jtag/drivers/ftdi: add option to declare signal aliases
[openocd.git] / src / jtag / drivers / ftdi.c
blob9d3444738930fb5065cdeddd2bbad935e1fdfddc
1 /**************************************************************************
2 * Copyright (C) 2012 by Andreas Fritiofson *
3 * andreas.fritiofson@gmail.com *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
19 ***************************************************************************/
21 /**
22 * @file
23 * JTAG adapters based on the FT2232 full and high speed USB parts are
24 * popular low cost JTAG debug solutions. Many FT2232 based JTAG adapters
25 * are discrete, but development boards may integrate them as alternatives
26 * to more capable (and expensive) third party JTAG pods.
28 * JTAG uses only one of the two communications channels ("MPSSE engines")
29 * on these devices. Adapters based on FT4232 parts have four ports/channels
30 * (A/B/C/D), instead of just two (A/B).
32 * Especially on development boards integrating one of these chips (as
33 * opposed to discrete pods/dongles), the additional channels can be used
34 * for a variety of purposes, but OpenOCD only uses one channel at a time.
36 * - As a USB-to-serial adapter for the target's console UART ...
37 * which may be able to support ROM boot loaders that load initial
38 * firmware images to flash (or SRAM).
40 * - On systems which support ARM's SWD in addition to JTAG, or instead
41 * of it, that second port can be used for reading SWV/SWO trace data.
43 * - Additional JTAG links, e.g. to a CPLD or * FPGA.
45 * FT2232 based JTAG adapters are "dumb" not "smart", because most JTAG
46 * request/response interactions involve round trips over the USB link.
47 * A "smart" JTAG adapter has intelligence close to the scan chain, so it
48 * can for example poll quickly for a status change (usually taking on the
49 * order of microseconds not milliseconds) before beginning a queued
50 * transaction which require the previous one to have completed.
52 * There are dozens of adapters of this type, differing in details which
53 * this driver needs to understand. Those "layout" details are required
54 * as part of FT2232 driver configuration.
56 * This code uses information contained in the MPSSE specification which was
57 * found here:
58 * http://www.ftdichip.com/Documents/AppNotes/AN2232C-01_MPSSE_Cmnd.pdf
59 * Hereafter this is called the "MPSSE Spec".
61 * The datasheet for the ftdichip.com's FT2232D part is here:
62 * http://www.ftdichip.com/Documents/DataSheets/DS_FT2232D.pdf
64 * Also note the issue with code 0x4b (clock data to TMS) noted in
65 * http://developer.intra2net.com/mailarchive/html/libftdi/2009/msg00292.html
66 * which can affect longer JTAG state paths.
69 #ifdef HAVE_CONFIG_H
70 #include "config.h"
71 #endif
73 /* project specific includes */
74 #include <jtag/interface.h>
75 #include <jtag/swd.h>
76 #include <transport/transport.h>
77 #include <helper/time_support.h>
79 #if IS_CYGWIN == 1
80 #include <windows.h>
81 #endif
83 #include <assert.h>
85 /* FTDI access library includes */
86 #include "mpsse.h"
88 #define JTAG_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
89 #define SWD_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
91 static char *ftdi_device_desc;
92 static char *ftdi_serial;
93 static uint8_t ftdi_channel;
95 static bool swd_mode;
97 #define MAX_USB_IDS 8
98 /* vid = pid = 0 marks the end of the list */
99 static uint16_t ftdi_vid[MAX_USB_IDS + 1] = { 0 };
100 static uint16_t ftdi_pid[MAX_USB_IDS + 1] = { 0 };
102 static struct mpsse_ctx *mpsse_ctx;
104 struct signal {
105 const char *name;
106 uint16_t data_mask;
107 uint16_t oe_mask;
108 bool invert_data;
109 bool invert_oe;
110 struct signal *next;
113 static struct signal *signals;
115 /* FIXME: Where to store per-instance data? We need an SWD context. */
116 static struct swd_cmd_queue_entry {
117 uint8_t cmd;
118 uint32_t *dst;
119 uint8_t trn_ack_data_parity_trn[DIV_ROUND_UP(4 + 3 + 32 + 1 + 4, 8)];
120 } *swd_cmd_queue;
121 static size_t swd_cmd_queue_length;
122 static size_t swd_cmd_queue_alloced;
123 static int queued_retval;
124 static int freq;
126 static uint16_t output;
127 static uint16_t direction;
128 static uint16_t jtag_output_init;
129 static uint16_t jtag_direction_init;
130 static uint16_t swd_output_init;
131 static uint16_t swd_direction_init;
133 static int ftdi_swd_switch_seq(struct adiv5_dap *dap, enum swd_special_seq seq);
135 static struct signal *find_signal_by_name(const char *name)
137 for (struct signal *sig = signals; sig; sig = sig->next) {
138 if (strcmp(name, sig->name) == 0)
139 return sig;
141 return NULL;
144 static struct signal *create_signal(const char *name)
146 struct signal **psig = &signals;
147 while (*psig)
148 psig = &(*psig)->next;
150 *psig = calloc(1, sizeof(**psig));
151 if (*psig == NULL)
152 return NULL;
154 (*psig)->name = strdup(name);
155 if ((*psig)->name == NULL) {
156 free(*psig);
157 *psig = NULL;
159 return *psig;
162 static int ftdi_set_signal(const struct signal *s, char value)
164 bool data;
165 bool oe;
167 if (s->data_mask == 0 && s->oe_mask == 0) {
168 LOG_ERROR("interface doesn't provide signal '%s'", s->name);
169 return ERROR_FAIL;
171 switch (value) {
172 case '0':
173 data = s->invert_data;
174 oe = !s->invert_oe;
175 break;
176 case '1':
177 if (s->data_mask == 0) {
178 LOG_ERROR("interface can't drive '%s' high", s->name);
179 return ERROR_FAIL;
181 data = !s->invert_data;
182 oe = !s->invert_oe;
183 break;
184 case 'z':
185 case 'Z':
186 if (s->oe_mask == 0) {
187 LOG_ERROR("interface can't tri-state '%s'", s->name);
188 return ERROR_FAIL;
190 data = s->invert_data;
191 oe = s->invert_oe;
192 break;
193 default:
194 assert(0 && "invalid signal level specifier");
195 return ERROR_FAIL;
198 uint16_t old_output = output;
199 uint16_t old_direction = direction;
201 output = data ? output | s->data_mask : output & ~s->data_mask;
202 if (s->oe_mask == s->data_mask)
203 direction = oe ? direction | s->oe_mask : direction & ~s->oe_mask;
204 else
205 output = oe ? output | s->oe_mask : output & ~s->oe_mask;
207 if ((output & 0xff) != (old_output & 0xff) || (direction & 0xff) != (old_direction & 0xff))
208 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
209 if ((output >> 8 != old_output >> 8) || (direction >> 8 != old_direction >> 8))
210 mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
212 return ERROR_OK;
217 * Function move_to_state
218 * moves the TAP controller from the current state to a
219 * \a goal_state through a path given by tap_get_tms_path(). State transition
220 * logging is performed by delegation to clock_tms().
222 * @param goal_state is the destination state for the move.
224 static void move_to_state(tap_state_t goal_state)
226 tap_state_t start_state = tap_get_state();
228 /* goal_state is 1/2 of a tuple/pair of states which allow convenient
229 lookup of the required TMS pattern to move to this state from the
230 start state.
233 /* do the 2 lookups */
234 uint8_t tms_bits = tap_get_tms_path(start_state, goal_state);
235 int tms_count = tap_get_tms_path_len(start_state, goal_state);
236 assert(tms_count <= 8);
238 DEBUG_JTAG_IO("start=%s goal=%s", tap_state_name(start_state), tap_state_name(goal_state));
240 /* Track state transitions step by step */
241 for (int i = 0; i < tms_count; i++)
242 tap_set_state(tap_state_transition(tap_get_state(), (tms_bits >> i) & 1));
244 mpsse_clock_tms_cs_out(mpsse_ctx,
245 &tms_bits,
247 tms_count,
248 false,
249 JTAG_MODE);
252 static int ftdi_speed(int speed)
254 int retval;
255 retval = mpsse_set_frequency(mpsse_ctx, speed);
257 if (retval < 0) {
258 LOG_ERROR("couldn't set FTDI TCK speed");
259 return retval;
262 return ERROR_OK;
265 static int ftdi_speed_div(int speed, int *khz)
267 *khz = speed / 1000;
268 return ERROR_OK;
271 static int ftdi_khz(int khz, int *jtag_speed)
273 if (khz == 0 && !mpsse_is_high_speed(mpsse_ctx)) {
274 LOG_DEBUG("RCLK not supported");
275 return ERROR_FAIL;
278 *jtag_speed = khz * 1000;
279 return ERROR_OK;
282 static void ftdi_end_state(tap_state_t state)
284 if (tap_is_state_stable(state))
285 tap_set_end_state(state);
286 else {
287 LOG_ERROR("BUG: %s is not a stable end state", tap_state_name(state));
288 exit(-1);
292 static void ftdi_execute_runtest(struct jtag_command *cmd)
294 int i;
295 uint8_t zero = 0;
297 DEBUG_JTAG_IO("runtest %i cycles, end in %s",
298 cmd->cmd.runtest->num_cycles,
299 tap_state_name(cmd->cmd.runtest->end_state));
301 if (tap_get_state() != TAP_IDLE)
302 move_to_state(TAP_IDLE);
304 /* TODO: Reuse ftdi_execute_stableclocks */
305 i = cmd->cmd.runtest->num_cycles;
306 while (i > 0) {
307 /* there are no state transitions in this code, so omit state tracking */
308 unsigned this_len = i > 7 ? 7 : i;
309 mpsse_clock_tms_cs_out(mpsse_ctx, &zero, 0, this_len, false, JTAG_MODE);
310 i -= this_len;
313 ftdi_end_state(cmd->cmd.runtest->end_state);
315 if (tap_get_state() != tap_get_end_state())
316 move_to_state(tap_get_end_state());
318 DEBUG_JTAG_IO("runtest: %i, end in %s",
319 cmd->cmd.runtest->num_cycles,
320 tap_state_name(tap_get_end_state()));
323 static void ftdi_execute_statemove(struct jtag_command *cmd)
325 DEBUG_JTAG_IO("statemove end in %s",
326 tap_state_name(cmd->cmd.statemove->end_state));
328 ftdi_end_state(cmd->cmd.statemove->end_state);
330 /* shortest-path move to desired end state */
331 if (tap_get_state() != tap_get_end_state() || tap_get_end_state() == TAP_RESET)
332 move_to_state(tap_get_end_state());
336 * Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG
337 * (or SWD) state machine. REVISIT: Not the best method, perhaps.
339 static void ftdi_execute_tms(struct jtag_command *cmd)
341 DEBUG_JTAG_IO("TMS: %d bits", cmd->cmd.tms->num_bits);
343 /* TODO: Missing tap state tracking, also missing from ft2232.c! */
344 mpsse_clock_tms_cs_out(mpsse_ctx,
345 cmd->cmd.tms->bits,
347 cmd->cmd.tms->num_bits,
348 false,
349 JTAG_MODE);
352 static void ftdi_execute_pathmove(struct jtag_command *cmd)
354 tap_state_t *path = cmd->cmd.pathmove->path;
355 int num_states = cmd->cmd.pathmove->num_states;
357 DEBUG_JTAG_IO("pathmove: %i states, current: %s end: %s", num_states,
358 tap_state_name(tap_get_state()),
359 tap_state_name(path[num_states-1]));
361 int state_count = 0;
362 unsigned bit_count = 0;
363 uint8_t tms_byte = 0;
365 DEBUG_JTAG_IO("-");
367 /* this loop verifies that the path is legal and logs each state in the path */
368 while (num_states--) {
370 /* either TMS=0 or TMS=1 must work ... */
371 if (tap_state_transition(tap_get_state(), false)
372 == path[state_count])
373 buf_set_u32(&tms_byte, bit_count++, 1, 0x0);
374 else if (tap_state_transition(tap_get_state(), true)
375 == path[state_count]) {
376 buf_set_u32(&tms_byte, bit_count++, 1, 0x1);
378 /* ... or else the caller goofed BADLY */
379 } else {
380 LOG_ERROR("BUG: %s -> %s isn't a valid "
381 "TAP state transition",
382 tap_state_name(tap_get_state()),
383 tap_state_name(path[state_count]));
384 exit(-1);
387 tap_set_state(path[state_count]);
388 state_count++;
390 if (bit_count == 7 || num_states == 0) {
391 mpsse_clock_tms_cs_out(mpsse_ctx,
392 &tms_byte,
394 bit_count,
395 false,
396 JTAG_MODE);
397 bit_count = 0;
400 tap_set_end_state(tap_get_state());
403 static void ftdi_execute_scan(struct jtag_command *cmd)
405 DEBUG_JTAG_IO("%s type:%d", cmd->cmd.scan->ir_scan ? "IRSCAN" : "DRSCAN",
406 jtag_scan_type(cmd->cmd.scan));
408 /* Make sure there are no trailing fields with num_bits == 0, or the logic below will fail. */
409 while (cmd->cmd.scan->num_fields > 0
410 && cmd->cmd.scan->fields[cmd->cmd.scan->num_fields - 1].num_bits == 0) {
411 cmd->cmd.scan->num_fields--;
412 LOG_DEBUG("discarding trailing empty field");
415 if (cmd->cmd.scan->num_fields == 0) {
416 LOG_DEBUG("empty scan, doing nothing");
417 return;
420 if (cmd->cmd.scan->ir_scan) {
421 if (tap_get_state() != TAP_IRSHIFT)
422 move_to_state(TAP_IRSHIFT);
423 } else {
424 if (tap_get_state() != TAP_DRSHIFT)
425 move_to_state(TAP_DRSHIFT);
428 ftdi_end_state(cmd->cmd.scan->end_state);
430 struct scan_field *field = cmd->cmd.scan->fields;
431 unsigned scan_size = 0;
433 for (int i = 0; i < cmd->cmd.scan->num_fields; i++, field++) {
434 scan_size += field->num_bits;
435 DEBUG_JTAG_IO("%s%s field %d/%d %d bits",
436 field->in_value ? "in" : "",
437 field->out_value ? "out" : "",
439 cmd->cmd.scan->num_fields,
440 field->num_bits);
442 if (i == cmd->cmd.scan->num_fields - 1 && tap_get_state() != tap_get_end_state()) {
443 /* Last field, and we're leaving IRSHIFT/DRSHIFT. Clock last bit during tap
444 * movement. This last field can't have length zero, it was checked above. */
445 mpsse_clock_data(mpsse_ctx,
446 field->out_value,
448 field->in_value,
450 field->num_bits - 1,
451 JTAG_MODE);
452 uint8_t last_bit = 0;
453 if (field->out_value)
454 bit_copy(&last_bit, 0, field->out_value, field->num_bits - 1, 1);
455 uint8_t tms_bits = 0x01;
456 mpsse_clock_tms_cs(mpsse_ctx,
457 &tms_bits,
459 field->in_value,
460 field->num_bits - 1,
462 last_bit,
463 JTAG_MODE);
464 tap_set_state(tap_state_transition(tap_get_state(), 1));
465 mpsse_clock_tms_cs_out(mpsse_ctx,
466 &tms_bits,
469 last_bit,
470 JTAG_MODE);
471 tap_set_state(tap_state_transition(tap_get_state(), 0));
472 } else
473 mpsse_clock_data(mpsse_ctx,
474 field->out_value,
476 field->in_value,
478 field->num_bits,
479 JTAG_MODE);
482 if (tap_get_state() != tap_get_end_state())
483 move_to_state(tap_get_end_state());
485 DEBUG_JTAG_IO("%s scan, %i bits, end in %s",
486 (cmd->cmd.scan->ir_scan) ? "IR" : "DR", scan_size,
487 tap_state_name(tap_get_end_state()));
490 static void ftdi_execute_reset(struct jtag_command *cmd)
492 DEBUG_JTAG_IO("reset trst: %i srst %i",
493 cmd->cmd.reset->trst, cmd->cmd.reset->srst);
495 if (cmd->cmd.reset->trst == 1
496 || (cmd->cmd.reset->srst
497 && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
498 tap_set_state(TAP_RESET);
500 struct signal *trst = find_signal_by_name("nTRST");
501 if (cmd->cmd.reset->trst == 1) {
502 if (trst)
503 ftdi_set_signal(trst, '0');
504 else
505 LOG_ERROR("Can't assert TRST: nTRST signal is not defined");
506 } else if (trst && cmd->cmd.reset->trst == 0) {
507 if (jtag_get_reset_config() & RESET_TRST_OPEN_DRAIN)
508 ftdi_set_signal(trst, 'z');
509 else
510 ftdi_set_signal(trst, '1');
513 struct signal *srst = find_signal_by_name("nSRST");
514 if (cmd->cmd.reset->srst == 1) {
515 if (srst)
516 ftdi_set_signal(srst, '0');
517 else
518 LOG_ERROR("Can't assert SRST: nSRST signal is not defined");
519 } else if (srst && cmd->cmd.reset->srst == 0) {
520 if (jtag_get_reset_config() & RESET_SRST_PUSH_PULL)
521 ftdi_set_signal(srst, '1');
522 else
523 ftdi_set_signal(srst, 'z');
526 DEBUG_JTAG_IO("trst: %i, srst: %i",
527 cmd->cmd.reset->trst, cmd->cmd.reset->srst);
530 static void ftdi_execute_sleep(struct jtag_command *cmd)
532 DEBUG_JTAG_IO("sleep %" PRIi32, cmd->cmd.sleep->us);
534 mpsse_flush(mpsse_ctx);
535 jtag_sleep(cmd->cmd.sleep->us);
536 DEBUG_JTAG_IO("sleep %" PRIi32 " usec while in %s",
537 cmd->cmd.sleep->us,
538 tap_state_name(tap_get_state()));
541 static void ftdi_execute_stableclocks(struct jtag_command *cmd)
543 /* this is only allowed while in a stable state. A check for a stable
544 * state was done in jtag_add_clocks()
546 int num_cycles = cmd->cmd.stableclocks->num_cycles;
548 /* 7 bits of either ones or zeros. */
549 uint8_t tms = tap_get_state() == TAP_RESET ? 0x7f : 0x00;
551 /* TODO: Use mpsse_clock_data with in=out=0 for this, if TMS can be set to
552 * the correct level and remain there during the scan */
553 while (num_cycles > 0) {
554 /* there are no state transitions in this code, so omit state tracking */
555 unsigned this_len = num_cycles > 7 ? 7 : num_cycles;
556 mpsse_clock_tms_cs_out(mpsse_ctx, &tms, 0, this_len, false, JTAG_MODE);
557 num_cycles -= this_len;
560 DEBUG_JTAG_IO("clocks %i while in %s",
561 cmd->cmd.stableclocks->num_cycles,
562 tap_state_name(tap_get_state()));
565 static void ftdi_execute_command(struct jtag_command *cmd)
567 switch (cmd->type) {
568 case JTAG_RESET:
569 ftdi_execute_reset(cmd);
570 break;
571 case JTAG_RUNTEST:
572 ftdi_execute_runtest(cmd);
573 break;
574 case JTAG_TLR_RESET:
575 ftdi_execute_statemove(cmd);
576 break;
577 case JTAG_PATHMOVE:
578 ftdi_execute_pathmove(cmd);
579 break;
580 case JTAG_SCAN:
581 ftdi_execute_scan(cmd);
582 break;
583 case JTAG_SLEEP:
584 ftdi_execute_sleep(cmd);
585 break;
586 case JTAG_STABLECLOCKS:
587 ftdi_execute_stableclocks(cmd);
588 break;
589 case JTAG_TMS:
590 ftdi_execute_tms(cmd);
591 break;
592 default:
593 LOG_ERROR("BUG: unknown JTAG command type encountered: %d", cmd->type);
594 break;
598 static int ftdi_execute_queue(void)
600 /* blink, if the current layout has that feature */
601 struct signal *led = find_signal_by_name("LED");
602 if (led)
603 ftdi_set_signal(led, '1');
605 for (struct jtag_command *cmd = jtag_command_queue; cmd; cmd = cmd->next) {
606 /* fill the write buffer with the desired command */
607 ftdi_execute_command(cmd);
610 if (led)
611 ftdi_set_signal(led, '0');
613 int retval = mpsse_flush(mpsse_ctx);
614 if (retval != ERROR_OK)
615 LOG_ERROR("error while flushing MPSSE queue: %d", retval);
617 return retval;
620 static int ftdi_initialize(void)
622 if (tap_get_tms_path_len(TAP_IRPAUSE, TAP_IRPAUSE) == 7)
623 LOG_DEBUG("ftdi interface using 7 step jtag state transitions");
624 else
625 LOG_DEBUG("ftdi interface using shortest path jtag state transitions");
627 for (int i = 0; ftdi_vid[i] || ftdi_pid[i]; i++) {
628 mpsse_ctx = mpsse_open(&ftdi_vid[i], &ftdi_pid[i], ftdi_device_desc,
629 ftdi_serial, ftdi_channel);
630 if (mpsse_ctx)
631 break;
634 if (!mpsse_ctx)
635 return ERROR_JTAG_INIT_FAILED;
637 output = swd_mode ? swd_output_init : jtag_output_init;
638 direction = swd_mode ? swd_direction_init : jtag_direction_init;
640 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
641 mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
643 mpsse_loopback_config(mpsse_ctx, false);
645 /* Set a low default */
646 freq = mpsse_set_frequency(mpsse_ctx, 1000);
648 if (swd_mode)
649 ftdi_swd_switch_seq(NULL, JTAG_TO_SWD);
650 else
651 ftdi_swd_switch_seq(NULL, SWD_TO_JTAG);
653 return mpsse_flush(mpsse_ctx);
656 static int ftdi_quit(void)
658 mpsse_close(mpsse_ctx);
660 return ERROR_OK;
663 COMMAND_HANDLER(ftdi_handle_device_desc_command)
665 if (CMD_ARGC == 1) {
666 if (ftdi_device_desc)
667 free(ftdi_device_desc);
668 ftdi_device_desc = strdup(CMD_ARGV[0]);
669 } else {
670 LOG_ERROR("expected exactly one argument to ftdi_device_desc <description>");
673 return ERROR_OK;
676 COMMAND_HANDLER(ftdi_handle_serial_command)
678 if (CMD_ARGC == 1) {
679 if (ftdi_serial)
680 free(ftdi_serial);
681 ftdi_serial = strdup(CMD_ARGV[0]);
682 } else {
683 return ERROR_COMMAND_SYNTAX_ERROR;
686 return ERROR_OK;
689 COMMAND_HANDLER(ftdi_handle_channel_command)
691 if (CMD_ARGC == 1)
692 COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], ftdi_channel);
693 else
694 return ERROR_COMMAND_SYNTAX_ERROR;
696 return ERROR_OK;
699 COMMAND_HANDLER(ftdi_handle_layout_init_command)
701 if (CMD_ARGC != 2)
702 return ERROR_COMMAND_SYNTAX_ERROR;
704 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], jtag_output_init);
705 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], jtag_direction_init);
707 return ERROR_OK;
710 COMMAND_HANDLER(ftdi_handle_layout_init_swd_command)
712 if (CMD_ARGC != 2)
713 return ERROR_COMMAND_SYNTAX_ERROR;
715 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], swd_output_init);
716 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], swd_direction_init);
718 return ERROR_OK;
721 COMMAND_HANDLER(ftdi_handle_layout_signal_command)
723 if (CMD_ARGC < 1)
724 return ERROR_COMMAND_SYNTAX_ERROR;
726 bool invert_data = false;
727 uint16_t data_mask = 0;
728 bool invert_oe = false;
729 uint16_t oe_mask = 0;
730 for (unsigned i = 1; i < CMD_ARGC; i += 2) {
731 if (strcmp("-data", CMD_ARGV[i]) == 0) {
732 invert_data = false;
733 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
734 } else if (strcmp("-ndata", CMD_ARGV[i]) == 0) {
735 invert_data = true;
736 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
737 } else if (strcmp("-oe", CMD_ARGV[i]) == 0) {
738 invert_oe = false;
739 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
740 } else if (strcmp("-noe", CMD_ARGV[i]) == 0) {
741 invert_oe = true;
742 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
743 } else if (!strcmp("-alias", CMD_ARGV[i]) ||
744 !strcmp("-nalias", CMD_ARGV[i])) {
745 if (!strcmp("-nalias", CMD_ARGV[i]))
746 invert_data = true;
747 struct signal *sig = find_signal_by_name(CMD_ARGV[i + 1]);
748 if (!sig) {
749 LOG_ERROR("signal %s is not defined", CMD_ARGV[i + 1]);
750 return ERROR_FAIL;
752 data_mask = sig->data_mask;
753 oe_mask = sig->oe_mask;
754 invert_oe = sig->invert_oe;
755 invert_data ^= sig->invert_data;
756 } else {
757 LOG_ERROR("unknown option '%s'", CMD_ARGV[i]);
758 return ERROR_COMMAND_SYNTAX_ERROR;
762 struct signal *sig;
763 sig = find_signal_by_name(CMD_ARGV[0]);
764 if (!sig)
765 sig = create_signal(CMD_ARGV[0]);
766 if (!sig) {
767 LOG_ERROR("failed to create signal %s", CMD_ARGV[0]);
768 return ERROR_FAIL;
771 sig->invert_data = invert_data;
772 sig->data_mask = data_mask;
773 sig->invert_oe = invert_oe;
774 sig->oe_mask = oe_mask;
776 return ERROR_OK;
779 COMMAND_HANDLER(ftdi_handle_set_signal_command)
781 if (CMD_ARGC < 2)
782 return ERROR_COMMAND_SYNTAX_ERROR;
784 struct signal *sig;
785 sig = find_signal_by_name(CMD_ARGV[0]);
786 if (!sig) {
787 LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
788 return ERROR_FAIL;
791 switch (*CMD_ARGV[1]) {
792 case '0':
793 case '1':
794 case 'z':
795 case 'Z':
796 /* single character level specifier only */
797 if (CMD_ARGV[1][1] == '\0') {
798 ftdi_set_signal(sig, *CMD_ARGV[1]);
799 break;
801 default:
802 LOG_ERROR("unknown signal level '%s', use 0, 1 or z", CMD_ARGV[1]);
803 return ERROR_COMMAND_SYNTAX_ERROR;
806 return mpsse_flush(mpsse_ctx);
809 COMMAND_HANDLER(ftdi_handle_vid_pid_command)
811 if (CMD_ARGC > MAX_USB_IDS * 2) {
812 LOG_WARNING("ignoring extra IDs in ftdi_vid_pid "
813 "(maximum is %d pairs)", MAX_USB_IDS);
814 CMD_ARGC = MAX_USB_IDS * 2;
816 if (CMD_ARGC < 2 || (CMD_ARGC & 1)) {
817 LOG_WARNING("incomplete ftdi_vid_pid configuration directive");
818 if (CMD_ARGC < 2)
819 return ERROR_COMMAND_SYNTAX_ERROR;
820 /* remove the incomplete trailing id */
821 CMD_ARGC -= 1;
824 unsigned i;
825 for (i = 0; i < CMD_ARGC; i += 2) {
826 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i], ftdi_vid[i >> 1]);
827 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], ftdi_pid[i >> 1]);
831 * Explicitly terminate, in case there are multiples instances of
832 * ftdi_vid_pid.
834 ftdi_vid[i >> 1] = ftdi_pid[i >> 1] = 0;
836 return ERROR_OK;
839 static const struct command_registration ftdi_command_handlers[] = {
841 .name = "ftdi_device_desc",
842 .handler = &ftdi_handle_device_desc_command,
843 .mode = COMMAND_CONFIG,
844 .help = "set the USB device description of the FTDI device",
845 .usage = "description_string",
848 .name = "ftdi_serial",
849 .handler = &ftdi_handle_serial_command,
850 .mode = COMMAND_CONFIG,
851 .help = "set the serial number of the FTDI device",
852 .usage = "serial_string",
855 .name = "ftdi_channel",
856 .handler = &ftdi_handle_channel_command,
857 .mode = COMMAND_CONFIG,
858 .help = "set the channel of the FTDI device that is used as JTAG",
859 .usage = "(0-3)",
862 .name = "ftdi_layout_init",
863 .handler = &ftdi_handle_layout_init_command,
864 .mode = COMMAND_CONFIG,
865 .help = "initialize the FTDI GPIO signals used "
866 "to control output-enables and reset signals"
867 "when JTAG mode is selected",
868 .usage = "data direction",
871 .name = "ftdi_layout_init_swd",
872 .handler = &ftdi_handle_layout_init_swd_command,
873 .mode = COMMAND_CONFIG,
874 .help = "initialize the FTDI GPIO signals used "
875 "to control output-enables and reset signals"
876 "when SWD mode is selected",
877 .usage = "data direction",
880 .name = "ftdi_layout_signal",
881 .handler = &ftdi_handle_layout_signal_command,
882 .mode = COMMAND_ANY,
883 .help = "define a signal controlled by one or more FTDI GPIO as data "
884 "and/or output enable",
885 .usage = "name [-data mask|-ndata mask] [-oe mask|-noe mask] [-alias|-nalias name]",
888 .name = "ftdi_set_signal",
889 .handler = &ftdi_handle_set_signal_command,
890 .mode = COMMAND_EXEC,
891 .help = "control a layout-specific signal",
892 .usage = "name (1|0|z)",
895 .name = "ftdi_vid_pid",
896 .handler = &ftdi_handle_vid_pid_command,
897 .mode = COMMAND_CONFIG,
898 .help = "the vendor ID and product ID of the FTDI device",
899 .usage = "(vid pid)* ",
901 COMMAND_REGISTRATION_DONE
904 static int ftdi_swd_init(void)
906 LOG_INFO("FTDI SWD mode enabled");
907 swd_mode = true;
909 swd_cmd_queue_alloced = 10;
910 swd_cmd_queue = malloc(swd_cmd_queue_alloced * sizeof(*swd_cmd_queue));
912 return swd_cmd_queue != NULL ? ERROR_OK : ERROR_FAIL;
915 static void ftdi_swd_swdio_en(bool enable)
917 struct signal *oe = find_signal_by_name("SWDIO_OE");
918 if (oe)
919 ftdi_set_signal(oe, enable ? '1' : '0');
923 * Flush the MPSSE queue and process the SWD transaction queue
924 * @param dap
925 * @return
927 static int ftdi_swd_run_queue(struct adiv5_dap *dap)
929 LOG_DEBUG("Executing %zu queued transactions", swd_cmd_queue_length);
930 int retval;
931 struct signal *led = find_signal_by_name("LED");
933 if (queued_retval != ERROR_OK) {
934 LOG_DEBUG("Skipping due to previous errors: %d", queued_retval);
935 goto skip;
938 /* A transaction must be followed by another transaction or at least 8 idle cycles to
939 * ensure that data is clocked through the AP. */
940 mpsse_clock_data_out(mpsse_ctx, NULL, 0, 8, SWD_MODE);
942 /* Terminate the "blink", if the current layout has that feature */
943 if (led)
944 ftdi_set_signal(led, '0');
946 queued_retval = mpsse_flush(mpsse_ctx);
947 if (queued_retval != ERROR_OK) {
948 LOG_ERROR("MPSSE failed");
949 goto skip;
952 for (size_t i = 0; i < swd_cmd_queue_length; i++) {
953 int ack = buf_get_u32(&swd_cmd_queue[i].trn_ack_data_parity_trn, 1, 3);
955 LOG_DEBUG("%s %s %s reg %X = %08"PRIx32,
956 ack == SWD_ACK_OK ? "OK" : ack == SWD_ACK_WAIT ? "WAIT" : ack == SWD_ACK_FAULT ? "FAULT" : "JUNK",
957 swd_cmd_queue[i].cmd & SWD_CMD_APnDP ? "AP" : "DP",
958 swd_cmd_queue[i].cmd & SWD_CMD_RnW ? "read" : "write",
959 (swd_cmd_queue[i].cmd & SWD_CMD_A32) >> 1,
960 buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn,
961 1 + 3 + (swd_cmd_queue[i].cmd & SWD_CMD_RnW ? 0 : 1), 32));
963 if (ack != SWD_ACK_OK) {
964 queued_retval = ack;
965 goto skip;
967 } else if (swd_cmd_queue[i].cmd & SWD_CMD_RnW) {
968 uint32_t data = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3, 32);
969 int parity = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 32, 1);
971 if (parity != parity_u32(data)) {
972 LOG_ERROR("SWD Read data parity mismatch");
973 queued_retval = ERROR_FAIL;
974 goto skip;
977 if (swd_cmd_queue[i].dst != NULL)
978 *swd_cmd_queue[i].dst = data;
982 skip:
983 swd_cmd_queue_length = 0;
984 retval = queued_retval;
985 queued_retval = ERROR_OK;
987 /* Queue a new "blink" */
988 if (led && retval == ERROR_OK)
989 ftdi_set_signal(led, '1');
991 return retval;
994 static void ftdi_swd_queue_cmd(struct adiv5_dap *dap, uint8_t cmd, uint32_t *dst, uint32_t data)
996 if (swd_cmd_queue_length >= swd_cmd_queue_alloced) {
997 /* Not enough room in the queue. Run the queue and increase its size for next time.
998 * Note that it's not possible to avoid running the queue here, because mpsse contains
999 * pointers into the queue which may be invalid after the realloc. */
1000 queued_retval = ftdi_swd_run_queue(dap);
1001 struct swd_cmd_queue_entry *q = realloc(swd_cmd_queue, swd_cmd_queue_alloced * 2 * sizeof(*swd_cmd_queue));
1002 if (q != NULL) {
1003 swd_cmd_queue = q;
1004 swd_cmd_queue_alloced *= 2;
1005 LOG_DEBUG("Increased SWD command queue to %zu elements", swd_cmd_queue_alloced);
1009 if (queued_retval != ERROR_OK)
1010 return;
1012 size_t i = swd_cmd_queue_length++;
1013 swd_cmd_queue[i].cmd = cmd | SWD_CMD_START | SWD_CMD_PARK;
1015 mpsse_clock_data_out(mpsse_ctx, &swd_cmd_queue[i].cmd, 0, 8, SWD_MODE);
1017 if (swd_cmd_queue[i].cmd & SWD_CMD_RnW) {
1018 /* Queue a read transaction */
1019 swd_cmd_queue[i].dst = dst;
1021 ftdi_swd_swdio_en(false);
1022 mpsse_clock_data_in(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1023 0, 1 + 3 + 32 + 1 + 1, SWD_MODE);
1024 ftdi_swd_swdio_en(true);
1025 } else {
1026 /* Queue a write transaction */
1027 ftdi_swd_swdio_en(false);
1029 mpsse_clock_data_in(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1030 0, 1 + 3 + 1, SWD_MODE);
1032 ftdi_swd_swdio_en(true);
1034 buf_set_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 1, 32, data);
1035 buf_set_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 1 + 32, 1, parity_u32(data));
1037 mpsse_clock_data_out(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1038 1 + 3 + 1, 32 + 1, SWD_MODE);
1041 /* Insert idle cycles after AP accesses to avoid WAIT */
1042 if (cmd & SWD_CMD_APnDP)
1043 mpsse_clock_data_out(mpsse_ctx, NULL, 0, dap->memaccess_tck, SWD_MODE);
1047 static void ftdi_swd_read_reg(struct adiv5_dap *dap, uint8_t cmd, uint32_t *value)
1049 assert(cmd & SWD_CMD_RnW);
1050 ftdi_swd_queue_cmd(dap, cmd, value, 0);
1053 static void ftdi_swd_write_reg(struct adiv5_dap *dap, uint8_t cmd, uint32_t value)
1055 assert(!(cmd & SWD_CMD_RnW));
1056 ftdi_swd_queue_cmd(dap, cmd, NULL, value);
1059 static int_least32_t ftdi_swd_frequency(struct adiv5_dap *dap, int_least32_t hz)
1061 if (hz > 0)
1062 freq = mpsse_set_frequency(mpsse_ctx, hz);
1064 return freq;
1067 static int ftdi_swd_switch_seq(struct adiv5_dap *dap, enum swd_special_seq seq)
1069 switch (seq) {
1070 case LINE_RESET:
1071 LOG_DEBUG("SWD line reset");
1072 mpsse_clock_data_out(mpsse_ctx, swd_seq_line_reset, 0, swd_seq_line_reset_len, SWD_MODE);
1073 break;
1074 case JTAG_TO_SWD:
1075 LOG_DEBUG("JTAG-to-SWD");
1076 mpsse_clock_data_out(mpsse_ctx, swd_seq_jtag_to_swd, 0, swd_seq_jtag_to_swd_len, SWD_MODE);
1077 break;
1078 case SWD_TO_JTAG:
1079 LOG_DEBUG("SWD-to-JTAG");
1080 mpsse_clock_data_out(mpsse_ctx, swd_seq_swd_to_jtag, 0, swd_seq_swd_to_jtag_len, SWD_MODE);
1081 break;
1082 default:
1083 LOG_ERROR("Sequence %d not supported", seq);
1084 return ERROR_FAIL;
1087 return ERROR_OK;
1090 static const struct swd_driver ftdi_swd = {
1091 .init = ftdi_swd_init,
1092 .frequency = ftdi_swd_frequency,
1093 .switch_seq = ftdi_swd_switch_seq,
1094 .read_reg = ftdi_swd_read_reg,
1095 .write_reg = ftdi_swd_write_reg,
1096 .run = ftdi_swd_run_queue,
1099 static const char * const ftdi_transports[] = { "jtag", "swd", NULL };
1101 struct jtag_interface ftdi_interface = {
1102 .name = "ftdi",
1103 .supported = DEBUG_CAP_TMS_SEQ,
1104 .commands = ftdi_command_handlers,
1105 .transports = ftdi_transports,
1106 .swd = &ftdi_swd,
1108 .init = ftdi_initialize,
1109 .quit = ftdi_quit,
1110 .speed = ftdi_speed,
1111 .speed_div = ftdi_speed_div,
1112 .khz = ftdi_khz,
1113 .execute_queue = ftdi_execute_queue,