target: fix messages and return values of failed op because not halted
[openocd.git] / src / target / cortex_a.c
blobabfd6ac5f140c9252330b4037f7978a3c6031ac8
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 /***************************************************************************
4 * Copyright (C) 2005 by Dominic Rath *
5 * Dominic.Rath@gmx.de *
6 * *
7 * Copyright (C) 2006 by Magnus Lundin *
8 * lundin@mlu.mine.nu *
9 * *
10 * Copyright (C) 2008 by Spencer Oliver *
11 * spen@spen-soft.co.uk *
12 * *
13 * Copyright (C) 2009 by Dirk Behme *
14 * dirk.behme@gmail.com - copy from cortex_m3 *
15 * *
16 * Copyright (C) 2010 Øyvind Harboe *
17 * oyvind.harboe@zylin.com *
18 * *
19 * Copyright (C) ST-Ericsson SA 2011 *
20 * michel.jaouen@stericsson.com : smp minimum support *
21 * *
22 * Copyright (C) Broadcom 2012 *
23 * ehunter@broadcom.com : Cortex-R4 support *
24 * *
25 * Copyright (C) 2013 Kamal Dasu *
26 * kdasu.kdev@gmail.com *
27 * *
28 * Copyright (C) 2016 Chengyu Zheng *
29 * chengyu.zheng@polimi.it : watchpoint support *
30 * *
31 * Cortex-A8(tm) TRM, ARM DDI 0344H *
32 * Cortex-A9(tm) TRM, ARM DDI 0407F *
33 * Cortex-A4(tm) TRM, ARM DDI 0363E *
34 * Cortex-A15(tm)TRM, ARM DDI 0438C *
35 * *
36 ***************************************************************************/
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
42 #include "breakpoints.h"
43 #include "cortex_a.h"
44 #include "register.h"
45 #include "armv7a_mmu.h"
46 #include "target_request.h"
47 #include "target_type.h"
48 #include "arm_coresight.h"
49 #include "arm_opcodes.h"
50 #include "arm_semihosting.h"
51 #include "jtag/interface.h"
52 #include "transport/transport.h"
53 #include "smp.h"
54 #include <helper/bits.h>
55 #include <helper/nvp.h>
56 #include <helper/time_support.h>
58 static int cortex_a_poll(struct target *target);
59 static int cortex_a_debug_entry(struct target *target);
60 static int cortex_a_restore_context(struct target *target, bool bpwp);
61 static int cortex_a_set_breakpoint(struct target *target,
62 struct breakpoint *breakpoint, uint8_t matchmode);
63 static int cortex_a_set_context_breakpoint(struct target *target,
64 struct breakpoint *breakpoint, uint8_t matchmode);
65 static int cortex_a_set_hybrid_breakpoint(struct target *target,
66 struct breakpoint *breakpoint);
67 static int cortex_a_unset_breakpoint(struct target *target,
68 struct breakpoint *breakpoint);
69 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
70 uint32_t value, uint32_t *dscr);
71 static int cortex_a_mmu(struct target *target, int *enabled);
72 static int cortex_a_mmu_modify(struct target *target, int enable);
73 static int cortex_a_virt2phys(struct target *target,
74 target_addr_t virt, target_addr_t *phys);
75 static int cortex_a_read_cpu_memory(struct target *target,
76 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
78 static unsigned int ilog2(unsigned int x)
80 unsigned int y = 0;
81 x /= 2;
82 while (x) {
83 ++y;
84 x /= 2;
86 return y;
89 /* restore cp15_control_reg at resume */
90 static int cortex_a_restore_cp15_control_reg(struct target *target)
92 int retval = ERROR_OK;
93 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
94 struct armv7a_common *armv7a = target_to_armv7a(target);
96 if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
97 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
98 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
99 retval = armv7a->arm.mcr(target, 15,
100 0, 0, /* op1, op2 */
101 1, 0, /* CRn, CRm */
102 cortex_a->cp15_control_reg);
104 return retval;
108 * Set up ARM core for memory access.
109 * If !phys_access, switch to SVC mode and make sure MMU is on
110 * If phys_access, switch off mmu
112 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
114 struct armv7a_common *armv7a = target_to_armv7a(target);
115 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
116 int mmu_enabled = 0;
118 if (phys_access == 0) {
119 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
120 cortex_a_mmu(target, &mmu_enabled);
121 if (mmu_enabled)
122 cortex_a_mmu_modify(target, 1);
123 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
124 /* overwrite DACR to all-manager */
125 armv7a->arm.mcr(target, 15,
126 0, 0, 3, 0,
127 0xFFFFFFFF);
129 } else {
130 cortex_a_mmu(target, &mmu_enabled);
131 if (mmu_enabled)
132 cortex_a_mmu_modify(target, 0);
134 return ERROR_OK;
138 * Restore ARM core after memory access.
139 * If !phys_access, switch to previous mode
140 * If phys_access, restore MMU setting
142 static int cortex_a_post_memaccess(struct target *target, int phys_access)
144 struct armv7a_common *armv7a = target_to_armv7a(target);
145 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
147 if (phys_access == 0) {
148 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
149 /* restore */
150 armv7a->arm.mcr(target, 15,
151 0, 0, 3, 0,
152 cortex_a->cp15_dacr_reg);
154 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
155 } else {
156 int mmu_enabled = 0;
157 cortex_a_mmu(target, &mmu_enabled);
158 if (mmu_enabled)
159 cortex_a_mmu_modify(target, 1);
161 return ERROR_OK;
165 /* modify cp15_control_reg in order to enable or disable mmu for :
166 * - virt2phys address conversion
167 * - read or write memory in phys or virt address */
168 static int cortex_a_mmu_modify(struct target *target, int enable)
170 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
171 struct armv7a_common *armv7a = target_to_armv7a(target);
172 int retval = ERROR_OK;
173 int need_write = 0;
175 if (enable) {
176 /* if mmu enabled at target stop and mmu not enable */
177 if (!(cortex_a->cp15_control_reg & 0x1U)) {
178 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
179 return ERROR_FAIL;
181 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
182 cortex_a->cp15_control_reg_curr |= 0x1U;
183 need_write = 1;
185 } else {
186 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
187 cortex_a->cp15_control_reg_curr &= ~0x1U;
188 need_write = 1;
192 if (need_write) {
193 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
194 enable ? "enable mmu" : "disable mmu",
195 cortex_a->cp15_control_reg_curr);
197 retval = armv7a->arm.mcr(target, 15,
198 0, 0, /* op1, op2 */
199 1, 0, /* CRn, CRm */
200 cortex_a->cp15_control_reg_curr);
202 return retval;
206 * Cortex-A Basic debug access, very low level assumes state is saved
208 static int cortex_a_init_debug_access(struct target *target)
210 struct armv7a_common *armv7a = target_to_armv7a(target);
211 uint32_t dscr;
212 int retval;
214 /* lock memory-mapped access to debug registers to prevent
215 * software interference */
216 retval = mem_ap_write_u32(armv7a->debug_ap,
217 armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
218 if (retval != ERROR_OK)
219 return retval;
221 /* Disable cacheline fills and force cache write-through in debug state */
222 retval = mem_ap_write_u32(armv7a->debug_ap,
223 armv7a->debug_base + CPUDBG_DSCCR, 0);
224 if (retval != ERROR_OK)
225 return retval;
227 /* Disable TLB lookup and refill/eviction in debug state */
228 retval = mem_ap_write_u32(armv7a->debug_ap,
229 armv7a->debug_base + CPUDBG_DSMCR, 0);
230 if (retval != ERROR_OK)
231 return retval;
233 retval = dap_run(armv7a->debug_ap->dap);
234 if (retval != ERROR_OK)
235 return retval;
237 /* Enabling of instruction execution in debug mode is done in debug_entry code */
239 /* Resync breakpoint registers */
241 /* Enable halt for breakpoint, watchpoint and vector catch */
242 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
243 armv7a->debug_base + CPUDBG_DSCR, &dscr);
244 if (retval != ERROR_OK)
245 return retval;
246 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
247 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
248 if (retval != ERROR_OK)
249 return retval;
251 /* Since this is likely called from init or reset, update target state information*/
252 return cortex_a_poll(target);
255 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
257 /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
258 * Writes final value of DSCR into *dscr. Pass force to force always
259 * reading DSCR at least once. */
260 struct armv7a_common *armv7a = target_to_armv7a(target);
261 int retval;
263 if (force) {
264 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
265 armv7a->debug_base + CPUDBG_DSCR, dscr);
266 if (retval != ERROR_OK) {
267 LOG_ERROR("Could not read DSCR register");
268 return retval;
272 retval = cortex_a_wait_dscr_bits(target, DSCR_INSTR_COMP, DSCR_INSTR_COMP, dscr);
273 if (retval != ERROR_OK)
274 LOG_ERROR("Error waiting for InstrCompl=1");
275 return retval;
278 /* To reduce needless round-trips, pass in a pointer to the current
279 * DSCR value. Initialize it to zero if you just need to know the
280 * value on return from this function; or DSCR_INSTR_COMP if you
281 * happen to know that no instruction is pending.
283 static int cortex_a_exec_opcode(struct target *target,
284 uint32_t opcode, uint32_t *dscr_p)
286 uint32_t dscr;
287 int retval;
288 struct armv7a_common *armv7a = target_to_armv7a(target);
290 dscr = dscr_p ? *dscr_p : 0;
292 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
294 /* Wait for InstrCompl bit to be set */
295 retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
296 if (retval != ERROR_OK)
297 return retval;
299 retval = mem_ap_write_u32(armv7a->debug_ap,
300 armv7a->debug_base + CPUDBG_ITR, opcode);
301 if (retval != ERROR_OK)
302 return retval;
304 /* Wait for InstrCompl bit to be set */
305 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
306 if (retval != ERROR_OK) {
307 LOG_ERROR("Error waiting for cortex_a_exec_opcode");
308 return retval;
311 if (dscr_p)
312 *dscr_p = dscr;
314 return retval;
317 /* Write to memory mapped registers directly with no cache or mmu handling */
318 static int cortex_a_dap_write_memap_register_u32(struct target *target,
319 uint32_t address,
320 uint32_t value)
322 int retval;
323 struct armv7a_common *armv7a = target_to_armv7a(target);
325 retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
327 return retval;
331 * Cortex-A implementation of Debug Programmer's Model
333 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
334 * so there's no need to poll for it before executing an instruction.
336 * NOTE that in several of these cases the "stall" mode might be useful.
337 * It'd let us queue a few operations together... prepare/finish might
338 * be the places to enable/disable that mode.
341 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
343 return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
346 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
348 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
349 return mem_ap_write_u32(a->armv7a_common.debug_ap,
350 a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
353 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
354 uint32_t *dscr_p)
356 uint32_t dscr = DSCR_INSTR_COMP;
357 int retval;
359 if (dscr_p)
360 dscr = *dscr_p;
362 /* Wait for DTRRXfull */
363 retval = cortex_a_wait_dscr_bits(a->armv7a_common.arm.target,
364 DSCR_DTR_TX_FULL, DSCR_DTR_TX_FULL, &dscr);
365 if (retval != ERROR_OK) {
366 LOG_ERROR("Error waiting for read dcc");
367 return retval;
370 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
371 a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
372 if (retval != ERROR_OK)
373 return retval;
374 /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
376 if (dscr_p)
377 *dscr_p = dscr;
379 return retval;
382 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
384 struct cortex_a_common *a = dpm_to_a(dpm);
385 uint32_t dscr;
386 int retval;
388 /* set up invariant: INSTR_COMP is set after ever DPM operation */
389 retval = cortex_a_wait_instrcmpl(dpm->arm->target, &dscr, true);
390 if (retval != ERROR_OK) {
391 LOG_ERROR("Error waiting for dpm prepare");
392 return retval;
395 /* this "should never happen" ... */
396 if (dscr & DSCR_DTR_RX_FULL) {
397 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
398 /* Clear DCCRX */
399 retval = cortex_a_exec_opcode(
400 a->armv7a_common.arm.target,
401 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
402 &dscr);
403 if (retval != ERROR_OK)
404 return retval;
407 return retval;
410 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
412 /* REVISIT what could be done here? */
413 return ERROR_OK;
416 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
417 uint32_t opcode, uint32_t data)
419 struct cortex_a_common *a = dpm_to_a(dpm);
420 int retval;
421 uint32_t dscr = DSCR_INSTR_COMP;
423 retval = cortex_a_write_dcc(a, data);
424 if (retval != ERROR_OK)
425 return retval;
427 return cortex_a_exec_opcode(
428 a->armv7a_common.arm.target,
429 opcode,
430 &dscr);
433 static int cortex_a_instr_write_data_rt_dcc(struct arm_dpm *dpm,
434 uint8_t rt, uint32_t data)
436 struct cortex_a_common *a = dpm_to_a(dpm);
437 uint32_t dscr = DSCR_INSTR_COMP;
438 int retval;
440 if (rt > 15)
441 return ERROR_TARGET_INVALID;
443 retval = cortex_a_write_dcc(a, data);
444 if (retval != ERROR_OK)
445 return retval;
447 /* DCCRX to Rt, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
448 return cortex_a_exec_opcode(
449 a->armv7a_common.arm.target,
450 ARMV4_5_MRC(14, 0, rt, 0, 5, 0),
451 &dscr);
454 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
455 uint32_t opcode, uint32_t data)
457 struct cortex_a_common *a = dpm_to_a(dpm);
458 uint32_t dscr = DSCR_INSTR_COMP;
459 int retval;
461 retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data);
462 if (retval != ERROR_OK)
463 return retval;
465 /* then the opcode, taking data from R0 */
466 retval = cortex_a_exec_opcode(
467 a->armv7a_common.arm.target,
468 opcode,
469 &dscr);
471 return retval;
474 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
476 struct target *target = dpm->arm->target;
477 uint32_t dscr = DSCR_INSTR_COMP;
479 /* "Prefetch flush" after modifying execution status in CPSR */
480 return cortex_a_exec_opcode(target,
481 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
482 &dscr);
485 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
486 uint32_t opcode, uint32_t *data)
488 struct cortex_a_common *a = dpm_to_a(dpm);
489 int retval;
490 uint32_t dscr = DSCR_INSTR_COMP;
492 /* the opcode, writing data to DCC */
493 retval = cortex_a_exec_opcode(
494 a->armv7a_common.arm.target,
495 opcode,
496 &dscr);
497 if (retval != ERROR_OK)
498 return retval;
500 return cortex_a_read_dcc(a, data, &dscr);
503 static int cortex_a_instr_read_data_rt_dcc(struct arm_dpm *dpm,
504 uint8_t rt, uint32_t *data)
506 struct cortex_a_common *a = dpm_to_a(dpm);
507 uint32_t dscr = DSCR_INSTR_COMP;
508 int retval;
510 if (rt > 15)
511 return ERROR_TARGET_INVALID;
513 retval = cortex_a_exec_opcode(
514 a->armv7a_common.arm.target,
515 ARMV4_5_MCR(14, 0, rt, 0, 5, 0),
516 &dscr);
517 if (retval != ERROR_OK)
518 return retval;
520 return cortex_a_read_dcc(a, data, &dscr);
523 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
524 uint32_t opcode, uint32_t *data)
526 struct cortex_a_common *a = dpm_to_a(dpm);
527 uint32_t dscr = DSCR_INSTR_COMP;
528 int retval;
530 /* the opcode, writing data to R0 */
531 retval = cortex_a_exec_opcode(
532 a->armv7a_common.arm.target,
533 opcode,
534 &dscr);
535 if (retval != ERROR_OK)
536 return retval;
538 /* write R0 to DCC */
539 return cortex_a_instr_read_data_rt_dcc(dpm, 0, data);
542 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
543 uint32_t addr, uint32_t control)
545 struct cortex_a_common *a = dpm_to_a(dpm);
546 uint32_t vr = a->armv7a_common.debug_base;
547 uint32_t cr = a->armv7a_common.debug_base;
548 int retval;
550 switch (index_t) {
551 case 0 ... 15: /* breakpoints */
552 vr += CPUDBG_BVR_BASE;
553 cr += CPUDBG_BCR_BASE;
554 break;
555 case 16 ... 31: /* watchpoints */
556 vr += CPUDBG_WVR_BASE;
557 cr += CPUDBG_WCR_BASE;
558 index_t -= 16;
559 break;
560 default:
561 return ERROR_FAIL;
563 vr += 4 * index_t;
564 cr += 4 * index_t;
566 LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
567 (unsigned) vr, (unsigned) cr);
569 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
570 vr, addr);
571 if (retval != ERROR_OK)
572 return retval;
573 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
574 cr, control);
575 return retval;
578 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
580 struct cortex_a_common *a = dpm_to_a(dpm);
581 uint32_t cr;
583 switch (index_t) {
584 case 0 ... 15:
585 cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
586 break;
587 case 16 ... 31:
588 cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
589 index_t -= 16;
590 break;
591 default:
592 return ERROR_FAIL;
594 cr += 4 * index_t;
596 LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
598 /* clear control register */
599 return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
602 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
604 struct arm_dpm *dpm = &a->armv7a_common.dpm;
605 int retval;
607 dpm->arm = &a->armv7a_common.arm;
608 dpm->didr = didr;
610 dpm->prepare = cortex_a_dpm_prepare;
611 dpm->finish = cortex_a_dpm_finish;
613 dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
614 dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
615 dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
617 dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
618 dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
620 dpm->bpwp_enable = cortex_a_bpwp_enable;
621 dpm->bpwp_disable = cortex_a_bpwp_disable;
623 retval = arm_dpm_setup(dpm);
624 if (retval == ERROR_OK)
625 retval = arm_dpm_initialize(dpm);
627 return retval;
629 static struct target *get_cortex_a(struct target *target, int32_t coreid)
631 struct target_list *head;
633 foreach_smp_target(head, target->smp_targets) {
634 struct target *curr = head->target;
635 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
636 return curr;
638 return target;
640 static int cortex_a_halt(struct target *target);
642 static int cortex_a_halt_smp(struct target *target)
644 int retval = 0;
645 struct target_list *head;
647 foreach_smp_target(head, target->smp_targets) {
648 struct target *curr = head->target;
649 if ((curr != target) && (curr->state != TARGET_HALTED)
650 && target_was_examined(curr))
651 retval += cortex_a_halt(curr);
653 return retval;
656 static int update_halt_gdb(struct target *target)
658 struct target *gdb_target = NULL;
659 struct target_list *head;
660 struct target *curr;
661 int retval = 0;
663 if (target->gdb_service && target->gdb_service->core[0] == -1) {
664 target->gdb_service->target = target;
665 target->gdb_service->core[0] = target->coreid;
666 retval += cortex_a_halt_smp(target);
669 if (target->gdb_service)
670 gdb_target = target->gdb_service->target;
672 foreach_smp_target(head, target->smp_targets) {
673 curr = head->target;
674 /* skip calling context */
675 if (curr == target)
676 continue;
677 if (!target_was_examined(curr))
678 continue;
679 /* skip targets that were already halted */
680 if (curr->state == TARGET_HALTED)
681 continue;
682 /* Skip gdb_target; it alerts GDB so has to be polled as last one */
683 if (curr == gdb_target)
684 continue;
686 /* avoid recursion in cortex_a_poll() */
687 curr->smp = 0;
688 cortex_a_poll(curr);
689 curr->smp = 1;
692 /* after all targets were updated, poll the gdb serving target */
693 if (gdb_target && gdb_target != target)
694 cortex_a_poll(gdb_target);
695 return retval;
699 * Cortex-A Run control
702 static int cortex_a_poll(struct target *target)
704 int retval = ERROR_OK;
705 uint32_t dscr;
706 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
707 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
708 enum target_state prev_target_state = target->state;
709 /* toggle to another core is done by gdb as follow */
710 /* maint packet J core_id */
711 /* continue */
712 /* the next polling trigger an halt event sent to gdb */
713 if ((target->state == TARGET_HALTED) && (target->smp) &&
714 (target->gdb_service) &&
715 (!target->gdb_service->target)) {
716 target->gdb_service->target =
717 get_cortex_a(target, target->gdb_service->core[1]);
718 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
719 return retval;
721 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
722 armv7a->debug_base + CPUDBG_DSCR, &dscr);
723 if (retval != ERROR_OK)
724 return retval;
725 cortex_a->cpudbg_dscr = dscr;
727 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
728 if (prev_target_state != TARGET_HALTED) {
729 /* We have a halting debug event */
730 LOG_DEBUG("Target halted");
731 target->state = TARGET_HALTED;
733 retval = cortex_a_debug_entry(target);
734 if (retval != ERROR_OK)
735 return retval;
737 if (target->smp) {
738 retval = update_halt_gdb(target);
739 if (retval != ERROR_OK)
740 return retval;
743 if (prev_target_state == TARGET_DEBUG_RUNNING) {
744 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
745 } else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
746 if (arm_semihosting(target, &retval) != 0)
747 return retval;
749 target_call_event_callbacks(target,
750 TARGET_EVENT_HALTED);
753 } else
754 target->state = TARGET_RUNNING;
756 return retval;
759 static int cortex_a_halt(struct target *target)
761 int retval;
762 uint32_t dscr;
763 struct armv7a_common *armv7a = target_to_armv7a(target);
766 * Tell the core to be halted by writing DRCR with 0x1
767 * and then wait for the core to be halted.
769 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
770 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
771 if (retval != ERROR_OK)
772 return retval;
774 dscr = 0; /* force read of dscr */
775 retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_HALTED,
776 DSCR_CORE_HALTED, &dscr);
777 if (retval != ERROR_OK) {
778 LOG_ERROR("Error waiting for halt");
779 return retval;
782 target->debug_reason = DBG_REASON_DBGRQ;
784 return ERROR_OK;
787 static int cortex_a_internal_restore(struct target *target, int current,
788 target_addr_t *address, int handle_breakpoints, int debug_execution)
790 struct armv7a_common *armv7a = target_to_armv7a(target);
791 struct arm *arm = &armv7a->arm;
792 int retval;
793 uint32_t resume_pc;
795 if (!debug_execution)
796 target_free_all_working_areas(target);
798 #if 0
799 if (debug_execution) {
800 /* Disable interrupts */
801 /* We disable interrupts in the PRIMASK register instead of
802 * masking with C_MASKINTS,
803 * This is probably the same issue as Cortex-M3 Errata 377493:
804 * C_MASKINTS in parallel with disabled interrupts can cause
805 * local faults to not be taken. */
806 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
807 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
808 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
810 /* Make sure we are in Thumb mode */
811 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_XPSR].value, 0, 32,
812 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_XPSR].value, 0,
813 32) | (1 << 24));
814 armv7m->core_cache->reg_list[ARMV7M_XPSR].dirty = true;
815 armv7m->core_cache->reg_list[ARMV7M_XPSR].valid = true;
817 #endif
819 /* current = 1: continue on current pc, otherwise continue at <address> */
820 resume_pc = buf_get_u32(arm->pc->value, 0, 32);
821 if (!current)
822 resume_pc = *address;
823 else
824 *address = resume_pc;
826 /* Make sure that the Armv7 gdb thumb fixups does not
827 * kill the return address
829 switch (arm->core_state) {
830 case ARM_STATE_ARM:
831 resume_pc &= 0xFFFFFFFC;
832 break;
833 case ARM_STATE_THUMB:
834 case ARM_STATE_THUMB_EE:
835 /* When the return address is loaded into PC
836 * bit 0 must be 1 to stay in Thumb state
838 resume_pc |= 0x1;
839 break;
840 case ARM_STATE_JAZELLE:
841 LOG_ERROR("How do I resume into Jazelle state??");
842 return ERROR_FAIL;
843 case ARM_STATE_AARCH64:
844 LOG_ERROR("Shouldn't be in AARCH64 state");
845 return ERROR_FAIL;
847 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
848 buf_set_u32(arm->pc->value, 0, 32, resume_pc);
849 arm->pc->dirty = true;
850 arm->pc->valid = true;
852 /* restore dpm_mode at system halt */
853 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
854 /* called it now before restoring context because it uses cpu
855 * register r0 for restoring cp15 control register */
856 retval = cortex_a_restore_cp15_control_reg(target);
857 if (retval != ERROR_OK)
858 return retval;
859 retval = cortex_a_restore_context(target, handle_breakpoints);
860 if (retval != ERROR_OK)
861 return retval;
862 target->debug_reason = DBG_REASON_NOTHALTED;
863 target->state = TARGET_RUNNING;
865 /* registers are now invalid */
866 register_cache_invalidate(arm->core_cache);
868 #if 0
869 /* the front-end may request us not to handle breakpoints */
870 if (handle_breakpoints) {
871 /* Single step past breakpoint at current address */
872 breakpoint = breakpoint_find(target, resume_pc);
873 if (breakpoint) {
874 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
875 cortex_m3_unset_breakpoint(target, breakpoint);
876 cortex_m3_single_step_core(target);
877 cortex_m3_set_breakpoint(target, breakpoint);
881 #endif
882 return retval;
885 static int cortex_a_internal_restart(struct target *target)
887 struct armv7a_common *armv7a = target_to_armv7a(target);
888 struct arm *arm = &armv7a->arm;
889 int retval;
890 uint32_t dscr;
892 * * Restart core and wait for it to be started. Clear ITRen and sticky
893 * * exception flags: see ARMv7 ARM, C5.9.
895 * REVISIT: for single stepping, we probably want to
896 * disable IRQs by default, with optional override...
899 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
900 armv7a->debug_base + CPUDBG_DSCR, &dscr);
901 if (retval != ERROR_OK)
902 return retval;
904 if ((dscr & DSCR_INSTR_COMP) == 0)
905 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
907 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
908 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
909 if (retval != ERROR_OK)
910 return retval;
912 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
913 armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
914 DRCR_CLEAR_EXCEPTIONS);
915 if (retval != ERROR_OK)
916 return retval;
918 dscr = 0; /* force read of dscr */
919 retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_RESTARTED,
920 DSCR_CORE_RESTARTED, &dscr);
921 if (retval != ERROR_OK) {
922 LOG_ERROR("Error waiting for resume");
923 return retval;
926 target->debug_reason = DBG_REASON_NOTHALTED;
927 target->state = TARGET_RUNNING;
929 /* registers are now invalid */
930 register_cache_invalidate(arm->core_cache);
932 return ERROR_OK;
935 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
937 int retval = 0;
938 struct target_list *head;
939 target_addr_t address;
941 foreach_smp_target(head, target->smp_targets) {
942 struct target *curr = head->target;
943 if ((curr != target) && (curr->state != TARGET_RUNNING)
944 && target_was_examined(curr)) {
945 /* resume current address , not in step mode */
946 retval += cortex_a_internal_restore(curr, 1, &address,
947 handle_breakpoints, 0);
948 retval += cortex_a_internal_restart(curr);
951 return retval;
954 static int cortex_a_resume(struct target *target, int current,
955 target_addr_t address, int handle_breakpoints, int debug_execution)
957 int retval = 0;
958 /* dummy resume for smp toggle in order to reduce gdb impact */
959 if ((target->smp) && (target->gdb_service->core[1] != -1)) {
960 /* simulate a start and halt of target */
961 target->gdb_service->target = NULL;
962 target->gdb_service->core[0] = target->gdb_service->core[1];
963 /* fake resume at next poll we play the target core[1], see poll*/
964 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
965 return 0;
967 cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
968 if (target->smp) {
969 target->gdb_service->core[0] = -1;
970 retval = cortex_a_restore_smp(target, handle_breakpoints);
971 if (retval != ERROR_OK)
972 return retval;
974 cortex_a_internal_restart(target);
976 if (!debug_execution) {
977 target->state = TARGET_RUNNING;
978 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
979 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
980 } else {
981 target->state = TARGET_DEBUG_RUNNING;
982 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
983 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
986 return ERROR_OK;
989 static int cortex_a_debug_entry(struct target *target)
991 uint32_t dscr;
992 int retval = ERROR_OK;
993 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
994 struct armv7a_common *armv7a = target_to_armv7a(target);
995 struct arm *arm = &armv7a->arm;
997 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
999 /* REVISIT surely we should not re-read DSCR !! */
1000 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1001 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1002 if (retval != ERROR_OK)
1003 return retval;
1005 /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1006 * imprecise data aborts get discarded by issuing a Data
1007 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1010 /* Enable the ITR execution once we are in debug mode */
1011 dscr |= DSCR_ITR_EN;
1012 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1013 armv7a->debug_base + CPUDBG_DSCR, dscr);
1014 if (retval != ERROR_OK)
1015 return retval;
1017 /* Examine debug reason */
1018 arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1020 /* save address of instruction that triggered the watchpoint? */
1021 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1022 uint32_t wfar;
1024 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1025 armv7a->debug_base + CPUDBG_WFAR,
1026 &wfar);
1027 if (retval != ERROR_OK)
1028 return retval;
1029 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1032 /* First load register accessible through core debug port */
1033 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1034 if (retval != ERROR_OK)
1035 return retval;
1037 if (arm->spsr) {
1038 /* read SPSR */
1039 retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
1040 if (retval != ERROR_OK)
1041 return retval;
1044 #if 0
1045 /* TODO, Move this */
1046 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1047 cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1048 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1050 cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1051 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1053 cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1054 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1055 #endif
1057 /* Are we in an exception handler */
1058 /* armv4_5->exception_number = 0; */
1059 if (armv7a->post_debug_entry) {
1060 retval = armv7a->post_debug_entry(target);
1061 if (retval != ERROR_OK)
1062 return retval;
1065 return retval;
1068 static int cortex_a_post_debug_entry(struct target *target)
1070 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1071 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1072 int retval;
1074 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1075 retval = armv7a->arm.mrc(target, 15,
1076 0, 0, /* op1, op2 */
1077 1, 0, /* CRn, CRm */
1078 &cortex_a->cp15_control_reg);
1079 if (retval != ERROR_OK)
1080 return retval;
1081 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1082 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1084 if (!armv7a->is_armv7r)
1085 armv7a_read_ttbcr(target);
1087 if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1088 armv7a_identify_cache(target);
1090 if (armv7a->is_armv7r) {
1091 armv7a->armv7a_mmu.mmu_enabled = 0;
1092 } else {
1093 armv7a->armv7a_mmu.mmu_enabled =
1094 (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1096 armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1097 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1098 armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1099 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1100 cortex_a->curr_mode = armv7a->arm.core_mode;
1102 /* switch to SVC mode to read DACR */
1103 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1104 armv7a->arm.mrc(target, 15,
1105 0, 0, 3, 0,
1106 &cortex_a->cp15_dacr_reg);
1108 LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1109 cortex_a->cp15_dacr_reg);
1111 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1112 return ERROR_OK;
1115 static int cortex_a_set_dscr_bits(struct target *target,
1116 unsigned long bit_mask, unsigned long value)
1118 struct armv7a_common *armv7a = target_to_armv7a(target);
1119 uint32_t dscr;
1121 /* Read DSCR */
1122 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1123 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1124 if (retval != ERROR_OK)
1125 return retval;
1127 /* clear bitfield */
1128 dscr &= ~bit_mask;
1129 /* put new value */
1130 dscr |= value & bit_mask;
1132 /* write new DSCR */
1133 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1134 armv7a->debug_base + CPUDBG_DSCR, dscr);
1135 return retval;
1138 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1139 int handle_breakpoints)
1141 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1142 struct armv7a_common *armv7a = target_to_armv7a(target);
1143 struct arm *arm = &armv7a->arm;
1144 struct breakpoint *breakpoint = NULL;
1145 struct breakpoint stepbreakpoint;
1146 struct reg *r;
1147 int retval;
1149 if (target->state != TARGET_HALTED) {
1150 LOG_TARGET_ERROR(target, "not halted");
1151 return ERROR_TARGET_NOT_HALTED;
1154 /* current = 1: continue on current pc, otherwise continue at <address> */
1155 r = arm->pc;
1156 if (!current)
1157 buf_set_u32(r->value, 0, 32, address);
1158 else
1159 address = buf_get_u32(r->value, 0, 32);
1161 /* The front-end may request us not to handle breakpoints.
1162 * But since Cortex-A uses breakpoint for single step,
1163 * we MUST handle breakpoints.
1165 handle_breakpoints = 1;
1166 if (handle_breakpoints) {
1167 breakpoint = breakpoint_find(target, address);
1168 if (breakpoint)
1169 cortex_a_unset_breakpoint(target, breakpoint);
1172 /* Setup single step breakpoint */
1173 stepbreakpoint.address = address;
1174 stepbreakpoint.asid = 0;
1175 stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1176 ? 2 : 4;
1177 stepbreakpoint.type = BKPT_HARD;
1178 stepbreakpoint.is_set = false;
1180 /* Disable interrupts during single step if requested */
1181 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1182 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1183 if (retval != ERROR_OK)
1184 return retval;
1187 /* Break on IVA mismatch */
1188 cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1190 target->debug_reason = DBG_REASON_SINGLESTEP;
1192 retval = cortex_a_resume(target, 1, address, 0, 0);
1193 if (retval != ERROR_OK)
1194 return retval;
1196 int64_t then = timeval_ms();
1197 while (target->state != TARGET_HALTED) {
1198 retval = cortex_a_poll(target);
1199 if (retval != ERROR_OK)
1200 return retval;
1201 if (target->state == TARGET_HALTED)
1202 break;
1203 if (timeval_ms() > then + 1000) {
1204 LOG_ERROR("timeout waiting for target halt");
1205 return ERROR_FAIL;
1209 cortex_a_unset_breakpoint(target, &stepbreakpoint);
1211 /* Re-enable interrupts if they were disabled */
1212 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1213 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1214 if (retval != ERROR_OK)
1215 return retval;
1219 target->debug_reason = DBG_REASON_BREAKPOINT;
1221 if (breakpoint)
1222 cortex_a_set_breakpoint(target, breakpoint, 0);
1224 if (target->state != TARGET_HALTED)
1225 LOG_DEBUG("target stepped");
1227 return ERROR_OK;
1230 static int cortex_a_restore_context(struct target *target, bool bpwp)
1232 struct armv7a_common *armv7a = target_to_armv7a(target);
1234 LOG_DEBUG(" ");
1236 if (armv7a->pre_restore_context)
1237 armv7a->pre_restore_context(target);
1239 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1243 * Cortex-A Breakpoint and watchpoint functions
1246 /* Setup hardware Breakpoint Register Pair */
1247 static int cortex_a_set_breakpoint(struct target *target,
1248 struct breakpoint *breakpoint, uint8_t matchmode)
1250 int retval;
1251 int brp_i = 0;
1252 uint32_t control;
1253 uint8_t byte_addr_select = 0x0F;
1254 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1255 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1256 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1258 if (breakpoint->is_set) {
1259 LOG_WARNING("breakpoint already set");
1260 return ERROR_OK;
1263 if (breakpoint->type == BKPT_HARD) {
1264 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1265 brp_i++;
1266 if (brp_i >= cortex_a->brp_num) {
1267 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1268 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1270 breakpoint_hw_set(breakpoint, brp_i);
1271 if (breakpoint->length == 2)
1272 byte_addr_select = (3 << (breakpoint->address & 0x02));
1273 control = ((matchmode & 0x7) << 20)
1274 | (byte_addr_select << 5)
1275 | (3 << 1) | 1;
1276 brp_list[brp_i].used = true;
1277 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1278 brp_list[brp_i].control = control;
1279 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1280 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1281 brp_list[brp_i].value);
1282 if (retval != ERROR_OK)
1283 return retval;
1284 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1285 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1286 brp_list[brp_i].control);
1287 if (retval != ERROR_OK)
1288 return retval;
1289 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1290 brp_list[brp_i].control,
1291 brp_list[brp_i].value);
1292 } else if (breakpoint->type == BKPT_SOFT) {
1293 uint8_t code[4];
1294 /* length == 2: Thumb breakpoint */
1295 if (breakpoint->length == 2)
1296 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1297 else
1298 /* length == 3: Thumb-2 breakpoint, actual encoding is
1299 * a regular Thumb BKPT instruction but we replace a
1300 * 32bit Thumb-2 instruction, so fix-up the breakpoint
1301 * length
1303 if (breakpoint->length == 3) {
1304 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1305 breakpoint->length = 4;
1306 } else
1307 /* length == 4, normal ARM breakpoint */
1308 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1310 retval = target_read_memory(target,
1311 breakpoint->address & 0xFFFFFFFE,
1312 breakpoint->length, 1,
1313 breakpoint->orig_instr);
1314 if (retval != ERROR_OK)
1315 return retval;
1317 /* make sure data cache is cleaned & invalidated down to PoC */
1318 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1319 armv7a_cache_flush_virt(target, breakpoint->address,
1320 breakpoint->length);
1323 retval = target_write_memory(target,
1324 breakpoint->address & 0xFFFFFFFE,
1325 breakpoint->length, 1, code);
1326 if (retval != ERROR_OK)
1327 return retval;
1329 /* update i-cache at breakpoint location */
1330 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1331 breakpoint->length);
1332 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1333 breakpoint->length);
1335 breakpoint->is_set = true;
1338 return ERROR_OK;
1341 static int cortex_a_set_context_breakpoint(struct target *target,
1342 struct breakpoint *breakpoint, uint8_t matchmode)
1344 int retval = ERROR_FAIL;
1345 int brp_i = 0;
1346 uint32_t control;
1347 uint8_t byte_addr_select = 0x0F;
1348 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1349 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1350 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1352 if (breakpoint->is_set) {
1353 LOG_WARNING("breakpoint already set");
1354 return retval;
1356 /*check available context BRPs*/
1357 while ((brp_list[brp_i].used ||
1358 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1359 brp_i++;
1361 if (brp_i >= cortex_a->brp_num) {
1362 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1363 return ERROR_FAIL;
1366 breakpoint_hw_set(breakpoint, brp_i);
1367 control = ((matchmode & 0x7) << 20)
1368 | (byte_addr_select << 5)
1369 | (3 << 1) | 1;
1370 brp_list[brp_i].used = true;
1371 brp_list[brp_i].value = (breakpoint->asid);
1372 brp_list[brp_i].control = control;
1373 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1374 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1375 brp_list[brp_i].value);
1376 if (retval != ERROR_OK)
1377 return retval;
1378 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1379 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1380 brp_list[brp_i].control);
1381 if (retval != ERROR_OK)
1382 return retval;
1383 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1384 brp_list[brp_i].control,
1385 brp_list[brp_i].value);
1386 return ERROR_OK;
1390 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1392 int retval = ERROR_FAIL;
1393 int brp_1 = 0; /* holds the contextID pair */
1394 int brp_2 = 0; /* holds the IVA pair */
1395 uint32_t control_ctx, control_iva;
1396 uint8_t ctx_byte_addr_select = 0x0F;
1397 uint8_t iva_byte_addr_select = 0x0F;
1398 uint8_t ctx_machmode = 0x03;
1399 uint8_t iva_machmode = 0x01;
1400 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1401 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1402 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1404 if (breakpoint->is_set) {
1405 LOG_WARNING("breakpoint already set");
1406 return retval;
1408 /*check available context BRPs*/
1409 while ((brp_list[brp_1].used ||
1410 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1411 brp_1++;
1413 LOG_DEBUG("brp(CTX) found num: %d", brp_1);
1414 if (brp_1 >= cortex_a->brp_num) {
1415 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1416 return ERROR_FAIL;
1419 while ((brp_list[brp_2].used ||
1420 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1421 brp_2++;
1423 LOG_DEBUG("brp(IVA) found num: %d", brp_2);
1424 if (brp_2 >= cortex_a->brp_num) {
1425 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1426 return ERROR_FAIL;
1429 breakpoint_hw_set(breakpoint, brp_1);
1430 breakpoint->linked_brp = brp_2;
1431 control_ctx = ((ctx_machmode & 0x7) << 20)
1432 | (brp_2 << 16)
1433 | (0 << 14)
1434 | (ctx_byte_addr_select << 5)
1435 | (3 << 1) | 1;
1436 brp_list[brp_1].used = true;
1437 brp_list[brp_1].value = (breakpoint->asid);
1438 brp_list[brp_1].control = control_ctx;
1439 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1440 + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].brpn,
1441 brp_list[brp_1].value);
1442 if (retval != ERROR_OK)
1443 return retval;
1444 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1445 + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].brpn,
1446 brp_list[brp_1].control);
1447 if (retval != ERROR_OK)
1448 return retval;
1450 control_iva = ((iva_machmode & 0x7) << 20)
1451 | (brp_1 << 16)
1452 | (iva_byte_addr_select << 5)
1453 | (3 << 1) | 1;
1454 brp_list[brp_2].used = true;
1455 brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1456 brp_list[brp_2].control = control_iva;
1457 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1458 + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].brpn,
1459 brp_list[brp_2].value);
1460 if (retval != ERROR_OK)
1461 return retval;
1462 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1463 + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].brpn,
1464 brp_list[brp_2].control);
1465 if (retval != ERROR_OK)
1466 return retval;
1468 return ERROR_OK;
1471 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1473 int retval;
1474 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1475 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1476 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1478 if (!breakpoint->is_set) {
1479 LOG_WARNING("breakpoint not set");
1480 return ERROR_OK;
1483 if (breakpoint->type == BKPT_HARD) {
1484 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1485 int brp_i = breakpoint->number;
1486 int brp_j = breakpoint->linked_brp;
1487 if (brp_i >= cortex_a->brp_num) {
1488 LOG_DEBUG("Invalid BRP number in breakpoint");
1489 return ERROR_OK;
1491 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1492 brp_list[brp_i].control, brp_list[brp_i].value);
1493 brp_list[brp_i].used = false;
1494 brp_list[brp_i].value = 0;
1495 brp_list[brp_i].control = 0;
1496 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1497 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1498 brp_list[brp_i].control);
1499 if (retval != ERROR_OK)
1500 return retval;
1501 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1502 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1503 brp_list[brp_i].value);
1504 if (retval != ERROR_OK)
1505 return retval;
1506 if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1507 LOG_DEBUG("Invalid BRP number in breakpoint");
1508 return ERROR_OK;
1510 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1511 brp_list[brp_j].control, brp_list[brp_j].value);
1512 brp_list[brp_j].used = false;
1513 brp_list[brp_j].value = 0;
1514 brp_list[brp_j].control = 0;
1515 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1516 + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].brpn,
1517 brp_list[brp_j].control);
1518 if (retval != ERROR_OK)
1519 return retval;
1520 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1521 + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].brpn,
1522 brp_list[brp_j].value);
1523 if (retval != ERROR_OK)
1524 return retval;
1525 breakpoint->linked_brp = 0;
1526 breakpoint->is_set = false;
1527 return ERROR_OK;
1529 } else {
1530 int brp_i = breakpoint->number;
1531 if (brp_i >= cortex_a->brp_num) {
1532 LOG_DEBUG("Invalid BRP number in breakpoint");
1533 return ERROR_OK;
1535 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1536 brp_list[brp_i].control, brp_list[brp_i].value);
1537 brp_list[brp_i].used = false;
1538 brp_list[brp_i].value = 0;
1539 brp_list[brp_i].control = 0;
1540 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1541 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1542 brp_list[brp_i].control);
1543 if (retval != ERROR_OK)
1544 return retval;
1545 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1546 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1547 brp_list[brp_i].value);
1548 if (retval != ERROR_OK)
1549 return retval;
1550 breakpoint->is_set = false;
1551 return ERROR_OK;
1553 } else {
1555 /* make sure data cache is cleaned & invalidated down to PoC */
1556 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1557 armv7a_cache_flush_virt(target, breakpoint->address,
1558 breakpoint->length);
1561 /* restore original instruction (kept in target endianness) */
1562 if (breakpoint->length == 4) {
1563 retval = target_write_memory(target,
1564 breakpoint->address & 0xFFFFFFFE,
1565 4, 1, breakpoint->orig_instr);
1566 if (retval != ERROR_OK)
1567 return retval;
1568 } else {
1569 retval = target_write_memory(target,
1570 breakpoint->address & 0xFFFFFFFE,
1571 2, 1, breakpoint->orig_instr);
1572 if (retval != ERROR_OK)
1573 return retval;
1576 /* update i-cache at breakpoint location */
1577 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1578 breakpoint->length);
1579 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1580 breakpoint->length);
1582 breakpoint->is_set = false;
1584 return ERROR_OK;
1587 static int cortex_a_add_breakpoint(struct target *target,
1588 struct breakpoint *breakpoint)
1590 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1592 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1593 LOG_INFO("no hardware breakpoint available");
1594 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1597 if (breakpoint->type == BKPT_HARD)
1598 cortex_a->brp_num_available--;
1600 return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1603 static int cortex_a_add_context_breakpoint(struct target *target,
1604 struct breakpoint *breakpoint)
1606 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1608 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1609 LOG_INFO("no hardware breakpoint available");
1610 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1613 if (breakpoint->type == BKPT_HARD)
1614 cortex_a->brp_num_available--;
1616 return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1619 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1620 struct breakpoint *breakpoint)
1622 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1624 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1625 LOG_INFO("no hardware breakpoint available");
1626 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1629 if (breakpoint->type == BKPT_HARD)
1630 cortex_a->brp_num_available--;
1632 return cortex_a_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1636 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1638 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1640 #if 0
1641 /* It is perfectly possible to remove breakpoints while the target is running */
1642 if (target->state != TARGET_HALTED) {
1643 LOG_WARNING("target not halted");
1644 return ERROR_TARGET_NOT_HALTED;
1646 #endif
1648 if (breakpoint->is_set) {
1649 cortex_a_unset_breakpoint(target, breakpoint);
1650 if (breakpoint->type == BKPT_HARD)
1651 cortex_a->brp_num_available++;
1655 return ERROR_OK;
1659 * Sets a watchpoint for an Cortex-A target in one of the watchpoint units. It is
1660 * considered a bug to call this function when there are no available watchpoint
1661 * units.
1663 * @param target Pointer to an Cortex-A target to set a watchpoint on
1664 * @param watchpoint Pointer to the watchpoint to be set
1665 * @return Error status if watchpoint set fails or the result of executing the
1666 * JTAG queue
1668 static int cortex_a_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1670 int retval = ERROR_OK;
1671 int wrp_i = 0;
1672 uint32_t control;
1673 uint32_t address;
1674 uint8_t address_mask;
1675 uint8_t byte_address_select;
1676 uint8_t load_store_access_control = 0x3;
1677 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1678 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1679 struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
1681 if (watchpoint->is_set) {
1682 LOG_WARNING("watchpoint already set");
1683 return retval;
1686 /* check available context WRPs */
1687 while (wrp_list[wrp_i].used && (wrp_i < cortex_a->wrp_num))
1688 wrp_i++;
1690 if (wrp_i >= cortex_a->wrp_num) {
1691 LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
1692 return ERROR_FAIL;
1695 if (watchpoint->length == 0 || watchpoint->length > 0x80000000U ||
1696 (watchpoint->length & (watchpoint->length - 1))) {
1697 LOG_WARNING("watchpoint length must be a power of 2");
1698 return ERROR_FAIL;
1701 if (watchpoint->address & (watchpoint->length - 1)) {
1702 LOG_WARNING("watchpoint address must be aligned at length");
1703 return ERROR_FAIL;
1706 /* FIXME: ARM DDI 0406C: address_mask is optional. What to do if it's missing? */
1707 /* handle wp length 1 and 2 through byte select */
1708 switch (watchpoint->length) {
1709 case 1:
1710 byte_address_select = BIT(watchpoint->address & 0x3);
1711 address = watchpoint->address & ~0x3;
1712 address_mask = 0;
1713 break;
1715 case 2:
1716 byte_address_select = 0x03 << (watchpoint->address & 0x2);
1717 address = watchpoint->address & ~0x3;
1718 address_mask = 0;
1719 break;
1721 case 4:
1722 byte_address_select = 0x0f;
1723 address = watchpoint->address;
1724 address_mask = 0;
1725 break;
1727 default:
1728 byte_address_select = 0xff;
1729 address = watchpoint->address;
1730 address_mask = ilog2(watchpoint->length);
1731 break;
1734 watchpoint_set(watchpoint, wrp_i);
1735 control = (address_mask << 24) |
1736 (byte_address_select << 5) |
1737 (load_store_access_control << 3) |
1738 (0x3 << 1) | 1;
1739 wrp_list[wrp_i].used = true;
1740 wrp_list[wrp_i].value = address;
1741 wrp_list[wrp_i].control = control;
1743 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1744 + CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
1745 wrp_list[wrp_i].value);
1746 if (retval != ERROR_OK)
1747 return retval;
1749 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1750 + CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
1751 wrp_list[wrp_i].control);
1752 if (retval != ERROR_OK)
1753 return retval;
1755 LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
1756 wrp_list[wrp_i].control,
1757 wrp_list[wrp_i].value);
1759 return ERROR_OK;
1763 * Unset an existing watchpoint and clear the used watchpoint unit.
1765 * @param target Pointer to the target to have the watchpoint removed
1766 * @param watchpoint Pointer to the watchpoint to be removed
1767 * @return Error status while trying to unset the watchpoint or the result of
1768 * executing the JTAG queue
1770 static int cortex_a_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1772 int retval;
1773 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1774 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1775 struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
1777 if (!watchpoint->is_set) {
1778 LOG_WARNING("watchpoint not set");
1779 return ERROR_OK;
1782 int wrp_i = watchpoint->number;
1783 if (wrp_i >= cortex_a->wrp_num) {
1784 LOG_DEBUG("Invalid WRP number in watchpoint");
1785 return ERROR_OK;
1787 LOG_DEBUG("wrp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
1788 wrp_list[wrp_i].control, wrp_list[wrp_i].value);
1789 wrp_list[wrp_i].used = false;
1790 wrp_list[wrp_i].value = 0;
1791 wrp_list[wrp_i].control = 0;
1792 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1793 + CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
1794 wrp_list[wrp_i].control);
1795 if (retval != ERROR_OK)
1796 return retval;
1797 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1798 + CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
1799 wrp_list[wrp_i].value);
1800 if (retval != ERROR_OK)
1801 return retval;
1802 watchpoint->is_set = false;
1804 return ERROR_OK;
1808 * Add a watchpoint to an Cortex-A target. If there are no watchpoint units
1809 * available, an error response is returned.
1811 * @param target Pointer to the Cortex-A target to add a watchpoint to
1812 * @param watchpoint Pointer to the watchpoint to be added
1813 * @return Error status while trying to add the watchpoint
1815 static int cortex_a_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1817 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1819 if (cortex_a->wrp_num_available < 1) {
1820 LOG_INFO("no hardware watchpoint available");
1821 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1824 int retval = cortex_a_set_watchpoint(target, watchpoint);
1825 if (retval != ERROR_OK)
1826 return retval;
1828 cortex_a->wrp_num_available--;
1829 return ERROR_OK;
1833 * Remove a watchpoint from an Cortex-A target. The watchpoint will be unset and
1834 * the used watchpoint unit will be reopened.
1836 * @param target Pointer to the target to remove a watchpoint from
1837 * @param watchpoint Pointer to the watchpoint to be removed
1838 * @return Result of trying to unset the watchpoint
1840 static int cortex_a_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1842 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1844 if (watchpoint->is_set) {
1845 cortex_a->wrp_num_available++;
1846 cortex_a_unset_watchpoint(target, watchpoint);
1848 return ERROR_OK;
1853 * Cortex-A Reset functions
1856 static int cortex_a_assert_reset(struct target *target)
1858 struct armv7a_common *armv7a = target_to_armv7a(target);
1860 LOG_DEBUG(" ");
1862 /* FIXME when halt is requested, make it work somehow... */
1864 /* This function can be called in "target not examined" state */
1866 /* Issue some kind of warm reset. */
1867 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1868 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1869 else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1870 /* REVISIT handle "pulls" cases, if there's
1871 * hardware that needs them to work.
1875 * FIXME: fix reset when transport is not JTAG. This is a temporary
1876 * work-around for release v0.10 that is not intended to stay!
1878 if (!transport_is_jtag() ||
1879 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1880 adapter_assert_reset();
1882 } else {
1883 LOG_ERROR("%s: how to reset?", target_name(target));
1884 return ERROR_FAIL;
1887 /* registers are now invalid */
1888 if (target_was_examined(target))
1889 register_cache_invalidate(armv7a->arm.core_cache);
1891 target->state = TARGET_RESET;
1893 return ERROR_OK;
1896 static int cortex_a_deassert_reset(struct target *target)
1898 struct armv7a_common *armv7a = target_to_armv7a(target);
1899 int retval;
1901 LOG_DEBUG(" ");
1903 /* be certain SRST is off */
1904 adapter_deassert_reset();
1906 if (target_was_examined(target)) {
1907 retval = cortex_a_poll(target);
1908 if (retval != ERROR_OK)
1909 return retval;
1912 if (target->reset_halt) {
1913 if (target->state != TARGET_HALTED) {
1914 LOG_WARNING("%s: ran after reset and before halt ...",
1915 target_name(target));
1916 if (target_was_examined(target)) {
1917 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1918 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
1919 if (retval != ERROR_OK)
1920 return retval;
1921 } else
1922 target->state = TARGET_UNKNOWN;
1926 return ERROR_OK;
1929 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1931 /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1932 * New desired mode must be in mode. Current value of DSCR must be in
1933 * *dscr, which is updated with new value.
1935 * This function elides actually sending the mode-change over the debug
1936 * interface if the mode is already set as desired.
1938 uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1939 if (new_dscr != *dscr) {
1940 struct armv7a_common *armv7a = target_to_armv7a(target);
1941 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1942 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1943 if (retval == ERROR_OK)
1944 *dscr = new_dscr;
1945 return retval;
1946 } else {
1947 return ERROR_OK;
1951 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1952 uint32_t value, uint32_t *dscr)
1954 /* Waits until the specified bit(s) of DSCR take on a specified value. */
1955 struct armv7a_common *armv7a = target_to_armv7a(target);
1956 int64_t then;
1957 int retval;
1959 if ((*dscr & mask) == value)
1960 return ERROR_OK;
1962 then = timeval_ms();
1963 while (1) {
1964 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1965 armv7a->debug_base + CPUDBG_DSCR, dscr);
1966 if (retval != ERROR_OK) {
1967 LOG_ERROR("Could not read DSCR register");
1968 return retval;
1970 if ((*dscr & mask) == value)
1971 break;
1972 if (timeval_ms() > then + 1000) {
1973 LOG_ERROR("timeout waiting for DSCR bit change");
1974 return ERROR_FAIL;
1977 return ERROR_OK;
1980 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1981 uint32_t *data, uint32_t *dscr)
1983 int retval;
1984 struct armv7a_common *armv7a = target_to_armv7a(target);
1986 /* Move from coprocessor to R0. */
1987 retval = cortex_a_exec_opcode(target, opcode, dscr);
1988 if (retval != ERROR_OK)
1989 return retval;
1991 /* Move from R0 to DTRTX. */
1992 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1993 if (retval != ERROR_OK)
1994 return retval;
1996 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1997 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1998 * must also check TXfull_l). Most of the time this will be free
1999 * because TXfull_l will be set immediately and cached in dscr. */
2000 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2001 DSCR_DTRTX_FULL_LATCHED, dscr);
2002 if (retval != ERROR_OK)
2003 return retval;
2005 /* Read the value transferred to DTRTX. */
2006 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2007 armv7a->debug_base + CPUDBG_DTRTX, data);
2008 if (retval != ERROR_OK)
2009 return retval;
2011 return ERROR_OK;
2014 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2015 uint32_t *dfsr, uint32_t *dscr)
2017 int retval;
2019 if (dfar) {
2020 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2021 if (retval != ERROR_OK)
2022 return retval;
2025 if (dfsr) {
2026 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2027 if (retval != ERROR_OK)
2028 return retval;
2031 return ERROR_OK;
2034 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2035 uint32_t data, uint32_t *dscr)
2037 int retval;
2038 struct armv7a_common *armv7a = target_to_armv7a(target);
2040 /* Write the value into DTRRX. */
2041 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2042 armv7a->debug_base + CPUDBG_DTRRX, data);
2043 if (retval != ERROR_OK)
2044 return retval;
2046 /* Move from DTRRX to R0. */
2047 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2048 if (retval != ERROR_OK)
2049 return retval;
2051 /* Move from R0 to coprocessor. */
2052 retval = cortex_a_exec_opcode(target, opcode, dscr);
2053 if (retval != ERROR_OK)
2054 return retval;
2056 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2057 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2058 * check RXfull_l). Most of the time this will be free because RXfull_l
2059 * will be cleared immediately and cached in dscr. */
2060 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2061 if (retval != ERROR_OK)
2062 return retval;
2064 return ERROR_OK;
2067 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2068 uint32_t dfsr, uint32_t *dscr)
2070 int retval;
2072 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2073 if (retval != ERROR_OK)
2074 return retval;
2076 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2077 if (retval != ERROR_OK)
2078 return retval;
2080 return ERROR_OK;
2083 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2085 uint32_t status, upper4;
2087 if (dfsr & (1 << 9)) {
2088 /* LPAE format. */
2089 status = dfsr & 0x3f;
2090 upper4 = status >> 2;
2091 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2092 return ERROR_TARGET_TRANSLATION_FAULT;
2093 else if (status == 33)
2094 return ERROR_TARGET_UNALIGNED_ACCESS;
2095 else
2096 return ERROR_TARGET_DATA_ABORT;
2097 } else {
2098 /* Normal format. */
2099 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2100 if (status == 1)
2101 return ERROR_TARGET_UNALIGNED_ACCESS;
2102 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2103 status == 9 || status == 11 || status == 13 || status == 15)
2104 return ERROR_TARGET_TRANSLATION_FAULT;
2105 else
2106 return ERROR_TARGET_DATA_ABORT;
2110 static int cortex_a_write_cpu_memory_slow(struct target *target,
2111 uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2113 /* Writes count objects of size size from *buffer. Old value of DSCR must
2114 * be in *dscr; updated to new value. This is slow because it works for
2115 * non-word-sized objects. Avoid unaligned accesses as they do not work
2116 * on memory address space without "Normal" attribute. If size == 4 and
2117 * the address is aligned, cortex_a_write_cpu_memory_fast should be
2118 * preferred.
2119 * Preconditions:
2120 * - Address is in R0.
2121 * - R0 is marked dirty.
2123 struct armv7a_common *armv7a = target_to_armv7a(target);
2124 struct arm *arm = &armv7a->arm;
2125 int retval;
2127 /* Mark register R1 as dirty, to use for transferring data. */
2128 arm_reg_current(arm, 1)->dirty = true;
2130 /* Switch to non-blocking mode if not already in that mode. */
2131 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2132 if (retval != ERROR_OK)
2133 return retval;
2135 /* Go through the objects. */
2136 while (count) {
2137 /* Write the value to store into DTRRX. */
2138 uint32_t data, opcode;
2139 if (size == 1)
2140 data = *buffer;
2141 else if (size == 2)
2142 data = target_buffer_get_u16(target, buffer);
2143 else
2144 data = target_buffer_get_u32(target, buffer);
2145 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2146 armv7a->debug_base + CPUDBG_DTRRX, data);
2147 if (retval != ERROR_OK)
2148 return retval;
2150 /* Transfer the value from DTRRX to R1. */
2151 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2152 if (retval != ERROR_OK)
2153 return retval;
2155 /* Write the value transferred to R1 into memory. */
2156 if (size == 1)
2157 opcode = ARMV4_5_STRB_IP(1, 0);
2158 else if (size == 2)
2159 opcode = ARMV4_5_STRH_IP(1, 0);
2160 else
2161 opcode = ARMV4_5_STRW_IP(1, 0);
2162 retval = cortex_a_exec_opcode(target, opcode, dscr);
2163 if (retval != ERROR_OK)
2164 return retval;
2166 /* Check for faults and return early. */
2167 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2168 return ERROR_OK; /* A data fault is not considered a system failure. */
2170 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2171 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2172 * must also check RXfull_l). Most of the time this will be free
2173 * because RXfull_l will be cleared immediately and cached in dscr. */
2174 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2175 if (retval != ERROR_OK)
2176 return retval;
2178 /* Advance. */
2179 buffer += size;
2180 --count;
2183 return ERROR_OK;
2186 static int cortex_a_write_cpu_memory_fast(struct target *target,
2187 uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2189 /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2190 * in *dscr; updated to new value. This is fast but only works for
2191 * word-sized objects at aligned addresses.
2192 * Preconditions:
2193 * - Address is in R0 and must be a multiple of 4.
2194 * - R0 is marked dirty.
2196 struct armv7a_common *armv7a = target_to_armv7a(target);
2197 int retval;
2199 /* Switch to fast mode if not already in that mode. */
2200 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2201 if (retval != ERROR_OK)
2202 return retval;
2204 /* Latch STC instruction. */
2205 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2206 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2207 if (retval != ERROR_OK)
2208 return retval;
2210 /* Transfer all the data and issue all the instructions. */
2211 return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2212 4, count, armv7a->debug_base + CPUDBG_DTRRX);
2215 static int cortex_a_write_cpu_memory(struct target *target,
2216 uint32_t address, uint32_t size,
2217 uint32_t count, const uint8_t *buffer)
2219 /* Write memory through the CPU. */
2220 int retval, final_retval;
2221 struct armv7a_common *armv7a = target_to_armv7a(target);
2222 struct arm *arm = &armv7a->arm;
2223 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2225 LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2226 address, size, count);
2227 if (target->state != TARGET_HALTED) {
2228 LOG_TARGET_ERROR(target, "not halted");
2229 return ERROR_TARGET_NOT_HALTED;
2232 if (!count)
2233 return ERROR_OK;
2235 /* Clear any abort. */
2236 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2237 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2238 if (retval != ERROR_OK)
2239 return retval;
2241 /* Read DSCR. */
2242 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2243 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2244 if (retval != ERROR_OK)
2245 return retval;
2247 /* Switch to non-blocking mode if not already in that mode. */
2248 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2249 if (retval != ERROR_OK)
2250 return retval;
2252 /* Mark R0 as dirty. */
2253 arm_reg_current(arm, 0)->dirty = true;
2255 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2256 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2257 if (retval != ERROR_OK)
2258 return retval;
2260 /* Get the memory address into R0. */
2261 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2262 armv7a->debug_base + CPUDBG_DTRRX, address);
2263 if (retval != ERROR_OK)
2264 return retval;
2265 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2266 if (retval != ERROR_OK)
2267 return retval;
2269 if (size == 4 && (address % 4) == 0) {
2270 /* We are doing a word-aligned transfer, so use fast mode. */
2271 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2272 } else {
2273 /* Use slow path. Adjust size for aligned accesses */
2274 switch (address % 4) {
2275 case 1:
2276 case 3:
2277 count *= size;
2278 size = 1;
2279 break;
2280 case 2:
2281 if (size == 4) {
2282 count *= 2;
2283 size = 2;
2285 case 0:
2286 default:
2287 break;
2289 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2292 final_retval = retval;
2294 /* Switch to non-blocking mode if not already in that mode. */
2295 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2296 if (final_retval == ERROR_OK)
2297 final_retval = retval;
2299 /* Wait for last issued instruction to complete. */
2300 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2301 if (final_retval == ERROR_OK)
2302 final_retval = retval;
2304 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2305 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2306 * check RXfull_l). Most of the time this will be free because RXfull_l
2307 * will be cleared immediately and cached in dscr. However, don't do this
2308 * if there is fault, because then the instruction might not have completed
2309 * successfully. */
2310 if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2311 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2312 if (retval != ERROR_OK)
2313 return retval;
2316 /* If there were any sticky abort flags, clear them. */
2317 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2318 fault_dscr = dscr;
2319 mem_ap_write_atomic_u32(armv7a->debug_ap,
2320 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2321 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2322 } else {
2323 fault_dscr = 0;
2326 /* Handle synchronous data faults. */
2327 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2328 if (final_retval == ERROR_OK) {
2329 /* Final return value will reflect cause of fault. */
2330 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2331 if (retval == ERROR_OK) {
2332 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2333 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2334 } else
2335 final_retval = retval;
2337 /* Fault destroyed DFAR/DFSR; restore them. */
2338 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2339 if (retval != ERROR_OK)
2340 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2343 /* Handle asynchronous data faults. */
2344 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2345 if (final_retval == ERROR_OK)
2346 /* No other error has been recorded so far, so keep this one. */
2347 final_retval = ERROR_TARGET_DATA_ABORT;
2350 /* If the DCC is nonempty, clear it. */
2351 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2352 uint32_t dummy;
2353 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2354 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2355 if (final_retval == ERROR_OK)
2356 final_retval = retval;
2358 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2359 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2360 if (final_retval == ERROR_OK)
2361 final_retval = retval;
2364 /* Done. */
2365 return final_retval;
2368 static int cortex_a_read_cpu_memory_slow(struct target *target,
2369 uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2371 /* Reads count objects of size size into *buffer. Old value of DSCR must be
2372 * in *dscr; updated to new value. This is slow because it works for
2373 * non-word-sized objects. Avoid unaligned accesses as they do not work
2374 * on memory address space without "Normal" attribute. If size == 4 and
2375 * the address is aligned, cortex_a_read_cpu_memory_fast should be
2376 * preferred.
2377 * Preconditions:
2378 * - Address is in R0.
2379 * - R0 is marked dirty.
2381 struct armv7a_common *armv7a = target_to_armv7a(target);
2382 struct arm *arm = &armv7a->arm;
2383 int retval;
2385 /* Mark register R1 as dirty, to use for transferring data. */
2386 arm_reg_current(arm, 1)->dirty = true;
2388 /* Switch to non-blocking mode if not already in that mode. */
2389 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2390 if (retval != ERROR_OK)
2391 return retval;
2393 /* Go through the objects. */
2394 while (count) {
2395 /* Issue a load of the appropriate size to R1. */
2396 uint32_t opcode, data;
2397 if (size == 1)
2398 opcode = ARMV4_5_LDRB_IP(1, 0);
2399 else if (size == 2)
2400 opcode = ARMV4_5_LDRH_IP(1, 0);
2401 else
2402 opcode = ARMV4_5_LDRW_IP(1, 0);
2403 retval = cortex_a_exec_opcode(target, opcode, dscr);
2404 if (retval != ERROR_OK)
2405 return retval;
2407 /* Issue a write of R1 to DTRTX. */
2408 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2409 if (retval != ERROR_OK)
2410 return retval;
2412 /* Check for faults and return early. */
2413 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2414 return ERROR_OK; /* A data fault is not considered a system failure. */
2416 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2417 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2418 * must also check TXfull_l). Most of the time this will be free
2419 * because TXfull_l will be set immediately and cached in dscr. */
2420 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2421 DSCR_DTRTX_FULL_LATCHED, dscr);
2422 if (retval != ERROR_OK)
2423 return retval;
2425 /* Read the value transferred to DTRTX into the buffer. */
2426 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2427 armv7a->debug_base + CPUDBG_DTRTX, &data);
2428 if (retval != ERROR_OK)
2429 return retval;
2430 if (size == 1)
2431 *buffer = (uint8_t) data;
2432 else if (size == 2)
2433 target_buffer_set_u16(target, buffer, (uint16_t) data);
2434 else
2435 target_buffer_set_u32(target, buffer, data);
2437 /* Advance. */
2438 buffer += size;
2439 --count;
2442 return ERROR_OK;
2445 static int cortex_a_read_cpu_memory_fast(struct target *target,
2446 uint32_t count, uint8_t *buffer, uint32_t *dscr)
2448 /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2449 * *dscr; updated to new value. This is fast but only works for word-sized
2450 * objects at aligned addresses.
2451 * Preconditions:
2452 * - Address is in R0 and must be a multiple of 4.
2453 * - R0 is marked dirty.
2455 struct armv7a_common *armv7a = target_to_armv7a(target);
2456 uint32_t u32;
2457 int retval;
2459 /* Switch to non-blocking mode if not already in that mode. */
2460 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2461 if (retval != ERROR_OK)
2462 return retval;
2464 /* Issue the LDC instruction via a write to ITR. */
2465 retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2466 if (retval != ERROR_OK)
2467 return retval;
2469 count--;
2471 if (count > 0) {
2472 /* Switch to fast mode if not already in that mode. */
2473 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2474 if (retval != ERROR_OK)
2475 return retval;
2477 /* Latch LDC instruction. */
2478 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2479 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2480 if (retval != ERROR_OK)
2481 return retval;
2483 /* Read the value transferred to DTRTX into the buffer. Due to fast
2484 * mode rules, this blocks until the instruction finishes executing and
2485 * then reissues the read instruction to read the next word from
2486 * memory. The last read of DTRTX in this call reads the second-to-last
2487 * word from memory and issues the read instruction for the last word.
2489 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2490 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2491 if (retval != ERROR_OK)
2492 return retval;
2494 /* Advance. */
2495 buffer += count * 4;
2498 /* Wait for last issued instruction to complete. */
2499 retval = cortex_a_wait_instrcmpl(target, dscr, false);
2500 if (retval != ERROR_OK)
2501 return retval;
2503 /* Switch to non-blocking mode if not already in that mode. */
2504 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2505 if (retval != ERROR_OK)
2506 return retval;
2508 /* Check for faults and return early. */
2509 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2510 return ERROR_OK; /* A data fault is not considered a system failure. */
2512 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2513 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2514 * check TXfull_l). Most of the time this will be free because TXfull_l
2515 * will be set immediately and cached in dscr. */
2516 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2517 DSCR_DTRTX_FULL_LATCHED, dscr);
2518 if (retval != ERROR_OK)
2519 return retval;
2521 /* Read the value transferred to DTRTX into the buffer. This is the last
2522 * word. */
2523 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2524 armv7a->debug_base + CPUDBG_DTRTX, &u32);
2525 if (retval != ERROR_OK)
2526 return retval;
2527 target_buffer_set_u32(target, buffer, u32);
2529 return ERROR_OK;
2532 static int cortex_a_read_cpu_memory(struct target *target,
2533 uint32_t address, uint32_t size,
2534 uint32_t count, uint8_t *buffer)
2536 /* Read memory through the CPU. */
2537 int retval, final_retval;
2538 struct armv7a_common *armv7a = target_to_armv7a(target);
2539 struct arm *arm = &armv7a->arm;
2540 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2542 LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2543 address, size, count);
2544 if (target->state != TARGET_HALTED) {
2545 LOG_TARGET_ERROR(target, "not halted");
2546 return ERROR_TARGET_NOT_HALTED;
2549 if (!count)
2550 return ERROR_OK;
2552 /* Clear any abort. */
2553 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2554 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2555 if (retval != ERROR_OK)
2556 return retval;
2558 /* Read DSCR */
2559 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2560 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2561 if (retval != ERROR_OK)
2562 return retval;
2564 /* Switch to non-blocking mode if not already in that mode. */
2565 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2566 if (retval != ERROR_OK)
2567 return retval;
2569 /* Mark R0 as dirty. */
2570 arm_reg_current(arm, 0)->dirty = true;
2572 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2573 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2574 if (retval != ERROR_OK)
2575 return retval;
2577 /* Get the memory address into R0. */
2578 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2579 armv7a->debug_base + CPUDBG_DTRRX, address);
2580 if (retval != ERROR_OK)
2581 return retval;
2582 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2583 if (retval != ERROR_OK)
2584 return retval;
2586 if (size == 4 && (address % 4) == 0) {
2587 /* We are doing a word-aligned transfer, so use fast mode. */
2588 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2589 } else {
2590 /* Use slow path. Adjust size for aligned accesses */
2591 switch (address % 4) {
2592 case 1:
2593 case 3:
2594 count *= size;
2595 size = 1;
2596 break;
2597 case 2:
2598 if (size == 4) {
2599 count *= 2;
2600 size = 2;
2602 break;
2603 case 0:
2604 default:
2605 break;
2607 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2610 final_retval = retval;
2612 /* Switch to non-blocking mode if not already in that mode. */
2613 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2614 if (final_retval == ERROR_OK)
2615 final_retval = retval;
2617 /* Wait for last issued instruction to complete. */
2618 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2619 if (final_retval == ERROR_OK)
2620 final_retval = retval;
2622 /* If there were any sticky abort flags, clear them. */
2623 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2624 fault_dscr = dscr;
2625 mem_ap_write_atomic_u32(armv7a->debug_ap,
2626 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2627 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2628 } else {
2629 fault_dscr = 0;
2632 /* Handle synchronous data faults. */
2633 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2634 if (final_retval == ERROR_OK) {
2635 /* Final return value will reflect cause of fault. */
2636 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2637 if (retval == ERROR_OK) {
2638 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2639 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2640 } else
2641 final_retval = retval;
2643 /* Fault destroyed DFAR/DFSR; restore them. */
2644 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2645 if (retval != ERROR_OK)
2646 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2649 /* Handle asynchronous data faults. */
2650 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2651 if (final_retval == ERROR_OK)
2652 /* No other error has been recorded so far, so keep this one. */
2653 final_retval = ERROR_TARGET_DATA_ABORT;
2656 /* If the DCC is nonempty, clear it. */
2657 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2658 uint32_t dummy;
2659 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2660 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2661 if (final_retval == ERROR_OK)
2662 final_retval = retval;
2664 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2665 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2666 if (final_retval == ERROR_OK)
2667 final_retval = retval;
2670 /* Done. */
2671 return final_retval;
2676 * Cortex-A Memory access
2678 * This is same Cortex-M3 but we must also use the correct
2679 * ap number for every access.
2682 static int cortex_a_read_phys_memory(struct target *target,
2683 target_addr_t address, uint32_t size,
2684 uint32_t count, uint8_t *buffer)
2686 int retval;
2688 if (!count || !buffer)
2689 return ERROR_COMMAND_SYNTAX_ERROR;
2691 LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2692 address, size, count);
2694 /* read memory through the CPU */
2695 cortex_a_prep_memaccess(target, 1);
2696 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2697 cortex_a_post_memaccess(target, 1);
2699 return retval;
2702 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2703 uint32_t size, uint32_t count, uint8_t *buffer)
2705 int retval;
2707 /* cortex_a handles unaligned memory access */
2708 LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2709 address, size, count);
2711 cortex_a_prep_memaccess(target, 0);
2712 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2713 cortex_a_post_memaccess(target, 0);
2715 return retval;
2718 static int cortex_a_write_phys_memory(struct target *target,
2719 target_addr_t address, uint32_t size,
2720 uint32_t count, const uint8_t *buffer)
2722 int retval;
2724 if (!count || !buffer)
2725 return ERROR_COMMAND_SYNTAX_ERROR;
2727 LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2728 address, size, count);
2730 /* write memory through the CPU */
2731 cortex_a_prep_memaccess(target, 1);
2732 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2733 cortex_a_post_memaccess(target, 1);
2735 return retval;
2738 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2739 uint32_t size, uint32_t count, const uint8_t *buffer)
2741 int retval;
2743 /* cortex_a handles unaligned memory access */
2744 LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2745 address, size, count);
2747 /* memory writes bypass the caches, must flush before writing */
2748 armv7a_cache_auto_flush_on_write(target, address, size * count);
2750 cortex_a_prep_memaccess(target, 0);
2751 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2752 cortex_a_post_memaccess(target, 0);
2753 return retval;
2756 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2757 uint32_t count, uint8_t *buffer)
2759 uint32_t size;
2761 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2762 * will have something to do with the size we leave to it. */
2763 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2764 if (address & size) {
2765 int retval = target_read_memory(target, address, size, 1, buffer);
2766 if (retval != ERROR_OK)
2767 return retval;
2768 address += size;
2769 count -= size;
2770 buffer += size;
2774 /* Read the data with as large access size as possible. */
2775 for (; size > 0; size /= 2) {
2776 uint32_t aligned = count - count % size;
2777 if (aligned > 0) {
2778 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2779 if (retval != ERROR_OK)
2780 return retval;
2781 address += aligned;
2782 count -= aligned;
2783 buffer += aligned;
2787 return ERROR_OK;
2790 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2791 uint32_t count, const uint8_t *buffer)
2793 uint32_t size;
2795 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2796 * will have something to do with the size we leave to it. */
2797 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2798 if (address & size) {
2799 int retval = target_write_memory(target, address, size, 1, buffer);
2800 if (retval != ERROR_OK)
2801 return retval;
2802 address += size;
2803 count -= size;
2804 buffer += size;
2808 /* Write the data with as large access size as possible. */
2809 for (; size > 0; size /= 2) {
2810 uint32_t aligned = count - count % size;
2811 if (aligned > 0) {
2812 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2813 if (retval != ERROR_OK)
2814 return retval;
2815 address += aligned;
2816 count -= aligned;
2817 buffer += aligned;
2821 return ERROR_OK;
2824 static int cortex_a_handle_target_request(void *priv)
2826 struct target *target = priv;
2827 struct armv7a_common *armv7a = target_to_armv7a(target);
2828 int retval;
2830 if (!target_was_examined(target))
2831 return ERROR_OK;
2832 if (!target->dbg_msg_enabled)
2833 return ERROR_OK;
2835 if (target->state == TARGET_RUNNING) {
2836 uint32_t request;
2837 uint32_t dscr;
2838 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2839 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2841 /* check if we have data */
2842 int64_t then = timeval_ms();
2843 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2844 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2845 armv7a->debug_base + CPUDBG_DTRTX, &request);
2846 if (retval == ERROR_OK) {
2847 target_request(target, request);
2848 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2849 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2851 if (timeval_ms() > then + 1000) {
2852 LOG_ERROR("Timeout waiting for dtr tx full");
2853 return ERROR_FAIL;
2858 return ERROR_OK;
2862 * Cortex-A target information and configuration
2865 static int cortex_a_examine_first(struct target *target)
2867 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2868 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2869 struct adiv5_dap *swjdp = armv7a->arm.dap;
2870 struct adiv5_private_config *pc = target->private_config;
2872 int i;
2873 int retval = ERROR_OK;
2874 uint32_t didr, cpuid, dbg_osreg, dbg_idpfr1;
2876 if (!armv7a->debug_ap) {
2877 if (pc->ap_num == DP_APSEL_INVALID) {
2878 /* Search for the APB-AP - it is needed for access to debug registers */
2879 retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2880 if (retval != ERROR_OK) {
2881 LOG_ERROR("Could not find APB-AP for debug access");
2882 return retval;
2884 } else {
2885 armv7a->debug_ap = dap_get_ap(swjdp, pc->ap_num);
2886 if (!armv7a->debug_ap) {
2887 LOG_ERROR("Cannot get AP");
2888 return ERROR_FAIL;
2893 retval = mem_ap_init(armv7a->debug_ap);
2894 if (retval != ERROR_OK) {
2895 LOG_ERROR("Could not initialize the APB-AP");
2896 return retval;
2899 armv7a->debug_ap->memaccess_tck = 80;
2901 if (!target->dbgbase_set) {
2902 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2903 target->cmd_name);
2904 /* Lookup Processor DAP */
2905 retval = dap_lookup_cs_component(armv7a->debug_ap, ARM_CS_C9_DEVTYPE_CORE_DEBUG,
2906 &armv7a->debug_base, target->coreid);
2907 if (retval != ERROR_OK) {
2908 LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2909 target->cmd_name);
2910 return retval;
2912 LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT,
2913 target->coreid, armv7a->debug_base);
2914 } else
2915 armv7a->debug_base = target->dbgbase;
2917 if ((armv7a->debug_base & (1UL<<31)) == 0)
2918 LOG_WARNING("Debug base address for target %s has bit 31 set to 0. Access to debug registers will likely fail!\n"
2919 "Please fix the target configuration.", target_name(target));
2921 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2922 armv7a->debug_base + CPUDBG_DIDR, &didr);
2923 if (retval != ERROR_OK) {
2924 LOG_DEBUG("Examine %s failed", "DIDR");
2925 return retval;
2928 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2929 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2930 if (retval != ERROR_OK) {
2931 LOG_DEBUG("Examine %s failed", "CPUID");
2932 return retval;
2935 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2936 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2938 cortex_a->didr = didr;
2939 cortex_a->cpuid = cpuid;
2941 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2942 armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2943 if (retval != ERROR_OK)
2944 return retval;
2945 LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR 0x%" PRIx32, target->coreid, dbg_osreg);
2947 if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
2948 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
2949 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2950 return ERROR_TARGET_INIT_FAILED;
2953 if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
2954 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
2956 /* Read DBGOSLSR and check if OSLK is implemented */
2957 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2958 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2959 if (retval != ERROR_OK)
2960 return retval;
2961 LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
2963 /* check if OS Lock is implemented */
2964 if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
2965 /* check if OS Lock is set */
2966 if (dbg_osreg & OSLSR_OSLK) {
2967 LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
2969 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2970 armv7a->debug_base + CPUDBG_OSLAR,
2972 if (retval == ERROR_OK)
2973 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2974 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2976 /* if we fail to access the register or cannot reset the OSLK bit, bail out */
2977 if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
2978 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
2979 target->coreid);
2980 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2981 return ERROR_TARGET_INIT_FAILED;
2986 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2987 armv7a->debug_base + CPUDBG_ID_PFR1, &dbg_idpfr1);
2988 if (retval != ERROR_OK)
2989 return retval;
2991 if (dbg_idpfr1 & 0x000000f0) {
2992 LOG_DEBUG("target->coreid %" PRId32 " has security extensions",
2993 target->coreid);
2994 armv7a->arm.core_type = ARM_CORE_TYPE_SEC_EXT;
2996 if (dbg_idpfr1 & 0x0000f000) {
2997 LOG_DEBUG("target->coreid %" PRId32 " has virtualization extensions",
2998 target->coreid);
3000 * overwrite and simplify the checks.
3001 * virtualization extensions require implementation of security extension
3003 armv7a->arm.core_type = ARM_CORE_TYPE_VIRT_EXT;
3006 /* Avoid recreating the registers cache */
3007 if (!target_was_examined(target)) {
3008 retval = cortex_a_dpm_setup(cortex_a, didr);
3009 if (retval != ERROR_OK)
3010 return retval;
3013 /* Setup Breakpoint Register Pairs */
3014 cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3015 cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3016 cortex_a->brp_num_available = cortex_a->brp_num;
3017 free(cortex_a->brp_list);
3018 cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3019 /* cortex_a->brb_enabled = ????; */
3020 for (i = 0; i < cortex_a->brp_num; i++) {
3021 cortex_a->brp_list[i].used = false;
3022 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3023 cortex_a->brp_list[i].type = BRP_NORMAL;
3024 else
3025 cortex_a->brp_list[i].type = BRP_CONTEXT;
3026 cortex_a->brp_list[i].value = 0;
3027 cortex_a->brp_list[i].control = 0;
3028 cortex_a->brp_list[i].brpn = i;
3031 LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3033 /* Setup Watchpoint Register Pairs */
3034 cortex_a->wrp_num = ((didr >> 28) & 0x0F) + 1;
3035 cortex_a->wrp_num_available = cortex_a->wrp_num;
3036 free(cortex_a->wrp_list);
3037 cortex_a->wrp_list = calloc(cortex_a->wrp_num, sizeof(struct cortex_a_wrp));
3038 for (i = 0; i < cortex_a->wrp_num; i++) {
3039 cortex_a->wrp_list[i].used = false;
3040 cortex_a->wrp_list[i].value = 0;
3041 cortex_a->wrp_list[i].control = 0;
3042 cortex_a->wrp_list[i].wrpn = i;
3045 LOG_DEBUG("Configured %i hw watchpoints", cortex_a->wrp_num);
3047 /* select debug_ap as default */
3048 swjdp->apsel = armv7a->debug_ap->ap_num;
3050 target_set_examined(target);
3051 return ERROR_OK;
3054 static int cortex_a_examine(struct target *target)
3056 int retval = ERROR_OK;
3058 /* Reestablish communication after target reset */
3059 retval = cortex_a_examine_first(target);
3061 /* Configure core debug access */
3062 if (retval == ERROR_OK)
3063 retval = cortex_a_init_debug_access(target);
3065 return retval;
3069 * Cortex-A target creation and initialization
3072 static int cortex_a_init_target(struct command_context *cmd_ctx,
3073 struct target *target)
3075 /* examine_first() does a bunch of this */
3076 arm_semihosting_init(target);
3077 return ERROR_OK;
3080 static int cortex_a_init_arch_info(struct target *target,
3081 struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
3083 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3085 /* Setup struct cortex_a_common */
3086 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3087 armv7a->arm.dap = dap;
3089 /* register arch-specific functions */
3090 armv7a->examine_debug_reason = NULL;
3092 armv7a->post_debug_entry = cortex_a_post_debug_entry;
3094 armv7a->pre_restore_context = NULL;
3096 armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3099 /* arm7_9->handle_target_request = cortex_a_handle_target_request; */
3101 /* REVISIT v7a setup should be in a v7a-specific routine */
3102 armv7a_init_arch_info(target, armv7a);
3103 target_register_timer_callback(cortex_a_handle_target_request, 1,
3104 TARGET_TIMER_TYPE_PERIODIC, target);
3106 return ERROR_OK;
3109 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3111 struct cortex_a_common *cortex_a;
3112 struct adiv5_private_config *pc;
3114 if (!target->private_config)
3115 return ERROR_FAIL;
3117 pc = (struct adiv5_private_config *)target->private_config;
3119 cortex_a = calloc(1, sizeof(struct cortex_a_common));
3120 if (!cortex_a) {
3121 LOG_ERROR("Out of memory");
3122 return ERROR_FAIL;
3124 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3125 cortex_a->armv7a_common.is_armv7r = false;
3126 cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
3128 return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3131 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3133 struct cortex_a_common *cortex_a;
3134 struct adiv5_private_config *pc;
3136 pc = (struct adiv5_private_config *)target->private_config;
3137 if (adiv5_verify_config(pc) != ERROR_OK)
3138 return ERROR_FAIL;
3140 cortex_a = calloc(1, sizeof(struct cortex_a_common));
3141 if (!cortex_a) {
3142 LOG_ERROR("Out of memory");
3143 return ERROR_FAIL;
3145 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3146 cortex_a->armv7a_common.is_armv7r = true;
3148 return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3151 static void cortex_a_deinit_target(struct target *target)
3153 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3154 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3155 struct arm_dpm *dpm = &armv7a->dpm;
3156 uint32_t dscr;
3157 int retval;
3159 if (target_was_examined(target)) {
3160 /* Disable halt for breakpoint, watchpoint and vector catch */
3161 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3162 armv7a->debug_base + CPUDBG_DSCR, &dscr);
3163 if (retval == ERROR_OK)
3164 mem_ap_write_atomic_u32(armv7a->debug_ap,
3165 armv7a->debug_base + CPUDBG_DSCR,
3166 dscr & ~DSCR_HALT_DBG_MODE);
3169 if (armv7a->debug_ap)
3170 dap_put_ap(armv7a->debug_ap);
3172 free(cortex_a->wrp_list);
3173 free(cortex_a->brp_list);
3174 arm_free_reg_cache(dpm->arm);
3175 free(dpm->dbp);
3176 free(dpm->dwp);
3177 free(target->private_config);
3178 free(cortex_a);
3181 static int cortex_a_mmu(struct target *target, int *enabled)
3183 struct armv7a_common *armv7a = target_to_armv7a(target);
3185 if (target->state != TARGET_HALTED) {
3186 LOG_TARGET_ERROR(target, "not halted");
3187 return ERROR_TARGET_NOT_HALTED;
3190 if (armv7a->is_armv7r)
3191 *enabled = 0;
3192 else
3193 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3195 return ERROR_OK;
3198 static int cortex_a_virt2phys(struct target *target,
3199 target_addr_t virt, target_addr_t *phys)
3201 int retval;
3202 int mmu_enabled = 0;
3205 * If the MMU was not enabled at debug entry, there is no
3206 * way of knowing if there was ever a valid configuration
3207 * for it and thus it's not safe to enable it. In this case,
3208 * just return the virtual address as physical.
3210 cortex_a_mmu(target, &mmu_enabled);
3211 if (!mmu_enabled) {
3212 *phys = virt;
3213 return ERROR_OK;
3216 /* mmu must be enable in order to get a correct translation */
3217 retval = cortex_a_mmu_modify(target, 1);
3218 if (retval != ERROR_OK)
3219 return retval;
3220 return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3221 phys, 1);
3224 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3226 struct target *target = get_current_target(CMD_CTX);
3227 struct armv7a_common *armv7a = target_to_armv7a(target);
3229 return armv7a_handle_cache_info_command(CMD,
3230 &armv7a->armv7a_mmu.armv7a_cache);
3234 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3236 struct target *target = get_current_target(CMD_CTX);
3237 if (!target_was_examined(target)) {
3238 LOG_ERROR("target not examined yet");
3239 return ERROR_FAIL;
3242 return cortex_a_init_debug_access(target);
3245 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3247 struct target *target = get_current_target(CMD_CTX);
3248 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3250 static const struct nvp nvp_maskisr_modes[] = {
3251 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3252 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3253 { .name = NULL, .value = -1 },
3255 const struct nvp *n;
3257 if (CMD_ARGC > 0) {
3258 n = nvp_name2value(nvp_maskisr_modes, CMD_ARGV[0]);
3259 if (!n->name) {
3260 LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3261 return ERROR_COMMAND_SYNTAX_ERROR;
3264 cortex_a->isrmasking_mode = n->value;
3267 n = nvp_value2name(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3268 command_print(CMD, "cortex_a interrupt mask %s", n->name);
3270 return ERROR_OK;
3273 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3275 struct target *target = get_current_target(CMD_CTX);
3276 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3278 static const struct nvp nvp_dacrfixup_modes[] = {
3279 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3280 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3281 { .name = NULL, .value = -1 },
3283 const struct nvp *n;
3285 if (CMD_ARGC > 0) {
3286 n = nvp_name2value(nvp_dacrfixup_modes, CMD_ARGV[0]);
3287 if (!n->name)
3288 return ERROR_COMMAND_SYNTAX_ERROR;
3289 cortex_a->dacrfixup_mode = n->value;
3293 n = nvp_value2name(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3294 command_print(CMD, "cortex_a domain access control fixup %s", n->name);
3296 return ERROR_OK;
3299 static const struct command_registration cortex_a_exec_command_handlers[] = {
3301 .name = "cache_info",
3302 .handler = cortex_a_handle_cache_info_command,
3303 .mode = COMMAND_EXEC,
3304 .help = "display information about target caches",
3305 .usage = "",
3308 .name = "dbginit",
3309 .handler = cortex_a_handle_dbginit_command,
3310 .mode = COMMAND_EXEC,
3311 .help = "Initialize core debug",
3312 .usage = "",
3315 .name = "maskisr",
3316 .handler = handle_cortex_a_mask_interrupts_command,
3317 .mode = COMMAND_ANY,
3318 .help = "mask cortex_a interrupts",
3319 .usage = "['on'|'off']",
3322 .name = "dacrfixup",
3323 .handler = handle_cortex_a_dacrfixup_command,
3324 .mode = COMMAND_ANY,
3325 .help = "set domain access control (DACR) to all-manager "
3326 "on memory access",
3327 .usage = "['on'|'off']",
3330 .chain = armv7a_mmu_command_handlers,
3333 .chain = smp_command_handlers,
3336 COMMAND_REGISTRATION_DONE
3338 static const struct command_registration cortex_a_command_handlers[] = {
3340 .chain = arm_command_handlers,
3343 .chain = armv7a_command_handlers,
3346 .name = "cortex_a",
3347 .mode = COMMAND_ANY,
3348 .help = "Cortex-A command group",
3349 .usage = "",
3350 .chain = cortex_a_exec_command_handlers,
3352 COMMAND_REGISTRATION_DONE
3355 struct target_type cortexa_target = {
3356 .name = "cortex_a",
3358 .poll = cortex_a_poll,
3359 .arch_state = armv7a_arch_state,
3361 .halt = cortex_a_halt,
3362 .resume = cortex_a_resume,
3363 .step = cortex_a_step,
3365 .assert_reset = cortex_a_assert_reset,
3366 .deassert_reset = cortex_a_deassert_reset,
3368 /* REVISIT allow exporting VFP3 registers ... */
3369 .get_gdb_arch = arm_get_gdb_arch,
3370 .get_gdb_reg_list = arm_get_gdb_reg_list,
3372 .read_memory = cortex_a_read_memory,
3373 .write_memory = cortex_a_write_memory,
3375 .read_buffer = cortex_a_read_buffer,
3376 .write_buffer = cortex_a_write_buffer,
3378 .checksum_memory = arm_checksum_memory,
3379 .blank_check_memory = arm_blank_check_memory,
3381 .run_algorithm = armv4_5_run_algorithm,
3383 .add_breakpoint = cortex_a_add_breakpoint,
3384 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3385 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3386 .remove_breakpoint = cortex_a_remove_breakpoint,
3387 .add_watchpoint = cortex_a_add_watchpoint,
3388 .remove_watchpoint = cortex_a_remove_watchpoint,
3390 .commands = cortex_a_command_handlers,
3391 .target_create = cortex_a_target_create,
3392 .target_jim_configure = adiv5_jim_configure,
3393 .init_target = cortex_a_init_target,
3394 .examine = cortex_a_examine,
3395 .deinit_target = cortex_a_deinit_target,
3397 .read_phys_memory = cortex_a_read_phys_memory,
3398 .write_phys_memory = cortex_a_write_phys_memory,
3399 .mmu = cortex_a_mmu,
3400 .virt2phys = cortex_a_virt2phys,
3403 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3405 .name = "dbginit",
3406 .handler = cortex_a_handle_dbginit_command,
3407 .mode = COMMAND_EXEC,
3408 .help = "Initialize core debug",
3409 .usage = "",
3412 .name = "maskisr",
3413 .handler = handle_cortex_a_mask_interrupts_command,
3414 .mode = COMMAND_EXEC,
3415 .help = "mask cortex_r4 interrupts",
3416 .usage = "['on'|'off']",
3419 COMMAND_REGISTRATION_DONE
3421 static const struct command_registration cortex_r4_command_handlers[] = {
3423 .chain = arm_command_handlers,
3426 .name = "cortex_r4",
3427 .mode = COMMAND_ANY,
3428 .help = "Cortex-R4 command group",
3429 .usage = "",
3430 .chain = cortex_r4_exec_command_handlers,
3432 COMMAND_REGISTRATION_DONE
3435 struct target_type cortexr4_target = {
3436 .name = "cortex_r4",
3438 .poll = cortex_a_poll,
3439 .arch_state = armv7a_arch_state,
3441 .halt = cortex_a_halt,
3442 .resume = cortex_a_resume,
3443 .step = cortex_a_step,
3445 .assert_reset = cortex_a_assert_reset,
3446 .deassert_reset = cortex_a_deassert_reset,
3448 /* REVISIT allow exporting VFP3 registers ... */
3449 .get_gdb_arch = arm_get_gdb_arch,
3450 .get_gdb_reg_list = arm_get_gdb_reg_list,
3452 .read_memory = cortex_a_read_phys_memory,
3453 .write_memory = cortex_a_write_phys_memory,
3455 .checksum_memory = arm_checksum_memory,
3456 .blank_check_memory = arm_blank_check_memory,
3458 .run_algorithm = armv4_5_run_algorithm,
3460 .add_breakpoint = cortex_a_add_breakpoint,
3461 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3462 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3463 .remove_breakpoint = cortex_a_remove_breakpoint,
3464 .add_watchpoint = cortex_a_add_watchpoint,
3465 .remove_watchpoint = cortex_a_remove_watchpoint,
3467 .commands = cortex_r4_command_handlers,
3468 .target_create = cortex_r4_target_create,
3469 .target_jim_configure = adiv5_jim_configure,
3470 .init_target = cortex_a_init_target,
3471 .examine = cortex_a_examine,
3472 .deinit_target = cortex_a_deinit_target,