target/adiv5: Large Physical Address Extension
[openocd.git] / src / target / armv7m.c
bloba9a5a381d694541120aed3344bab601ad89208ac
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2007,2008 Øyvind Harboe *
12 * oyvind.harboe@zylin.com *
13 * *
14 * Copyright (C) 2018 by Liviu Ionescu *
15 * <ilg@livius.net> *
16 * *
17 * Copyright (C) 2019 by Tomas Vanek *
18 * vanekt@fbl.cz *
19 * *
20 * This program is free software; you can redistribute it and/or modify *
21 * it under the terms of the GNU General Public License as published by *
22 * the Free Software Foundation; either version 2 of the License, or *
23 * (at your option) any later version. *
24 * *
25 * This program is distributed in the hope that it will be useful, *
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
28 * GNU General Public License for more details. *
29 * *
30 * You should have received a copy of the GNU General Public License *
31 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
32 * *
33 * ARMv7-M Architecture, Application Level Reference Manual *
34 * ARM DDI 0405C (September 2008) *
35 * *
36 ***************************************************************************/
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
42 #include "breakpoints.h"
43 #include "armv7m.h"
44 #include "algorithm.h"
45 #include "register.h"
46 #include "semihosting_common.h"
48 #if 0
49 #define _DEBUG_INSTRUCTION_EXECUTION_
50 #endif
52 static const char * const armv7m_exception_strings[] = {
53 "", "Reset", "NMI", "HardFault",
54 "MemManage", "BusFault", "UsageFault", "SecureFault",
55 "RESERVED", "RESERVED", "RESERVED", "SVCall",
56 "DebugMonitor", "RESERVED", "PendSV", "SysTick"
59 /* PSP is used in some thread modes */
60 const int armv7m_psp_reg_map[ARMV7M_NUM_CORE_REGS] = {
61 ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
62 ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
63 ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
64 ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
65 ARMV7M_xPSR,
68 /* MSP is used in handler and some thread modes */
69 const int armv7m_msp_reg_map[ARMV7M_NUM_CORE_REGS] = {
70 ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
71 ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
72 ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
73 ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
74 ARMV7M_xPSR,
78 * These registers are not memory-mapped. The ARMv7-M profile includes
79 * memory mapped registers too, such as for the NVIC (interrupt controller)
80 * and SysTick (timer) modules; those can mostly be treated as peripherals.
82 * The ARMv6-M profile is almost identical in this respect, except that it
83 * doesn't include basepri or faultmask registers.
85 static const struct {
86 unsigned id;
87 const char *name;
88 unsigned bits;
89 enum reg_type type;
90 const char *group;
91 const char *feature;
92 } armv7m_regs[] = {
93 { ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
94 { ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
95 { ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
96 { ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
97 { ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
98 { ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
99 { ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
100 { ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
101 { ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
102 { ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
103 { ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
104 { ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
105 { ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
106 { ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" },
107 { ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
108 { ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" },
109 { ARMV7M_xPSR, "xPSR", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
111 { ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
112 { ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
114 /* A working register for packing/unpacking special regs, hidden from gdb */
115 { ARMV7M_PMSK_BPRI_FLTMSK_CTRL, "pmsk_bpri_fltmsk_ctrl", 32, REG_TYPE_INT, NULL, NULL },
117 /* WARNING: If you use armv7m_write_core_reg() on one of 4 following
118 * special registers, the new data go to ARMV7M_PMSK_BPRI_FLTMSK_CTRL
119 * cache only and are not flushed to CPU HW register.
120 * To trigger write to CPU HW register, add
121 * armv7m_write_core_reg(,,ARMV7M_PMSK_BPRI_FLTMSK_CTRL,);
123 { ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
124 { ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
125 { ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
126 { ARMV7M_CONTROL, "control", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
128 /* ARMv8-M specific registers */
129 { ARMV8M_MSP_NS, "msp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
130 { ARMV8M_PSP_NS, "psp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
131 { ARMV8M_MSP_S, "msp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
132 { ARMV8M_PSP_S, "psp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
133 { ARMV8M_MSPLIM_S, "msplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
134 { ARMV8M_PSPLIM_S, "psplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
135 { ARMV8M_MSPLIM_NS, "msplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
136 { ARMV8M_PSPLIM_NS, "psplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
138 { ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S, "pmsk_bpri_fltmsk_ctrl_s", 32, REG_TYPE_INT, NULL, NULL },
139 { ARMV8M_PRIMASK_S, "primask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
140 { ARMV8M_BASEPRI_S, "basepri_s", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
141 { ARMV8M_FAULTMASK_S, "faultmask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
142 { ARMV8M_CONTROL_S, "control_s", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
144 { ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS, "pmsk_bpri_fltmsk_ctrl_ns", 32, REG_TYPE_INT, NULL, NULL },
145 { ARMV8M_PRIMASK_NS, "primask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
146 { ARMV8M_BASEPRI_NS, "basepri_ns", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
147 { ARMV8M_FAULTMASK_NS, "faultmask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
148 { ARMV8M_CONTROL_NS, "control_ns", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
150 /* FPU registers */
151 { ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
152 { ARMV7M_D1, "d1", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
153 { ARMV7M_D2, "d2", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
154 { ARMV7M_D3, "d3", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
155 { ARMV7M_D4, "d4", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
156 { ARMV7M_D5, "d5", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
157 { ARMV7M_D6, "d6", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
158 { ARMV7M_D7, "d7", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
159 { ARMV7M_D8, "d8", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
160 { ARMV7M_D9, "d9", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
161 { ARMV7M_D10, "d10", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
162 { ARMV7M_D11, "d11", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
163 { ARMV7M_D12, "d12", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
164 { ARMV7M_D13, "d13", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
165 { ARMV7M_D14, "d14", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
166 { ARMV7M_D15, "d15", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
168 { ARMV7M_FPSCR, "fpscr", 32, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp" },
171 #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
174 * Restores target context using the cache of core registers set up
175 * by armv7m_build_reg_cache(), calling optional core-specific hooks.
177 int armv7m_restore_context(struct target *target)
179 int i;
180 struct armv7m_common *armv7m = target_to_armv7m(target);
181 struct reg_cache *cache = armv7m->arm.core_cache;
183 LOG_DEBUG(" ");
185 if (armv7m->pre_restore_context)
186 armv7m->pre_restore_context(target);
188 /* The descending order of register writes is crucial for correct
189 * packing of ARMV7M_PMSK_BPRI_FLTMSK_CTRL!
190 * See also comments in the register table above */
191 for (i = cache->num_regs - 1; i >= 0; i--) {
192 struct reg *r = &cache->reg_list[i];
194 if (r->exist && r->dirty)
195 armv7m->arm.write_core_reg(target, r, i, ARM_MODE_ANY, r->value);
198 return ERROR_OK;
201 /* Core state functions */
204 * Maps ISR number (from xPSR) to name.
205 * Note that while names and meanings for the first sixteen are standardized
206 * (with zero not a true exception), external interrupts are only numbered.
207 * They are assigned by vendors, which generally assign different numbers to
208 * peripherals (such as UART0 or a USB peripheral controller).
210 const char *armv7m_exception_string(int number)
212 static char enamebuf[32];
214 if ((number < 0) | (number > 511))
215 return "Invalid exception";
216 if (number < 16)
217 return armv7m_exception_strings[number];
218 sprintf(enamebuf, "External Interrupt(%i)", number - 16);
219 return enamebuf;
222 static int armv7m_get_core_reg(struct reg *reg)
224 int retval;
225 struct arm_reg *armv7m_reg = reg->arch_info;
226 struct target *target = armv7m_reg->target;
227 struct arm *arm = target_to_arm(target);
229 if (target->state != TARGET_HALTED)
230 return ERROR_TARGET_NOT_HALTED;
232 retval = arm->read_core_reg(target, reg, reg->number, arm->core_mode);
234 return retval;
237 static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
239 struct arm_reg *armv7m_reg = reg->arch_info;
240 struct target *target = armv7m_reg->target;
242 if (target->state != TARGET_HALTED)
243 return ERROR_TARGET_NOT_HALTED;
245 buf_cpy(buf, reg->value, reg->size);
246 reg->dirty = true;
247 reg->valid = true;
249 return ERROR_OK;
252 static uint32_t armv7m_map_id_to_regsel(unsigned int arm_reg_id)
254 switch (arm_reg_id) {
255 case ARMV7M_R0 ... ARMV7M_R14:
256 case ARMV7M_PC:
257 case ARMV7M_xPSR:
258 case ARMV7M_MSP:
259 case ARMV7M_PSP:
260 /* NOTE: we "know" here that the register identifiers
261 * match the Cortex-M DCRSR.REGSEL selectors values
262 * for R0..R14, PC, xPSR, MSP, and PSP.
264 return arm_reg_id;
266 case ARMV7M_PMSK_BPRI_FLTMSK_CTRL:
267 return ARMV7M_REGSEL_PMSK_BPRI_FLTMSK_CTRL;
269 case ARMV8M_MSP_NS...ARMV8M_PSPLIM_NS:
270 return arm_reg_id - ARMV8M_MSP_NS + ARMV8M_REGSEL_MSP_NS;
272 case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S:
273 return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_S;
275 case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS:
276 return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_NS;
278 case ARMV7M_FPSCR:
279 return ARMV7M_REGSEL_FPSCR;
281 case ARMV7M_D0 ... ARMV7M_D15:
282 return ARMV7M_REGSEL_S0 + 2 * (arm_reg_id - ARMV7M_D0);
284 default:
285 LOG_ERROR("Bad register ID %u", arm_reg_id);
286 return arm_reg_id;
290 static bool armv7m_map_reg_packing(unsigned int arm_reg_id,
291 unsigned int *reg32_id, uint32_t *offset)
294 switch (arm_reg_id) {
296 case ARMV7M_PRIMASK...ARMV7M_CONTROL:
297 *reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
298 *offset = arm_reg_id - ARMV7M_PRIMASK;
299 return true;
300 case ARMV8M_PRIMASK_S...ARMV8M_CONTROL_S:
301 *reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S;
302 *offset = arm_reg_id - ARMV8M_PRIMASK_S;
303 return true;
304 case ARMV8M_PRIMASK_NS...ARMV8M_CONTROL_NS:
305 *reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS;
306 *offset = arm_reg_id - ARMV8M_PRIMASK_NS;
307 return true;
309 default:
310 return false;
315 static int armv7m_read_core_reg(struct target *target, struct reg *r,
316 int num, enum arm_mode mode)
318 uint32_t reg_value;
319 int retval;
320 struct armv7m_common *armv7m = target_to_armv7m(target);
322 assert(num < (int)armv7m->arm.core_cache->num_regs);
323 assert(num == (int)r->number);
325 /* If a code calls read_reg, it expects the cache is no more dirty.
326 * Clear the dirty flag regardless of the later read succeeds or not
327 * to prevent unwanted cache flush after a read error */
328 r->dirty = false;
330 if (r->size <= 8) {
331 /* any 8-bit or shorter register is packed */
332 uint32_t offset;
333 unsigned int reg32_id;
335 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
336 if (!is_packed) {
337 /* We should not get here as all 8-bit or shorter registers
338 * are packed */
339 assert(false);
340 /* assert() does nothing if NDEBUG is defined */
341 return ERROR_FAIL;
343 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
345 /* Read 32-bit container register if not cached */
346 if (!r32->valid) {
347 retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
348 if (retval != ERROR_OK)
349 return retval;
352 /* Copy required bits of 32-bit container register */
353 buf_cpy(r32->value + offset, r->value, r->size);
355 } else {
356 assert(r->size == 32 || r->size == 64);
358 struct arm_reg *armv7m_core_reg = r->arch_info;
359 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
361 retval = armv7m->load_core_reg_u32(target, regsel, &reg_value);
362 if (retval != ERROR_OK)
363 return retval;
364 buf_set_u32(r->value, 0, 32, reg_value);
366 if (r->size == 64) {
367 retval = armv7m->load_core_reg_u32(target, regsel + 1, &reg_value);
368 if (retval != ERROR_OK) {
369 r->valid = false;
370 return retval;
372 buf_set_u32(r->value + 4, 0, 32, reg_value);
374 uint64_t q = buf_get_u64(r->value, 0, 64);
375 LOG_DEBUG("read %s value 0x%016" PRIx64, r->name, q);
376 } else {
377 LOG_DEBUG("read %s value 0x%08" PRIx32, r->name, reg_value);
381 r->valid = true;
383 return ERROR_OK;
386 static int armv7m_write_core_reg(struct target *target, struct reg *r,
387 int num, enum arm_mode mode, uint8_t *value)
389 int retval;
390 uint32_t t;
391 struct armv7m_common *armv7m = target_to_armv7m(target);
393 assert(num < (int)armv7m->arm.core_cache->num_regs);
394 assert(num == (int)r->number);
396 if (value != r->value) {
397 /* If we are not flushing the cache, store the new value to the cache */
398 buf_cpy(value, r->value, r->size);
401 if (r->size <= 8) {
402 /* any 8-bit or shorter register is packed */
403 uint32_t offset;
404 unsigned int reg32_id;
406 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
407 if (!is_packed) {
408 /* We should not get here as all 8-bit or shorter registers
409 * are packed */
410 assert(false);
411 /* assert() does nothing if NDEBUG is defined */
412 return ERROR_FAIL;
414 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
416 if (!r32->valid) {
417 /* Before merging with other parts ensure the 32-bit register is valid */
418 retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
419 if (retval != ERROR_OK)
420 return retval;
423 /* Write a part to the 32-bit container register */
424 buf_cpy(value, r32->value + offset, r->size);
425 r32->dirty = true;
427 } else {
428 assert(r->size == 32 || r->size == 64);
430 struct arm_reg *armv7m_core_reg = r->arch_info;
431 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
433 t = buf_get_u32(value, 0, 32);
434 retval = armv7m->store_core_reg_u32(target, regsel, t);
435 if (retval != ERROR_OK)
436 goto out_error;
438 if (r->size == 64) {
439 t = buf_get_u32(value + 4, 0, 32);
440 retval = armv7m->store_core_reg_u32(target, regsel + 1, t);
441 if (retval != ERROR_OK)
442 goto out_error;
444 uint64_t q = buf_get_u64(value, 0, 64);
445 LOG_DEBUG("write %s value 0x%016" PRIx64, r->name, q);
446 } else {
447 LOG_DEBUG("write %s value 0x%08" PRIx32, r->name, t);
451 r->valid = true;
452 r->dirty = false;
454 return ERROR_OK;
456 out_error:
457 r->dirty = true;
458 LOG_ERROR("Error setting register %s", r->name);
459 return retval;
463 * Returns generic ARM userspace registers to GDB.
465 int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
466 int *reg_list_size, enum target_register_class reg_class)
468 struct armv7m_common *armv7m = target_to_armv7m(target);
469 int i, size;
471 if (reg_class == REG_CLASS_ALL)
472 size = armv7m->arm.core_cache->num_regs;
473 else
474 size = ARMV7M_NUM_CORE_REGS;
476 *reg_list = malloc(sizeof(struct reg *) * size);
477 if (*reg_list == NULL)
478 return ERROR_FAIL;
480 for (i = 0; i < size; i++)
481 (*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
483 *reg_list_size = size;
485 return ERROR_OK;
488 /** Runs a Thumb algorithm in the target. */
489 int armv7m_run_algorithm(struct target *target,
490 int num_mem_params, struct mem_param *mem_params,
491 int num_reg_params, struct reg_param *reg_params,
492 target_addr_t entry_point, target_addr_t exit_point,
493 int timeout_ms, void *arch_info)
495 int retval;
497 retval = armv7m_start_algorithm(target,
498 num_mem_params, mem_params,
499 num_reg_params, reg_params,
500 entry_point, exit_point,
501 arch_info);
503 if (retval == ERROR_OK)
504 retval = armv7m_wait_algorithm(target,
505 num_mem_params, mem_params,
506 num_reg_params, reg_params,
507 exit_point, timeout_ms,
508 arch_info);
510 return retval;
513 /** Starts a Thumb algorithm in the target. */
514 int armv7m_start_algorithm(struct target *target,
515 int num_mem_params, struct mem_param *mem_params,
516 int num_reg_params, struct reg_param *reg_params,
517 target_addr_t entry_point, target_addr_t exit_point,
518 void *arch_info)
520 struct armv7m_common *armv7m = target_to_armv7m(target);
521 struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
522 enum arm_mode core_mode = armv7m->arm.core_mode;
523 int retval = ERROR_OK;
525 /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
526 * at the exit point */
528 if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
529 LOG_ERROR("current target isn't an ARMV7M target");
530 return ERROR_TARGET_INVALID;
533 if (target->state != TARGET_HALTED) {
534 LOG_WARNING("target not halted");
535 return ERROR_TARGET_NOT_HALTED;
538 /* Store all non-debug execution registers to armv7m_algorithm_info context */
539 for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) {
541 armv7m_algorithm_info->context[i] = buf_get_u32(
542 armv7m->arm.core_cache->reg_list[i].value,
544 32);
547 for (int i = 0; i < num_mem_params; i++) {
548 if (mem_params[i].direction == PARAM_IN)
549 continue;
550 retval = target_write_buffer(target, mem_params[i].address,
551 mem_params[i].size,
552 mem_params[i].value);
553 if (retval != ERROR_OK)
554 return retval;
557 for (int i = 0; i < num_reg_params; i++) {
558 if (reg_params[i].direction == PARAM_IN)
559 continue;
561 struct reg *reg =
562 register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, false);
563 /* uint32_t regvalue; */
565 if (!reg) {
566 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
567 return ERROR_COMMAND_SYNTAX_ERROR;
570 if (reg->size != reg_params[i].size) {
571 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
572 reg_params[i].reg_name);
573 return ERROR_COMMAND_SYNTAX_ERROR;
576 /* regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
577 armv7m_set_core_reg(reg, reg_params[i].value);
582 * Ensure xPSR.T is set to avoid trying to run things in arm
583 * (non-thumb) mode, which armv7m does not support.
585 * We do this by setting the entirety of xPSR, which should
586 * remove all the unknowns about xPSR state.
588 * Because xPSR.T is populated on reset from the vector table,
589 * it might be 0 if the vector table has "bad" data in it.
591 struct reg *reg = &armv7m->arm.core_cache->reg_list[ARMV7M_xPSR];
592 buf_set_u32(reg->value, 0, 32, 0x01000000);
593 reg->valid = true;
594 reg->dirty = true;
597 if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
598 armv7m_algorithm_info->core_mode != core_mode) {
600 /* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
601 if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
602 armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
603 LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
606 LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
607 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
608 0, 1, armv7m_algorithm_info->core_mode);
609 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
610 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
613 /* save previous core mode */
614 armv7m_algorithm_info->core_mode = core_mode;
616 retval = target_resume(target, 0, entry_point, 1, 1);
618 return retval;
621 /** Waits for an algorithm in the target. */
622 int armv7m_wait_algorithm(struct target *target,
623 int num_mem_params, struct mem_param *mem_params,
624 int num_reg_params, struct reg_param *reg_params,
625 target_addr_t exit_point, int timeout_ms,
626 void *arch_info)
628 struct armv7m_common *armv7m = target_to_armv7m(target);
629 struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
630 int retval = ERROR_OK;
632 /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
633 * at the exit point */
635 if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
636 LOG_ERROR("current target isn't an ARMV7M target");
637 return ERROR_TARGET_INVALID;
640 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
641 /* If the target fails to halt due to the breakpoint, force a halt */
642 if (retval != ERROR_OK || target->state != TARGET_HALTED) {
643 retval = target_halt(target);
644 if (retval != ERROR_OK)
645 return retval;
646 retval = target_wait_state(target, TARGET_HALTED, 500);
647 if (retval != ERROR_OK)
648 return retval;
649 return ERROR_TARGET_TIMEOUT;
652 if (exit_point) {
653 /* PC value has been cached in cortex_m_debug_entry() */
654 uint32_t pc = buf_get_u32(armv7m->arm.pc->value, 0, 32);
655 if (pc != exit_point) {
656 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" TARGET_PRIxADDR,
657 pc, exit_point);
658 return ERROR_TARGET_ALGO_EXIT;
662 /* Read memory values to mem_params[] */
663 for (int i = 0; i < num_mem_params; i++) {
664 if (mem_params[i].direction != PARAM_OUT) {
665 retval = target_read_buffer(target, mem_params[i].address,
666 mem_params[i].size,
667 mem_params[i].value);
668 if (retval != ERROR_OK)
669 return retval;
673 /* Copy core register values to reg_params[] */
674 for (int i = 0; i < num_reg_params; i++) {
675 if (reg_params[i].direction != PARAM_OUT) {
676 struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
677 reg_params[i].reg_name,
678 false);
680 if (!reg) {
681 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
682 return ERROR_COMMAND_SYNTAX_ERROR;
685 if (reg->size != reg_params[i].size) {
686 LOG_ERROR(
687 "BUG: register '%s' size doesn't match reg_params[i].size",
688 reg_params[i].reg_name);
689 return ERROR_COMMAND_SYNTAX_ERROR;
692 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
696 for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) {
697 uint32_t regvalue;
698 regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
699 if (regvalue != armv7m_algorithm_info->context[i]) {
700 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
701 armv7m->arm.core_cache->reg_list[i].name,
702 armv7m_algorithm_info->context[i]);
703 buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
704 0, 32, armv7m_algorithm_info->context[i]);
705 armv7m->arm.core_cache->reg_list[i].valid = true;
706 armv7m->arm.core_cache->reg_list[i].dirty = true;
710 /* restore previous core mode */
711 if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
712 LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
713 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
714 0, 1, armv7m_algorithm_info->core_mode);
715 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
716 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
719 armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
721 return retval;
724 /** Logs summary of ARMv7-M state for a halted target. */
725 int armv7m_arch_state(struct target *target)
727 struct armv7m_common *armv7m = target_to_armv7m(target);
728 struct arm *arm = &armv7m->arm;
729 uint32_t ctrl, sp;
731 /* avoid filling log waiting for fileio reply */
732 if (target->semihosting && target->semihosting->hit_fileio)
733 return ERROR_OK;
735 ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
736 sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
738 LOG_USER("target halted due to %s, current mode: %s %s\n"
739 "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s",
740 debug_reason_name(target),
741 arm_mode_name(arm->core_mode),
742 armv7m_exception_string(armv7m->exception_number),
743 buf_get_u32(arm->cpsr->value, 0, 32),
744 buf_get_u32(arm->pc->value, 0, 32),
745 (ctrl & 0x02) ? 'p' : 'm',
747 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
748 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
750 return ERROR_OK;
753 static const struct reg_arch_type armv7m_reg_type = {
754 .get = armv7m_get_core_reg,
755 .set = armv7m_set_core_reg,
758 /** Builds cache of architecturally defined registers. */
759 struct reg_cache *armv7m_build_reg_cache(struct target *target)
761 struct armv7m_common *armv7m = target_to_armv7m(target);
762 struct arm *arm = &armv7m->arm;
763 int num_regs = ARMV7M_NUM_REGS;
764 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
765 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
766 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
767 struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
768 struct reg_feature *feature;
769 int i;
771 /* Build the process context cache */
772 cache->name = "arm v7m registers";
773 cache->next = NULL;
774 cache->reg_list = reg_list;
775 cache->num_regs = num_regs;
776 (*cache_p) = cache;
778 for (i = 0; i < num_regs; i++) {
779 arch_info[i].num = armv7m_regs[i].id;
780 arch_info[i].target = target;
781 arch_info[i].arm = arm;
783 reg_list[i].name = armv7m_regs[i].name;
784 reg_list[i].size = armv7m_regs[i].bits;
785 reg_list[i].value = arch_info[i].value;
786 reg_list[i].dirty = false;
787 reg_list[i].valid = false;
788 reg_list[i].hidden = (i == ARMV7M_PMSK_BPRI_FLTMSK_CTRL ||
789 i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS || i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S);
790 reg_list[i].type = &armv7m_reg_type;
791 reg_list[i].arch_info = &arch_info[i];
793 reg_list[i].group = armv7m_regs[i].group;
794 reg_list[i].number = i;
795 reg_list[i].exist = true;
796 reg_list[i].caller_save = true; /* gdb defaults to true */
798 if (reg_list[i].hidden)
799 continue;
801 feature = calloc(1, sizeof(struct reg_feature));
802 if (feature) {
803 feature->name = armv7m_regs[i].feature;
804 reg_list[i].feature = feature;
805 } else
806 LOG_ERROR("unable to allocate feature list");
808 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
809 if (reg_list[i].reg_data_type)
810 reg_list[i].reg_data_type->type = armv7m_regs[i].type;
811 else
812 LOG_ERROR("unable to allocate reg type list");
815 arm->cpsr = reg_list + ARMV7M_xPSR;
816 arm->pc = reg_list + ARMV7M_PC;
817 arm->core_cache = cache;
819 return cache;
822 void armv7m_free_reg_cache(struct target *target)
824 struct armv7m_common *armv7m = target_to_armv7m(target);
825 struct arm *arm = &armv7m->arm;
826 struct reg_cache *cache;
827 struct reg *reg;
828 unsigned int i;
830 cache = arm->core_cache;
832 if (!cache)
833 return;
835 for (i = 0; i < cache->num_regs; i++) {
836 reg = &cache->reg_list[i];
838 free(reg->feature);
839 free(reg->reg_data_type);
842 free(cache->reg_list[0].arch_info);
843 free(cache->reg_list);
844 free(cache);
846 arm->core_cache = NULL;
849 static int armv7m_setup_semihosting(struct target *target, int enable)
851 /* nothing todo for armv7m */
852 return ERROR_OK;
855 /** Sets up target as a generic ARMv7-M core */
856 int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
858 struct arm *arm = &armv7m->arm;
860 armv7m->common_magic = ARMV7M_COMMON_MAGIC;
861 armv7m->fp_feature = FP_NONE;
862 armv7m->trace_config.trace_bus_id = 1;
863 /* Enable stimulus port #0 by default */
864 armv7m->trace_config.itm_ter[0] = 1;
866 arm->core_type = ARM_CORE_TYPE_M_PROFILE;
867 arm->arch_info = armv7m;
868 arm->setup_semihosting = armv7m_setup_semihosting;
870 arm->read_core_reg = armv7m_read_core_reg;
871 arm->write_core_reg = armv7m_write_core_reg;
873 return arm_init_arch_info(target, arm);
876 /** Generates a CRC32 checksum of a memory region. */
877 int armv7m_checksum_memory(struct target *target,
878 target_addr_t address, uint32_t count, uint32_t *checksum)
880 struct working_area *crc_algorithm;
881 struct armv7m_algorithm armv7m_info;
882 struct reg_param reg_params[2];
883 int retval;
885 static const uint8_t cortex_m_crc_code[] = {
886 #include "../../contrib/loaders/checksum/armv7m_crc.inc"
889 retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm);
890 if (retval != ERROR_OK)
891 return retval;
893 retval = target_write_buffer(target, crc_algorithm->address,
894 sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code);
895 if (retval != ERROR_OK)
896 goto cleanup;
898 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
899 armv7m_info.core_mode = ARM_MODE_THREAD;
901 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
902 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
904 buf_set_u32(reg_params[0].value, 0, 32, address);
905 buf_set_u32(reg_params[1].value, 0, 32, count);
907 int timeout = 20000 * (1 + (count / (1024 * 1024)));
909 retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
910 crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6),
911 timeout, &armv7m_info);
913 if (retval == ERROR_OK)
914 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
915 else
916 LOG_ERROR("error executing cortex_m crc algorithm");
918 destroy_reg_param(&reg_params[0]);
919 destroy_reg_param(&reg_params[1]);
921 cleanup:
922 target_free_working_area(target, crc_algorithm);
924 return retval;
927 /** Checks an array of memory regions whether they are erased. */
928 int armv7m_blank_check_memory(struct target *target,
929 struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
931 struct working_area *erase_check_algorithm;
932 struct working_area *erase_check_params;
933 struct reg_param reg_params[2];
934 struct armv7m_algorithm armv7m_info;
935 int retval;
937 static bool timed_out;
939 static const uint8_t erase_check_code[] = {
940 #include "../../contrib/loaders/erase_check/armv7m_erase_check.inc"
943 const uint32_t code_size = sizeof(erase_check_code);
945 /* make sure we have a working area */
946 if (target_alloc_working_area(target, code_size,
947 &erase_check_algorithm) != ERROR_OK)
948 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
950 retval = target_write_buffer(target, erase_check_algorithm->address,
951 code_size, erase_check_code);
952 if (retval != ERROR_OK)
953 goto cleanup1;
955 /* prepare blocks array for algo */
956 struct algo_block {
957 union {
958 uint32_t size;
959 uint32_t result;
961 uint32_t address;
964 uint32_t avail = target_get_working_area_avail(target);
965 int blocks_to_check = avail / sizeof(struct algo_block) - 1;
966 if (num_blocks < blocks_to_check)
967 blocks_to_check = num_blocks;
969 struct algo_block *params = malloc((blocks_to_check+1)*sizeof(struct algo_block));
970 if (params == NULL) {
971 retval = ERROR_FAIL;
972 goto cleanup1;
975 int i;
976 uint32_t total_size = 0;
977 for (i = 0; i < blocks_to_check; i++) {
978 total_size += blocks[i].size;
979 target_buffer_set_u32(target, (uint8_t *)&(params[i].size),
980 blocks[i].size / sizeof(uint32_t));
981 target_buffer_set_u32(target, (uint8_t *)&(params[i].address),
982 blocks[i].address);
984 target_buffer_set_u32(target, (uint8_t *)&(params[blocks_to_check].size), 0);
986 uint32_t param_size = (blocks_to_check + 1) * sizeof(struct algo_block);
987 if (target_alloc_working_area(target, param_size,
988 &erase_check_params) != ERROR_OK) {
989 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
990 goto cleanup2;
993 retval = target_write_buffer(target, erase_check_params->address,
994 param_size, (uint8_t *)params);
995 if (retval != ERROR_OK)
996 goto cleanup3;
998 uint32_t erased_word = erased_value | (erased_value << 8)
999 | (erased_value << 16) | (erased_value << 24);
1001 LOG_DEBUG("Starting erase check of %d blocks, parameters@"
1002 TARGET_ADDR_FMT, blocks_to_check, erase_check_params->address);
1004 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1005 armv7m_info.core_mode = ARM_MODE_THREAD;
1007 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1008 buf_set_u32(reg_params[0].value, 0, 32, erase_check_params->address);
1010 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1011 buf_set_u32(reg_params[1].value, 0, 32, erased_word);
1013 /* assume CPU clk at least 1 MHz */
1014 int timeout = (timed_out ? 30000 : 2000) + total_size * 3 / 1000;
1016 retval = target_run_algorithm(target,
1017 0, NULL,
1018 ARRAY_SIZE(reg_params), reg_params,
1019 erase_check_algorithm->address,
1020 erase_check_algorithm->address + (code_size - 2),
1021 timeout,
1022 &armv7m_info);
1024 timed_out = retval == ERROR_TARGET_TIMEOUT;
1025 if (retval != ERROR_OK && !timed_out)
1026 goto cleanup4;
1028 retval = target_read_buffer(target, erase_check_params->address,
1029 param_size, (uint8_t *)params);
1030 if (retval != ERROR_OK)
1031 goto cleanup4;
1033 for (i = 0; i < blocks_to_check; i++) {
1034 uint32_t result = target_buffer_get_u32(target,
1035 (uint8_t *)&(params[i].result));
1036 if (result != 0 && result != 1)
1037 break;
1039 blocks[i].result = result;
1041 if (i && timed_out)
1042 LOG_INFO("Slow CPU clock: %d blocks checked, %d remain. Continuing...", i, num_blocks-i);
1044 retval = i; /* return number of blocks really checked */
1046 cleanup4:
1047 destroy_reg_param(&reg_params[0]);
1048 destroy_reg_param(&reg_params[1]);
1050 cleanup3:
1051 target_free_working_area(target, erase_check_params);
1052 cleanup2:
1053 free(params);
1054 cleanup1:
1055 target_free_working_area(target, erase_check_algorithm);
1057 return retval;
1060 int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
1062 struct armv7m_common *armv7m = target_to_armv7m(target);
1063 struct reg *r = armv7m->arm.pc;
1064 bool result = false;
1067 /* if we halted last time due to a bkpt instruction
1068 * then we have to manually step over it, otherwise
1069 * the core will break again */
1071 if (target->debug_reason == DBG_REASON_BREAKPOINT) {
1072 uint16_t op;
1073 uint32_t pc = buf_get_u32(r->value, 0, 32);
1075 pc &= ~1;
1076 if (target_read_u16(target, pc, &op) == ERROR_OK) {
1077 if ((op & 0xFF00) == 0xBE00) {
1078 pc = buf_get_u32(r->value, 0, 32) + 2;
1079 buf_set_u32(r->value, 0, 32, pc);
1080 r->dirty = true;
1081 r->valid = true;
1082 result = true;
1083 LOG_DEBUG("Skipping over BKPT instruction");
1088 if (inst_found)
1089 *inst_found = result;
1091 return ERROR_OK;
1094 const struct command_registration armv7m_command_handlers[] = {
1096 .chain = arm_command_handlers,
1098 COMMAND_REGISTRATION_DONE