target/adiv5: probe MEM-AP supported transfer sizes including large data
[openocd.git] / src / target / target.h
blobf69ee77ac42627aae66358cf79864e0408fa53fa
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 /***************************************************************************
4 * Copyright (C) 2005 by Dominic Rath *
5 * Dominic.Rath@gmx.de *
6 * *
7 * Copyright (C) 2007-2010 Øyvind Harboe *
8 * oyvind.harboe@zylin.com *
9 * *
10 * Copyright (C) 2008 by Spencer Oliver *
11 * spen@spen-soft.co.uk *
12 * *
13 * Copyright (C) 2011 by Broadcom Corporation *
14 * Evan Hunter - ehunter@broadcom.com *
15 * *
16 * Copyright (C) ST-Ericsson SA 2011 *
17 * michel.jaouen@stericsson.com : smp minimum support *
18 ***************************************************************************/
20 #ifndef OPENOCD_TARGET_TARGET_H
21 #define OPENOCD_TARGET_TARGET_H
23 #include <helper/list.h>
24 #include "helper/replacements.h"
25 #include "helper/system.h"
26 #include <jim.h>
28 struct reg;
29 struct trace;
30 struct command_context;
31 struct command_invocation;
32 struct breakpoint;
33 struct watchpoint;
34 struct mem_param;
35 struct reg_param;
36 struct target_list;
37 struct gdb_fileio_info;
40 * TARGET_UNKNOWN = 0: we don't know anything about the target yet
41 * TARGET_RUNNING = 1: the target is executing or ready to execute user code
42 * TARGET_HALTED = 2: the target is not executing code, and ready to talk to the
43 * debugger. on an xscale it means that the debug handler is executing
44 * TARGET_RESET = 3: the target is being held in reset (only a temporary state,
45 * not sure how this is used with all the recent changes)
46 * TARGET_DEBUG_RUNNING = 4: the target is running, but it is executing code on
47 * behalf of the debugger (e.g. algorithm for flashing)
49 * also see: target_state_name();
52 enum target_state {
53 TARGET_UNKNOWN = 0,
54 TARGET_RUNNING = 1,
55 TARGET_HALTED = 2,
56 TARGET_RESET = 3,
57 TARGET_DEBUG_RUNNING = 4,
60 enum target_reset_mode {
61 RESET_UNKNOWN = 0,
62 RESET_RUN = 1, /* reset and let target run */
63 RESET_HALT = 2, /* reset and halt target out of reset */
64 RESET_INIT = 3, /* reset and halt target out of reset, then run init script */
67 enum target_debug_reason {
68 DBG_REASON_DBGRQ = 0,
69 DBG_REASON_BREAKPOINT = 1,
70 DBG_REASON_WATCHPOINT = 2,
71 DBG_REASON_WPTANDBKPT = 3,
72 DBG_REASON_SINGLESTEP = 4,
73 DBG_REASON_NOTHALTED = 5,
74 DBG_REASON_EXIT = 6,
75 DBG_REASON_EXC_CATCH = 7,
76 DBG_REASON_UNDEFINED = 8,
79 enum target_endianness {
80 TARGET_ENDIAN_UNKNOWN = 0,
81 TARGET_BIG_ENDIAN = 1, TARGET_LITTLE_ENDIAN = 2
84 struct working_area {
85 target_addr_t address;
86 uint32_t size;
87 bool free;
88 uint8_t *backup;
89 struct working_area **user;
90 struct working_area *next;
93 struct gdb_service {
94 struct target *target;
95 /* field for smp display */
96 /* element 0 coreid currently displayed ( 1 till n) */
97 /* element 1 coreid to be displayed at next resume 1 till n 0 means resume
98 * all cores core displayed */
99 int32_t core[2];
102 /* target back off timer */
103 struct backoff_timer {
104 int times;
105 int count;
108 /* split target registers into multiple class */
109 enum target_register_class {
110 REG_CLASS_ALL,
111 REG_CLASS_GENERAL,
114 /* target_type.h contains the full definition of struct target_type */
115 struct target {
116 struct target_type *type; /* target type definition (name, access functions) */
117 char *cmd_name; /* tcl Name of target */
118 struct jtag_tap *tap; /* where on the jtag chain is this */
119 int32_t coreid; /* which device on the TAP? */
121 /** Should we defer examine to later */
122 bool defer_examine;
125 * Indicates whether this target has been examined.
127 * Do @b not access this field directly, use target_was_examined()
128 * or target_set_examined().
130 bool examined;
133 * true if the target is currently running a downloaded
134 * "algorithm" instead of arbitrary user code. OpenOCD code
135 * invoking algorithms is trusted to maintain correctness of
136 * any cached state (e.g. for flash status), which arbitrary
137 * code will have no reason to know about.
139 bool running_alg;
141 struct target_event_action *event_action;
143 bool reset_halt; /* attempt resetting the CPU into the halted mode? */
144 target_addr_t working_area; /* working area (initialised RAM). Evaluated
145 * upon first allocation from virtual/physical address. */
146 bool working_area_virt_spec; /* virtual address specified? */
147 target_addr_t working_area_virt; /* virtual address */
148 bool working_area_phys_spec; /* physical address specified? */
149 target_addr_t working_area_phys; /* physical address */
150 uint32_t working_area_size; /* size in bytes */
151 bool backup_working_area; /* whether the content of the working area has to be preserved */
152 struct working_area *working_areas;/* list of allocated working areas */
153 enum target_debug_reason debug_reason;/* reason why the target entered debug state */
154 enum target_endianness endianness; /* target endianness */
155 /* also see: target_state_name() */
156 enum target_state state; /* the current backend-state (running, halted, ...) */
157 struct reg_cache *reg_cache; /* the first register cache of the target (core regs) */
158 struct breakpoint *breakpoints; /* list of breakpoints */
159 struct watchpoint *watchpoints; /* list of watchpoints */
160 struct trace *trace_info; /* generic trace information */
161 struct debug_msg_receiver *dbgmsg; /* list of debug message receivers */
162 uint32_t dbg_msg_enabled; /* debug message status */
163 void *arch_info; /* architecture specific information */
164 void *private_config; /* pointer to target specific config data (for jim_configure hook) */
165 struct target *next; /* next target in list */
167 bool verbose_halt_msg; /* display async info in telnet session. Do not display
168 * lots of halted/resumed info when stepping in debugger. */
169 bool halt_issued; /* did we transition to halted state? */
170 int64_t halt_issued_time; /* Note time when halt was issued */
172 /* ARM v7/v8 targets with ADIv5 interface */
173 bool dbgbase_set; /* By default the debug base is not set */
174 uint32_t dbgbase; /* Really a Cortex-A specific option, but there is no
175 * system in place to support target specific options
176 * currently. */
177 bool has_dap; /* set to true if target has ADIv5 support */
178 bool dap_configured; /* set to true if ADIv5 DAP is configured */
179 bool tap_configured; /* set to true if JTAG tap has been configured
180 * through -chain-position */
182 struct rtos *rtos; /* Instance of Real Time Operating System support */
183 bool rtos_auto_detect; /* A flag that indicates that the RTOS has been specified as "auto"
184 * and must be detected when symbols are offered */
185 struct backoff_timer backoff;
186 int smp; /* Unique non-zero number for each SMP group */
187 struct list_head *smp_targets; /* list all targets in this smp group/cluster
188 * The head of the list is shared between the
189 * cluster, thus here there is a pointer */
190 bool smp_halt_event_postponed; /* Some SMP implementations (currently Cortex-M) stores
191 * 'halted' events and emits them after all targets of
192 * the SMP group has been polled */
194 /* the gdb service is there in case of smp, we have only one gdb server
195 * for all smp target
196 * the target attached to the gdb is changing dynamically by changing
197 * gdb_service->target pointer */
198 struct gdb_service *gdb_service;
200 /* file-I/O information for host to do syscall */
201 struct gdb_fileio_info *fileio_info;
203 char *gdb_port_override; /* target-specific override for gdb_port */
205 int gdb_max_connections; /* max number of simultaneous gdb connections */
207 /* The semihosting information, extracted from the target. */
208 struct semihosting *semihosting;
211 struct target_list {
212 struct list_head lh;
213 struct target *target;
216 struct gdb_fileio_info {
217 char *identifier;
218 uint64_t param_1;
219 uint64_t param_2;
220 uint64_t param_3;
221 uint64_t param_4;
224 /** Returns a description of the endianness for the specified target. */
225 static inline const char *target_endianness(struct target *target)
227 return (target->endianness == TARGET_ENDIAN_UNKNOWN) ? "unknown" :
228 (target->endianness == TARGET_BIG_ENDIAN) ? "big endian" : "little endian";
231 /** Returns the instance-specific name of the specified target. */
232 static inline const char *target_name(struct target *target)
234 return target->cmd_name;
237 const char *debug_reason_name(struct target *t);
239 enum target_event {
241 /* allow GDB to do stuff before others handle the halted event,
242 * this is in lieu of defining ordering of invocation of events,
243 * which would be more complicated
245 * Telling GDB to halt does not mean that the target stopped running,
246 * simply that we're dropping out of GDB's waiting for step or continue.
248 * This can be useful when e.g. detecting power dropout.
250 TARGET_EVENT_GDB_HALT,
251 TARGET_EVENT_HALTED, /* target entered debug state from normal execution or reset */
252 TARGET_EVENT_RESUMED, /* target resumed to normal execution */
253 TARGET_EVENT_RESUME_START,
254 TARGET_EVENT_RESUME_END,
255 TARGET_EVENT_STEP_START,
256 TARGET_EVENT_STEP_END,
258 TARGET_EVENT_GDB_START, /* debugger started execution (step/run) */
259 TARGET_EVENT_GDB_END, /* debugger stopped execution (step/run) */
261 TARGET_EVENT_RESET_START,
262 TARGET_EVENT_RESET_ASSERT_PRE,
263 TARGET_EVENT_RESET_ASSERT, /* C code uses this instead of SRST */
264 TARGET_EVENT_RESET_ASSERT_POST,
265 TARGET_EVENT_RESET_DEASSERT_PRE,
266 TARGET_EVENT_RESET_DEASSERT_POST,
267 TARGET_EVENT_RESET_INIT,
268 TARGET_EVENT_RESET_END,
270 TARGET_EVENT_DEBUG_HALTED, /* target entered debug state, but was executing on behalf of the debugger */
271 TARGET_EVENT_DEBUG_RESUMED, /* target resumed to execute on behalf of the debugger */
273 TARGET_EVENT_EXAMINE_START,
274 TARGET_EVENT_EXAMINE_FAIL,
275 TARGET_EVENT_EXAMINE_END,
277 TARGET_EVENT_GDB_ATTACH,
278 TARGET_EVENT_GDB_DETACH,
280 TARGET_EVENT_GDB_FLASH_ERASE_START,
281 TARGET_EVENT_GDB_FLASH_ERASE_END,
282 TARGET_EVENT_GDB_FLASH_WRITE_START,
283 TARGET_EVENT_GDB_FLASH_WRITE_END,
285 TARGET_EVENT_TRACE_CONFIG,
287 TARGET_EVENT_SEMIHOSTING_USER_CMD_0X100 = 0x100, /* semihosting allows user cmds from 0x100 to 0x1ff */
288 TARGET_EVENT_SEMIHOSTING_USER_CMD_0X101 = 0x101,
289 TARGET_EVENT_SEMIHOSTING_USER_CMD_0X102 = 0x102,
290 TARGET_EVENT_SEMIHOSTING_USER_CMD_0X103 = 0x103,
291 TARGET_EVENT_SEMIHOSTING_USER_CMD_0X104 = 0x104,
292 TARGET_EVENT_SEMIHOSTING_USER_CMD_0X105 = 0x105,
293 TARGET_EVENT_SEMIHOSTING_USER_CMD_0X106 = 0x106,
294 TARGET_EVENT_SEMIHOSTING_USER_CMD_0X107 = 0x107,
297 struct target_event_action {
298 enum target_event event;
299 Jim_Interp *interp;
300 Jim_Obj *body;
301 struct target_event_action *next;
304 bool target_has_event_action(struct target *target, enum target_event event);
306 struct target_event_callback {
307 int (*callback)(struct target *target, enum target_event event, void *priv);
308 void *priv;
309 struct target_event_callback *next;
312 struct target_reset_callback {
313 struct list_head list;
314 void *priv;
315 int (*callback)(struct target *target, enum target_reset_mode reset_mode, void *priv);
318 struct target_trace_callback {
319 struct list_head list;
320 void *priv;
321 int (*callback)(struct target *target, size_t len, uint8_t *data, void *priv);
324 enum target_timer_type {
325 TARGET_TIMER_TYPE_ONESHOT,
326 TARGET_TIMER_TYPE_PERIODIC
329 struct target_timer_callback {
330 int (*callback)(void *priv);
331 unsigned int time_ms;
332 enum target_timer_type type;
333 bool removed;
334 int64_t when; /* output of timeval_ms() */
335 void *priv;
336 struct target_timer_callback *next;
339 struct target_memory_check_block {
340 target_addr_t address;
341 uint32_t size;
342 uint32_t result;
345 int target_register_commands(struct command_context *cmd_ctx);
346 int target_examine(void);
348 int target_register_event_callback(
349 int (*callback)(struct target *target,
350 enum target_event event, void *priv),
351 void *priv);
352 int target_unregister_event_callback(
353 int (*callback)(struct target *target,
354 enum target_event event, void *priv),
355 void *priv);
357 int target_register_reset_callback(
358 int (*callback)(struct target *target,
359 enum target_reset_mode reset_mode, void *priv),
360 void *priv);
361 int target_unregister_reset_callback(
362 int (*callback)(struct target *target,
363 enum target_reset_mode reset_mode, void *priv),
364 void *priv);
366 int target_register_trace_callback(
367 int (*callback)(struct target *target,
368 size_t len, uint8_t *data, void *priv),
369 void *priv);
370 int target_unregister_trace_callback(
371 int (*callback)(struct target *target,
372 size_t len, uint8_t *data, void *priv),
373 void *priv);
375 /* Poll the status of the target, detect any error conditions and report them.
377 * Also note that this fn will clear such error conditions, so a subsequent
378 * invocation will then succeed.
380 * These error conditions can be "sticky" error conditions. E.g. writing
381 * to memory could be implemented as an open loop and if memory writes
382 * fails, then a note is made of it, the error is sticky, but the memory
383 * write loop still runs to completion. This improves performance in the
384 * normal case as there is no need to verify that every single write succeed,
385 * yet it is possible to detect error conditions.
387 int target_poll(struct target *target);
388 int target_resume(struct target *target, int current, target_addr_t address,
389 int handle_breakpoints, int debug_execution);
390 int target_halt(struct target *target);
391 int target_call_event_callbacks(struct target *target, enum target_event event);
392 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode);
393 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data);
396 * The period is very approximate, the callback can happen much more often
397 * or much more rarely than specified
399 int target_register_timer_callback(int (*callback)(void *priv),
400 unsigned int time_ms, enum target_timer_type type, void *priv);
401 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv);
402 int target_call_timer_callbacks(void);
404 * Invoke this to ensure that e.g. polling timer callbacks happen before
405 * a synchronous command completes.
407 int target_call_timer_callbacks_now(void);
409 * Returns when the next registered event will take place. Callers can use this
410 * to go to sleep until that time occurs.
412 int64_t target_timer_next_event(void);
414 struct target *get_current_target(struct command_context *cmd_ctx);
415 struct target *get_current_target_or_null(struct command_context *cmd_ctx);
416 struct target *get_target(const char *id);
419 * Get the target type name.
421 * This routine is a wrapper for the target->type->name field.
422 * Note that this is not an instance-specific name for his target.
424 const char *target_type_name(struct target *target);
427 * Examine the specified @a target, letting it perform any
428 * Initialisation that requires JTAG access.
430 * This routine is a wrapper for target->type->examine.
432 int target_examine_one(struct target *target);
434 /** @returns @c true if target_set_examined() has been called. */
435 static inline bool target_was_examined(struct target *target)
437 return target->examined;
440 /** Sets the @c examined flag for the given target. */
441 /** Use in target->type->examine() after one-time setup is done. */
442 static inline void target_set_examined(struct target *target)
444 target->examined = true;
448 * Add the @a breakpoint for @a target.
450 * This routine is a wrapper for target->type->add_breakpoint.
452 int target_add_breakpoint(struct target *target,
453 struct breakpoint *breakpoint);
455 * Add the @a ContextID breakpoint for @a target.
457 * This routine is a wrapper for target->type->add_context_breakpoint.
459 int target_add_context_breakpoint(struct target *target,
460 struct breakpoint *breakpoint);
462 * Add the @a ContextID & IVA breakpoint for @a target.
464 * This routine is a wrapper for target->type->add_hybrid_breakpoint.
466 int target_add_hybrid_breakpoint(struct target *target,
467 struct breakpoint *breakpoint);
469 * Remove the @a breakpoint for @a target.
471 * This routine is a wrapper for target->type->remove_breakpoint.
474 int target_remove_breakpoint(struct target *target,
475 struct breakpoint *breakpoint);
477 * Add the @a watchpoint for @a target.
479 * This routine is a wrapper for target->type->add_watchpoint.
481 int target_add_watchpoint(struct target *target,
482 struct watchpoint *watchpoint);
484 * Remove the @a watchpoint for @a target.
486 * This routine is a wrapper for target->type->remove_watchpoint.
488 int target_remove_watchpoint(struct target *target,
489 struct watchpoint *watchpoint);
492 * Find out the just hit @a watchpoint for @a target.
494 * This routine is a wrapper for target->type->hit_watchpoint.
496 int target_hit_watchpoint(struct target *target,
497 struct watchpoint **watchpoint);
500 * Obtain the architecture for GDB.
502 * This routine is a wrapper for target->type->get_gdb_arch.
504 const char *target_get_gdb_arch(struct target *target);
507 * Obtain the registers for GDB.
509 * This routine is a wrapper for target->type->get_gdb_reg_list.
511 int target_get_gdb_reg_list(struct target *target,
512 struct reg **reg_list[], int *reg_list_size,
513 enum target_register_class reg_class);
516 * Obtain the registers for GDB, but don't read register values from the
517 * target.
519 * This routine is a wrapper for target->type->get_gdb_reg_list_noread.
521 int target_get_gdb_reg_list_noread(struct target *target,
522 struct reg **reg_list[], int *reg_list_size,
523 enum target_register_class reg_class);
526 * Check if @a target allows GDB connections.
528 * Some target do not implement the necessary code required by GDB.
530 bool target_supports_gdb_connection(struct target *target);
533 * Step the target.
535 * This routine is a wrapper for target->type->step.
537 int target_step(struct target *target,
538 int current, target_addr_t address, int handle_breakpoints);
540 * Run an algorithm on the @a target given.
542 * This routine is a wrapper for target->type->run_algorithm.
544 int target_run_algorithm(struct target *target,
545 int num_mem_params, struct mem_param *mem_params,
546 int num_reg_params, struct reg_param *reg_param,
547 target_addr_t entry_point, target_addr_t exit_point,
548 unsigned int timeout_ms, void *arch_info);
551 * Starts an algorithm in the background on the @a target given.
553 * This routine is a wrapper for target->type->start_algorithm.
555 int target_start_algorithm(struct target *target,
556 int num_mem_params, struct mem_param *mem_params,
557 int num_reg_params, struct reg_param *reg_params,
558 target_addr_t entry_point, target_addr_t exit_point,
559 void *arch_info);
562 * Wait for an algorithm on the @a target given.
564 * This routine is a wrapper for target->type->wait_algorithm.
566 int target_wait_algorithm(struct target *target,
567 int num_mem_params, struct mem_param *mem_params,
568 int num_reg_params, struct reg_param *reg_params,
569 target_addr_t exit_point, unsigned int timeout_ms,
570 void *arch_info);
573 * This routine is a wrapper for asynchronous algorithms.
576 int target_run_flash_async_algorithm(struct target *target,
577 const uint8_t *buffer, uint32_t count, int block_size,
578 int num_mem_params, struct mem_param *mem_params,
579 int num_reg_params, struct reg_param *reg_params,
580 uint32_t buffer_start, uint32_t buffer_size,
581 uint32_t entry_point, uint32_t exit_point,
582 void *arch_info);
585 * This routine is a wrapper for asynchronous algorithms.
588 int target_run_read_async_algorithm(struct target *target,
589 uint8_t *buffer, uint32_t count, int block_size,
590 int num_mem_params, struct mem_param *mem_params,
591 int num_reg_params, struct reg_param *reg_params,
592 uint32_t buffer_start, uint32_t buffer_size,
593 uint32_t entry_point, uint32_t exit_point,
594 void *arch_info);
597 * Read @a count items of @a size bytes from the memory of @a target at
598 * the @a address given.
600 * This routine is a wrapper for target->type->read_memory.
602 int target_read_memory(struct target *target,
603 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
604 int target_read_phys_memory(struct target *target,
605 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
607 * Write @a count items of @a size bytes to the memory of @a target at
608 * the @a address given. @a address must be aligned to @a size
609 * in target memory.
611 * The endianness is the same in the host and target memory for this
612 * function.
614 * \todo TODO:
615 * Really @a buffer should have been defined as "const void *" and
616 * @a buffer should have been aligned to @a size in the host memory.
618 * This is not enforced via e.g. assert's today and e.g. the
619 * target_write_buffer fn breaks this assumption.
621 * This routine is wrapper for target->type->write_memory.
623 int target_write_memory(struct target *target,
624 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
625 int target_write_phys_memory(struct target *target,
626 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
629 * Write to target memory using the virtual address.
631 * Note that this fn is used to implement software breakpoints. Targets
632 * can implement support for software breakpoints to memory marked as read
633 * only by making this fn write to ram even if it is read only(MMU or
634 * MPUs).
636 * It is sufficient to implement for writing a single word(16 or 32 in
637 * ARM32/16 bit case) to write the breakpoint to ram.
639 * The target should also take care of "other things" to make sure that
640 * software breakpoints can be written using this function. E.g.
641 * when there is a separate instruction and data cache, this fn must
642 * make sure that the instruction cache is synced up to the potential
643 * code change that can happen as a result of the memory write(typically
644 * by invalidating the cache).
646 * The high level wrapper fn in target.c will break down this memory write
647 * request to multiple write requests to the target driver to e.g. guarantee
648 * that writing 4 bytes to an aligned address happens with a single 32 bit
649 * write operation, thus making this fn suitable to e.g. write to special
650 * peripheral registers which do not support byte operations.
652 int target_write_buffer(struct target *target,
653 target_addr_t address, uint32_t size, const uint8_t *buffer);
654 int target_read_buffer(struct target *target,
655 target_addr_t address, uint32_t size, uint8_t *buffer);
656 int target_checksum_memory(struct target *target,
657 target_addr_t address, uint32_t size, uint32_t *crc);
658 int target_blank_check_memory(struct target *target,
659 struct target_memory_check_block *blocks, int num_blocks,
660 uint8_t erased_value);
661 int target_wait_state(struct target *target, enum target_state state, unsigned int ms);
664 * Obtain file-I/O information from target for GDB to do syscall.
666 * This routine is a wrapper for target->type->get_gdb_fileio_info.
668 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info);
671 * Pass GDB file-I/O response to target after finishing host syscall.
673 * This routine is a wrapper for target->type->gdb_fileio_end.
675 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c);
678 * Return the highest accessible address for this target.
680 target_addr_t target_address_max(struct target *target);
683 * Return the number of address bits this target supports.
685 * This routine is a wrapper for target->type->address_bits.
687 unsigned target_address_bits(struct target *target);
690 * Return the number of data bits this target supports.
692 * This routine is a wrapper for target->type->data_bits.
694 unsigned int target_data_bits(struct target *target);
696 /** Return the *name* of this targets current state */
697 const char *target_state_name(struct target *target);
699 /** Return the *name* of a target event enumeration value */
700 const char *target_event_name(enum target_event event);
702 /** Return the *name* of a target reset reason enumeration value */
703 const char *target_reset_mode_name(enum target_reset_mode reset_mode);
705 /* DANGER!!!!!
707 * if "area" passed in to target_alloc_working_area() points to a memory
708 * location that goes out of scope (e.g. a pointer on the stack), then
709 * the caller of target_alloc_working_area() is responsible for invoking
710 * target_free_working_area() before "area" goes out of scope.
712 * target_free_all_working_areas() will NULL out the "area" pointer
713 * upon resuming or resetting the CPU.
716 int target_alloc_working_area(struct target *target,
717 uint32_t size, struct working_area **area);
718 /* Same as target_alloc_working_area, except that no error is logged
719 * when ERROR_TARGET_RESOURCE_NOT_AVAILABLE is returned.
721 * This allows the calling code to *try* to allocate target memory
722 * and have a fallback to another behaviour(slower?).
724 int target_alloc_working_area_try(struct target *target,
725 uint32_t size, struct working_area **area);
727 * Free a working area.
728 * Restore target data if area backup is configured.
729 * @param target
730 * @param area Pointer to the area to be freed or NULL
731 * @returns ERROR_OK if successful; error code if restore failed
733 int target_free_working_area(struct target *target, struct working_area *area);
734 void target_free_all_working_areas(struct target *target);
735 uint32_t target_get_working_area_avail(struct target *target);
738 * Free all the resources allocated by targets and the target layer
740 void target_quit(void);
742 extern struct target *all_targets;
744 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer);
745 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer);
746 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer);
747 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer);
748 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value);
749 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value);
750 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value);
751 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value);
753 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf);
754 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf);
755 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf);
756 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf);
757 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf);
758 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf);
760 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value);
761 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value);
762 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value);
763 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value);
764 int target_write_u64(struct target *target, target_addr_t address, uint64_t value);
765 int target_write_u32(struct target *target, target_addr_t address, uint32_t value);
766 int target_write_u16(struct target *target, target_addr_t address, uint16_t value);
767 int target_write_u8(struct target *target, target_addr_t address, uint8_t value);
769 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value);
770 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value);
771 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value);
772 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value);
774 /* Issues USER() statements with target state information */
775 int target_arch_state(struct target *target);
777 void target_handle_event(struct target *t, enum target_event e);
779 void target_handle_md_output(struct command_invocation *cmd,
780 struct target *target, target_addr_t address, unsigned size,
781 unsigned count, const uint8_t *buffer);
783 int target_profiling_default(struct target *target, uint32_t *samples, uint32_t
784 max_num_samples, uint32_t *num_samples, uint32_t seconds);
786 #define ERROR_TARGET_INVALID (-300)
787 #define ERROR_TARGET_INIT_FAILED (-301)
788 #define ERROR_TARGET_TIMEOUT (-302)
789 #define ERROR_TARGET_NOT_HALTED (-304)
790 #define ERROR_TARGET_FAILURE (-305)
791 #define ERROR_TARGET_UNALIGNED_ACCESS (-306)
792 #define ERROR_TARGET_DATA_ABORT (-307)
793 #define ERROR_TARGET_RESOURCE_NOT_AVAILABLE (-308)
794 #define ERROR_TARGET_TRANSLATION_FAULT (-309)
795 #define ERROR_TARGET_NOT_RUNNING (-310)
796 #define ERROR_TARGET_NOT_EXAMINED (-311)
797 #define ERROR_TARGET_DUPLICATE_BREAKPOINT (-312)
798 #define ERROR_TARGET_ALGO_EXIT (-313)
799 #define ERROR_TARGET_SIZE_NOT_SUPPORTED (-314)
800 #define ERROR_TARGET_PACKING_NOT_SUPPORTED (-315)
802 extern bool get_target_reset_nag(void);
804 #define TARGET_DEFAULT_POLLING_INTERVAL 100
806 const char *target_debug_reason_str(enum target_debug_reason reason);
808 #endif /* OPENOCD_TARGET_TARGET_H */