Add RISC-V support.
[openocd.git] / src / target / mips32_pracc.c
blob790c8dc93e23acaf5319b4ac279b4d04f59a4653
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2009 by David N. Claffey <dnclaffey@gmail.com> *
8 * *
9 * Copyright (C) 2011 by Drasko DRASKOVIC *
10 * drasko.draskovic@gmail.com *
11 * *
12 * This program is free software; you can redistribute it and/or modify *
13 * it under the terms of the GNU General Public License as published by *
14 * the Free Software Foundation; either version 2 of the License, or *
15 * (at your option) any later version. *
16 * *
17 * This program is distributed in the hope that it will be useful, *
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
20 * GNU General Public License for more details. *
21 * *
22 * You should have received a copy of the GNU General Public License *
23 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
24 ***************************************************************************/
27 * This version has optimized assembly routines for 32 bit operations:
28 * - read word
29 * - write word
30 * - write array of words
32 * One thing to be aware of is that the MIPS32 cpu will execute the
33 * instruction after a branch instruction (one delay slot).
35 * For example:
36 * LW $2, ($5 +10)
37 * B foo
38 * LW $1, ($2 +100)
40 * The LW $1, ($2 +100) instruction is also executed. If this is
41 * not wanted a NOP can be inserted:
43 * LW $2, ($5 +10)
44 * B foo
45 * NOP
46 * LW $1, ($2 +100)
48 * or the code can be changed to:
50 * B foo
51 * LW $2, ($5 +10)
52 * LW $1, ($2 +100)
54 * The original code contained NOPs. I have removed these and moved
55 * the branches.
57 * These changes result in a 35% speed increase when programming an
58 * external flash.
60 * More improvement could be gained if the registers do no need
61 * to be preserved but in that case the routines should be aware
62 * OpenOCD is used as a flash programmer or as a debug tool.
64 * Nico Coesel
67 #ifdef HAVE_CONFIG_H
68 #include "config.h"
69 #endif
71 #include <helper/time_support.h>
73 #include "mips32.h"
74 #include "mips32_pracc.h"
76 static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info)
78 int64_t then = timeval_ms();
80 /* wait for the PrAcc to become "1" */
81 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
83 while (1) {
84 ejtag_info->pa_ctrl = ejtag_info->ejtag_ctrl;
85 int retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_info->pa_ctrl);
86 if (retval != ERROR_OK)
87 return retval;
89 if (ejtag_info->pa_ctrl & EJTAG_CTRL_PRACC)
90 break;
92 int64_t timeout = timeval_ms() - then;
93 if (timeout > 1000) {
94 LOG_DEBUG("DEBUGMODULE: No memory access in progress!");
95 return ERROR_JTAG_DEVICE_ERROR;
99 return ERROR_OK;
102 /* Shift in control and address for a new processor access, save them in ejtag_info */
103 static int mips32_pracc_read_ctrl_addr(struct mips_ejtag *ejtag_info)
105 int retval = wait_for_pracc_rw(ejtag_info);
106 if (retval != ERROR_OK)
107 return retval;
109 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
111 ejtag_info->pa_addr = 0;
112 return mips_ejtag_drscan_32(ejtag_info, &ejtag_info->pa_addr);
115 /* Finish processor access */
116 static void mips32_pracc_finish(struct mips_ejtag *ejtag_info)
118 uint32_t ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
119 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
120 mips_ejtag_drscan_32_out(ejtag_info, ctrl);
123 int mips32_pracc_clean_text_jump(struct mips_ejtag *ejtag_info)
125 uint32_t jt_code = MIPS32_J(ejtag_info->isa, MIPS32_PRACC_TEXT);
126 pracc_swap16_array(ejtag_info, &jt_code, 1);
127 /* do 3 0/nops to clean pipeline before a jump to pracc text, NOP in delay slot */
128 for (int i = 0; i != 5; i++) {
129 /* Wait for pracc */
130 int retval = wait_for_pracc_rw(ejtag_info);
131 if (retval != ERROR_OK)
132 return retval;
134 /* Data or instruction out */
135 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
136 uint32_t data = (i == 3) ? jt_code : MIPS32_NOP;
137 mips_ejtag_drscan_32_out(ejtag_info, data);
139 /* finish pa */
140 mips32_pracc_finish(ejtag_info);
143 if (ejtag_info->mode != 0) /* async mode support only for MIPS ... */
144 return ERROR_OK;
146 for (int i = 0; i != 2; i++) {
147 int retval = mips32_pracc_read_ctrl_addr(ejtag_info);
148 if (retval != ERROR_OK)
149 return retval;
151 if (ejtag_info->pa_addr != MIPS32_PRACC_TEXT) { /* LEXRA/BMIPS ?, shift out another NOP, max 2 */
152 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
153 mips_ejtag_drscan_32_out(ejtag_info, MIPS32_NOP);
154 mips32_pracc_finish(ejtag_info);
155 } else
156 break;
159 return ERROR_OK;
162 int mips32_pracc_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx,
163 uint32_t *param_out, bool check_last)
165 int code_count = 0;
166 int store_pending = 0; /* increases with every store instr at dmseg, decreases with every store pa */
167 uint32_t max_store_addr = 0; /* for store pa address testing */
168 bool restart = 0; /* restarting control */
169 int restart_count = 0;
170 uint32_t instr = 0;
171 bool final_check = 0; /* set to 1 if in final checks after function code shifted out */
172 bool pass = 0; /* to check the pass through pracc text after function code sent */
173 int retval;
175 while (1) {
176 if (restart) {
177 if (restart_count < 3) { /* max 3 restarts allowed */
178 retval = mips32_pracc_clean_text_jump(ejtag_info);
179 if (retval != ERROR_OK)
180 return retval;
181 } else
182 return ERROR_JTAG_DEVICE_ERROR;
183 restart_count++;
184 restart = 0;
185 code_count = 0;
186 LOG_DEBUG("restarting code");
189 retval = mips32_pracc_read_ctrl_addr(ejtag_info); /* update current pa info: control and address */
190 if (retval != ERROR_OK)
191 return retval;
193 /* Check for read or write access */
194 if (ejtag_info->pa_ctrl & EJTAG_CTRL_PRNW) { /* write/store access */
195 /* Check for pending store from a previous store instruction at dmseg */
196 if (store_pending == 0) {
197 LOG_DEBUG("unexpected write at address %" PRIx32, ejtag_info->pa_addr);
198 if (code_count < 2) { /* allow for restart */
199 restart = 1;
200 continue;
201 } else
202 return ERROR_JTAG_DEVICE_ERROR;
203 } else {
204 /* check address */
205 if (ejtag_info->pa_addr < MIPS32_PRACC_PARAM_OUT ||
206 ejtag_info->pa_addr > max_store_addr) {
207 LOG_DEBUG("writing at unexpected address %" PRIx32, ejtag_info->pa_addr);
208 return ERROR_JTAG_DEVICE_ERROR;
211 /* read data */
212 uint32_t data = 0;
213 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
214 retval = mips_ejtag_drscan_32(ejtag_info, &data);
215 if (retval != ERROR_OK)
216 return retval;
218 /* store data at param out, address based offset */
219 param_out[(ejtag_info->pa_addr - MIPS32_PRACC_PARAM_OUT) / 4] = data;
220 store_pending--;
222 } else { /* read/fetch access */
223 if (!final_check) { /* executing function code */
224 /* check address */
225 if (ejtag_info->pa_addr != (MIPS32_PRACC_TEXT + code_count * 4)) {
226 LOG_DEBUG("reading at unexpected address %" PRIx32 ", expected %x",
227 ejtag_info->pa_addr, MIPS32_PRACC_TEXT + code_count * 4);
229 /* restart code execution only in some cases */
230 if (code_count == 1 && ejtag_info->pa_addr == MIPS32_PRACC_TEXT &&
231 restart_count == 0) {
232 LOG_DEBUG("restarting, without clean jump");
233 restart_count++;
234 code_count = 0;
235 continue;
236 } else if (code_count < 2) {
237 restart = 1;
238 continue;
240 return ERROR_JTAG_DEVICE_ERROR;
242 /* check for store instruction at dmseg */
243 uint32_t store_addr = ctx->pracc_list[code_count].addr;
244 if (store_addr != 0) {
245 if (store_addr > max_store_addr)
246 max_store_addr = store_addr;
247 store_pending++;
250 instr = ctx->pracc_list[code_count++].instr;
251 if (code_count == ctx->code_count) /* last instruction, start final check */
252 final_check = 1;
254 } else { /* final check after function code shifted out */
255 /* check address */
256 if (ejtag_info->pa_addr == MIPS32_PRACC_TEXT) {
257 if (!pass) { /* first pass through pracc text */
258 if (store_pending == 0) /* done, normal exit */
259 return ERROR_OK;
260 pass = 1; /* pracc text passed */
261 code_count = 0; /* restart code count */
262 } else {
263 LOG_DEBUG("unexpected second pass through pracc text");
264 return ERROR_JTAG_DEVICE_ERROR;
266 } else {
267 if (ejtag_info->pa_addr != (MIPS32_PRACC_TEXT + code_count * 4)) {
268 LOG_DEBUG("unexpected read address in final check: %"
269 PRIx32 ", expected: %x", ejtag_info->pa_addr,
270 MIPS32_PRACC_TEXT + code_count * 4);
271 return ERROR_JTAG_DEVICE_ERROR;
274 if (!pass) {
275 if ((code_count - ctx->code_count) > 1) { /* allow max 2 instr delay slot */
276 LOG_DEBUG("failed to jump back to pracc text");
277 return ERROR_JTAG_DEVICE_ERROR;
279 } else
280 if (code_count > 10) { /* enough, abandone */
281 LOG_DEBUG("execution abandoned, store pending: %d", store_pending);
282 return ERROR_JTAG_DEVICE_ERROR;
284 instr = MIPS32_NOP; /* shift out NOPs instructions */
285 code_count++;
288 /* Send instruction out */
289 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
290 mips_ejtag_drscan_32_out(ejtag_info, instr);
292 /* finish processor access, let the processor eat! */
293 mips32_pracc_finish(ejtag_info);
295 if (final_check && !check_last) /* last instr, don't check, execute and exit */
296 return jtag_execute_queue();
298 if (store_pending == 0 && pass) { /* store access done, but after passing pracc text */
299 LOG_DEBUG("warning: store access pass pracc text");
300 return ERROR_OK;
305 inline void pracc_queue_init(struct pracc_queue_info *ctx)
307 ctx->retval = ERROR_OK;
308 ctx->code_count = 0;
309 ctx->store_count = 0;
310 ctx->max_code = 0;
311 ctx->pracc_list = NULL;
312 ctx->isa = ctx->ejtag_info->isa ? 1 : 0;
315 void pracc_add(struct pracc_queue_info *ctx, uint32_t addr, uint32_t instr)
317 if (ctx->retval != ERROR_OK) /* On previous out of memory, return */
318 return;
319 if (ctx->code_count == ctx->max_code) {
320 void *p = realloc(ctx->pracc_list, sizeof(pa_list) * (ctx->max_code + PRACC_BLOCK));
321 if (p) {
322 ctx->max_code += PRACC_BLOCK;
323 ctx->pracc_list = p;
324 } else {
325 ctx->retval = ERROR_FAIL; /* Out of memory */
326 return;
329 ctx->pracc_list[ctx->code_count].instr = instr;
330 ctx->pracc_list[ctx->code_count++].addr = addr;
331 if (addr)
332 ctx->store_count++;
335 void pracc_add_li32(struct pracc_queue_info *ctx, uint32_t reg_num, uint32_t data, bool optimize)
337 if (LOWER16(data) == 0 && optimize)
338 pracc_add(ctx, 0, MIPS32_LUI(ctx->isa, reg_num, UPPER16(data))); /* load only upper value */
339 else if (UPPER16(data) == 0 && optimize)
340 pracc_add(ctx, 0, MIPS32_ORI(ctx->isa, reg_num, 0, LOWER16(data))); /* load only lower */
341 else {
342 pracc_add(ctx, 0, MIPS32_LUI(ctx->isa, reg_num, UPPER16(data))); /* load upper and lower */
343 pracc_add(ctx, 0, MIPS32_ORI(ctx->isa, reg_num, reg_num, LOWER16(data)));
347 inline void pracc_queue_free(struct pracc_queue_info *ctx)
349 if (ctx->pracc_list != NULL)
350 free(ctx->pracc_list);
353 int mips32_pracc_queue_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx,
354 uint32_t *buf, bool check_last)
356 if (ctx->retval != ERROR_OK) {
357 LOG_ERROR("Out of memory");
358 return ERROR_FAIL;
361 if (ejtag_info->isa && ejtag_info->endianness)
362 for (int i = 0; i != ctx->code_count; i++)
363 ctx->pracc_list[i].instr = SWAP16(ctx->pracc_list[i].instr);
365 if (ejtag_info->mode == 0)
366 return mips32_pracc_exec(ejtag_info, ctx, buf, check_last);
368 union scan_in {
369 uint8_t scan_96[12];
370 struct {
371 uint8_t ctrl[4];
372 uint8_t data[4];
373 uint8_t addr[4];
374 } scan_32;
376 } *scan_in = malloc(sizeof(union scan_in) * (ctx->code_count + ctx->store_count));
377 if (scan_in == NULL) {
378 LOG_ERROR("Out of memory");
379 return ERROR_FAIL;
382 unsigned num_clocks =
383 ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
385 uint32_t ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
386 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ALL);
388 int scan_count = 0;
389 for (int i = 0; i != ctx->code_count; i++) {
390 jtag_add_clocks(num_clocks);
391 mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, ctx->pracc_list[i].instr,
392 scan_in[scan_count++].scan_96);
394 /* Check store address from previous instruction, if not the first */
395 if (i > 0 && ctx->pracc_list[i - 1].addr) {
396 jtag_add_clocks(num_clocks);
397 mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, 0, scan_in[scan_count++].scan_96);
401 int retval = jtag_execute_queue(); /* execute queued scans */
402 if (retval != ERROR_OK)
403 goto exit;
405 uint32_t fetch_addr = MIPS32_PRACC_TEXT; /* start address */
406 scan_count = 0;
407 for (int i = 0; i != ctx->code_count; i++) { /* verify every pracc access */
408 /* check pracc bit */
409 ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32);
410 uint32_t addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32);
411 if (!(ejtag_ctrl & EJTAG_CTRL_PRACC)) {
412 LOG_ERROR("Error: access not pending count: %d", scan_count);
413 retval = ERROR_FAIL;
414 goto exit;
416 if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
417 LOG_ERROR("Not a fetch/read access, count: %d", scan_count);
418 retval = ERROR_FAIL;
419 goto exit;
421 if (addr != fetch_addr) {
422 LOG_ERROR("Fetch addr mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d",
423 addr, fetch_addr, scan_count);
424 retval = ERROR_FAIL;
425 goto exit;
427 fetch_addr += 4;
428 scan_count++;
430 /* check if previous intrucction is a store instruction at dmesg */
431 if (i > 0 && ctx->pracc_list[i - 1].addr) {
432 uint32_t store_addr = ctx->pracc_list[i - 1].addr;
433 ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32);
434 addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32);
436 if (!(ejtag_ctrl & EJTAG_CTRL_PRNW)) {
437 LOG_ERROR("Not a store/write access, count: %d", scan_count);
438 retval = ERROR_FAIL;
439 goto exit;
441 if (addr != store_addr) {
442 LOG_ERROR("Store address mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d",
443 addr, store_addr, scan_count);
444 retval = ERROR_FAIL;
445 goto exit;
447 int buf_index = (addr - MIPS32_PRACC_PARAM_OUT) / 4;
448 buf[buf_index] = buf_get_u32(scan_in[scan_count].scan_32.data, 0, 32);
449 scan_count++;
452 exit:
453 free(scan_in);
454 return retval;
457 int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
459 struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
460 pracc_queue_init(&ctx);
462 pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
463 pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 8, UPPER16((addr + 0x8000)))); /* load $8 with modified upper addr */
464 pracc_add(&ctx, 0, MIPS32_LW(ctx.isa, 8, LOWER16(addr), 8)); /* lw $8, LOWER16(addr)($8) */
465 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
466 MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET, 15)); /* sw $8,PRACC_OUT_OFFSET($15) */
467 pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */
468 pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
469 pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* move COP0 DeSave to $15 */
471 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf, 1);
472 pracc_queue_free(&ctx);
473 return ctx.retval;
476 int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
478 if (count == 1 && size == 4)
479 return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf);
481 struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
482 pracc_queue_init(&ctx);
484 uint32_t *data = NULL;
485 if (size != 4) {
486 data = malloc(256 * sizeof(uint32_t));
487 if (data == NULL) {
488 LOG_ERROR("Out of memory");
489 goto exit;
493 uint32_t *buf32 = buf;
494 uint16_t *buf16 = buf;
495 uint8_t *buf8 = buf;
497 while (count) {
498 ctx.code_count = 0;
499 ctx.store_count = 0;
501 int this_round_count = (count > 256) ? 256 : count;
502 uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
504 pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
505 pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 9, last_upper_base_addr)); /* upper memory addr to $9 */
507 for (int i = 0; i != this_round_count; i++) { /* Main code loop */
508 uint32_t upper_base_addr = UPPER16((addr + 0x8000));
509 if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper addr in $9 */
510 pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 9, upper_base_addr));
511 last_upper_base_addr = upper_base_addr;
514 if (size == 4) /* load from memory to $8 */
515 pracc_add(&ctx, 0, MIPS32_LW(ctx.isa, 8, LOWER16(addr), 9));
516 else if (size == 2)
517 pracc_add(&ctx, 0, MIPS32_LHU(ctx.isa, 8, LOWER16(addr), 9));
518 else
519 pracc_add(&ctx, 0, MIPS32_LBU(ctx.isa, 8, LOWER16(addr), 9));
521 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + i * 4, /* store $8 at param out */
522 MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + i * 4, 15));
523 addr += size;
525 pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */
526 pracc_add_li32(&ctx, 9, ejtag_info->reg9, 0); /* restore $9 */
528 pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
529 pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */
531 if (size == 4) {
532 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf32, 1);
533 if (ctx.retval != ERROR_OK)
534 goto exit;
535 buf32 += this_round_count;
536 } else {
537 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, data, 1);
538 if (ctx.retval != ERROR_OK)
539 goto exit;
541 uint32_t *data_p = data;
542 for (int i = 0; i != this_round_count; i++) {
543 if (size == 2)
544 *buf16++ = *data_p++;
545 else
546 *buf8++ = *data_p++;
549 count -= this_round_count;
551 exit:
552 pracc_queue_free(&ctx);
553 if (data != NULL)
554 free(data);
555 return ctx.retval;
558 int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel)
560 struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
561 pracc_queue_init(&ctx);
563 pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
564 pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 8, cp0_reg, cp0_sel)); /* move cp0 reg / sel to $8 */
565 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
566 MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */
567 pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */
568 pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of $8 */
569 pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
570 pracc_add(&ctx, 0, MIPS32_ORI(ctx.isa, 8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of $8 */
572 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, val, 1);
573 pracc_queue_free(&ctx);
574 return ctx.retval;
577 int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel)
579 struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
580 pracc_queue_init(&ctx);
582 pracc_add_li32(&ctx, 15, val, 0); /* Load val to $15 */
584 pracc_add(&ctx, 0, MIPS32_MTC0(ctx.isa, 15, cp0_reg, cp0_sel)); /* write $15 to cp0 reg / sel */
585 pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
586 pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */
588 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1);
589 pracc_queue_free(&ctx);
590 return ctx.retval;
594 * \b mips32_pracc_sync_cache
596 * Synchronize Caches to Make Instruction Writes Effective
597 * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
598 * Document Number: MD00086, Revision 2.00, June 9, 2003)
600 * When the instruction stream is written, the SYNCI instruction should be used
601 * in conjunction with other instructions to make the newly-written instructions effective.
603 * Explanation :
604 * A program that loads another program into memory is actually writing the D- side cache.
605 * The instructions it has loaded can't be executed until they reach the I-cache.
607 * After the instructions have been written, the loader should arrange
608 * to write back any containing D-cache line and invalidate any locations
609 * already in the I-cache.
611 * If the cache coherency attribute (CCA) is set to zero, it's a write through cache, there is no need
612 * to write back.
614 * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
615 * which does the whole job for a cache-line-sized chunk of the memory you just loaded:
616 * That is, it arranges a D-cache write-back (if CCA = 3) and an I-cache invalidate.
618 * The line size is obtained with the rdhwr SYNCI_Step in release 2 or from cp0 config 1 register in release 1.
620 static int mips32_pracc_synchronize_cache(struct mips_ejtag *ejtag_info,
621 uint32_t start_addr, uint32_t end_addr, int cached, int rel)
623 struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
624 pracc_queue_init(&ctx);
626 /** Find cache line size in bytes */
627 uint32_t clsiz;
628 if (rel) { /* Release 2 (rel = 1) */
629 pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
631 pracc_add(&ctx, 0, MIPS32_RDHWR(ctx.isa, 8, MIPS32_SYNCI_STEP)); /* load synci_step value to $8 */
633 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
634 MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */
636 pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */
638 pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
639 pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */
641 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, &clsiz, 1);
642 if (ctx.retval != ERROR_OK)
643 goto exit;
645 } else { /* Release 1 (rel = 0) */
646 uint32_t conf;
647 ctx.retval = mips32_cp0_read(ejtag_info, &conf, 16, 1);
648 if (ctx.retval != ERROR_OK)
649 goto exit;
651 uint32_t dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;
653 /* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... max dl=6 => 128 bytes cache line size */
654 clsiz = 0x2 << dl;
655 if (dl == 0)
656 clsiz = 0;
659 if (clsiz == 0)
660 goto exit; /* Nothing to do */
662 /* make sure clsiz is power of 2 */
663 if (clsiz & (clsiz - 1)) {
664 LOG_DEBUG("clsiz must be power of 2");
665 ctx.retval = ERROR_FAIL;
666 goto exit;
669 /* make sure start_addr and end_addr have the same offset inside de cache line */
670 start_addr |= clsiz - 1;
671 end_addr |= clsiz - 1;
673 ctx.code_count = 0;
674 ctx.store_count = 0;
676 int count = 0;
677 uint32_t last_upper_base_addr = UPPER16((start_addr + 0x8000));
679 pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, last_upper_base_addr)); /* load upper memory base addr to $15 */
681 while (start_addr <= end_addr) { /* main loop */
682 uint32_t upper_base_addr = UPPER16((start_addr + 0x8000));
683 if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper addr in $15 */
684 pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, upper_base_addr));
685 last_upper_base_addr = upper_base_addr;
687 if (rel) /* synci instruction, offset($15) */
688 pracc_add(&ctx, 0, MIPS32_SYNCI(ctx.isa, LOWER16(start_addr), 15));
690 else {
691 if (cached == 3) /* cache Hit_Writeback_D, offset($15) */
692 pracc_add(&ctx, 0, MIPS32_CACHE(ctx.isa, MIPS32_CACHE_D_HIT_WRITEBACK,
693 LOWER16(start_addr), 15));
694 /* cache Hit_Invalidate_I, offset($15) */
695 pracc_add(&ctx, 0, MIPS32_CACHE(ctx.isa, MIPS32_CACHE_I_HIT_INVALIDATE,
696 LOWER16(start_addr), 15));
698 start_addr += clsiz;
699 count++;
700 if (count == 256 && start_addr <= end_addr) { /* more ?, then execute code list */
701 pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* to start */
702 pracc_add(&ctx, 0, MIPS32_NOP); /* nop in delay slot */
704 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1);
705 if (ctx.retval != ERROR_OK)
706 goto exit;
708 ctx.code_count = 0; /* reset counters for another loop */
709 ctx.store_count = 0;
710 count = 0;
713 pracc_add(&ctx, 0, MIPS32_SYNC(ctx.isa));
714 pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
715 pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave*/
717 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1);
718 exit:
719 pracc_queue_free(&ctx);
720 return ctx.retval;
723 static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info,
724 uint32_t addr, int size, int count, const void *buf)
726 struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
727 pracc_queue_init(&ctx);
729 const uint32_t *buf32 = buf;
730 const uint16_t *buf16 = buf;
731 const uint8_t *buf8 = buf;
733 while (count) {
734 ctx.code_count = 0;
735 ctx.store_count = 0;
737 int this_round_count = (count > 128) ? 128 : count;
738 uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
739 /* load $15 with memory base address */
740 pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, last_upper_base_addr));
742 for (int i = 0; i != this_round_count; i++) {
743 uint32_t upper_base_addr = UPPER16((addr + 0x8000));
744 if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper address in $15*/
745 pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, upper_base_addr));
746 last_upper_base_addr = upper_base_addr;
749 if (size == 4) {
750 pracc_add_li32(&ctx, 8, *buf32, 1); /* load with li32, optimize */
751 pracc_add(&ctx, 0, MIPS32_SW(ctx.isa, 8, LOWER16(addr), 15)); /* store word to mem */
752 buf32++;
754 } else if (size == 2) {
755 pracc_add(&ctx, 0, MIPS32_ORI(ctx.isa, 8, 0, *buf16)); /* load lower value */
756 pracc_add(&ctx, 0, MIPS32_SH(ctx.isa, 8, LOWER16(addr), 15)); /* store half word */
757 buf16++;
759 } else {
760 pracc_add(&ctx, 0, MIPS32_ORI(ctx.isa, 8, 0, *buf8)); /* load lower value */
761 pracc_add(&ctx, 0, MIPS32_SB(ctx.isa, 8, LOWER16(addr), 15)); /* store byte */
762 buf8++;
764 addr += size;
767 pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */
769 pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
770 pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */
772 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1);
773 if (ctx.retval != ERROR_OK)
774 goto exit;
775 count -= this_round_count;
777 exit:
778 pracc_queue_free(&ctx);
779 return ctx.retval;
782 int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, const void *buf)
784 int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf);
785 if (retval != ERROR_OK)
786 return retval;
789 * If we are in the cacheable region and cache is activated,
790 * we must clean D$ (if Cache Coherency Attribute is set to 3) + invalidate I$ after we did the write,
791 * so that changes do not continue to live only in D$ (if CCA = 3), but to be
792 * replicated in I$ also (maybe we wrote the istructions)
794 uint32_t conf = 0;
795 int cached = 0;
797 if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff)))
798 return retval; /*Nothing to do*/
800 mips32_cp0_read(ejtag_info, &conf, 16, 0);
802 switch (KSEGX(addr)) {
803 case KUSEG:
804 cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
805 break;
806 case KSEG0:
807 cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
808 break;
809 case KSEG2:
810 case KSEG3:
811 cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
812 break;
813 default:
814 /* what ? */
815 break;
819 * Check cachablitiy bits coherency algorithm
820 * is the region cacheable or uncached.
821 * If cacheable we have to synchronize the cache
823 if (cached == 3 || cached == 0) { /* Write back cache or write through cache */
824 uint32_t start_addr = addr;
825 uint32_t end_addr = addr + count * size;
826 uint32_t rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
827 if (rel > 1) {
828 LOG_DEBUG("Unknown release in cache code");
829 return ERROR_FAIL;
831 retval = mips32_pracc_synchronize_cache(ejtag_info, start_addr, end_addr, cached, rel);
834 return retval;
837 int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
839 struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
840 pracc_queue_init(&ctx);
842 uint32_t cp0_write_code[] = {
843 MIPS32_MTC0(ctx.isa, 1, 12, 0), /* move $1 to status */
844 MIPS32_MTLO(ctx.isa, 1), /* move $1 to lo */
845 MIPS32_MTHI(ctx.isa, 1), /* move $1 to hi */
846 MIPS32_MTC0(ctx.isa, 1, 8, 0), /* move $1 to badvaddr */
847 MIPS32_MTC0(ctx.isa, 1, 13, 0), /* move $1 to cause*/
848 MIPS32_MTC0(ctx.isa, 1, 24, 0), /* move $1 to depc (pc) */
851 /* load registers 2 to 31 with li32, optimize */
852 for (int i = 2; i < 32; i++)
853 pracc_add_li32(&ctx, i, regs[i], 1);
855 for (int i = 0; i != 6; i++) {
856 pracc_add_li32(&ctx, 1, regs[i + 32], 0); /* load CPO value in $1 */
857 pracc_add(&ctx, 0, cp0_write_code[i]); /* write value from $1 to CPO register */
859 pracc_add(&ctx, 0, MIPS32_MTC0(ctx.isa, 15, 31, 0)); /* load $15 in DeSave */
860 pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 1, UPPER16((regs[1])))); /* load upper half word in $1 */
861 pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
862 pracc_add(&ctx, 0, MIPS32_ORI(ctx.isa, 1, 1, LOWER16((regs[1])))); /* load lower half word in $1 */
864 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1);
866 ejtag_info->reg8 = regs[8];
867 ejtag_info->reg9 = regs[9];
868 pracc_queue_free(&ctx);
869 return ctx.retval;
872 int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
874 struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
875 pracc_queue_init(&ctx);
877 uint32_t cp0_read_code[] = {
878 MIPS32_MFC0(ctx.isa, 8, 12, 0), /* move status to $8 */
879 MIPS32_MFLO(ctx.isa, 8), /* move lo to $8 */
880 MIPS32_MFHI(ctx.isa, 8), /* move hi to $8 */
881 MIPS32_MFC0(ctx.isa, 8, 8, 0), /* move badvaddr to $8 */
882 MIPS32_MFC0(ctx.isa, 8, 13, 0), /* move cause to $8 */
883 MIPS32_MFC0(ctx.isa, 8, 24, 0), /* move depc (pc) to $8 */
886 pracc_add(&ctx, 0, MIPS32_MTC0(ctx.isa, 1, 31, 0)); /* move $1 to COP0 DeSave */
887 pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 1, PRACC_UPPER_BASE_ADDR)); /* $1 = MIP32_PRACC_BASE_ADDR */
889 for (int i = 2; i != 32; i++) /* store GPR's 2 to 31 */
890 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i * 4),
891 MIPS32_SW(ctx.isa, i, PRACC_OUT_OFFSET + (i * 4), 1));
893 for (int i = 0; i != 6; i++) {
894 pracc_add(&ctx, 0, cp0_read_code[i]); /* load COP0 needed registers to $8 */
895 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i + 32) * 4, /* store $8 at PARAM OUT */
896 MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + (i + 32) * 4, 1));
898 pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 8, 31, 0)); /* move DeSave to $8, reg1 value */
899 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + 4, /* store reg1 value from $8 to param out */
900 MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + 4, 1));
902 pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 1, 31, 0)); /* move COP0 DeSave to $1, restore reg1 */
903 pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
904 pracc_add(&ctx, 0, MIPS32_MTC0(ctx.isa, 15, 31, 0)); /* load $15 in DeSave */
906 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, regs, 1);
908 ejtag_info->reg8 = regs[8]; /* reg8 is saved but not restored, next called function should restore it */
909 ejtag_info->reg9 = regs[9];
910 pracc_queue_free(&ctx);
911 return ctx.retval;
914 /* fastdata upload/download requires an initialized working area
915 * to load the download code; it should not be called otherwise
916 * fetch order from the fastdata area
917 * 1. start addr
918 * 2. end addr
919 * 3. data ...
921 int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
922 int write_t, uint32_t addr, int count, uint32_t *buf)
924 uint32_t isa = ejtag_info->isa ? 1 : 0;
925 uint32_t handler_code[] = {
926 /* r15 points to the start of this code */
927 MIPS32_SW(isa, 8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
928 MIPS32_SW(isa, 9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
929 MIPS32_SW(isa, 10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
930 MIPS32_SW(isa, 11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
931 /* start of fastdata area in t0 */
932 MIPS32_LUI(isa, 8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
933 MIPS32_ORI(isa, 8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
934 MIPS32_LW(isa, 9, 0, 8), /* start addr in t1 */
935 MIPS32_LW(isa, 10, 0, 8), /* end addr to t2 */
936 /* loop: */
937 write_t ? MIPS32_LW(isa, 11, 0, 8) : MIPS32_LW(isa, 11, 0, 9), /* from xfer area : from memory */
938 write_t ? MIPS32_SW(isa, 11, 0, 9) : MIPS32_SW(isa, 11, 0, 8), /* to memory : to xfer area */
940 MIPS32_BNE(isa, 10, 9, NEG16(3 << isa)), /* bne $t2,t1,loop */
941 MIPS32_ADDI(isa, 9, 9, 4), /* addi t1,t1,4 */
943 MIPS32_LW(isa, 8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
944 MIPS32_LW(isa, 9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
945 MIPS32_LW(isa, 10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
946 MIPS32_LW(isa, 11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
948 MIPS32_LUI(isa, 15, UPPER16(MIPS32_PRACC_TEXT)),
949 MIPS32_ORI(isa, 15, 15, LOWER16(MIPS32_PRACC_TEXT) | isa), /* isa bit for JR instr */
950 MIPS32_JR(isa, 15), /* jr start */
951 MIPS32_MFC0(isa, 15, 31, 0), /* move COP0 DeSave to $15 */
954 if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
955 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
957 pracc_swap16_array(ejtag_info, handler_code, ARRAY_SIZE(handler_code));
958 /* write program into RAM */
959 if (write_t != ejtag_info->fast_access_save) {
960 mips32_pracc_write_mem(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code);
961 /* save previous operation to speed to any consecutive read/writes */
962 ejtag_info->fast_access_save = write_t;
965 LOG_DEBUG("%s using 0x%.8" TARGET_PRIxADDR " for write handler", __func__, source->address);
967 uint32_t jmp_code[] = {
968 MIPS32_LUI(isa, 15, UPPER16(source->address)), /* load addr of jump in $15 */
969 MIPS32_ORI(isa, 15, 15, LOWER16(source->address) | isa), /* isa bit for JR instr */
970 MIPS32_JR(isa, 15), /* jump to ram program */
971 isa ? MIPS32_XORI(isa, 15, 15, 1) : MIPS32_NOP, /* drop isa bit, needed for LW/SW instructions */
974 pracc_swap16_array(ejtag_info, jmp_code, ARRAY_SIZE(jmp_code));
976 /* execute jump code, with no address check */
977 for (unsigned i = 0; i < ARRAY_SIZE(jmp_code); i++) {
978 int retval = wait_for_pracc_rw(ejtag_info);
979 if (retval != ERROR_OK)
980 return retval;
982 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
983 mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]);
985 /* Clear the access pending bit (let the processor eat!) */
986 mips32_pracc_finish(ejtag_info);
989 /* wait PrAcc pending bit for FASTDATA write, read address */
990 int retval = mips32_pracc_read_ctrl_addr(ejtag_info);
991 if (retval != ERROR_OK)
992 return retval;
994 /* next fetch to dmseg should be in FASTDATA_AREA, check */
995 if (ejtag_info->pa_addr != MIPS32_PRACC_FASTDATA_AREA)
996 return ERROR_FAIL;
998 /* Send the load start address */
999 uint32_t val = addr;
1000 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
1001 mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
1003 retval = wait_for_pracc_rw(ejtag_info);
1004 if (retval != ERROR_OK)
1005 return retval;
1007 /* Send the load end address */
1008 val = addr + (count - 1) * 4;
1009 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
1010 mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
1012 unsigned num_clocks = 0; /* like in legacy code */
1013 if (ejtag_info->mode != 0)
1014 num_clocks = ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
1016 for (int i = 0; i < count; i++) {
1017 jtag_add_clocks(num_clocks);
1018 mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++);
1021 retval = jtag_execute_queue();
1022 if (retval != ERROR_OK) {
1023 LOG_ERROR("fastdata load failed");
1024 return retval;
1027 retval = mips32_pracc_read_ctrl_addr(ejtag_info);
1028 if (retval != ERROR_OK)
1029 return retval;
1031 if (ejtag_info->pa_addr != MIPS32_PRACC_TEXT)
1032 LOG_ERROR("mini program did not return to start");
1034 return retval;