 uint8_t value_buf[4];
2548 if (!target_was_examined(target)) {
2549 LOG_ERROR("Target not examined yet");
2550 return ERROR_FAIL;
2553 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2554 address,
2555 value);
2557 target_buffer_set_u32(target, value_buf, value);
2558 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2559 if (retval != ERROR_OK)
2560 LOG_DEBUG("failed: %i", retval);
2562 return retval;
2565 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2567 int retval;
2568 uint8_t value_buf[2];
2569 if (!target_was_examined(target)) {
2570 LOG_ERROR("Target not examined yet");
2571 return ERROR_FAIL;
2574 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2575 address,
2576 value);
2578 target_buffer_set_u16(target, value_buf, value);
2579 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2580 if (retval != ERROR_OK)
2581 LOG_DEBUG("failed: %i", retval);
2583 return retval;
2586 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2588 int retval;
2589 if (!target_was_examined(target)) {
2590 LOG_ERROR("Target not examined yet");
2591 return ERROR_FAIL;
2594 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2595 address, value);
2597 retval = target_write_phys_memory(target, address, 1, 1, &value);
2598 if (retval != ERROR_OK)
2599 LOG_DEBUG("failed: %i", retval);
2601 return retval;
2604 static int find_target(struct command_invocation *cmd, const char *name)
2606 struct target *target = get_target(name);
2607 if (target == NULL) {
2608 command_print(cmd, "Target: %s is unknown, try one of:\n", name);
2609 return ERROR_FAIL;
2611 if (!target->tap->enabled) {
2612 command_print(cmd, "Target: TAP %s is disabled, "
2613 "can't be the current target\n",
2614 target->tap->dotted_name);
2615 return ERROR_FAIL;
2618 cmd->ctx->current_target = target;
2619 if (cmd->ctx->current_target_override)
2620 cmd->ctx->current_target_override = target;
2622 return ERROR_OK;
2626 COMMAND_HANDLER(handle_targets_command)
2628 int retval = ERROR_OK;
2629 if (CMD_ARGC == 1) {
2630 retval = find_target(CMD, CMD_ARGV[0]);
2631 if (retval == ERROR_OK) {
2632 /* we're done! */
2633 return retval;
2637 struct target *target = all_targets;
2638 command_print(CMD, " TargetName Type Endian TapName State ");
2639 command_print(CMD, "-- ------------------ ---------- ------ ------------------ ------------");
2640 while (target) {
2641 const char *state;
2642 char marker = ' ';
2644 if (target->tap->enabled)
2645 state = target_state_name(target);
2646 else
2647 state = "tap-disabled";
2649 if (CMD_CTX->current_target == target)
2650 marker = '*';
2652 /* keep columns lined up to match the headers above */
2653 command_print(CMD,
2654 "%2d%c %-18s %-10s %-6s %-18s %s",
2655 target->target_number,
2656 marker,
2657 target_name(target),
2658 target_type_name(target),
2659 Jim_Nvp_value2name_simple(nvp_target_endian,
2660 target->endianness)->name,
2661 target->tap->dotted_name,
2662 state);
2663 target = target->next;
2666 return retval;
2669 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2671 static int powerDropout;
2672 static int srstAsserted;
2674 static int runPowerRestore;
2675 static int runPowerDropout;
2676 static int runSrstAsserted;
2677 static int runSrstDeasserted;
2679 static int sense_handler(void)
2681 static int prevSrstAsserted;
2682 static int prevPowerdropout;
2684 int retval = jtag_power_dropout(&powerDropout);
2685 if (retval != ERROR_OK)
2686 return retval;
2688 int powerRestored;
2689 powerRestored = prevPowerdropout && !powerDropout;
2690 if (powerRestored)
2691 runPowerRestore = 1;
2693 int64_t current = timeval_ms();
2694 static int64_t lastPower;
2695 bool waitMore = lastPower + 2000 > current;
2696 if (powerDropout && !waitMore) {
2697 runPowerDropout = 1;
2698 lastPower = current;
2701 retval = jtag_srst_asserted(&srstAsserted);
2702 if (retval != ERROR_OK)
2703 return retval;
2705 int srstDeasserted;
2706 srstDeasserted = prevSrstAsserted && !srstAsserted;
2708 static int64_t lastSrst;
2709 waitMore = lastSrst + 2000 > current;
2710 if (srstDeasserted && !waitMore) {
2711 runSrstDeasserted = 1;
2712 lastSrst = current;
2715 if (!prevSrstAsserted && srstAsserted)
2716 runSrstAsserted = 1;
2718 prevSrstAsserted = srstAsserted;
2719 prevPowerdropout = powerDropout;
2721 if (srstDeasserted || powerRestored) {
2722 /* Other than logging the event we can't do anything here.
2723 * Issuing a reset is a particularly bad idea as we might
2724 * be inside a reset already.
2728 return ERROR_OK;
2731 /* process target state changes */
2732 static int handle_target(void *priv)
2734 Jim_Interp *interp = (Jim_Interp *)priv;
2735 int retval = ERROR_OK;
2737 if (!is_jtag_poll_safe()) {
2738 /* polling is disabled currently */
2739 return ERROR_OK;
2742 /* we do not want to recurse here... */
2743 static int recursive;
2744 if (!recursive) {
2745 recursive = 1;
2746 sense_handler();
2747 /* danger! running these procedures can trigger srst assertions and power dropouts.
2748 * We need to avoid an infinite loop/recursion here and we do that by
2749 * clearing the flags after running these events.
2751 int did_something = 0;
2752 if (runSrstAsserted) {
2753 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2754 Jim_Eval(interp, "srst_asserted");
2755 did_something = 1;
2757 if (runSrstDeasserted) {
2758 Jim_Eval(interp, "srst_deasserted");
2759 did_something = 1;
2761 if (runPowerDropout) {
2762 LOG_INFO("Power dropout detected, running power_dropout proc.");
2763 Jim_Eval(interp, "power_dropout");
2764 did_something = 1;
2766 if (runPowerRestore) {
2767 Jim_Eval(interp, "power_restore");
2768 did_something = 1;
2771 if (did_something) {
2772 /* clear detect flags */
2773 sense_handler();
2776 /* clear action flags */
2778 runSrstAsserted = 0;
2779 runSrstDeasserted = 0;
2780 runPowerRestore = 0;
2781 runPowerDropout = 0;
2783 recursive = 0;
2786 /* Poll targets for state changes unless that's globally disabled.
2787 * Skip targets that are currently disabled.
2789 for (struct target *target = all_targets;
2790 is_jtag_poll_safe() && target;
2791 target = target->next) {
2793 if (!target_was_examined(target))
2794 continue;
2796 if (!target->tap->enabled)
2797 continue;
2799 if (target->backoff.times > target->backoff.count) {
2800 /* do not poll this time as we failed previously */
2801 target->backoff.count++;
2802 continue;
2804 target->backoff.count = 0;
2806 /* only poll target if we've got power and srst isn't asserted */
2807 if (!powerDropout && !srstAsserted) {
2808 /* polling may fail silently until the target has been examined */
2809 retval = target_poll(target);
2810 if (retval != ERROR_OK) {
2811 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2812 if (target->backoff.times * polling_interval < 5000) {
2813 target->backoff.times *= 2;
2814 target->backoff.times++;
2817 /* Tell GDB to halt the debugger. This allows the user to
2818 * run monitor commands to handle the situation.
2820 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2822 if (target->backoff.times > 0) {
2823 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2824 target_reset_examined(target);
2825 retval = target_examine_one(target);
2826 /* Target examination could have failed due to unstable connection,
2827 * but we set the examined flag anyway to repoll it later */
2828 if (retval != ERROR_OK) {
2829 target->examined = true;
2830 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2831 target->backoff.times * polling_interval);
2832 return retval;
2836 /* Since we succeeded, we reset backoff count */
2837 target->backoff.times = 0;
2841 return retval;
2844 COMMAND_HANDLER(handle_reg_command)
2846 struct target *target;
2847 struct reg *reg = NULL;
2848 unsigned count = 0;
2849 char *value;
2851 LOG_DEBUG("-");
2853 target = get_current_target(CMD_CTX);
2855 /* list all available registers for the current target */
2856 if (CMD_ARGC == 0) {
2857 struct reg_cache *cache = target->reg_cache;
2859 count = 0;
2860 while (cache) {
2861 unsigned i;
2863 command_print(CMD, "===== %s", cache->name);
2865 for (i = 0, reg = cache->reg_list;
2866 i < cache->num_regs;
2867 i++, reg++, count++) {
2868 if (reg->exist == false)
2869 continue;
2870 /* only print cached values if they are valid */
2871 if (reg->valid) {
2872 value = buf_to_str(reg->value,
2873 reg->size, 16);
2874 command_print(CMD,
2875 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2876 count, reg->name,
2877 reg->size, value,
2878 reg->dirty
2879 ? " (dirty)"
2880 : "");
2881 free(value);
2882 } else {
2883 command_print(CMD, "(%i) %s (/%" PRIu32 ")",
2884 count, reg->name,
2885 reg->size) ;
2888 cache = cache->next;
2891 return ERROR_OK;
2894 /* access a single register by its ordinal number */
2895 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2896 unsigned num;
2897 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2899 struct reg_cache *cache = target->reg_cache;
2900 count = 0;
2901 while (cache) {
2902 unsigned i;
2903 for (i = 0; i < cache->num_regs; i++) {
2904 if (count++ == num) {
2905 reg = &cache->reg_list[i];
2906 break;
2909 if (reg)
2910 break;
2911 cache = cache->next;
2914 if (!reg) {
2915 command_print(CMD, "%i is out of bounds, the current target "
2916 "has only %i registers (0 - %i)", num, count, count - 1);
2917 return ERROR_OK;
2919 } else {
2920 /* access a single register by its name */
2921 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2923 if (!reg)
2924 goto not_found;
2927 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2929 if (!reg->exist)
2930 goto not_found;
2932 /* display a register */
2933 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2934 && (CMD_ARGV[1][0] <= '9')))) {
2935 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2936 reg->valid = 0;
2938 if (reg->valid == 0)
2939 reg->type->get(reg);
2940 value = buf_to_str(reg->value, reg->size, 16);
2941 command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2942 free(value);
2943 return ERROR_OK;
2946 /* set register value */
2947 if (CMD_ARGC == 2) {
2948 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2949 if (buf == NULL)
2950 return ERROR_FAIL;
2951 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2953 reg->type->set(reg, buf);
2955 value = buf_to_str(reg->value, reg->size, 16);
2956 command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2957 free(value);
2959 free(buf);
2961 return ERROR_OK;
2964 return ERROR_COMMAND_SYNTAX_ERROR;
2966 not_found:
2967 command_print(CMD, "register %s not found in current target", CMD_ARGV[0]);
2968 return ERROR_OK;
2971 COMMAND_HANDLER(handle_poll_command)
2973 int retval = ERROR_OK;
2974 struct target *target = get_current_target(CMD_CTX);
2976 if (CMD_ARGC == 0) {
2977 command_print(CMD, "background polling: %s",
2978 jtag_poll_get_enabled() ? "on" : "off");
2979 command_print(CMD, "TAP: %s (%s)",
2980 target->tap->dotted_name,
2981 target->tap->enabled ? "enabled" : "disabled");
2982 if (!target->tap->enabled)
2983 return ERROR_OK;
2984 retval = target_poll(target);
2985 if (retval != ERROR_OK)
2986 return retval;
2987 retval = target_arch_state(target);
2988 if (retval != ERROR_OK)
2989 return retval;
2990 } else if (CMD_ARGC == 1) {
2991 bool enable;
2992 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2993 jtag_poll_set_enabled(enable);
2994 } else
2995 return ERROR_COMMAND_SYNTAX_ERROR;
2997 return retval;
3000 COMMAND_HANDLER(handle_wait_halt_command)
3002 if (CMD_ARGC > 1)
3003 return ERROR_COMMAND_SYNTAX_ERROR;
3005 unsigned ms = DEFAULT_HALT_TIMEOUT;
3006 if (1 == CMD_ARGC) {
3007 int retval = parse_uint(CMD_ARGV[0], &ms);
3008 if (ERROR_OK != retval)
3009 return ERROR_COMMAND_SYNTAX_ERROR;
3012 struct target *target = get_current_target(CMD_CTX);
3013 return target_wait_state(target, TARGET_HALTED, ms);
3016 /* wait for target state to change. The trick here is to have a low
3017 * latency for short waits and not to suck up all the CPU time
3018 * on longer waits.
3020 * After 500ms, keep_alive() is invoked
3022 int target_wait_state(struct target *target, enum target_state state, int ms)
3024 int retval;
3025 int64_t then = 0, cur;
3026 bool once = true;
3028 for (;;) {
3029 retval = target_poll(target);
3030 if (retval != ERROR_OK)
3031 return retval;
3032 if (target->state == state)
3033 break;
3034 cur = timeval_ms();
3035 if (once) {
3036 once = false;
3037 then = timeval_ms();
3038 LOG_DEBUG("waiting for target %s...",
3039 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3042 if (cur-then > 500)
3043 keep_alive();
3045 if ((cur-then) > ms) {
3046 LOG_ERROR("timed out while waiting for target %s",
3047 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3048 return ERROR_FAIL;
3052 return ERROR_OK;
3055 COMMAND_HANDLER(handle_halt_command)
3057 LOG_DEBUG("-");
3059 struct target *target = get_current_target(CMD_CTX);
3061 target->verbose_halt_msg = true;
3063 int retval = target_halt(target);
3064 if (ERROR_OK != retval)
3065 return retval;
3067 if (CMD_ARGC == 1) {
3068 unsigned wait_local;
3069 retval = parse_uint(CMD_ARGV[0], &wait_local);
3070 if (ERROR_OK != retval)
3071 return ERROR_COMMAND_SYNTAX_ERROR;
3072 if (!wait_local)
3073 return ERROR_OK;
3076 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
3079 COMMAND_HANDLER(handle_soft_reset_halt_command)
3081 struct target *target = get_current_target(CMD_CTX);
3083 LOG_USER("requesting target halt and executing a soft reset");
3085 target_soft_reset_halt(target);
3087 return ERROR_OK;
3090 COMMAND_HANDLER(handle_reset_command)
3092 if (CMD_ARGC > 1)
3093 return ERROR_COMMAND_SYNTAX_ERROR;
3095 enum target_reset_mode reset_mode = RESET_RUN;
3096 if (CMD_ARGC == 1) {
3097 const Jim_Nvp *n;
3098 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3099 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3100 return ERROR_COMMAND_SYNTAX_ERROR;
3101 reset_mode = n->value;
3104 /* reset *all* targets */
3105 return target_process_reset(CMD, reset_mode);
3109 COMMAND_HANDLER(handle_resume_command)
3111 int current = 1;
3112 if (CMD_ARGC > 1)
3113 return ERROR_COMMAND_SYNTAX_ERROR;
3115 struct target *target = get_current_target(CMD_CTX);
3117 /* with no CMD_ARGV, resume from current pc, addr = 0,
3118 * with one arguments, addr = CMD_ARGV[0],
3119 * handle breakpoints, not debugging */
3120 target_addr_t addr = 0;
3121 if (CMD_ARGC == 1) {
3122 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3123 current = 0;
3126 return target_resume(target, current, addr, 1, 0);
3129 COMMAND_HANDLER(handle_step_command)
3131 if (CMD_ARGC > 1)
3132 return ERROR_COMMAND_SYNTAX_ERROR;
3134 LOG_DEBUG("-");
3136 /* with no CMD_ARGV, step from current pc, addr = 0,
3137 * with one argument addr = CMD_ARGV[0],
3138 * handle breakpoints, debugging */
3139 target_addr_t addr = 0;
3140 int current_pc = 1;
3141 if (CMD_ARGC == 1) {
3142 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3143 current_pc = 0;
3146 struct target *target = get_current_target(CMD_CTX);
3148 return target->type->step(target, current_pc, addr, 1);
3151 void target_handle_md_output(struct command_invocation *cmd,
3152 struct target *target, target_addr_t address, unsigned size,
3153 unsigned count, const uint8_t *buffer)
3155 const unsigned line_bytecnt = 32;
3156 unsigned line_modulo = line_bytecnt / size;
3158 char output[line_bytecnt * 4 + 1];
3159 unsigned output_len = 0;
3161 const char *value_fmt;
3162 switch (size) {
3163 case 8:
3164 value_fmt = "%16.16"PRIx64" ";
3165 break;
3166 case 4:
3167 value_fmt = "%8.8"PRIx64" ";
3168 break;
3169 case 2:
3170 value_fmt = "%4.4"PRIx64" ";
3171 break;
3172 case 1:
3173 value_fmt = "%2.2"PRIx64" ";
3174 break;
3175 default:
3176 /* "can't happen", caller checked */
3177 LOG_ERROR("invalid memory read size: %u", size);
3178 return;
3181 for (unsigned i = 0; i < count; i++) {
3182 if (i % line_modulo == 0) {
3183 output_len += snprintf(output + output_len,
3184 sizeof(output) - output_len,
3185 TARGET_ADDR_FMT ": ",
3186 (address + (i * size)));
3189 uint64_t value = 0;
3190 const uint8_t *value_ptr = buffer + i * size;
3191 switch (size) {
3192 case 8:
3193 value = target_buffer_get_u64(target, value_ptr);
3194 break;
3195 case 4:
3196 value = target_buffer_get_u32(target, value_ptr);
3197 break;
3198 case 2:
3199 value = target_buffer_get_u16(target, value_ptr);
3200 break;
3201 case 1:
3202 value = *value_ptr;
3204 output_len += snprintf(output + output_len,
3205 sizeof(output) - output_len,
3206 value_fmt, value);
3208 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3209 command_print(cmd, "%s", output);
3210 output_len = 0;
3215 COMMAND_HANDLER(handle_md_command)
3217 if (CMD_ARGC < 1)
3218 return ERROR_COMMAND_SYNTAX_ERROR;
3220 unsigned size = 0;
3221 switch (CMD_NAME[2]) {
3222 case 'd':
3223 size = 8;
3224 break;
3225 case 'w':
3226 size = 4;
3227 break;
3228 case 'h':
3229 size = 2;
3230 break;
3231 case 'b':
3232 size = 1;
3233 break;
3234 default:
3235 return ERROR_COMMAND_SYNTAX_ERROR;
3238 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3239 int (*fn)(struct target *target,
3240 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3241 if (physical) {
3242 CMD_ARGC--;
3243 CMD_ARGV++;
3244 fn = target_read_phys_memory;
3245 } else
3246 fn = target_read_memory;
3247 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3248 return ERROR_COMMAND_SYNTAX_ERROR;
3250 target_addr_t address;
3251 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3253 unsigned count = 1;
3254 if (CMD_ARGC == 2)
3255 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3257 uint8_t *buffer = calloc(count, size);
3258 if (buffer == NULL) {
3259 LOG_ERROR("Failed to allocate md read buffer");
3260 return ERROR_FAIL;
3263 struct target *target = get_current_target(CMD_CTX);
3264 int retval = fn(target, address, size, count, buffer);
3265 if (ERROR_OK == retval)
3266 target_handle_md_output(CMD, target, address, size, count, buffer);
3268 free(buffer);
3270 return retval;
3273 typedef int (*target_write_fn)(struct target *target,
3274 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3276 static int target_fill_mem(struct target *target,
3277 target_addr_t address,
3278 target_write_fn fn,
3279 unsigned data_size,
3280 /* value */
3281 uint64_t b,
3282 /* count */
3283 unsigned c)
3285 /* We have to write in reasonably large chunks to be able
3286 * to fill large memory areas with any sane speed */
3287 const unsigned chunk_size = 16384;
3288 uint8_t *target_buf = malloc(chunk_size * data_size);
3289 if (target_buf == NULL) {
3290 LOG_ERROR("Out of memory");
3291 return ERROR_FAIL;
3294 for (unsigned i = 0; i < chunk_size; i++) {
3295 switch (data_size) {
3296 case 8:
3297 target_buffer_set_u64(target, target_buf + i * data_size, b);
3298 break;
3299 case 4:
3300 target_buffer_set_u32(target, target_buf + i * data_size, b);
3301 break;
3302 case 2:
3303 target_buffer_set_u16(target, target_buf + i * data_size, b);
3304 break;
3305 case 1:
3306 target_buffer_set_u8(target, target_buf + i * data_size, b);
3307 break;
3308 default:
3309 exit(-1);
3313 int retval = ERROR_OK;
3315 for (unsigned x = 0; x < c; x += chunk_size) {
3316 unsigned current;
3317 current = c - x;
3318 if (current > chunk_size)
3319 current = chunk_size;
3320 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3321 if (retval != ERROR_OK)
3322 break;
3323 /* avoid GDB timeouts */
3324 keep_alive();
3326 free(target_buf);
3328 return retval;
3332 COMMAND_HANDLER(handle_mw_command)
3334 if (CMD_ARGC < 2)
3335 return ERROR_COMMAND_SYNTAX_ERROR;
3336 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3337 target_write_fn fn;
3338 if (physical) {
3339 CMD_ARGC--;
3340 CMD_ARGV++;
3341 fn = target_write_phys_memory;
3342 } else
3343 fn = target_write_memory;
3344 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3345 return ERROR_COMMAND_SYNTAX_ERROR;
3347 target_addr_t address;
3348 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3350 uint64_t value;
3351 COMMAND_PARSE_NUMBER(u64, CMD_ARGV[1], value);
3353 unsigned count = 1;
3354 if (CMD_ARGC == 3)
3355 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3357 struct target *target = get_current_target(CMD_CTX);
3358 unsigned wordsize;
3359 switch (CMD_NAME[2]) {
3360 case 'd':
3361 wordsize = 8;
3362 break;
3363 case 'w':
3364 wordsize = 4;
3365 break;
3366 case 'h':
3367 wordsize = 2;
3368 break;
3369 case 'b':
3370 wordsize = 1;
3371 break;
3372 default:
3373 return ERROR_COMMAND_SYNTAX_ERROR;
3376 return target_fill_mem(target, address, fn, wordsize, value, count);
3379 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3380 target_addr_t *min_address, target_addr_t *max_address)
3382 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3383 return ERROR_COMMAND_SYNTAX_ERROR;
3385 /* a base address isn't always necessary,
3386 * default to 0x0 (i.e. don't relocate) */
3387 if (CMD_ARGC >= 2) {
3388 target_addr_t addr;
3389 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3390 image->base_address = addr;
3391 image->base_address_set = 1;
3392 } else
3393 image->base_address_set = 0;
3395 image->start_address_set = 0;
3397 if (CMD_ARGC >= 4)
3398 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3399 if (CMD_ARGC == 5) {
3400 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3401 /* use size (given) to find max (required) */
3402 *max_address += *min_address;
3405 if (*min_address > *max_address)
3406 return ERROR_COMMAND_SYNTAX_ERROR;
3408 return ERROR_OK;
3411 COMMAND_HANDLER(handle_load_image_command)
3413 uint8_t *buffer;
3414 size_t buf_cnt;
3415 uint32_t image_size;
3416 target_addr_t min_address = 0;
3417 target_addr_t max_address = -1;
3418 int i;
3419 struct image image;
3421 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3422 &image, &min_address, &max_address);
3423 if (ERROR_OK != retval)
3424 return retval;
3426 struct target *target = get_current_target(CMD_CTX);
3428 struct duration bench;
3429 duration_start(&bench);
3431 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3432 return ERROR_FAIL;
3434 image_size = 0x0;
3435 retval = ERROR_OK;
3436 for (i = 0; i < image.num_sections; i++) {
3437 buffer = malloc(image.sections[i].size);
3438 if (buffer == NULL) {
3439 command_print(CMD,
3440 "error allocating buffer for section (%d bytes)",
3441 (int)(image.sections[i].size));
3442 retval = ERROR_FAIL;
3443 break;
3446 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3447 if (retval != ERROR_OK) {
3448 free(buffer);
3449 break;
3452 uint32_t offset = 0;
3453 uint32_t length = buf_cnt;
3455 /* DANGER!!! beware of unsigned comparision here!!! */
3457 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3458 (image.sections[i].base_address < max_address)) {
3460 if (image.sections[i].base_address < min_address) {
3461 /* clip addresses below */
3462 offset += min_address-image.sections[i].base_address;
3463 length -= offset;
3466 if (image.sections[i].base_address + buf_cnt > max_address)
3467 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3469 retval = target_write_buffer(target,
3470 image.sections[i].base_address + offset, length, buffer + offset);
3471 if (retval != ERROR_OK) {
3472 free(buffer);
3473 break;
3475 image_size += length;
3476 command_print(CMD, "%u bytes written at address " TARGET_ADDR_FMT "",
3477 (unsigned int)length,
3478 image.sections[i].base_address + offset);
3481 free(buffer);
3484 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3485 command_print(CMD, "downloaded %" PRIu32 " bytes "
3486 "in %fs (%0.3f KiB/s)", image_size,
3487 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3490 image_close(&image);
3492 return retval;
3496 COMMAND_HANDLER(handle_dump_image_command)
3498 struct fileio *fileio;
3499 uint8_t *buffer;
3500 int retval, retvaltemp;
3501 target_addr_t address, size;
3502 struct duration bench;
3503 struct target *target = get_current_target(CMD_CTX);
3505 if (CMD_ARGC != 3)
3506 return ERROR_COMMAND_SYNTAX_ERROR;
3508 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3509 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3511 uint32_t buf_size = (size > 4096) ? 4096 : size;
3512 buffer = malloc(buf_size);
3513 if (!buffer)
3514 return ERROR_FAIL;
3516 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3517 if (retval != ERROR_OK) {
3518 free(buffer);
3519 return retval;
3522 duration_start(&bench);
3524 while (size > 0) {
3525 size_t size_written;
3526 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3527 retval = target_read_buffer(target, address, this_run_size, buffer);
3528 if (retval != ERROR_OK)
3529 break;
3531 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3532 if (retval != ERROR_OK)
3533 break;
3535 size -= this_run_size;
3536 address += this_run_size;
3539 free(buffer);
3541 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3542 size_t filesize;
3543 retval = fileio_size(fileio, &filesize);
3544 if (retval != ERROR_OK)
3545 return retval;
3546 command_print(CMD,
3547 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3548 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3551 retvaltemp = fileio_close(fileio);
3552 if (retvaltemp != ERROR_OK)
3553 return retvaltemp;
3555 return retval;
3558 enum verify_mode {
3559 IMAGE_TEST = 0,
3560 IMAGE_VERIFY = 1,
3561 IMAGE_CHECKSUM_ONLY = 2
3564 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3566 uint8_t *buffer;
3567 size_t buf_cnt;
3568 uint32_t image_size;
3569 int i;
3570 int retval;
3571 uint32_t checksum = 0;
3572 uint32_t mem_checksum = 0;
3574 struct image image;
3576 struct target *target = get_current_target(CMD_CTX);
3578 if (CMD_ARGC < 1)
3579 return ERROR_COMMAND_SYNTAX_ERROR;
3581 if (!target) {
3582 LOG_ERROR("no target selected");
3583 return ERROR_FAIL;
3586 struct duration bench;
3587 duration_start(&bench);
3589 if (CMD_ARGC >= 2) {
3590 target_addr_t addr;
3591 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3592 image.base_address = addr;
3593 image.base_address_set = 1;
3594 } else {
3595 image.base_address_set = 0;
3596 image.base_address = 0x0;
3599 image.start_address_set = 0;
3601 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3602 if (retval != ERROR_OK)
3603 return retval;
3605 image_size = 0x0;
3606 int diffs = 0;
3607 retval = ERROR_OK;
3608 for (i = 0; i < image.num_sections; i++) {
3609 buffer = malloc(image.sections[i].size);
3610 if (buffer == NULL) {
3611 command_print(CMD,
3612 "error allocating buffer for section (%d bytes)",
3613 (int)(image.sections[i].size));
3614 break;
3616 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3617 if (retval != ERROR_OK) {
3618 free(buffer);
3619 break;
3622 if (verify >= IMAGE_VERIFY) {
3623 /* calculate checksum of image */
3624 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3625 if (retval != ERROR_OK) {
3626 free(buffer);
3627 break;
3630 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3631 if (retval != ERROR_OK) {
3632 free(buffer);
3633 break;
3635 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3636 LOG_ERROR("checksum mismatch");
3637 free(buffer);
3638 retval = ERROR_FAIL;
3639 goto done;
3641 if (checksum != mem_checksum) {
3642 /* failed crc checksum, fall back to a binary compare */
3643 uint8_t *data;
3645 if (diffs == 0)
3646 LOG_ERROR("checksum mismatch - attempting binary compare");
3648 data = malloc(buf_cnt);
3650 retval = target_read_buffer(target, image.sections[i].base_address, buf_cnt, data);
3651 if (retval == ERROR_OK) {
3652 uint32_t t;
3653 for (t = 0; t < buf_cnt; t++) {
3654 if (data[t] != buffer[t]) {
3655 command_print(CMD,
3656 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3657 diffs,
3658 (unsigned)(t + image.sections[i].base_address),
3659 data[t],
3660 buffer[t]);
3661 if (diffs++ >= 127) {
3662 command_print(CMD, "More than 128 errors, the rest are not printed.");
3663 free(data);
3664 free(buffer);
3665 goto done;
3668 keep_alive();
3671 free(data);
3673 } else {
3674 command_print(CMD, "address " TARGET_ADDR_FMT " length 0x%08zx",
3675 image.sections[i].base_address,
3676 buf_cnt);
3679 free(buffer);
3680 image_size += buf_cnt;
3682 if (diffs > 0)
3683 command_print(CMD, "No more differences found.");
3684 done:
3685 if (diffs > 0)
3686 retval = ERROR_FAIL;
3687 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3688 command_print(CMD, "verified %" PRIu32 " bytes "
3689 "in %fs (%0.3f KiB/s)", image_size,
3690 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3693 image_close(&image);
3695 return retval;
3698 COMMAND_HANDLER(handle_verify_image_checksum_command)
3700 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3703 COMMAND_HANDLER(handle_verify_image_command)
3705 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3708 COMMAND_HANDLER(handle_test_image_command)
3710 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3713 static int handle_bp_command_list(struct command_invocation *cmd)
3715 struct target *target = get_current_target(cmd->ctx);
3716 struct breakpoint *breakpoint = target->breakpoints;
3717 while (breakpoint) {
3718 if (breakpoint->type == BKPT_SOFT) {
3719 char *buf = buf_to_str(breakpoint->orig_instr,
3720 breakpoint->length, 16);
3721 command_print(cmd, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3722 breakpoint->address,
3723 breakpoint->length,
3724 breakpoint->set, buf);
3725 free(buf);
3726 } else {
3727 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3728 command_print(cmd, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3729 breakpoint->asid,
3730 breakpoint->length, breakpoint->set);
3731 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3732 command_print(cmd, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3733 breakpoint->address,
3734 breakpoint->length, breakpoint->set);
3735 command_print(cmd, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3736 breakpoint->asid);
3737 } else
3738 command_print(cmd, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3739 breakpoint->address,
3740 breakpoint->length, breakpoint->set);
3743 breakpoint = breakpoint->next;
3745 return ERROR_OK;
3748 static int handle_bp_command_set(struct command_invocation *cmd,
3749 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3751 struct target *target = get_current_target(cmd->ctx);
3752 int retval;
3754 if (asid == 0) {
3755 retval = breakpoint_add(target, addr, length, hw);
3756 /* error is always logged in breakpoint_add(), do not print it again */
3757 if (ERROR_OK == retval)
3758 command_print(cmd, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3760 } else if (addr == 0) {
3761 if (target->type->add_context_breakpoint == NULL) {
3762 LOG_ERROR("Context breakpoint not available");
3763 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
3765 retval = context_breakpoint_add(target, asid, length, hw);
3766 /* error is always logged in context_breakpoint_add(), do not print it again */
3767 if (ERROR_OK == retval)
3768 command_print(cmd, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3770 } else {
3771 if (target->type->add_hybrid_breakpoint == NULL) {
3772 LOG_ERROR("Hybrid breakpoint not available");
3773 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
3775 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3776 /* error is always logged in hybrid_breakpoint_add(), do not print it again */
3777 if (ERROR_OK == retval)
3778 command_print(cmd, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3780 return retval;
3783 COMMAND_HANDLER(handle_bp_command)
3785 target_addr_t addr;
3786 uint32_t asid;
3787 uint32_t length;
3788 int hw = BKPT_SOFT;
3790 switch (CMD_ARGC) {
3791 case 0:
3792 return handle_bp_command_list(CMD);
3794 case 2:
3795 asid = 0;
3796 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3797 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3798 return handle_bp_command_set(CMD, addr, asid, length, hw);
3800 case 3:
3801 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3802 hw = BKPT_HARD;
3803 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3804 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3805 asid = 0;
3806 return handle_bp_command_set(CMD, addr, asid, length, hw);
3807 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3808 hw = BKPT_HARD;
3809 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3810 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3811 addr = 0;
3812 return handle_bp_command_set(CMD, addr, asid, length, hw);
3814 /* fallthrough */
3815 case 4:
3816 hw = BKPT_HARD;
3817 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3818 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3819 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3820 return handle_bp_command_set(CMD, addr, asid, length, hw);
3822 default:
3823 return ERROR_COMMAND_SYNTAX_ERROR;
3827 COMMAND_HANDLER(handle_rbp_command)
3829 if (CMD_ARGC != 1)
3830 return ERROR_COMMAND_SYNTAX_ERROR;
3832 target_addr_t addr;
3833 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3835 struct target *target = get_current_target(CMD_CTX);
3836 breakpoint_remove(target, addr);
3838 return ERROR_OK;
3841 COMMAND_HANDLER(handle_wp_command)
3843 struct target *target = get_current_target(CMD_CTX);
3845 if (CMD_ARGC == 0) {
3846 struct watchpoint *watchpoint = target->watchpoints;
3848 while (watchpoint) {
3849 command_print(CMD, "address: " TARGET_ADDR_FMT
3850 ", len: 0x%8.8" PRIx32
3851 ", r/w/a: %i, value: 0x%8.8" PRIx32
3852 ", mask: 0x%8.8" PRIx32,
3853 watchpoint->address,
3854 watchpoint->length,
3855 (int)watchpoint->rw,
3856 watchpoint->value,
3857 watchpoint->mask);
3858 watchpoint = watchpoint->next;
3860 return ERROR_OK;
3863 enum watchpoint_rw type = WPT_ACCESS;
3864 uint32_t addr = 0;
3865 uint32_t length = 0;
3866 uint32_t data_value = 0x0;
3867 uint32_t data_mask = 0xffffffff;
3869 switch (CMD_ARGC) {
3870 case 5:
3871 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3872 /* fall through */
3873 case 4:
3874 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3875 /* fall through */
3876 case 3:
3877 switch (CMD_ARGV[2][0]) {
3878 case 'r':
3879 type = WPT_READ;
3880 break;
3881 case 'w':
3882 type = WPT_WRITE;
3883 break;
3884 case 'a':
3885 type = WPT_ACCESS;
3886 break;
3887 default:
3888 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3889 return ERROR_COMMAND_SYNTAX_ERROR;
3891 /* fall through */
3892 case 2:
3893 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3894 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3895 break;
3897 default:
3898 return ERROR_COMMAND_SYNTAX_ERROR;
3901 int retval = watchpoint_add(target, addr, length, type,
3902 data_value, data_mask);
3903 if (ERROR_OK != retval)
3904 LOG_ERROR("Failure setting watchpoints");
3906 return retval;
3909 COMMAND_HANDLER(handle_rwp_command)
3911 if (CMD_ARGC != 1)
3912 return ERROR_COMMAND_SYNTAX_ERROR;
3914 uint32_t addr;
3915 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3917 struct target *target = get_current_target(CMD_CTX);
3918 watchpoint_remove(target, addr);
3920 return ERROR_OK;
3924 * Translate a virtual address to a physical address.
3926 * The low-level target implementation must have logged a detailed error
3927 * which is forwarded to telnet/GDB session.
3929 COMMAND_HANDLER(handle_virt2phys_command)
3931 if (CMD_ARGC != 1)
3932 return ERROR_COMMAND_SYNTAX_ERROR;
3934 target_addr_t va;
3935 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3936 target_addr_t pa;
3938 struct target *target = get_current_target(CMD_CTX);
3939 int retval = target->type->virt2phys(target, va, &pa);
3940 if (retval == ERROR_OK)
3941 command_print(CMD, "Physical address " TARGET_ADDR_FMT "", pa);
3943 return retval;
3946 static void writeData(FILE *f, const void *data, size_t len)
3948 size_t written = fwrite(data, 1, len, f);
3949 if (written != len)
3950 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3953 static void writeLong(FILE *f, int l, struct target *target)
3955 uint8_t val[4];
3957 target_buffer_set_u32(target, val, l);
3958 writeData(f, val, 4);
3961 static void writeString(FILE *f, char *s)
3963 writeData(f, s, strlen(s));
3966 typedef unsigned char UNIT[2]; /* unit of profiling */
3968 /* Dump a gmon.out histogram file. */
3969 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3970 uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3972 uint32_t i;
3973 FILE *f = fopen(filename, "w");
3974 if (f == NULL)
3975 return;
3976 writeString(f, "gmon");
3977 writeLong(f, 0x00000001, target); /* Version */
3978 writeLong(f, 0, target); /* padding */
3979 writeLong(f, 0, target); /* padding */
3980 writeLong(f, 0, target); /* padding */
3982 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3983 writeData(f, &zero, 1);
3985 /* figure out bucket size */
3986 uint32_t min;
3987 uint32_t max;
3988 if (with_range) {
3989 min = start_address;
3990 max = end_address;
3991 } else {
3992 min = samples[0];
3993 max = samples[0];
3994 for (i = 0; i < sampleNum; i++) {
3995 if (min > samples[i])
3996 min = samples[i];
3997 if (max < samples[i])
3998 max = samples[i];
4001 /* max should be (largest sample + 1)
4002 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
4003 max++;
4006 int addressSpace = max - min;
4007 assert(addressSpace >= 2);
4009 /* FIXME: What is the reasonable number of buckets?
4010 * The profiling result will be more accurate if there are enough buckets. */
4011 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
4012 uint32_t numBuckets = addressSpace / sizeof(UNIT);
4013 if (numBuckets > maxBuckets)
4014 numBuckets = maxBuckets;
4015 int *buckets = malloc(sizeof(int) * numBuckets);
4016 if (buckets == NULL) {
4017 fclose(f);
4018 return;
4020 memset(buckets, 0, sizeof(int) * numBuckets);
4021 for (i = 0; i < sampleNum; i++) {
4022 uint32_t address = samples[i];
4024 if ((address < min) || (max <= address))
4025 continue;
4027 long long a = address - min;
4028 long long b = numBuckets;
4029 long long c = addressSpace;
4030 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
4031 buckets[index_t]++;
4034 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
4035 writeLong(f, min, target); /* low_pc */
4036 writeLong(f, max, target); /* high_pc */
4037 writeLong(f, numBuckets, target); /* # of buckets */
4038 float sample_rate = sampleNum / (duration_ms / 1000.0);
4039 writeLong(f, sample_rate, target);
4040 writeString(f, "seconds");
4041 for (i = 0; i < (15-strlen("seconds")); i++)
4042 writeData(f, &zero, 1);
4043 writeString(f, "s");
4045 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
4047 char *data = malloc(2 * numBuckets);
4048 if (data != NULL) {
4049 for (i = 0; i < numBuckets; i++) {
4050 int val;
4051 val = buckets[i];
4052 if (val > 65535)
4053 val = 65535;
4054 data[i * 2] = val&0xff;
4055 data[i * 2 + 1] = (val >> 8) & 0xff;
4057 free(buckets);
4058 writeData(f, data, numBuckets * 2);
4059 free(data);
4060 } else
4061 free(buckets);
4063 fclose(f);
4066 /* profiling samples the CPU PC as quickly as OpenOCD is able,
4067 * which will be used as a random sampling of PC */
4068 COMMAND_HANDLER(handle_profile_command)
4070 struct target *target = get_current_target(CMD_CTX);
4072 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4073 return ERROR_COMMAND_SYNTAX_ERROR;
4075 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4076 uint32_t offset;
4077 uint32_t num_of_samples;
4078 int retval = ERROR_OK;
4080 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4082 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4083 if (samples == NULL) {
4084 LOG_ERROR("No memory to store samples.");
4085 return ERROR_FAIL;
4088 uint64_t timestart_ms = timeval_ms();
4090 * Some cores let us sample the PC without the
4091 * annoying halt/resume step; for example, ARMv7 PCSR.
4092 * Provide a way to use that more efficient mechanism.
4094 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4095 &num_of_samples, offset);
4096 if (retval != ERROR_OK) {
4097 free(samples);
4098 return retval;
4100 uint32_t duration_ms = timeval_ms() - timestart_ms;
4102 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4104 retval = target_poll(target);
4105 if (retval != ERROR_OK) {
4106 free(samples);
4107 return retval;
4109 if (target->state == TARGET_RUNNING) {
4110 retval = target_halt(target);
4111 if (retval != ERROR_OK) {
4112 free(samples);
4113 return retval;
4117 retval = target_poll(target);
4118 if (retval != ERROR_OK) {
4119 free(samples);
4120 return retval;
4123 uint32_t start_address = 0;
4124 uint32_t end_address = 0;
4125 bool with_range = false;
4126 if (CMD_ARGC == 4) {
4127 with_range = true;
4128 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4129 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4132 write_gmon(samples, num_of_samples, CMD_ARGV[1],
4133 with_range, start_address, end_address, target, duration_ms);
4134 command_print(CMD, "Wrote %s", CMD_ARGV[1]);
4136 free(samples);
4137 return retval;
4140 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4142 char *namebuf;
4143 Jim_Obj *nameObjPtr, *valObjPtr;
4144 int result;
4146 namebuf = alloc_printf("%s(%d)", varname, idx);
4147 if (!namebuf)
4148 return JIM_ERR;
4150 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4151 valObjPtr = Jim_NewIntObj(interp, val);
4152 if (!nameObjPtr || !valObjPtr) {
4153 free(namebuf);
4154 return JIM_ERR;
4157 Jim_IncrRefCount(nameObjPtr);
4158 Jim_IncrRefCount(valObjPtr);
4159 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4160 Jim_DecrRefCount(interp, nameObjPtr);
4161 Jim_DecrRefCount(interp, valObjPtr);
4162 free(namebuf);
4163 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4164 return result;
4167 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4169 struct command_context *context;
4170 struct target *target;
4172 context = current_command_context(interp);
4173 assert(context != NULL);
4175 target = get_current_target(context);
4176 if (target == NULL) {
4177 LOG_ERROR("mem2array: no current target");
4178 return JIM_ERR;
4181 return target_mem2array(interp, target, argc - 1, argv + 1);
4184 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4186 long l;
4187 uint32_t width;
4188 int len;
4189 uint32_t addr;
4190 uint32_t count;
4191 uint32_t v;
4192 const char *varname;
4193 const char *phys;
4194 bool is_phys;
4195 int n, e, retval;
4196 uint32_t i;
4198 /* argv[1] = name of array to receive the data
4199 * argv[2] = desired width
4200 * argv[3] = memory address
4201 * argv[4] = count of times to read
4204 if (argc < 4 || argc > 5) {
4205 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4206 return JIM_ERR;
4208 varname = Jim_GetString(argv[0], &len);
4209 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4211 e = Jim_GetLong(interp, argv[1], &l);
4212 width = l;
4213 if (e != JIM_OK)
4214 return e;
4216 e = Jim_GetLong(interp, argv[2], &l);
4217 addr = l;
4218 if (e != JIM_OK)
4219 return e;
4220 e = Jim_GetLong(interp, argv[3], &l);
4221 len = l;
4222 if (e != JIM_OK)
4223 return e;
4224 is_phys = false;
4225 if (argc > 4) {
4226 phys = Jim_GetString(argv[4], &n);
4227 if (!strncmp(phys, "phys", n))
4228 is_phys = true;
4229 else
4230 return JIM_ERR;
4232 switch (width) {
4233 case 8:
4234 width = 1;
4235 break;
4236 case 16:
4237 width = 2;
4238 break;
4239 case 32:
4240 width = 4;
4241 break;
4242 default:
4243 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4244 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4245 return JIM_ERR;
4247 if (len == 0) {
4248 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4249 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4250 return JIM_ERR;
4252 if ((addr + (len * width)) < addr) {
4253 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4254 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4255 return JIM_ERR;
4257 /* absurd transfer size? */
4258 if (len > 65536) {
4259 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4260 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4261 return JIM_ERR;
4264 if ((width == 1) ||
4265 ((width == 2) && ((addr & 1) == 0)) ||
4266 ((width == 4) && ((addr & 3) == 0))) {
4267 /* all is well */
4268 } else {
4269 char buf[100];
4270 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4271 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4272 addr,
4273 width);
4274 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4275 return JIM_ERR;
4278 /* Transfer loop */
4280 /* index counter */
4281 n = 0;
4283 size_t buffersize = 4096;
4284 uint8_t *buffer = malloc(buffersize);
4285 if (buffer == NULL)
4286 return JIM_ERR;
4288 /* assume ok */
4289 e = JIM_OK;
4290 while (len) {
4291 /* Slurp... in buffer size chunks */
4293 count = len; /* in objects.. */
4294 if (count > (buffersize / width))
4295 count = (buffersize / width);
4297 if (is_phys)
4298 retval = target_read_phys_memory(target, addr, width, count, buffer);
4299 else
4300 retval = target_read_memory(target, addr, width, count, buffer);
4301 if (retval != ERROR_OK) {
4302 /* BOO !*/
4303 LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4304 addr,
4305 width,
4306 count);
4307 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4308 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4309 e = JIM_ERR;
4310 break;
4311 } else {
4312 v = 0; /* shut up gcc */
4313 for (i = 0; i < count ; i++, n++) {
4314 switch (width) {
4315 case 4:
4316 v = target_buffer_get_u32(target, &buffer[i*width]);
4317 break;
4318 case 2:
4319 v = target_buffer_get_u16(target, &buffer[i*width]);
4320 break;
4321 case 1:
4322 v = buffer[i] & 0x0ff;
4323 break;
4325 new_int_array_element(interp, varname, n, v);
4327 len -= count;
4328 addr += count * width;
4332 free(buffer);
4334 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4336 return e;
4339 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4341 char *namebuf;
4342 Jim_Obj *nameObjPtr, *valObjPtr;
4343 int result;
4344 long l;
4346 namebuf = alloc_printf("%s(%d)", varname, idx);
4347 if (!namebuf)
4348 return JIM_ERR;
4350 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4351 if (!nameObjPtr) {
4352 free(namebuf);
4353 return JIM_ERR;
4356 Jim_IncrRefCount(nameObjPtr);
4357 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4358 Jim_DecrRefCount(interp, nameObjPtr);
4359 free(namebuf);
4360 if (valObjPtr == NULL)
4361 return JIM_ERR;
4363 result = Jim_GetLong(interp, valObjPtr, &l);
4364 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4365 *val = l;
4366 return result;
4369 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4371 struct command_context *context;
4372 struct target *target;
4374 context = current_command_context(interp);
4375 assert(context != NULL);
4377 target = get_current_target(context);
4378 if (target == NULL) {
4379 LOG_ERROR("array2mem: no current target");
4380 return JIM_ERR;
4383 return target_array2mem(interp, target, argc-1, argv + 1);
4386 static int target_array2mem(Jim_Interp *interp, struct target *target,
4387 int argc, Jim_Obj *const *argv)
4389 long l;
4390 uint32_t width;
4391 int len;
4392 uint32_t addr;
4393 uint32_t count;
4394 uint32_t v;
4395 const char *varname;
4396 const char *phys;
4397 bool is_phys;
4398 int n, e, retval;
4399 uint32_t i;
4401 /* argv[1] = name of array to get the data
4402 * argv[2] = desired width
4403 * argv[3] = memory address
4404 * argv[4] = count to write
4406 if (argc < 4 || argc > 5) {
4407 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4408 return JIM_ERR;
4410 varname = Jim_GetString(argv[0], &len);
4411 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4413 e = Jim_GetLong(interp, argv[1], &l);
4414 width = l;
4415 if (e != JIM_OK)
4416 return e;
4418 e = Jim_GetLong(interp, argv[2], &l);
4419 addr = l;
4420 if (e != JIM_OK)
4421 return e;
4422 e = Jim_GetLong(interp, argv[3], &l);
4423 len = l;
4424 if (e != JIM_OK)
4425 return e;
4426 is_phys = false;
4427 if (argc > 4) {
4428 phys = Jim_GetString(argv[4], &n);
4429 if (!strncmp(phys, "phys", n))
4430 is_phys = true;
4431 else
4432 return JIM_ERR;
4434 switch (width) {
4435 case 8:
4436 width = 1;
4437 break;
4438 case 16:
4439 width = 2;
4440 break;
4441 case 32:
4442 width = 4;
4443 break;
4444 default:
4445 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4446 Jim_AppendStrings(interp, Jim_GetResult(interp),
4447 "Invalid width param, must be 8/16/32", NULL);
4448 return JIM_ERR;
4450 if (len == 0) {
4451 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4452 Jim_AppendStrings(interp, Jim_GetResult(interp),
4453 "array2mem: zero width read?", NULL);
4454 return JIM_ERR;
4456 if ((addr + (len * width)) < addr) {
4457 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4458 Jim_AppendStrings(interp, Jim_GetResult(interp),
4459 "array2mem: addr + len - wraps to zero?", NULL);
4460 return JIM_ERR;
4462 /* absurd transfer size? */
4463 if (len > 65536) {
4464 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4465 Jim_AppendStrings(interp, Jim_GetResult(interp),
4466 "array2mem: absurd > 64K item request", NULL);
4467 return JIM_ERR;
4470 if ((width == 1) ||
4471 ((width == 2) && ((addr & 1) == 0)) ||
4472 ((width == 4) && ((addr & 3) == 0))) {
4473 /* all is well */
4474 } else {
4475 char buf[100];
4476 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4477 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4478 addr,
4479 width);
4480 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4481 return JIM_ERR;
4484 /* Transfer loop */
4486 /* index counter */
4487 n = 0;
4488 /* assume ok */
4489 e = JIM_OK;
4491 size_t buffersize = 4096;
4492 uint8_t *buffer = malloc(buffersize);
4493 if (buffer == NULL)
4494 return JIM_ERR;
4496 while (len) {
4497 /* Slurp... in buffer size chunks */
4499 count = len; /* in objects.. */
4500 if (count > (buffersize / width))
4501 count = (buffersize / width);
4503 v = 0; /* shut up gcc */
4504 for (i = 0; i < count; i++, n++) {
4505 get_int_array_element(interp, varname, n, &v);
4506 switch (width) {
4507 case 4:
4508 target_buffer_set_u32(target, &buffer[i * width], v);
4509 break;
4510 case 2:
4511 target_buffer_set_u16(target, &buffer[i * width], v);
4512 break;
4513 case 1:
4514 buffer[i] = v & 0x0ff;
4515 break;
4518 len -= count;
4520 if (is_phys)
4521 retval = target_write_phys_memory(target, addr, width, count, buffer);
4522 else
4523 retval = target_write_memory(target, addr, width, count, buffer);
4524 if (retval != ERROR_OK) {
4525 /* BOO !*/
4526 LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4527 addr,
4528 width,
4529 count);
4530 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4531 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4532 e = JIM_ERR;
4533 break;
4535 addr += count * width;
4538 free(buffer);
4540 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4542 return e;
4545 /* FIX? should we propagate errors here rather than printing them
4546 * and continuing?
4548 void target_handle_event(struct target *target, enum target_event e)
4550 struct target_event_action *teap;
4551 int retval;
4553 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4554 if (teap->event == e) {
4555 LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4556 target->target_number,
4557 target_name(target),
4558 target_type_name(target),
4560 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4561 Jim_GetString(teap->body, NULL));
4563 /* Override current target by the target an event
4564 * is issued from (lot of scripts need it).
4565 * Return back to previous override as soon
4566 * as the handler processing is done */
4567 struct command_context *cmd_ctx = current_command_context(teap->interp);
4568 struct target *saved_target_override = cmd_ctx->current_target_override;
4569 cmd_ctx->current_target_override = target;
4570 retval = Jim_EvalObj(teap->interp, teap->body);
4572 if (retval == JIM_RETURN)
4573 retval = teap->interp->returnCode;
4575 if (retval != JIM_OK) {
4576 Jim_MakeErrorMessage(teap->interp);
4577 LOG_USER("Error executing event %s on target %s:\n%s",
4578 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4579 target_name(target),
4580 Jim_GetString(Jim_GetResult(teap->interp), NULL));
4581 /* clean both error code and stacktrace before return */
4582 Jim_Eval(teap->interp, "error \"\" \"\"");
4585 cmd_ctx->current_target_override = saved_target_override;
4591 * Returns true only if the target has a handler for the specified event.
4593 bool target_has_event_action(struct target *target, enum target_event event)
4595 struct target_event_action *teap;
4597 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4598 if (teap->event == event)
4599 return true;
4601 return false;
4604 enum target_cfg_param {
4605 TCFG_TYPE,
4606 TCFG_EVENT,
4607 TCFG_WORK_AREA_VIRT,
4608 TCFG_WORK_AREA_PHYS,
4609 TCFG_WORK_AREA_SIZE,
4610 TCFG_WORK_AREA_BACKUP,
4611 TCFG_ENDIAN,
4612 TCFG_COREID,
4613 TCFG_CHAIN_POSITION,
4614 TCFG_DBGBASE,
4615 TCFG_RTOS,
4616 TCFG_DEFER_EXAMINE,
4617 TCFG_GDB_PORT,
4620 static Jim_Nvp nvp_config_opts[] = {
4621 { .name = "-type", .value = TCFG_TYPE },
4622 { .name = "-event", .value = TCFG_EVENT },
4623 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4624 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4625 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4626 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4627 { .name = "-endian" , .value = TCFG_ENDIAN },
4628 { .name = "-coreid", .value = TCFG_COREID },
4629 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4630 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4631 { .name = "-rtos", .value = TCFG_RTOS },
4632 { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4633 { .name = "-gdb-port", .value = TCFG_GDB_PORT },
4634 { .name = NULL, .value = -1 }
4637 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4639 Jim_Nvp *n;
4640 Jim_Obj *o;
4641 jim_wide w;
4642 int e;
4644 /* parse config or cget options ... */
4645 while (goi->argc > 0) {
4646 Jim_SetEmptyResult(goi->interp);
4647 /* Jim_GetOpt_Debug(goi); */
4649 if (target->type->target_jim_configure) {
4650 /* target defines a configure function */
4651 /* target gets first dibs on parameters */
4652 e = (*(target->type->target_jim_configure))(target, goi);
4653 if (e == JIM_OK) {
4654 /* more? */
4655 continue;
4657 if (e == JIM_ERR) {
4658 /* An error */
4659 return e;
4661 /* otherwise we 'continue' below */
4663 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4664 if (e != JIM_OK) {
4665 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4666 return e;
4668 switch (n->value) {
4669 case TCFG_TYPE:
4670 /* not setable */
4671 if (goi->isconfigure) {
4672 Jim_SetResultFormatted(goi->interp,
4673 "not settable: %s", n->name);
4674 return JIM_ERR;
4675 } else {
4676 no_params:
4677 if (goi->argc != 0) {
4678 Jim_WrongNumArgs(goi->interp,
4679 goi->argc, goi->argv,
4680 "NO PARAMS");
4681 return JIM_ERR;
4684 Jim_SetResultString(goi->interp,
4685 target_type_name(target), -1);
4686 /* loop for more */
4687 break;
4688 case TCFG_EVENT:
4689 if (goi->argc == 0) {
4690 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4691 return JIM_ERR;
4694 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4695 if (e != JIM_OK) {
4696 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4697 return e;
4700 if (goi->isconfigure) {
4701 if (goi->argc != 1) {
4702 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4703 return JIM_ERR;
4705 } else {
4706 if (goi->argc != 0) {
4707 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4708 return JIM_ERR;
4713 struct target_event_action *teap;
4715 teap = target->event_action;
4716 /* replace existing? */
4717 while (teap) {
4718 if (teap->event == (enum target_event)n->value)
4719 break;
4720 teap = teap->next;
4723 if (goi->isconfigure) {
4724 bool replace = true;
4725 if (teap == NULL) {
4726 /* create new */
4727 teap = calloc(1, sizeof(*teap));
4728 replace = false;
4730 teap->event = n->value;
4731 teap->interp = goi->interp;
4732 Jim_GetOpt_Obj(goi, &o);
4733 if (teap->body)
4734 Jim_DecrRefCount(teap->interp, teap->body);
4735 teap->body = Jim_DuplicateObj(goi->interp, o);
4737 * FIXME:
4738 * Tcl/TK - "tk events" have a nice feature.
4739 * See the "BIND" command.
4740 * We should support that here.
4741 * You can specify %X and %Y in the event code.
4742 * The idea is: %T - target name.
4743 * The idea is: %N - target number
4744 * The idea is: %E - event name.
4746 Jim_IncrRefCount(teap->body);
4748 if (!replace) {
4749 /* add to head of event list */
4750 teap->next = target->event_action;
4751 target->event_action = teap;
4753 Jim_SetEmptyResult(goi->interp);
4754 } else {
4755 /* get */
4756 if (teap == NULL)
4757 Jim_SetEmptyResult(goi->interp);
4758 else
4759 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4762 /* loop for more */
4763 break;
4765 case TCFG_WORK_AREA_VIRT:
4766 if (goi->isconfigure) {
4767 target_free_all_working_areas(target);
4768 e = Jim_GetOpt_Wide(goi, &w);
4769 if (e != JIM_OK)
4770 return e;
4771 target->working_area_virt = w;
4772 target->working_area_virt_spec = true;
4773 } else {
4774 if (goi->argc != 0)
4775 goto no_params;
4777 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4778 /* loop for more */
4779 break;
4781 case TCFG_WORK_AREA_PHYS:
4782 if (goi->isconfigure) {
4783 target_free_all_working_areas(target);
4784 e = Jim_GetOpt_Wide(goi, &w);
4785 if (e != JIM_OK)
4786 return e;
4787 target->working_area_phys = w;
4788 target->working_area_phys_spec = true;
4789 } else {
4790 if (goi->argc != 0)
4791 goto no_params;
4793 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4794 /* loop for more */
4795 break;
4797 case TCFG_WORK_AREA_SIZE:
4798 if (goi->isconfigure) {
4799 target_free_all_working_areas(target);
4800 e = Jim_GetOpt_Wide(goi, &w);
4801 if (e != JIM_OK)
4802 return e;
4803 target->working_area_size = w;
4804 } else {
4805 if (goi->argc != 0)
4806 goto no_params;
4808 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4809 /* loop for more */
4810 break;
4812 case TCFG_WORK_AREA_BACKUP:
4813 if (goi->isconfigure) {
4814 target_free_all_working_areas(target);
4815 e = Jim_GetOpt_Wide(goi, &w);
4816 if (e != JIM_OK)
4817 return e;
4818 /* make this exactly 1 or 0 */
4819 target->backup_working_area = (!!w);
4820 } else {
4821 if (goi->argc != 0)
4822 goto no_params;
4824 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4825 /* loop for more e*/
4826 break;
4829 case TCFG_ENDIAN:
4830 if (goi->isconfigure) {
4831 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4832 if (e != JIM_OK) {
4833 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4834 return e;
4836 target->endianness = n->value;
4837 } else {
4838 if (goi->argc != 0)
4839 goto no_params;
4841 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4842 if (n->name == NULL) {
4843 target->endianness = TARGET_LITTLE_ENDIAN;
4844 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4846 Jim_SetResultString(goi->interp, n->name, -1);
4847 /* loop for more */
4848 break;
4850 case TCFG_COREID:
4851 if (goi->isconfigure) {
4852 e = Jim_GetOpt_Wide(goi, &w);
4853 if (e != JIM_OK)
4854 return e;
4855 target->coreid = (int32_t)w;
4856 } else {
4857 if (goi->argc != 0)
4858 goto no_params;
4860 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->coreid));
4861 /* loop for more */
4862 break;
4864 case TCFG_CHAIN_POSITION:
4865 if (goi->isconfigure) {
4866 Jim_Obj *o_t;
4867 struct jtag_tap *tap;
4869 if (target->has_dap) {
4870 Jim_SetResultString(goi->interp,
4871 "target requires -dap parameter instead of -chain-position!", -1);
4872 return JIM_ERR;
4875 target_free_all_working_areas(target);
4876 e = Jim_GetOpt_Obj(goi, &o_t);
4877 if (e != JIM_OK)
4878 return e;
4879 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4880 if (tap == NULL)
4881 return JIM_ERR;
4882 target->tap = tap;
4883 target->tap_configured = true;
4884 } else {
4885 if (goi->argc != 0)
4886 goto no_params;
4888 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4889 /* loop for more e*/
4890 break;
4891 case TCFG_DBGBASE:
4892 if (goi->isconfigure) {
4893 e = Jim_GetOpt_Wide(goi, &w);
4894 if (e != JIM_OK)
4895 return e;
4896 target->dbgbase = (uint32_t)w;
4897 target->dbgbase_set = true;
4898 } else {
4899 if (goi->argc != 0)
4900 goto no_params;
4902 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4903 /* loop for more */
4904 break;
4905 case TCFG_RTOS:
4906 /* RTOS */
4908 int result = rtos_create(goi, target);
4909 if (result != JIM_OK)
4910 return result;
4912 /* loop for more */
4913 break;
4915 case TCFG_DEFER_EXAMINE:
4916 /* DEFER_EXAMINE */
4917 target->defer_examine = true;
4918 /* loop for more */
4919 break;
4921 case TCFG_GDB_PORT:
4922 if (goi->isconfigure) {
4923 struct command_context *cmd_ctx = current_command_context(goi->interp);
4924 if (cmd_ctx->mode != COMMAND_CONFIG) {
4925 Jim_SetResultString(goi->interp, "-gdb-port must be configured before 'init'", -1);
4926 return JIM_ERR;
4929 const char *s;
4930 e = Jim_GetOpt_String(goi, &s, NULL);
4931 if (e != JIM_OK)
4932 return e;
4933 target->gdb_port_override = strdup(s);
4934 } else {
4935 if (goi->argc != 0)
4936 goto no_params;
4938 Jim_SetResultString(goi->interp, target->gdb_port_override ? : "undefined", -1);
4939 /* loop for more */
4940 break;
4942 } /* while (goi->argc) */
4945 /* done - we return */
4946 return JIM_OK;
4949 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4951 Jim_GetOptInfo goi;
4953 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4954 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4955 if (goi.argc < 1) {
4956 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4957 "missing: -option ...");
4958 return JIM_ERR;
4960 struct target *target = Jim_CmdPrivData(goi.interp);
4961 return target_configure(&goi, target);
4964 static int jim_target_mem2array(Jim_Interp *interp,
4965 int argc, Jim_Obj *const *argv)
4967 struct target *target = Jim_CmdPrivData(interp);
4968 return target_mem2array(interp, target, argc - 1, argv + 1);
4971 static int jim_target_array2mem(Jim_Interp *interp,
4972 int argc, Jim_Obj *const *argv)
4974 struct target *target = Jim_CmdPrivData(interp);
4975 return target_array2mem(interp, target, argc - 1, argv + 1);
4978 static int jim_target_tap_disabled(Jim_Interp *interp)
4980 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4981 return JIM_ERR;
4984 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4986 bool allow_defer = false;
4988 Jim_GetOptInfo goi;
4989 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4990 if (goi.argc > 1) {
4991 const char *cmd_name = Jim_GetString(argv[0], NULL);
4992 Jim_SetResultFormatted(goi.interp,
4993 "usage: %s ['allow-defer']", cmd_name);
4994 return JIM_ERR;
4996 if (goi.argc > 0 &&
4997 strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
4998 /* consume it */
4999 struct Jim_Obj *obj;
5000 int e = Jim_GetOpt_Obj(&goi, &obj);
5001 if (e != JIM_OK)
5002 return e;
5003 allow_defer = true;
5006 struct target *target = Jim_CmdPrivData(interp);
5007 if (!target->tap->enabled)
5008 return jim_target_tap_disabled(interp);
5010 if (allow_defer && target->defer_examine) {
5011 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5012 LOG_INFO("Use arp_examine command to examine it manually!");
5013 return JIM_OK;
5016 int e = target->type->examine(target);
5017 if (e != ERROR_OK)
5018 return JIM_ERR;
5019 return JIM_OK;
5022 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5024 struct target *target = Jim_CmdPrivData(interp);
5026 Jim_SetResultBool(interp, target_was_examined(target));
5027 return JIM_OK;
5030 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5032 struct target *target = Jim_CmdPrivData(interp);
5034 Jim_SetResultBool(interp, target->defer_examine);
5035 return JIM_OK;
5038 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5040 if (argc != 1) {
5041 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5042 return JIM_ERR;
5044 struct target *target = Jim_CmdPrivData(interp);
5046 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5047 return JIM_ERR;
5049 return JIM_OK;
5052 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5054 if (argc != 1) {
5055 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5056 return JIM_ERR;
5058 struct target *target = Jim_CmdPrivData(interp);
5059 if (!target->tap->enabled)
5060 return jim_target_tap_disabled(interp);
5062 int e;
5063 if (!(target_was_examined(target)))
5064 e = ERROR_TARGET_NOT_EXAMINED;
5065 else
5066 e = target->type->poll(target);
5067 if (e != ERROR_OK)
5068 return JIM_ERR;
5069 return JIM_OK;
5072 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5074 Jim_GetOptInfo goi;
5075 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5077 if (goi.argc != 2) {
5078 Jim_WrongNumArgs(interp, 0, argv,
5079 "([tT]|[fF]|assert|deassert) BOOL");
5080 return JIM_ERR;
5083 Jim_Nvp *n;
5084 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5085 if (e != JIM_OK) {
5086 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5087 return e;
5089 /* the halt or not param */
5090 jim_wide a;
5091 e = Jim_GetOpt_Wide(&goi, &a);
5092 if (e != JIM_OK)
5093 return e;
5095 struct target *target = Jim_CmdPrivData(goi.interp);
5096 if (!target->tap->enabled)
5097 return jim_target_tap_disabled(interp);
5099 if (!target->type->assert_reset || !target->type->deassert_reset) {
5100 Jim_SetResultFormatted(interp,
5101 "No target-specific reset for %s",
5102 target_name(target));
5103 return JIM_ERR;
5106 if (target->defer_examine)
5107 target_reset_examined(target);
5109 /* determine if we should halt or not. */
5110 target->reset_halt = !!a;
5111 /* When this happens - all workareas are invalid. */
5112 target_free_all_working_areas_restore(target, 0);
5114 /* do the assert */
5115 if (n->value == NVP_ASSERT)
5116 e = target->type->assert_reset(target);
5117 else
5118 e = target->type->deassert_reset(target);
5119 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5122 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5124 if (argc != 1) {
5125 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5126 return JIM_ERR;
5128 struct target *target = Jim_CmdPrivData(interp);
5129 if (!target->tap->enabled)
5130 return jim_target_tap_disabled(interp);
5131 int e = target->type->halt(target);
5132 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5135 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5137 Jim_GetOptInfo goi;
5138 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5140 /* params: <name> statename timeoutmsecs */
5141 if (goi.argc != 2) {
5142 const char *cmd_name = Jim_GetString(argv[0], NULL);
5143 Jim_SetResultFormatted(goi.interp,
5144 "%s <state_name> <timeout_in_msec>", cmd_name);
5145 return JIM_ERR;
5148 Jim_Nvp *n;
5149 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5150 if (e != JIM_OK) {
5151 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5152 return e;
5154 jim_wide a;
5155 e = Jim_GetOpt_Wide(&goi, &a);
5156 if (e != JIM_OK)
5157 return e;
5158 struct target *target = Jim_CmdPrivData(interp);
5159 if (!target->tap->enabled)
5160 return jim_target_tap_disabled(interp);
5162 e = target_wait_state(target, n->value, a);
5163 if (e != ERROR_OK) {
5164 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5165 Jim_SetResultFormatted(goi.interp,
5166 "target: %s wait %s fails (%#s) %s",
5167 target_name(target), n->name,
5168 eObj, target_strerror_safe(e));
5169 return JIM_ERR;
5171 return JIM_OK;
5173 /* List for human, Events defined for this target.
5174 * scripts/programs should use 'name cget -event NAME'
5176 COMMAND_HANDLER(handle_target_event_list)
5178 struct target *target = get_current_target(CMD_CTX);
5179 struct target_event_action *teap = target->event_action;
5181 command_print(CMD, "Event actions for target (%d) %s\n",
5182 target->target_number,
5183 target_name(target));
5184 command_print(CMD, "%-25s | Body", "Event");
5185 command_print(CMD, "------------------------- | "
5186 "----------------------------------------");
5187 while (teap) {
5188 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5189 command_print(CMD, "%-25s | %s",
5190 opt->name, Jim_GetString(teap->body, NULL));
5191 teap = teap->next;
5193 command_print(CMD, "***END***");
5194 return ERROR_OK;
5196 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5198 if (argc != 1) {
5199 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5200 return JIM_ERR;
5202 struct target *target = Jim_CmdPrivData(interp);
5203 Jim_SetResultString(interp, target_state_name(target), -1);
5204 return JIM_OK;
5206 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5208 Jim_GetOptInfo goi;
5209 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5210 if (goi.argc != 1) {
5211 const char *cmd_name = Jim_GetString(argv[0], NULL);
5212 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5213 return JIM_ERR;
5215 Jim_Nvp *n;
5216 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5217 if (e != JIM_OK) {
5218 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5219 return e;
5221 struct target *target = Jim_CmdPrivData(interp);
5222 target_handle_event(target, n->value);
5223 return JIM_OK;
5226 static const struct command_registration target_instance_command_handlers[] = {
5228 .name = "configure",
5229 .mode = COMMAND_ANY,
5230 .jim_handler = jim_target_configure,
5231 .help = "configure a new target for use",
5232 .usage = "[target_attribute ...]",
5235 .name = "cget",
5236 .mode = COMMAND_ANY,
5237 .jim_handler = jim_target_configure,
5238 .help = "returns the specified target attribute",
5239 .usage = "target_attribute",
5242 .name = "mwd",
5243 .handler = handle_mw_command,
5244 .mode = COMMAND_EXEC,
5245 .help = "Write 64-bit word(s) to target memory",
5246 .usage = "address data [count]",
5249 .name = "mww",
5250 .handler = handle_mw_command,
5251 .mode = COMMAND_EXEC,
5252 .help = "Write 32-bit word(s) to target memory",
5253 .usage = "address data [count]",
5256 .name = "mwh",
5257 .handler = handle_mw_command,
5258 .mode = COMMAND_EXEC,
5259 .help = "Write 16-bit half-word(s) to target memory",
5260 .usage = "address data [count]",
5263 .name = "mwb",
5264 .handler = handle_mw_command,
5265 .mode = COMMAND_EXEC,
5266 .help = "Write byte(s) to target memory",
5267 .usage = "address data [count]",
5270 .name = "mdd",
5271 .handler = handle_md_command,
5272 .mode = COMMAND_EXEC,
5273 .help = "Display target memory as 64-bit words",
5274 .usage = "address [count]",
5277 .name = "mdw",
5278 .handler = handle_md_command,
5279 .mode = COMMAND_EXEC,
5280 .help = "Display target memory as 32-bit words",
5281 .usage = "address [count]",
5284 .name = "mdh",
5285 .handler = handle_md_command,
5286 .mode = COMMAND_EXEC,
5287 .help = "Display target memory as 16-bit half-words",
5288 .usage = "address [count]",
5291 .name = "mdb",
5292 .handler = handle_md_command,
5293 .mode = COMMAND_EXEC,
5294 .help = "Display target memory as 8-bit bytes",
5295 .usage = "address [count]",
5298 .name = "array2mem",
5299 .mode = COMMAND_EXEC,
5300 .jim_handler = jim_target_array2mem,
5301 .help = "Writes Tcl array of 8/16/32 bit numbers "
5302 "to target memory",
5303 .usage = "arrayname bitwidth address count",
5306 .name = "mem2array",
5307 .mode = COMMAND_EXEC,
5308 .jim_handler = jim_target_mem2array,
5309 .help = "Loads Tcl array of 8/16/32 bit numbers "
5310 "from target memory",
5311 .usage = "arrayname bitwidth address count",
5314 .name = "eventlist",
5315 .handler = handle_target_event_list,
5316 .mode = COMMAND_EXEC,
5317 .help = "displays a table of events defined for this target",
5318 .usage = "",
5321 .name = "curstate",
5322 .mode = COMMAND_EXEC,
5323 .jim_handler = jim_target_current_state,
5324 .help = "displays the current state of this target",
5327 .name = "arp_examine",
5328 .mode = COMMAND_EXEC,
5329 .jim_handler = jim_target_examine,
5330 .help = "used internally for reset processing",
5331 .usage = "['allow-defer']",
5334 .name = "was_examined",
5335 .mode = COMMAND_EXEC,
5336 .jim_handler = jim_target_was_examined,
5337 .help = "used internally for reset processing",
5340 .name = "examine_deferred",
5341 .mode = COMMAND_EXEC,
5342 .jim_handler = jim_target_examine_deferred,
5343 .help = "used internally for reset processing",
5346 .name = "arp_halt_gdb",
5347 .mode = COMMAND_EXEC,
5348 .jim_handler = jim_target_halt_gdb,
5349 .help = "used internally for reset processing to halt GDB",
5352 .name = "arp_poll",
5353 .mode = COMMAND_EXEC,
5354 .jim_handler = jim_target_poll,
5355 .help = "used internally for reset processing",
5358 .name = "arp_reset",
5359 .mode = COMMAND_EXEC,
5360 .jim_handler = jim_target_reset,
5361 .help = "used internally for reset processing",
5364 .name = "arp_halt",
5365 .mode = COMMAND_EXEC,
5366 .jim_handler = jim_target_halt,
5367 .help = "used internally for reset processing",
5370 .name = "arp_waitstate",
5371 .mode = COMMAND_EXEC,
5372 .jim_handler = jim_target_wait_state,
5373 .help = "used internally for reset processing",
5376 .name = "invoke-event",
5377 .mode = COMMAND_EXEC,
5378 .jim_handler = jim_target_invoke_event,
5379 .help = "invoke handler for specified event",
5380 .usage = "event_name",
5382 COMMAND_REGISTRATION_DONE
5385 static int target_create(Jim_GetOptInfo *goi)
5387 Jim_Obj *new_cmd;
5388 Jim_Cmd *cmd;
5389 const char *cp;
5390 int e;
5391 int x;
5392 struct target *target;
5393 struct command_context *cmd_ctx;
5395 cmd_ctx = current_command_context(goi->interp);
5396 assert(cmd_ctx != NULL);
5398 if (goi->argc < 3) {
5399 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5400 return JIM_ERR;
5403 /* COMMAND */
5404 Jim_GetOpt_Obj(goi, &new_cmd);
5405 /* does this command exist? */
5406 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5407 if (cmd) {
5408 cp = Jim_GetString(new_cmd, NULL);
5409 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5410 return JIM_ERR;
5413 /* TYPE */
5414 e = Jim_GetOpt_String(goi, &cp, NULL);
5415 if (e != JIM_OK)
5416 return e;
5417 struct transport *tr = get_current_transport();
5418 if (tr->override_target) {
5419 e = tr->override_target(&cp);
5420 if (e != ERROR_OK) {
5421 LOG_ERROR("The selected transport doesn't support this target");
5422 return JIM_ERR;
5424 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5426 /* now does target type exist */
5427 for (x = 0 ; target_types[x] ; x++) {
5428 if (0 == strcmp(cp, target_types[x]->name)) {
5429 /* found */
5430 break;
5433 /* check for deprecated name */
5434 if (target_types[x]->deprecated_name) {
5435 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5436 /* found */
5437 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5438 break;
5442 if (target_types[x] == NULL) {
5443 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5444 for (x = 0 ; target_types[x] ; x++) {
5445 if (target_types[x + 1]) {
5446 Jim_AppendStrings(goi->interp,
5447 Jim_GetResult(goi->interp),
5448 target_types[x]->name,
5449 ", ", NULL);
5450 } else {
5451 Jim_AppendStrings(goi->interp,
5452 Jim_GetResult(goi->interp),
5453 " or ",
5454 target_types[x]->name, NULL);
5457 return JIM_ERR;
5460 /* Create it */
5461 target = calloc(1, sizeof(struct target));
5462 /* set target number */
5463 target->target_number = new_target_number();
5464 cmd_ctx->current_target = target;
5466 /* allocate memory for each unique target type */
5467 target->type = calloc(1, sizeof(struct target_type));
5469 memcpy(target->type, target_types[x], sizeof(struct target_type));
5471 /* will be set by "-endian" */
5472 target->endianness = TARGET_ENDIAN_UNKNOWN;
5474 /* default to first core, override with -coreid */
5475 target->coreid = 0;
5477 target->working_area = 0x0;
5478 target->working_area_size = 0x0;
5479 target->working_areas = NULL;
5480 target->backup_working_area = 0;
5482 target->state = TARGET_UNKNOWN;
5483 target->debug_reason = DBG_REASON_UNDEFINED;
5484 target->reg_cache = NULL;
5485 target->breakpoints = NULL;
5486 target->watchpoints = NULL;
5487 target->next = NULL;
5488 target->arch_info = NULL;
5490 target->verbose_halt_msg = true;
5492 target->halt_issued = false;
5494 /* initialize trace information */
5495 target->trace_info = calloc(1, sizeof(struct trace));
5497 target->dbgmsg = NULL;
5498 target->dbg_msg_enabled = 0;
5500 target->endianness = TARGET_ENDIAN_UNKNOWN;
5502 target->rtos = NULL;
5503 target->rtos_auto_detect = false;
5505 target->gdb_port_override = NULL;
5507 /* Do the rest as "configure" options */
5508 goi->isconfigure = 1;
5509 e = target_configure(goi, target);
5511 if (e == JIM_OK) {
5512 if (target->has_dap) {
5513 if (!target->dap_configured) {
5514 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5515 e = JIM_ERR;
5517 } else {
5518 if (!target->tap_configured) {
5519 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5520 e = JIM_ERR;
5523 /* tap must be set after target was configured */
5524 if (target->tap == NULL)
5525 e = JIM_ERR;
5528 if (e != JIM_OK) {
5529 free(target->gdb_port_override);
5530 free(target->type);
5531 free(target);
5532 return e;
5535 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5536 /* default endian to little if not specified */
5537 target->endianness = TARGET_LITTLE_ENDIAN;
5540 cp = Jim_GetString(new_cmd, NULL);
5541 target->cmd_name = strdup(cp);
5543 if (target->type->target_create) {
5544 e = (*(target->type->target_create))(target, goi->interp);
5545 if (e != ERROR_OK) {
5546 LOG_DEBUG("target_create failed");
5547 free(target->gdb_port_override);
5548 free(target->type);
5549 free(target->cmd_name);
5550 free(target);
5551 return JIM_ERR;
5555 /* create the target specific commands */
5556 if (target->type->commands) {
5557 e = register_commands(cmd_ctx, NULL, target->type->commands);
5558 if (ERROR_OK != e)
5559 LOG_ERROR("unable to register '%s' commands", cp);
5562 /* append to end of list */
5564 struct target **tpp;
5565 tpp = &(all_targets);
5566 while (*tpp)
5567 tpp = &((*tpp)->next);
5568 *tpp = target;
5571 /* now - create the new target name command */
5572 const struct command_registration target_subcommands[] = {
5574 .chain = target_instance_command_handlers,
5577 .chain = target->type->commands,
5579 COMMAND_REGISTRATION_DONE
5581 const struct command_registration target_commands[] = {
5583 .name = cp,
5584 .mode = COMMAND_ANY,
5585 .help = "target command group",
5586 .usage = "",
5587 .chain = target_subcommands,
5589 COMMAND_REGISTRATION_DONE
5591 e = register_commands(cmd_ctx, NULL, target_commands);
5592 if (ERROR_OK != e)
5593 return JIM_ERR;
5595 struct command *c = command_find_in_context(cmd_ctx, cp);
5596 assert(c);
5597 command_set_handler_data(c, target);
5599 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5602 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5604 if (argc != 1) {
5605 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5606 return JIM_ERR;
5608 struct command_context *cmd_ctx = current_command_context(interp);
5609 assert(cmd_ctx != NULL);
5611 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5612 return JIM_OK;
5615 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5617 if (argc != 1) {
5618 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5619 return JIM_ERR;
5621 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5622 for (unsigned x = 0; NULL != target_types[x]; x++) {
5623 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5624 Jim_NewStringObj(interp, target_types[x]->name, -1));
5626 return JIM_OK;
5629 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5631 if (argc != 1) {
5632 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5633 return JIM_ERR;
5635 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5636 struct target *target = all_targets;
5637 while (target) {
5638 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5639 Jim_NewStringObj(interp, target_name(target), -1));
5640 target = target->next;
5642 return JIM_OK;
5645 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5647 int i;
5648 const char *targetname;
5649 int retval, len;
5650 struct target *target = (struct target *) NULL;
5651 struct target_list *head, *curr, *new;
5652 curr = (struct target_list *) NULL;
5653 head = (struct target_list *) NULL;
5655 retval = 0;
5656 LOG_DEBUG("%d", argc);
5657 /* argv[1] = target to associate in smp
5658 * argv[2] = target to assoicate in smp
5659 * argv[3] ...
5662 for (i = 1; i < argc; i++) {
5664 targetname = Jim_GetString(argv[i], &len);
5665 target = get_target(targetname);
5666 LOG_DEBUG("%s ", targetname);
5667 if (target) {
5668 new = malloc(sizeof(struct target_list));
5669 new->target = target;
5670 new->next = (struct target_list *)NULL;
5671 if (head == (struct target_list *)NULL) {
5672 head = new;
5673 curr = head;
5674 } else {
5675 curr->next = new;
5676 curr = new;
5680 /* now parse the list of cpu and put the target in smp mode*/
5681 curr = head;
5683 while (curr != (struct target_list *)NULL) {
5684 target = curr->target;
5685 target->smp = 1;
5686 target->head = head;
5687 curr = curr->next;
5690 if (target && target->rtos)
5691 retval = rtos_smp_init(head->target);
5693 return retval;
5697 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5699 Jim_GetOptInfo goi;
5700 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5701 if (goi.argc < 3) {
5702 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5703 "<name> <target_type> [<target_options> ...]");
5704 return JIM_ERR;
5706 return target_create(&goi);
5709 static const struct command_registration target_subcommand_handlers[] = {
5711 .name = "init",
5712 .mode = COMMAND_CONFIG,
5713 .handler = handle_target_init_command,
5714 .help = "initialize targets",
5715 .usage = "",
5718 .name = "create",
5719 .mode = COMMAND_CONFIG,
5720 .jim_handler = jim_target_create,
5721 .usage = "name type '-chain-position' name [options ...]",
5722 .help = "Creates and selects a new target",
5725 .name = "current",
5726 .mode = COMMAND_ANY,
5727 .jim_handler = jim_target_current,
5728 .help = "Returns the currently selected target",
5731 .name = "types",
5732 .mode = COMMAND_ANY,
5733 .jim_handler = jim_target_types,
5734 .help = "Returns the available target types as "
5735 "a list of strings",
5738 .name = "names",
5739 .mode = COMMAND_ANY,
5740 .jim_handler = jim_target_names,
5741 .help = "Returns the names of all targets as a list of strings",
5744 .name = "smp",
5745 .mode = COMMAND_ANY,
5746 .jim_handler = jim_target_smp,
5747 .usage = "targetname1 targetname2 ...",
5748 .help = "gather several target in a smp list"
5751 COMMAND_REGISTRATION_DONE
5754 struct FastLoad {
5755 target_addr_t address;
5756 uint8_t *data;
5757 int length;
5761 static int fastload_num;
5762 static struct FastLoad *fastload;
5764 static void free_fastload(void)
5766 if (fastload != NULL) {
5767 int i;
5768 for (i = 0; i < fastload_num; i++) {
5769 if (fastload[i].data)
5770 free(fastload[i].data);
5772 free(fastload);
5773 fastload = NULL;
5777 COMMAND_HANDLER(handle_fast_load_image_command)
5779 uint8_t *buffer;
5780 size_t buf_cnt;
5781 uint32_t image_size;
5782 target_addr_t min_address = 0;
5783 target_addr_t max_address = -1;
5784 int i;
5786 struct image image;
5788 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5789 &image, &min_address, &max_address);
5790 if (ERROR_OK != retval)
5791 return retval;
5793 struct duration bench;
5794 duration_start(&bench);
5796 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5797 if (retval != ERROR_OK)
5798 return retval;
5800 image_size = 0x0;
5801 retval = ERROR_OK;
5802 fastload_num = image.num_sections;
5803 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5804 if (fastload == NULL) {
5805 command_print(CMD, "out of memory");
5806 image_close(&image);
5807 return ERROR_FAIL;
5809 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5810 for (i = 0; i < image.num_sections; i++) {
5811 buffer = malloc(image.sections[i].size);
5812 if (buffer == NULL) {
5813 command_print(CMD, "error allocating buffer for section (%d bytes)",
5814 (int)(image.sections[i].size));
5815 retval = ERROR_FAIL;
5816 break;
5819 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5820 if (retval != ERROR_OK) {
5821 free(buffer);
5822 break;
5825 uint32_t offset = 0;
5826 uint32_t length = buf_cnt;
5828 /* DANGER!!! beware of unsigned comparision here!!! */
5830 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5831 (image.sections[i].base_address < max_address)) {
5832 if (image.sections[i].base_address < min_address) {
5833 /* clip addresses below */
5834 offset += min_address-image.sections[i].base_address;
5835 length -= offset;
5838 if (image.sections[i].base_address + buf_cnt > max_address)
5839 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5841 fastload[i].address = image.sections[i].base_address + offset;
5842 fastload[i].data = malloc(length);
5843 if (fastload[i].data == NULL) {
5844 free(buffer);
5845 command_print(CMD, "error allocating buffer for section (%" PRIu32 " bytes)",
5846 length);
5847 retval = ERROR_FAIL;
5848 break;
5850 memcpy(fastload[i].data, buffer + offset, length);
5851 fastload[i].length = length;
5853 image_size += length;
5854 command_print(CMD, "%u bytes written at address 0x%8.8x",
5855 (unsigned int)length,
5856 ((unsigned int)(image.sections[i].base_address + offset)));
5859 free(buffer);
5862 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5863 command_print(CMD, "Loaded %" PRIu32 " bytes "
5864 "in %fs (%0.3f KiB/s)", image_size,
5865 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5867 command_print(CMD,
5868 "WARNING: image has not been loaded to target!"
5869 "You can issue a 'fast_load' to finish loading.");
5872 image_close(&image);
5874 if (retval != ERROR_OK)
5875 free_fastload();
5877 return retval;
5880 COMMAND_HANDLER(handle_fast_load_command)
5882 if (CMD_ARGC > 0)
5883 return ERROR_COMMAND_SYNTAX_ERROR;
5884 if (fastload == NULL) {
5885 LOG_ERROR("No image in memory");
5886 return ERROR_FAIL;
5888 int i;
5889 int64_t ms = timeval_ms();
5890 int size = 0;
5891 int retval = ERROR_OK;
5892 for (i = 0; i < fastload_num; i++) {
5893 struct target *target = get_current_target(CMD_CTX);
5894 command_print(CMD, "Write to 0x%08x, length 0x%08x",
5895 (unsigned int)(fastload[i].address),
5896 (unsigned int)(fastload[i].length));
5897 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5898 if (retval != ERROR_OK)
5899 break;
5900 size += fastload[i].length;
5902 if (retval == ERROR_OK) {
5903 int64_t after = timeval_ms();
5904 command_print(CMD, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5906 return retval;
5909 static const struct command_registration target_command_handlers[] = {
5911 .name = "targets",
5912 .handler = handle_targets_command,
5913 .mode = COMMAND_ANY,
5914 .help = "change current default target (one parameter) "
5915 "or prints table of all targets (no parameters)",
5916 .usage = "[target]",
5919 .name = "target",
5920 .mode = COMMAND_CONFIG,
5921 .help = "configure target",
5922 .chain = target_subcommand_handlers,
5923 .usage = "",
5925 COMMAND_REGISTRATION_DONE
5928 int target_register_commands(struct command_context *cmd_ctx)
5930 return register_commands(cmd_ctx, NULL, target_command_handlers);
5933 static bool target_reset_nag = true;
5935 bool get_target_reset_nag(void)
5937 return target_reset_nag;
5940 COMMAND_HANDLER(handle_target_reset_nag)
5942 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5943 &target_reset_nag, "Nag after each reset about options to improve "
5944 "performance");
5947 COMMAND_HANDLER(handle_ps_command)
5949 struct target *target = get_current_target(CMD_CTX);
5950 char *display;
5951 if (target->state != TARGET_HALTED) {
5952 LOG_INFO("target not halted !!");
5953 return ERROR_OK;
5956 if ((target->rtos) && (target->rtos->type)
5957 && (target->rtos->type->ps_command)) {
5958 display = target->rtos->type->ps_command(target);
5959 command_print(CMD, "%s", display);
5960 free(display);
5961 return ERROR_OK;
5962 } else {
5963 LOG_INFO("failed");
5964 return ERROR_TARGET_FAILURE;
5968 static void binprint(struct command_invocation *cmd, const char *text, const uint8_t *buf, int size)
5970 if (text != NULL)
5971 command_print_sameline(cmd, "%s", text);
5972 for (int i = 0; i < size; i++)
5973 command_print_sameline(cmd, " %02x", buf[i]);
5974 command_print(cmd, " ");
5977 COMMAND_HANDLER(handle_test_mem_access_command)
5979 struct target *target = get_current_target(CMD_CTX);
5980 uint32_t test_size;
5981 int retval = ERROR_OK;
5983 if (target->state != TARGET_HALTED) {
5984 LOG_INFO("target not halted !!");
5985 return ERROR_FAIL;
5988 if (CMD_ARGC != 1)
5989 return ERROR_COMMAND_SYNTAX_ERROR;
5991 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5993 /* Test reads */
5994 size_t num_bytes = test_size + 4;
5996 struct working_area *wa = NULL;
5997 retval = target_alloc_working_area(target, num_bytes, &wa);
5998 if (retval != ERROR_OK) {
5999 LOG_ERROR("Not enough working area");
6000 return ERROR_FAIL;
6003 uint8_t *test_pattern = malloc(num_bytes);
6005 for (size_t i = 0; i < num_bytes; i++)
6006 test_pattern[i] = rand();
6008 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6009 if (retval != ERROR_OK) {
6010 LOG_ERROR("Test pattern write failed");
6011 goto out;
6014 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6015 for (int size = 1; size <= 4; size *= 2) {
6016 for (int offset = 0; offset < 4; offset++) {
6017 uint32_t count = test_size / size;
6018 size_t host_bufsiz = (count + 2) * size + host_offset;
6019 uint8_t *read_ref = malloc(host_bufsiz);
6020 uint8_t *read_buf = malloc(host_bufsiz);
6022 for (size_t i = 0; i < host_bufsiz; i++) {
6023 read_ref[i] = rand();
6024 read_buf[i] = read_ref[i];
6026 command_print_sameline(CMD,
6027 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6028 size, offset, host_offset ? "un" : "");
6030 struct duration bench;
6031 duration_start(&bench);
6033 retval = target_read_memory(target, wa->address + offset, size, count,
6034 read_buf + size + host_offset);
6036 duration_measure(&bench);
6038 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6039 command_print(CMD, "Unsupported alignment");
6040 goto next;
6041 } else if (retval != ERROR_OK) {
6042 command_print(CMD, "Memory read failed");
6043 goto next;
6046 /* replay on host */
6047 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6049 /* check result */
6050 int result = memcmp(read_ref, read_buf, host_bufsiz);
6051 if (result == 0) {
6052 command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6053 duration_elapsed(&bench),
6054 duration_kbps(&bench, count * size));
6055 } else {
6056 command_print(CMD, "Compare failed");
6057 binprint(CMD, "ref:", read_ref, host_bufsiz);
6058 binprint(CMD, "buf:", read_buf, host_bufsiz);
6060 next:
6061 free(read_ref);
6062 free(read_buf);
6067 out:
6068 free(test_pattern);
6070 if (wa != NULL)
6071 target_free_working_area(target, wa);
6073 /* Test writes */
6074 num_bytes = test_size + 4 + 4 + 4;
6076 retval = target_alloc_working_area(target, num_bytes, &wa);
6077 if (retval != ERROR_OK) {
6078 LOG_ERROR("Not enough working area");
6079 return ERROR_FAIL;
6082 test_pattern = malloc(num_bytes);
6084 for (size_t i = 0; i < num_bytes; i++)
6085 test_pattern[i] = rand();
6087 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6088 for (int size = 1; size <= 4; size *= 2) {
6089 for (int offset = 0; offset < 4; offset++) {
6090 uint32_t count = test_size / size;
6091 size_t host_bufsiz = count * size + host_offset;
6092 uint8_t *read_ref = malloc(num_bytes);
6093 uint8_t *read_buf = malloc(num_bytes);
6094 uint8_t *write_buf = malloc(host_bufsiz);
6096 for (size_t i = 0; i < host_bufsiz; i++)
6097 write_buf[i] = rand();
6098 command_print_sameline(CMD,
6099 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6100 size, offset, host_offset ? "un" : "");
6102 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6103 if (retval != ERROR_OK) {
6104 command_print(CMD, "Test pattern write failed");
6105 goto nextw;
6108 /* replay on host */
6109 memcpy(read_ref, test_pattern, num_bytes);
6110 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6112 struct duration bench;
6113 duration_start(&bench);
6115 retval = target_write_memory(target, wa->address + size + offset, size, count,
6116 write_buf + host_offset);
6118 duration_measure(&bench);
6120 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6121 command_print(CMD, "Unsupported alignment");
6122 goto nextw;
6123 } else if (retval != ERROR_OK) {
6124 command_print(CMD, "Memory write failed");
6125 goto nextw;
6128 /* read back */
6129 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6130 if (retval != ERROR_OK) {
6131 command_print(CMD, "Test pattern write failed");
6132 goto nextw;
6135 /* check result */
6136 int result = memcmp(read_ref, read_buf, num_bytes);
6137 if (result == 0) {
6138 command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6139 duration_elapsed(&bench),
6140 duration_kbps(&bench, count * size));
6141 } else {
6142 command_print(CMD, "Compare failed");
6143 binprint(CMD, "ref:", read_ref, num_bytes);
6144 binprint(CMD, "buf:", read_buf, num_bytes);
6146 nextw:
6147 free(read_ref);
6148 free(read_buf);
6153 free(test_pattern);
6155 if (wa != NULL)
6156 target_free_working_area(target, wa);
6157 return retval;
6160 static const struct command_registration target_exec_command_handlers[] = {
6162 .name = "fast_load_image",
6163 .handler = handle_fast_load_image_command,
6164 .mode = COMMAND_ANY,
6165 .help = "Load image into server memory for later use by "
6166 "fast_load; primarily for profiling",
6167 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6168 "[min_address [max_length]]",
6171 .name = "fast_load",
6172 .handler = handle_fast_load_command,
6173 .mode = COMMAND_EXEC,
6174 .help = "loads active fast load image to current target "
6175 "- mainly for profiling purposes",
6176 .usage = "",
6179 .name = "profile",
6180 .handler = handle_profile_command,
6181 .mode = COMMAND_EXEC,
6182 .usage = "seconds filename [start end]",
6183 .help = "profiling samples the CPU PC",
6185 /** @todo don't register virt2phys() unless target supports it */
6187 .name = "virt2phys",
6188 .handler = handle_virt2phys_command,
6189 .mode = COMMAND_ANY,
6190 .help = "translate a virtual address into a physical address",
6191 .usage = "virtual_address",
6194 .name = "reg",
6195 .handler = handle_reg_command,
6196 .mode = COMMAND_EXEC,
6197 .help = "display (reread from target with \"force\") or set a register; "
6198 "with no arguments, displays all registers and their values",
6199 .usage = "[(register_number|register_name) [(value|'force')]]",
6202 .name = "poll",
6203 .handler = handle_poll_command,
6204 .mode = COMMAND_EXEC,
6205 .help = "poll target state; or reconfigure background polling",
6206 .usage = "['on'|'off']",
6209 .name = "wait_halt",
6210 .handler = handle_wait_halt_command,
6211 .mode = COMMAND_EXEC,
6212 .help = "wait up to the specified number of milliseconds "
6213 "(default 5000) for a previously requested halt",
6214 .usage = "[milliseconds]",
6217 .name = "halt",
6218 .handler = handle_halt_command,
6219 .mode = COMMAND_EXEC,
6220 .help = "request target to halt, then wait up to the specified"
6221 "number of milliseconds (default 5000) for it to complete",
6222 .usage = "[milliseconds]",
6225 .name = "resume",
6226 .handler = handle_resume_command,
6227 .mode = COMMAND_EXEC,
6228 .help = "resume target execution from current PC or address",
6229 .usage = "[address]",
6232 .name = "reset",
6233 .handler = handle_reset_command,
6234 .mode = COMMAND_EXEC,
6235 .usage = "[run|halt|init]",
6236 .help = "Reset all targets into the specified mode."
6237 "Default reset mode is run, if not given.",
6240 .name = "soft_reset_halt",
6241 .handler = handle_soft_reset_halt_command,
6242 .mode = COMMAND_EXEC,
6243 .usage = "",
6244 .help = "halt the target and do a soft reset",
6247 .name = "step",
6248 .handler = handle_step_command,
6249 .mode = COMMAND_EXEC,
6250 .help = "step one instruction from current PC or address",
6251 .usage = "[address]",
6254 .name = "mdd",
6255 .handler = handle_md_command,
6256 .mode = COMMAND_EXEC,
6257 .help = "display memory double-words",
6258 .usage = "['phys'] address [count]",
6261 .name = "mdw",
6262 .handler = handle_md_command,
6263 .mode = COMMAND_EXEC,
6264 .help = "display memory words",
6265 .usage = "['phys'] address [count]",
6268 .name = "mdh",
6269 .handler = handle_md_command,
6270 .mode = COMMAND_EXEC,
6271 .help = "display memory half-words",
6272 .usage = "['phys'] address [count]",
6275 .name = "mdb",
6276 .handler = handle_md_command,
6277 .mode = COMMAND_EXEC,
6278 .help = "display memory bytes",
6279 .usage = "['phys'] address [count]",
6282 .name = "mwd",
6283 .handler = handle_mw_command,
6284 .mode = COMMAND_EXEC,
6285 .help = "write memory double-word",
6286 .usage = "['phys'] address value [count]",
6289 .name = "mww",
6290 .handler = handle_mw_command,
6291 .mode = COMMAND_EXEC,
6292 .help = "write memory word",
6293 .usage = "['phys'] address value [count]",
6296 .name = "mwh",
6297 .handler = handle_mw_command,
6298 .mode = COMMAND_EXEC,
6299 .help = "write memory half-word",
6300 .usage = "['phys'] address value [count]",
6303 .name = "mwb",
6304 .handler = handle_mw_command,
6305 .mode = COMMAND_EXEC,
6306 .help = "write memory byte",
6307 .usage = "['phys'] address value [count]",
6310 .name = "bp",
6311 .handler = handle_bp_command,
6312 .mode = COMMAND_EXEC,
6313 .help = "list or set hardware or software breakpoint",
6314 .usage = "[<address> [<asid>] <length> ['hw'|'hw_ctx']]",
6317 .name = "rbp",
6318 .handler = handle_rbp_command,
6319 .mode = COMMAND_EXEC,
6320 .help = "remove breakpoint",
6321 .usage = "address",
6324 .name = "wp",
6325 .handler = handle_wp_command,
6326 .mode = COMMAND_EXEC,
6327 .help = "list (no params) or create watchpoints",
6328 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6331 .name = "rwp",
6332 .handler = handle_rwp_command,
6333 .mode = COMMAND_EXEC,
6334 .help = "remove watchpoint",
6335 .usage = "address",
6338 .name = "load_image",
6339 .handler = handle_load_image_command,
6340 .mode = COMMAND_EXEC,
6341 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6342 "[min_address] [max_length]",
6345 .name = "dump_image",
6346 .handler = handle_dump_image_command,
6347 .mode = COMMAND_EXEC,
6348 .usage = "filename address size",
6351 .name = "verify_image_checksum",
6352 .handler = handle_verify_image_checksum_command,
6353 .mode = COMMAND_EXEC,
6354 .usage = "filename [offset [type]]",
6357 .name = "verify_image",
6358 .handler = handle_verify_image_command,
6359 .mode = COMMAND_EXEC,
6360 .usage = "filename [offset [type]]",
6363 .name = "test_image",
6364 .handler = handle_test_image_command,
6365 .mode = COMMAND_EXEC,
6366 .usage = "filename [offset [type]]",
6369 .name = "mem2array",
6370 .mode = COMMAND_EXEC,
6371 .jim_handler = jim_mem2array,
6372 .help = "read 8/16/32 bit memory and return as a TCL array "
6373 "for script processing",
6374 .usage = "arrayname bitwidth address count",
6377 .name = "array2mem",
6378 .mode = COMMAND_EXEC,
6379 .jim_handler = jim_array2mem,
6380 .help = "convert a TCL array to memory locations "
6381 "and write the 8/16/32 bit values",
6382 .usage = "arrayname bitwidth address count",
6385 .name = "reset_nag",
6386 .handler = handle_target_reset_nag,
6387 .mode = COMMAND_ANY,
6388 .help = "Nag after each reset about options that could have been "
6389 "enabled to improve performance. ",
6390 .usage = "['enable'|'disable']",
6393 .name = "ps",
6394 .handler = handle_ps_command,
6395 .mode = COMMAND_EXEC,
6396 .help = "list all tasks ",
6397 .usage = " ",
6400 .name = "test_mem_access",
6401 .handler = handle_test_mem_access_command,
6402 .mode = COMMAND_EXEC,
6403 .help = "Test the target's memory access functions",
6404 .usage = "size",
6407 COMMAND_REGISTRATION_DONE
6409 static int target_register_user_commands(struct command_context *cmd_ctx)
6411 int retval = ERROR_OK;
6412 retval = target_request_register_commands(cmd_ctx);
6413 if (retval != ERROR_OK)
6414 return retval;
6416 retval = trace_register_commands(cmd_ctx);
6417 if (retval != ERROR_OK)
6418 return retval;
6421 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);