nrf51: fix checks for is_erased
[openocd.git] / src / flash / nor / nrf51.c
blobc5ffa83249fd28a514719581cad1070896c14ac2
1 /***************************************************************************
2 * Copyright (C) 2013 Synapse Product Development *
3 * Andrey Smirnov <andrew.smironv@gmail.com> *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
19 ***************************************************************************/
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
25 #include "imp.h"
27 enum {
28 NRF51_FLASH_BASE = 0x00000000,
31 enum nrf51_ficr_registers {
32 NRF51_FICR_BASE = 0x10000000, /* Factory Information Configuration Registers */
34 #define NRF51_FICR_REG(offset) (NRF51_FICR_BASE + offset)
36 NRF51_FICR_CODEPAGESIZE = NRF51_FICR_REG(0x010),
37 NRF51_FICR_CODESIZE = NRF51_FICR_REG(0x014),
38 NRF51_FICR_CLENR0 = NRF51_FICR_REG(0x028),
39 NRF51_FICR_PPFC = NRF51_FICR_REG(0x02C),
40 NRF51_FICR_NUMRAMBLOCK = NRF51_FICR_REG(0x034),
41 NRF51_FICR_SIZERAMBLOCK0 = NRF51_FICR_REG(0x038),
42 NRF51_FICR_SIZERAMBLOCK1 = NRF51_FICR_REG(0x03C),
43 NRF51_FICR_SIZERAMBLOCK2 = NRF51_FICR_REG(0x040),
44 NRF51_FICR_SIZERAMBLOCK3 = NRF51_FICR_REG(0x044),
45 NRF51_FICR_CONFIGID = NRF51_FICR_REG(0x05C),
46 NRF51_FICR_DEVICEID0 = NRF51_FICR_REG(0x060),
47 NRF51_FICR_DEVICEID1 = NRF51_FICR_REG(0x064),
48 NRF51_FICR_ER0 = NRF51_FICR_REG(0x080),
49 NRF51_FICR_ER1 = NRF51_FICR_REG(0x084),
50 NRF51_FICR_ER2 = NRF51_FICR_REG(0x088),
51 NRF51_FICR_ER3 = NRF51_FICR_REG(0x08C),
52 NRF51_FICR_IR0 = NRF51_FICR_REG(0x090),
53 NRF51_FICR_IR1 = NRF51_FICR_REG(0x094),
54 NRF51_FICR_IR2 = NRF51_FICR_REG(0x098),
55 NRF51_FICR_IR3 = NRF51_FICR_REG(0x09C),
56 NRF51_FICR_DEVICEADDRTYPE = NRF51_FICR_REG(0x0A0),
57 NRF51_FICR_DEVICEADDR0 = NRF51_FICR_REG(0x0A4),
58 NRF51_FICR_DEVICEADDR1 = NRF51_FICR_REG(0x0A8),
59 NRF51_FICR_OVERRIDEN = NRF51_FICR_REG(0x0AC),
60 NRF51_FICR_NRF_1MBIT0 = NRF51_FICR_REG(0x0B0),
61 NRF51_FICR_NRF_1MBIT1 = NRF51_FICR_REG(0x0B4),
62 NRF51_FICR_NRF_1MBIT2 = NRF51_FICR_REG(0x0B8),
63 NRF51_FICR_NRF_1MBIT3 = NRF51_FICR_REG(0x0BC),
64 NRF51_FICR_NRF_1MBIT4 = NRF51_FICR_REG(0x0C0),
65 NRF51_FICR_BLE_1MBIT0 = NRF51_FICR_REG(0x0EC),
66 NRF51_FICR_BLE_1MBIT1 = NRF51_FICR_REG(0x0F0),
67 NRF51_FICR_BLE_1MBIT2 = NRF51_FICR_REG(0x0F4),
68 NRF51_FICR_BLE_1MBIT3 = NRF51_FICR_REG(0x0F8),
69 NRF51_FICR_BLE_1MBIT4 = NRF51_FICR_REG(0x0FC),
72 enum nrf51_uicr_registers {
73 NRF51_UICR_BASE = 0x10001000, /* User Information
74 * Configuration Regsters */
76 NRF51_UICR_SIZE = 0x100,
78 #define NRF51_UICR_REG(offset) (NRF51_UICR_BASE + offset)
80 NRF51_UICR_CLENR0 = NRF51_UICR_REG(0x000),
81 NRF51_UICR_RBPCONF = NRF51_UICR_REG(0x004),
82 NRF51_UICR_XTALFREQ = NRF51_UICR_REG(0x008),
83 NRF51_UICR_FWID = NRF51_UICR_REG(0x010),
86 enum nrf51_nvmc_registers {
87 NRF51_NVMC_BASE = 0x4001E000, /* Non-Volatile Memory
88 * Controller Regsters */
90 #define NRF51_NVMC_REG(offset) (NRF51_NVMC_BASE + offset)
92 NRF51_NVMC_READY = NRF51_NVMC_REG(0x400),
93 NRF51_NVMC_CONFIG = NRF51_NVMC_REG(0x504),
94 NRF51_NVMC_ERASEPAGE = NRF51_NVMC_REG(0x508),
95 NRF51_NVMC_ERASEALL = NRF51_NVMC_REG(0x50C),
96 NRF51_NVMC_ERASEUICR = NRF51_NVMC_REG(0x514),
99 enum nrf51_nvmc_config_bits {
100 NRF51_NVMC_CONFIG_REN = 0x00,
101 NRF51_NVMC_CONFIG_WEN = 0x01,
102 NRF51_NVMC_CONFIG_EEN = 0x02,
106 struct nrf51_info {
107 uint32_t code_page_size;
108 uint32_t code_memory_size;
110 struct {
111 bool probed;
112 int (*write) (struct flash_bank *bank,
113 struct nrf51_info *chip,
114 const uint8_t *buffer, uint32_t offset, uint32_t count);
115 } bank[2];
116 struct target *target;
119 struct nrf51_device_spec {
120 uint16_t hwid;
121 const char *variant;
122 const char *build_code;
123 unsigned int flash_size_kb;
126 static const struct nrf51_device_spec nrf51_known_devices_table[] = {
128 .hwid = 0x001D,
129 .variant = "QFAA",
130 .build_code = "CA/C0",
131 .flash_size_kb = 256,
134 .hwid = 0x002A,
135 .variant = "QFAA",
136 .build_code = "FA",
137 .flash_size_kb = 256,
140 .hwid = 0x0044,
141 .variant = "QFAA",
142 .build_code = "GC",
143 .flash_size_kb = 256,
146 .hwid = 0x003C,
147 .variant = "QFAA",
148 .build_code = "G0",
149 .flash_size_kb = 256,
153 .hwid = 0x0020,
154 .variant = "CEAA",
155 .build_code = "BA",
156 .flash_size_kb = 256,
159 .hwid = 0x002F,
160 .variant = "CEAA",
161 .build_code = "B0",
162 .flash_size_kb = 256,
165 .hwid = 0x0040,
166 .variant = "CEAA",
167 .build_code = "CA",
168 .flash_size_kb = 256,
171 .hwid = 0x0047,
172 .variant = "CEAA",
173 .build_code = "DA",
174 .flash_size_kb = 256,
177 .hwid = 0x004D,
178 .variant = "CEAA",
179 .build_code = "D0",
180 .flash_size_kb = 256,
184 .hwid = 0x0026,
185 .variant = "QFAB",
186 .build_code = "AA",
187 .flash_size_kb = 128,
190 .hwid = 0x0027,
191 .variant = "QFAB",
192 .build_code = "A0",
193 .flash_size_kb = 128,
196 .hwid = 0x004C,
197 .variant = "QFAB",
198 .build_code = "B0",
199 .flash_size_kb = 128,
204 static int nrf51_bank_is_probed(struct flash_bank *bank)
206 struct nrf51_info *chip = bank->driver_priv;
208 assert(chip != NULL);
210 return chip->bank[bank->bank_number].probed;
212 static int nrf51_probe(struct flash_bank *bank);
214 static int nrf51_get_probed_chip_if_halted(struct flash_bank *bank, struct nrf51_info **chip)
216 if (bank->target->state != TARGET_HALTED) {
217 LOG_ERROR("Target not halted");
218 return ERROR_TARGET_NOT_HALTED;
221 *chip = bank->driver_priv;
223 int probed = nrf51_bank_is_probed(bank);
224 if (probed < 0)
225 return probed;
226 else if (!probed)
227 return nrf51_probe(bank);
228 else
229 return ERROR_OK;
232 static int nrf51_wait_for_nvmc(struct nrf51_info *chip)
234 uint32_t ready;
235 int res;
236 int timeout = 100;
238 do {
239 res = target_read_u32(chip->target, NRF51_NVMC_READY, &ready);
240 if (res != ERROR_OK) {
241 LOG_ERROR("Couldn't read NVMC_READY register");
242 return res;
245 if (ready == 0x00000001)
246 return ERROR_OK;
248 alive_sleep(1);
249 } while (timeout--);
251 return ERROR_FLASH_BUSY;
254 static int nrf51_nvmc_erase_enable(struct nrf51_info *chip)
256 int res;
257 res = target_write_u32(chip->target,
258 NRF51_NVMC_CONFIG,
259 NRF51_NVMC_CONFIG_EEN);
261 if (res != ERROR_OK) {
262 LOG_ERROR("Failed to enable erase operation");
263 return res;
267 According to NVMC examples in Nordic SDK busy status must be
268 checked after writing to NVMC_CONFIG
270 res = nrf51_wait_for_nvmc(chip);
271 if (res != ERROR_OK)
272 LOG_ERROR("Erase enable did not complete");
274 return res;
277 static int nrf51_nvmc_write_enable(struct nrf51_info *chip)
279 int res;
280 res = target_write_u32(chip->target,
281 NRF51_NVMC_CONFIG,
282 NRF51_NVMC_CONFIG_WEN);
284 if (res != ERROR_OK) {
285 LOG_ERROR("Failed to enable write operation");
286 return res;
290 According to NVMC examples in Nordic SDK busy status must be
291 checked after writing to NVMC_CONFIG
293 res = nrf51_wait_for_nvmc(chip);
294 if (res != ERROR_OK)
295 LOG_ERROR("Write enable did not complete");
297 return res;
300 static int nrf51_nvmc_read_only(struct nrf51_info *chip)
302 int res;
303 res = target_write_u32(chip->target,
304 NRF51_NVMC_CONFIG,
305 NRF51_NVMC_CONFIG_REN);
307 if (res != ERROR_OK) {
308 LOG_ERROR("Failed to enable read-only operation");
309 return res;
312 According to NVMC examples in Nordic SDK busy status must be
313 checked after writing to NVMC_CONFIG
315 res = nrf51_wait_for_nvmc(chip);
316 if (res != ERROR_OK)
317 LOG_ERROR("Read only enable did not complete");
319 return res;
322 static int nrf51_nvmc_generic_erase(struct nrf51_info *chip,
323 uint32_t erase_register, uint32_t erase_value)
325 int res;
327 res = nrf51_nvmc_erase_enable(chip);
328 if (res != ERROR_OK)
329 goto error;
331 res = target_write_u32(chip->target,
332 erase_register,
333 erase_value);
334 if (res != ERROR_OK)
335 goto set_read_only;
337 res = nrf51_wait_for_nvmc(chip);
338 if (res != ERROR_OK)
339 goto set_read_only;
341 return nrf51_nvmc_read_only(chip);
343 set_read_only:
344 nrf51_nvmc_read_only(chip);
345 error:
346 LOG_ERROR("Failed to erase reg: 0x%08"PRIx32" val: 0x%08"PRIx32,
347 erase_register, erase_value);
348 return ERROR_FAIL;
351 static int nrf51_protect_check(struct flash_bank *bank)
353 int res;
354 uint32_t clenr0;
356 /* UICR cannot be write protected so just return early */
357 if (bank->base == NRF51_UICR_BASE)
358 return ERROR_OK;
360 struct nrf51_info *chip = bank->driver_priv;
362 assert(chip != NULL);
364 res = target_read_u32(chip->target, NRF51_FICR_CLENR0,
365 &clenr0);
366 if (res != ERROR_OK) {
367 LOG_ERROR("Couldn't read code region 0 size[FICR]");
368 return res;
371 if (clenr0 == 0xFFFFFFFF) {
372 res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
373 &clenr0);
374 if (res != ERROR_OK) {
375 LOG_ERROR("Couldn't read code region 0 size[UICR]");
376 return res;
380 for (int i = 0; i < bank->num_sectors; i++)
381 bank->sectors[i].is_protected =
382 clenr0 != 0xFFFFFFFF && bank->sectors[i].offset < clenr0;
384 return ERROR_OK;
387 static int nrf51_protect(struct flash_bank *bank, int set, int first, int last)
389 int res;
390 uint32_t clenr0, ppfc;
391 struct nrf51_info *chip;
393 /* UICR cannot be write protected so just bail out early */
394 if (bank->base == NRF51_UICR_BASE)
395 return ERROR_FAIL;
397 res = nrf51_get_probed_chip_if_halted(bank, &chip);
398 if (res != ERROR_OK)
399 return res;
401 if (first != 0) {
402 LOG_ERROR("Code region 0 must start at the begining of the bank");
403 return ERROR_FAIL;
406 res = target_read_u32(chip->target, NRF51_FICR_PPFC,
407 &ppfc);
408 if (res != ERROR_OK) {
409 LOG_ERROR("Couldn't read PPFC register");
410 return res;
413 if ((ppfc & 0xFF) == 0x00) {
414 LOG_ERROR("Code region 0 size was pre-programmed at the factory, can't change flash protection settings");
415 return ERROR_FAIL;
418 res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
419 &clenr0);
420 if (res != ERROR_OK) {
421 LOG_ERROR("Couldn't read code region 0 size[UICR]");
422 return res;
425 if (clenr0 == 0xFFFFFFFF) {
426 res = target_write_u32(chip->target, NRF51_UICR_CLENR0,
427 clenr0);
428 if (res != ERROR_OK) {
429 LOG_ERROR("Couldn't write code region 0 size[UICR]");
430 return res;
433 } else {
434 LOG_ERROR("You need to perform chip erase before changing the protection settings");
437 nrf51_protect_check(bank);
439 return ERROR_OK;
442 static int nrf51_probe(struct flash_bank *bank)
444 uint32_t hwid;
445 int res;
446 struct nrf51_info *chip = bank->driver_priv;
448 res = target_read_u32(chip->target, NRF51_FICR_CONFIGID, &hwid);
449 if (res != ERROR_OK) {
450 LOG_ERROR("Couldn't read CONFIGID register");
451 return res;
454 hwid &= 0xFFFF; /* HWID is stored in the lower two
455 * bytes of the CONFIGID register */
457 const struct nrf51_device_spec *spec = NULL;
458 for (size_t i = 0; i < ARRAY_SIZE(nrf51_known_devices_table); i++)
459 if (hwid == nrf51_known_devices_table[i].hwid) {
460 spec = &nrf51_known_devices_table[i];
461 break;
464 if (!chip->bank[0].probed && !chip->bank[1].probed) {
465 if (spec)
466 LOG_INFO("nRF51822-%s(build code: %s) %ukB Flash",
467 spec->variant, spec->build_code, spec->flash_size_kb);
468 else
469 LOG_WARNING("Unknown device (HWID 0x%08" PRIx32 ")", hwid);
473 if (bank->base == NRF51_FLASH_BASE) {
474 res = target_read_u32(chip->target, NRF51_FICR_CODEPAGESIZE,
475 &chip->code_page_size);
476 if (res != ERROR_OK) {
477 LOG_ERROR("Couldn't read code page size");
478 return res;
481 res = target_read_u32(chip->target, NRF51_FICR_CODESIZE,
482 &chip->code_memory_size);
483 if (res != ERROR_OK) {
484 LOG_ERROR("Couldn't read code memory size");
485 return res;
488 if (spec && chip->code_memory_size != spec->flash_size_kb) {
489 LOG_ERROR("Chip's reported Flash capacity does not match expected one");
490 return ERROR_FAIL;
493 bank->size = chip->code_memory_size * 1024;
494 bank->num_sectors = bank->size / chip->code_page_size;
495 bank->sectors = calloc(bank->num_sectors,
496 sizeof((bank->sectors)[0]));
497 if (!bank->sectors)
498 return ERROR_FLASH_BANK_NOT_PROBED;
500 /* Fill out the sector information: all NRF51 sectors are the same size and
501 * there is always a fixed number of them. */
502 for (int i = 0; i < bank->num_sectors; i++) {
503 bank->sectors[i].size = chip->code_page_size;
504 bank->sectors[i].offset = i * chip->code_page_size;
506 /* mark as unknown */
507 bank->sectors[i].is_erased = -1;
508 bank->sectors[i].is_protected = -1;
511 nrf51_protect_check(bank);
513 chip->bank[0].probed = true;
514 } else {
515 bank->size = NRF51_UICR_SIZE;
516 bank->num_sectors = 1;
517 bank->sectors = calloc(bank->num_sectors,
518 sizeof((bank->sectors)[0]));
519 if (!bank->sectors)
520 return ERROR_FLASH_BANK_NOT_PROBED;
522 bank->sectors[0].size = bank->size;
523 bank->sectors[0].offset = 0;
525 /* mark as unknown */
526 bank->sectors[0].is_erased = 0;
527 bank->sectors[0].is_protected = 0;
529 chip->bank[1].probed = true;
532 return ERROR_OK;
535 static int nrf51_auto_probe(struct flash_bank *bank)
537 int probed = nrf51_bank_is_probed(bank);
539 if (probed < 0)
540 return probed;
541 else if (probed)
542 return ERROR_OK;
543 else
544 return nrf51_probe(bank);
547 static struct flash_sector *nrf51_find_sector_by_address(struct flash_bank *bank, uint32_t address)
549 struct nrf51_info *chip = bank->driver_priv;
551 for (int i = 0; i < bank->num_sectors; i++)
552 if (bank->sectors[i].offset <= address &&
553 address < (bank->sectors[i].offset + chip->code_page_size))
554 return &bank->sectors[i];
555 return NULL;
558 static int nrf51_erase_all(struct nrf51_info *chip)
560 return nrf51_nvmc_generic_erase(chip,
561 NRF51_NVMC_ERASEALL,
562 0x00000001);
565 static int nrf51_erase_page(struct flash_bank *bank,
566 struct nrf51_info *chip,
567 struct flash_sector *sector)
569 int res;
571 if (sector->is_protected)
572 return ERROR_FAIL;
574 if (bank->base == NRF51_UICR_BASE) {
575 uint32_t ppfc;
576 res = target_read_u32(chip->target, NRF51_FICR_PPFC,
577 &ppfc);
578 if (res != ERROR_OK) {
579 LOG_ERROR("Couldn't read PPFC register");
580 return res;
583 if ((ppfc & 0xFF) == 0xFF) {
584 /* We can't erase the UICR. Double-check to
585 see if it's already erased before complaining. */
586 default_flash_blank_check(bank);
587 if (sector->is_erased == 1)
588 return ERROR_OK;
590 LOG_ERROR("The chip was not pre-programmed with SoftDevice stack and UICR cannot be erased separately. Please issue mass erase before trying to write to this region");
591 return ERROR_FAIL;
594 res = nrf51_nvmc_generic_erase(chip,
595 NRF51_NVMC_ERASEUICR,
596 0x00000001);
599 } else {
600 res = nrf51_nvmc_generic_erase(chip,
601 NRF51_NVMC_ERASEPAGE,
602 sector->offset);
605 if (res == ERROR_OK)
606 sector->is_erased = 1;
608 return res;
611 static int nrf51_ll_flash_write(struct nrf51_info *chip, uint32_t offset, const uint8_t *buffer, uint32_t buffer_size)
613 int res;
614 assert(buffer_size % 4 == 0);
616 for (; buffer_size > 0; buffer_size -= 4) {
617 res = target_write_memory(chip->target, offset, 4, 1, buffer);
618 if (res != ERROR_OK)
619 return res;
621 res = nrf51_wait_for_nvmc(chip);
622 if (res != ERROR_OK)
623 return res;
625 offset += 4;
626 buffer += 4;
629 return ERROR_OK;
632 static int nrf51_write_page(struct flash_bank *bank, uint32_t offset, const uint8_t *buffer)
634 assert(offset % 4 == 0);
635 int res = ERROR_FAIL;
636 struct nrf51_info *chip = bank->driver_priv;
637 struct flash_sector *sector = nrf51_find_sector_by_address(bank, offset);
639 if (!sector)
640 return ERROR_FLASH_SECTOR_INVALID;
642 if (sector->is_protected)
643 goto error;
645 if (sector->is_erased != 1) {
646 res = nrf51_erase_page(bank, chip, sector);
647 if (res != ERROR_OK) {
648 LOG_ERROR("Failed to erase sector @ 0x%08"PRIx32, sector->offset);
649 goto error;
653 res = nrf51_nvmc_write_enable(chip);
654 if (res != ERROR_OK)
655 goto error;
657 sector->is_erased = 0;
659 res = nrf51_ll_flash_write(chip, offset, buffer, chip->code_page_size);
660 if (res != ERROR_OK)
661 goto set_read_only;
663 return nrf51_nvmc_read_only(chip);
665 set_read_only:
666 nrf51_nvmc_read_only(chip);
667 error:
668 LOG_ERROR("Failed to write sector @ 0x%08"PRIx32, sector->offset);
669 return res;
672 static int nrf51_erase(struct flash_bank *bank, int first, int last)
674 int res;
675 struct nrf51_info *chip;
677 res = nrf51_get_probed_chip_if_halted(bank, &chip);
678 if (res != ERROR_OK)
679 return res;
681 /* For each sector to be erased */
682 for (int s = first; s <= last && res == ERROR_OK; s++)
683 res = nrf51_erase_page(bank, chip, &bank->sectors[s]);
685 return res;
688 static int nrf51_code_flash_write(struct flash_bank *bank,
689 struct nrf51_info *chip,
690 const uint8_t *buffer, uint32_t offset, uint32_t count)
692 int res;
693 struct {
694 uint32_t start, end;
695 } region;
697 region.start = offset;
698 region.end = offset + count;
700 struct {
701 size_t length;
702 const uint8_t *buffer;
703 } start_extra, end_extra;
705 start_extra.length = region.start % chip->code_page_size;
706 start_extra.buffer = buffer;
707 end_extra.length = region.end % chip->code_page_size;
708 end_extra.buffer = buffer + count - end_extra.length;
710 if (start_extra.length) {
711 uint8_t page[chip->code_page_size];
713 res = target_read_memory(bank->target,
714 region.start - start_extra.length,
715 1, start_extra.length, page);
716 if (res != ERROR_OK)
717 return res;
719 memcpy(page + start_extra.length,
720 start_extra.buffer,
721 chip->code_page_size - start_extra.length);
723 res = nrf51_write_page(bank,
724 region.start - start_extra.length,
725 page);
726 if (res != ERROR_OK)
727 return res;
730 if (end_extra.length) {
731 uint8_t page[chip->code_page_size];
733 /* Retrieve the full row contents from Flash */
734 res = target_read_memory(bank->target,
735 region.end,
737 (chip->code_page_size - end_extra.length),
738 page + end_extra.length);
739 if (res != ERROR_OK)
740 return res;
742 memcpy(page, end_extra.buffer, end_extra.length);
744 res = nrf51_write_page(bank,
745 region.end - end_extra.length,
746 page);
747 if (res != ERROR_OK)
748 return res;
752 region.start += start_extra.length;
753 region.end -= end_extra.length;
755 for (uint32_t address = region.start; address < region.end;
756 address += chip->code_page_size) {
757 res = nrf51_write_page(bank, address, &buffer[address - region.start]);
759 if (res != ERROR_OK)
760 return res;
764 return ERROR_OK;
767 static int nrf51_uicr_flash_write(struct flash_bank *bank,
768 struct nrf51_info *chip,
769 const uint8_t *buffer, uint32_t offset, uint32_t count)
771 int res;
772 uint8_t uicr[NRF51_UICR_SIZE];
773 struct flash_sector *sector = &bank->sectors[0];
775 if ((offset + count) > NRF51_UICR_SIZE)
776 return ERROR_FAIL;
778 res = target_read_memory(bank->target,
779 NRF51_UICR_BASE,
781 NRF51_UICR_SIZE,
782 uicr);
784 if (res != ERROR_OK)
785 return res;
787 if (sector->is_erased != 1) {
788 res = nrf51_erase_page(bank, chip, sector);
789 if (res != ERROR_OK)
790 return res;
793 res = nrf51_nvmc_write_enable(chip);
794 if (res != ERROR_OK)
795 return res;
797 memcpy(&uicr[offset], buffer, count);
799 res = nrf51_ll_flash_write(chip, NRF51_UICR_BASE, uicr, NRF51_UICR_SIZE);
800 if (res != ERROR_OK) {
801 nrf51_nvmc_read_only(chip);
802 return res;
805 return nrf51_nvmc_read_only(chip);
809 static int nrf51_write(struct flash_bank *bank, const uint8_t *buffer,
810 uint32_t offset, uint32_t count)
812 int res;
813 struct nrf51_info *chip;
815 res = nrf51_get_probed_chip_if_halted(bank, &chip);
816 if (res != ERROR_OK)
817 return res;
819 return chip->bank[bank->bank_number].write(bank, chip, buffer, offset, count);
823 FLASH_BANK_COMMAND_HANDLER(nrf51_flash_bank_command)
825 static struct nrf51_info *chip;
827 switch (bank->base) {
828 case NRF51_FLASH_BASE:
829 bank->bank_number = 0;
830 break;
831 case NRF51_UICR_BASE:
832 bank->bank_number = 1;
833 break;
834 default:
835 LOG_ERROR("Invalid bank address 0x%08" PRIx32, bank->base);
836 return ERROR_FAIL;
839 if (!chip) {
840 /* Create a new chip */
841 chip = calloc(1, sizeof(*chip));
842 if (!chip)
843 return ERROR_FAIL;
845 chip->target = bank->target;
848 switch (bank->base) {
849 case NRF51_FLASH_BASE:
850 chip->bank[bank->bank_number].write = nrf51_code_flash_write;
851 break;
852 case NRF51_UICR_BASE:
853 chip->bank[bank->bank_number].write = nrf51_uicr_flash_write;
854 break;
857 chip->bank[bank->bank_number].probed = false;
858 bank->driver_priv = chip;
860 return ERROR_OK;
863 COMMAND_HANDLER(nrf51_handle_mass_erase_command)
865 int res;
866 struct flash_bank *bank = NULL;
867 struct target *target = get_current_target(CMD_CTX);
869 res = get_flash_bank_by_addr(target, NRF51_FLASH_BASE, true, &bank);
870 if (res != ERROR_OK)
871 return res;
873 assert(bank != NULL);
875 struct nrf51_info *chip;
877 res = nrf51_get_probed_chip_if_halted(bank, &chip);
878 if (res != ERROR_OK)
879 return res;
881 uint32_t ppfc;
883 res = target_read_u32(target, NRF51_FICR_PPFC,
884 &ppfc);
885 if (res != ERROR_OK) {
886 LOG_ERROR("Couldn't read PPFC register");
887 return res;
890 if ((ppfc & 0xFF) == 0x00) {
891 LOG_ERROR("Code region 0 size was pre-programmed at the factory, "
892 "mass erase command won't work.");
893 return ERROR_FAIL;
896 res = nrf51_erase_all(chip);
897 if (res != ERROR_OK) {
898 LOG_ERROR("Failed to erase the chip");
899 nrf51_protect_check(bank);
900 return res;
903 for (int i = 0; i < bank->num_sectors; i++)
904 bank->sectors[i].is_erased = 1;
906 res = nrf51_protect_check(bank);
907 if (res != ERROR_OK) {
908 LOG_ERROR("Failed to check chip's write protection");
909 return res;
912 res = get_flash_bank_by_addr(target, NRF51_UICR_BASE, true, &bank);
913 if (res != ERROR_OK)
914 return res;
916 bank->sectors[0].is_erased = 1;
918 return ERROR_OK;
921 static int nrf51_info(struct flash_bank *bank, char *buf, int buf_size)
923 int res;
925 struct nrf51_info *chip;
927 res = nrf51_get_probed_chip_if_halted(bank, &chip);
928 if (res != ERROR_OK)
929 return res;
931 static struct {
932 const uint32_t address;
933 uint32_t value;
934 } ficr[] = {
935 { .address = NRF51_FICR_CODEPAGESIZE },
936 { .address = NRF51_FICR_CODESIZE },
937 { .address = NRF51_FICR_CLENR0 },
938 { .address = NRF51_FICR_PPFC },
939 { .address = NRF51_FICR_NUMRAMBLOCK },
940 { .address = NRF51_FICR_SIZERAMBLOCK0 },
941 { .address = NRF51_FICR_SIZERAMBLOCK1 },
942 { .address = NRF51_FICR_SIZERAMBLOCK2 },
943 { .address = NRF51_FICR_SIZERAMBLOCK3 },
944 { .address = NRF51_FICR_CONFIGID },
945 { .address = NRF51_FICR_DEVICEID0 },
946 { .address = NRF51_FICR_DEVICEID1 },
947 { .address = NRF51_FICR_ER0 },
948 { .address = NRF51_FICR_ER1 },
949 { .address = NRF51_FICR_ER2 },
950 { .address = NRF51_FICR_ER3 },
951 { .address = NRF51_FICR_IR0 },
952 { .address = NRF51_FICR_IR1 },
953 { .address = NRF51_FICR_IR2 },
954 { .address = NRF51_FICR_IR3 },
955 { .address = NRF51_FICR_DEVICEADDRTYPE },
956 { .address = NRF51_FICR_DEVICEADDR0 },
957 { .address = NRF51_FICR_DEVICEADDR1 },
958 { .address = NRF51_FICR_OVERRIDEN },
959 { .address = NRF51_FICR_NRF_1MBIT0 },
960 { .address = NRF51_FICR_NRF_1MBIT1 },
961 { .address = NRF51_FICR_NRF_1MBIT2 },
962 { .address = NRF51_FICR_NRF_1MBIT3 },
963 { .address = NRF51_FICR_NRF_1MBIT4 },
964 { .address = NRF51_FICR_BLE_1MBIT0 },
965 { .address = NRF51_FICR_BLE_1MBIT1 },
966 { .address = NRF51_FICR_BLE_1MBIT2 },
967 { .address = NRF51_FICR_BLE_1MBIT3 },
968 { .address = NRF51_FICR_BLE_1MBIT4 },
969 }, uicr[] = {
970 { .address = NRF51_UICR_CLENR0, },
971 { .address = NRF51_UICR_RBPCONF },
972 { .address = NRF51_UICR_XTALFREQ },
973 { .address = NRF51_UICR_FWID },
976 for (size_t i = 0; i < ARRAY_SIZE(ficr); i++) {
977 res = target_read_u32(chip->target, ficr[i].address,
978 &ficr[i].value);
979 if (res != ERROR_OK) {
980 LOG_ERROR("Couldn't read %" PRIx32, ficr[i].address);
981 return res;
985 for (size_t i = 0; i < ARRAY_SIZE(uicr); i++) {
986 res = target_read_u32(chip->target, uicr[i].address,
987 &uicr[i].value);
988 if (res != ERROR_OK) {
989 LOG_ERROR("Couldn't read %" PRIx32, uicr[i].address);
990 return res;
994 snprintf(buf, buf_size,
995 "\n[factory information control block]\n\n"
996 "code page size: %"PRIu32"B\n"
997 "code memory size: %"PRIu32"kB\n"
998 "code region 0 size: %"PRIu32"kB\n"
999 "pre-programmed code: %s\n"
1000 "number of ram blocks: %"PRIu32"\n"
1001 "ram block 0 size: %"PRIu32"B\n"
1002 "ram block 1 size: %"PRIu32"B\n"
1003 "ram block 2 size: %"PRIu32"B\n"
1004 "ram block 3 size: %"PRIu32 "B\n"
1005 "config id: %" PRIx32 "\n"
1006 "device id: 0x%"PRIx32"%08"PRIx32"\n"
1007 "encryption root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
1008 "identity root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
1009 "device address type: 0x%"PRIx32"\n"
1010 "device address: 0x%"PRIx32"%08"PRIx32"\n"
1011 "override enable: %"PRIx32"\n"
1012 "NRF_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
1013 "BLE_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
1014 "\n[user information control block]\n\n"
1015 "code region 0 size: %"PRIu32"kB\n"
1016 "read back protection configuration: %"PRIx32"\n"
1017 "reset value for XTALFREQ: %"PRIx32"\n"
1018 "firmware id: 0x%04"PRIx32,
1019 ficr[0].value,
1020 ficr[1].value,
1021 (ficr[2].value == 0xFFFFFFFF) ? 0 : ficr[2].value / 1024,
1022 ((ficr[3].value & 0xFF) == 0x00) ? "present" : "not present",
1023 ficr[4].value,
1024 ficr[5].value,
1025 (ficr[6].value == 0xFFFFFFFF) ? 0 : ficr[6].value,
1026 (ficr[7].value == 0xFFFFFFFF) ? 0 : ficr[7].value,
1027 (ficr[8].value == 0xFFFFFFFF) ? 0 : ficr[8].value,
1028 ficr[9].value,
1029 ficr[10].value, ficr[11].value,
1030 ficr[12].value, ficr[13].value, ficr[14].value, ficr[15].value,
1031 ficr[16].value, ficr[17].value, ficr[18].value, ficr[19].value,
1032 ficr[20].value,
1033 ficr[21].value, ficr[22].value,
1034 ficr[23].value,
1035 ficr[24].value, ficr[25].value, ficr[26].value, ficr[27].value, ficr[28].value,
1036 ficr[29].value, ficr[30].value, ficr[31].value, ficr[32].value, ficr[33].value,
1037 (uicr[0].value == 0xFFFFFFFF) ? 0 : uicr[0].value / 1024,
1038 uicr[1].value & 0xFFFF,
1039 uicr[2].value & 0xFF,
1040 uicr[3].value & 0xFFFF);
1042 return ERROR_OK;
1045 static const struct command_registration nrf51_exec_command_handlers[] = {
1047 .name = "mass_erase",
1048 .handler = nrf51_handle_mass_erase_command,
1049 .mode = COMMAND_EXEC,
1050 .help = "Erase all flash contents of the chip.",
1052 COMMAND_REGISTRATION_DONE
1055 static const struct command_registration nrf51_command_handlers[] = {
1057 .name = "nrf51",
1058 .mode = COMMAND_ANY,
1059 .help = "nrf51 flash command group",
1060 .usage = "",
1061 .chain = nrf51_exec_command_handlers,
1063 COMMAND_REGISTRATION_DONE
1066 struct flash_driver nrf51_flash = {
1067 .name = "nrf51",
1068 .commands = nrf51_command_handlers,
1069 .flash_bank_command = nrf51_flash_bank_command,
1070 .info = nrf51_info,
1071 .erase = nrf51_erase,
1072 .protect = nrf51_protect,
1073 .write = nrf51_write,
1074 .read = default_flash_read,
1075 .probe = nrf51_probe,
1076 .auto_probe = nrf51_auto_probe,
1077 .erase_check = default_flash_blank_check,
1078 .protect_check = nrf51_protect_check,