flash Kinetis: refactoring ftfx commands and numerous minor changes
[openocd.git] / src / flash / nor / kinetis.c
blobf91dda4fca8d731f0ca5bffb76c0d95ae20b08fb
1 /***************************************************************************
2 * Copyright (C) 2011 by Mathias Kuester *
3 * kesmtp@freenet.de *
4 * *
5 * Copyright (C) 2011 sleep(5) ltd *
6 * tomas@sleepfive.com *
7 * *
8 * Copyright (C) 2012 by Christopher D. Kilgour *
9 * techie at whiterocker.com *
10 * *
11 * Copyright (C) 2013 Nemui Trinomius *
12 * nemuisan_kawausogasuki@live.jp *
13 * *
14 * Copyright (C) 2015 Tomas Vanek *
15 * vanekt@fbl.cz *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
29 ***************************************************************************/
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
35 #include "jtag/interface.h"
36 #include "imp.h"
37 #include <helper/binarybuffer.h>
38 #include <helper/time_support.h>
39 #include <target/target_type.h>
40 #include <target/algorithm.h>
41 #include <target/armv7m.h>
42 #include <target/cortex_m.h>
45 * Implementation Notes
47 * The persistent memories in the Kinetis chip families K10 through
48 * K70 are all manipulated with the Flash Memory Module. Some
49 * variants call this module the FTFE, others call it the FTFL. To
50 * indicate that both are considered here, we use FTFX.
52 * Within the module, according to the chip variant, the persistent
53 * memory is divided into what Freescale terms Program Flash, FlexNVM,
54 * and FlexRAM. All chip variants have Program Flash. Some chip
55 * variants also have FlexNVM and FlexRAM, which always appear
56 * together.
58 * A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map
59 * each block to a separate bank. Each block size varies by chip and
60 * may be determined by the read-only SIM_FCFG1 register. The sector
61 * size within each bank/block varies by chip, and may be 1, 2 or 4k.
62 * The sector size may be different for flash and FlexNVM.
64 * The first half of the flash (1 or 2 blocks) is always Program Flash
65 * and always starts at address 0x00000000. The "PFLSH" flag, bit 23
66 * of the read-only SIM_FCFG2 register, determines whether the second
67 * half of the flash is also Program Flash or FlexNVM+FlexRAM. When
68 * PFLSH is set, the second from the first half. When PFLSH is clear,
69 * the second half of flash is FlexNVM and always starts at address
70 * 0x10000000. FlexRAM, which is also present when PFLSH is clear,
71 * always starts at address 0x14000000.
73 * The Flash Memory Module provides a register set where flash
74 * commands are loaded to perform flash operations like erase and
75 * program. Different commands are available depending on whether
76 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
77 * the commands used are quite consistent between flash blocks, the
78 * parameters they accept differ according to the flash sector size.
82 /* Addressess */
83 #define FLEXRAM 0x14000000
85 #define FMC_PFB01CR 0x4001f004
86 #define FTFx_FSTAT 0x40020000
87 #define FTFx_FCNFG 0x40020001
88 #define FTFx_FCCOB3 0x40020004
89 #define FTFx_FPROT3 0x40020010
90 #define FTFx_FDPROT 0x40020017
91 #define SIM_SDID 0x40048024
92 #define SIM_SOPT1 0x40047000
93 #define SIM_FCFG1 0x4004804c
94 #define SIM_FCFG2 0x40048050
95 #define WDOG_STCTRH 0x40052000
96 #define SMC_PMCTRL 0x4007E001
97 #define SMC_PMSTAT 0x4007E003
99 /* Values */
100 #define PM_STAT_RUN 0x01
101 #define PM_STAT_VLPR 0x04
102 #define PM_CTRL_RUNM_RUN 0x00
104 /* Commands */
105 #define FTFx_CMD_BLOCKSTAT 0x00
106 #define FTFx_CMD_SECTSTAT 0x01
107 #define FTFx_CMD_LWORDPROG 0x06
108 #define FTFx_CMD_SECTERASE 0x09
109 #define FTFx_CMD_SECTWRITE 0x0b
110 #define FTFx_CMD_MASSERASE 0x44
111 #define FTFx_CMD_PGMPART 0x80
112 #define FTFx_CMD_SETFLEXRAM 0x81
114 /* The older Kinetis K series uses the following SDID layout :
115 * Bit 31-16 : 0
116 * Bit 15-12 : REVID
117 * Bit 11-7 : DIEID
118 * Bit 6-4 : FAMID
119 * Bit 3-0 : PINID
121 * The newer Kinetis series uses the following SDID layout :
122 * Bit 31-28 : FAMID
123 * Bit 27-24 : SUBFAMID
124 * Bit 23-20 : SERIESID
125 * Bit 19-16 : SRAMSIZE
126 * Bit 15-12 : REVID
127 * Bit 6-4 : Reserved (0)
128 * Bit 3-0 : PINID
130 * We assume that if bits 31-16 are 0 then it's an older
131 * K-series MCU.
134 #define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000
135 #define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
137 #define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF
139 #define KINETIS_SDID_DIEID_MASK 0x00000F80
141 #define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */
142 #define KINETIS_SDID_DIEID_K22FN256 0x00000A80
143 #define KINETIS_SDID_DIEID_K22FN512 0x00000E80
144 #define KINETIS_SDID_DIEID_K24FN256 0x00000700
146 #define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */
148 /* We can't rely solely on the FAMID field to determine the MCU
149 * type since some FAMID values identify multiple MCUs with
150 * different flash sector sizes (K20 and K22 for instance).
151 * Therefore we combine it with the DIEID bits which may possibly
152 * break if Freescale bumps the DIEID for a particular MCU. */
153 #define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
154 #define KINETIS_K_SDID_K10_M50 0x00000000
155 #define KINETIS_K_SDID_K10_M72 0x00000080
156 #define KINETIS_K_SDID_K10_M100 0x00000100
157 #define KINETIS_K_SDID_K10_M120 0x00000180
158 #define KINETIS_K_SDID_K11 0x00000220
159 #define KINETIS_K_SDID_K12 0x00000200
160 #define KINETIS_K_SDID_K20_M50 0x00000010
161 #define KINETIS_K_SDID_K20_M72 0x00000090
162 #define KINETIS_K_SDID_K20_M100 0x00000110
163 #define KINETIS_K_SDID_K20_M120 0x00000190
164 #define KINETIS_K_SDID_K21_M50 0x00000230
165 #define KINETIS_K_SDID_K21_M120 0x00000330
166 #define KINETIS_K_SDID_K22_M50 0x00000210
167 #define KINETIS_K_SDID_K22_M120 0x00000310
168 #define KINETIS_K_SDID_K30_M72 0x000000A0
169 #define KINETIS_K_SDID_K30_M100 0x00000120
170 #define KINETIS_K_SDID_K40_M72 0x000000B0
171 #define KINETIS_K_SDID_K40_M100 0x00000130
172 #define KINETIS_K_SDID_K50_M72 0x000000E0
173 #define KINETIS_K_SDID_K51_M72 0x000000F0
174 #define KINETIS_K_SDID_K53 0x00000170
175 #define KINETIS_K_SDID_K60_M100 0x00000140
176 #define KINETIS_K_SDID_K60_M150 0x000001C0
177 #define KINETIS_K_SDID_K70_M150 0x000001D0
179 #define KINETIS_SDID_SERIESID_MASK 0x00F00000
180 #define KINETIS_SDID_SERIESID_K 0x00000000
181 #define KINETIS_SDID_SERIESID_KL 0x00100000
182 #define KINETIS_SDID_SERIESID_KW 0x00500000
183 #define KINETIS_SDID_SERIESID_KV 0x00600000
185 #define KINETIS_SDID_SUBFAMID_MASK 0x0F000000
186 #define KINETIS_SDID_SUBFAMID_KX0 0x00000000
187 #define KINETIS_SDID_SUBFAMID_KX1 0x01000000
188 #define KINETIS_SDID_SUBFAMID_KX2 0x02000000
189 #define KINETIS_SDID_SUBFAMID_KX3 0x03000000
190 #define KINETIS_SDID_SUBFAMID_KX4 0x04000000
191 #define KINETIS_SDID_SUBFAMID_KX5 0x05000000
192 #define KINETIS_SDID_SUBFAMID_KX6 0x06000000
194 #define KINETIS_SDID_FAMILYID_MASK 0xF0000000
195 #define KINETIS_SDID_FAMILYID_K0X 0x00000000
196 #define KINETIS_SDID_FAMILYID_K1X 0x10000000
197 #define KINETIS_SDID_FAMILYID_K2X 0x20000000
198 #define KINETIS_SDID_FAMILYID_K3X 0x30000000
199 #define KINETIS_SDID_FAMILYID_K4X 0x40000000
200 #define KINETIS_SDID_FAMILYID_K6X 0x60000000
201 #define KINETIS_SDID_FAMILYID_K7X 0x70000000
203 struct kinetis_flash_bank {
204 bool probed;
205 uint32_t sector_size;
206 uint32_t max_flash_prog_size;
207 uint32_t protection_size;
208 uint32_t prog_base; /* base address for FTFx operations */
209 /* same as bank->base for pflash, differs for FlexNVM */
210 uint32_t protection_block; /* number of first protection block in this bank */
212 uint32_t sim_sdid;
213 uint32_t sim_fcfg1;
214 uint32_t sim_fcfg2;
216 enum {
217 FC_AUTO = 0,
218 FC_PFLASH,
219 FC_FLEX_NVM,
220 FC_FLEX_RAM,
221 } flash_class;
223 enum {
224 FS_PROGRAM_SECTOR = 1,
225 FS_PROGRAM_LONGWORD = 2,
226 FS_PROGRAM_PHRASE = 4, /* Unsupported */
227 FS_INVALIDATE_CACHE = 8,
228 } flash_support;
231 #define MDM_AP 1
233 #define MDM_REG_STAT 0x00
234 #define MDM_REG_CTRL 0x04
235 #define MDM_REG_ID 0xfc
237 #define MDM_STAT_FMEACK (1<<0)
238 #define MDM_STAT_FREADY (1<<1)
239 #define MDM_STAT_SYSSEC (1<<2)
240 #define MDM_STAT_SYSRES (1<<3)
241 #define MDM_STAT_FMEEN (1<<5)
242 #define MDM_STAT_BACKDOOREN (1<<6)
243 #define MDM_STAT_LPEN (1<<7)
244 #define MDM_STAT_VLPEN (1<<8)
245 #define MDM_STAT_LLSMODEXIT (1<<9)
246 #define MDM_STAT_VLLSXMODEXIT (1<<10)
247 #define MDM_STAT_CORE_HALTED (1<<16)
248 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
249 #define MDM_STAT_CORESLEEPING (1<<18)
251 #define MDM_CTRL_FMEIP (1<<0)
252 #define MDM_CTRL_DBG_DIS (1<<1)
253 #define MDM_CTRL_DBG_REQ (1<<2)
254 #define MDM_CTRL_SYS_RES_REQ (1<<3)
255 #define MDM_CTRL_CORE_HOLD_RES (1<<4)
256 #define MDM_CTRL_VLLSX_DBG_REQ (1<<5)
257 #define MDM_CTRL_VLLSX_DBG_ACK (1<<6)
258 #define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
260 #define MDM_ACCESS_TIMEOUT 500 /* msec */
262 static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
264 int retval;
265 LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
267 retval = dap_queue_ap_write(dap_ap(dap, MDM_AP), reg, value);
268 if (retval != ERROR_OK) {
269 LOG_DEBUG("MDM: failed to queue a write request");
270 return retval;
273 retval = dap_run(dap);
274 if (retval != ERROR_OK) {
275 LOG_DEBUG("MDM: dap_run failed");
276 return retval;
280 return ERROR_OK;
283 static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
285 int retval;
287 retval = dap_queue_ap_read(dap_ap(dap, MDM_AP), reg, result);
288 if (retval != ERROR_OK) {
289 LOG_DEBUG("MDM: failed to queue a read request");
290 return retval;
293 retval = dap_run(dap);
294 if (retval != ERROR_OK) {
295 LOG_DEBUG("MDM: dap_run failed");
296 return retval;
299 LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
300 return ERROR_OK;
303 static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
304 uint32_t mask, uint32_t value, uint32_t timeout_ms)
306 uint32_t val;
307 int retval;
308 int64_t ms_timeout = timeval_ms() + timeout_ms;
310 do {
311 retval = kinetis_mdm_read_register(dap, reg, &val);
312 if (retval != ERROR_OK || (val & mask) == value)
313 return retval;
315 alive_sleep(1);
316 } while (timeval_ms() < ms_timeout);
318 LOG_DEBUG("MDM: polling timed out");
319 return ERROR_FAIL;
323 * This command can be used to break a watchdog reset loop when
324 * connecting to an unsecured target. Unlike other commands, halt will
325 * automatically retry as it does not know how far into the boot process
326 * it is when the command is called.
328 COMMAND_HANDLER(kinetis_mdm_halt)
330 struct target *target = get_current_target(CMD_CTX);
331 struct cortex_m_common *cortex_m = target_to_cm(target);
332 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
333 int retval;
334 int tries = 0;
335 uint32_t stat;
336 int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
338 if (!dap) {
339 LOG_ERROR("Cannot perform halt with a high-level adapter");
340 return ERROR_FAIL;
343 while (true) {
344 tries++;
346 kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
348 alive_sleep(1);
350 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
351 if (retval != ERROR_OK) {
352 LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
353 continue;
356 /* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
357 * reset with flash ready and without security
359 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
360 == (MDM_STAT_FREADY | MDM_STAT_SYSRES))
361 break;
363 if (timeval_ms() >= ms_timeout) {
364 LOG_ERROR("MDM: halt timed out");
365 return ERROR_FAIL;
369 LOG_DEBUG("MDM: halt succeded after %d attempts.", tries);
371 target_poll(target);
372 /* enable polling in case kinetis_check_flash_security_status disabled it */
373 jtag_poll_set_enabled(true);
375 alive_sleep(100);
377 target->reset_halt = true;
378 target->type->assert_reset(target);
380 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
381 if (retval != ERROR_OK) {
382 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
383 return retval;
386 target->type->deassert_reset(target);
388 return ERROR_OK;
391 COMMAND_HANDLER(kinetis_mdm_reset)
393 struct target *target = get_current_target(CMD_CTX);
394 struct cortex_m_common *cortex_m = target_to_cm(target);
395 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
396 int retval;
398 if (!dap) {
399 LOG_ERROR("Cannot perform reset with a high-level adapter");
400 return ERROR_FAIL;
403 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
404 if (retval != ERROR_OK) {
405 LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
406 return retval;
409 retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
410 if (retval != ERROR_OK) {
411 LOG_ERROR("MDM: failed to assert reset");
412 return retval;
415 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
416 if (retval != ERROR_OK) {
417 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
418 return retval;
421 return ERROR_OK;
425 * This function implements the procedure to mass erase the flash via
426 * SWD/JTAG on Kinetis K and L series of devices as it is described in
427 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
428 * and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
429 * the core remains halted after this function completes as suggested
430 * by the application note.
432 COMMAND_HANDLER(kinetis_mdm_mass_erase)
434 struct target *target = get_current_target(CMD_CTX);
435 struct cortex_m_common *cortex_m = target_to_cm(target);
436 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
438 if (!dap) {
439 LOG_ERROR("Cannot perform mass erase with a high-level adapter");
440 return ERROR_FAIL;
443 int retval;
446 * ... Power on the processor, or if power has already been
447 * applied, assert the RESET pin to reset the processor. For
448 * devices that do not have a RESET pin, write the System
449 * Reset Request bit in the MDM-AP control register after
450 * establishing communication...
453 /* assert SRST if configured */
454 bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
455 if (has_srst)
456 adapter_assert_reset();
458 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
459 if (retval != ERROR_OK && !has_srst) {
460 LOG_ERROR("MDM: failed to assert reset");
461 goto deassert_reset_and_exit;
465 * ... Read the MDM-AP status register repeatedly and wait for
466 * stable conditions suitable for mass erase:
467 * - mass erase is enabled
468 * - flash is ready
469 * - reset is finished
471 * Mass erase is started as soon as all conditions are met in 32
472 * subsequent status reads.
474 * In case of not stable conditions (RESET/WDOG loop in secured device)
475 * the user is asked for manual pressing of RESET button
476 * as a last resort.
478 int cnt_mass_erase_disabled = 0;
479 int cnt_ready = 0;
480 int64_t ms_start = timeval_ms();
481 bool man_reset_requested = false;
483 do {
484 uint32_t stat = 0;
485 int64_t ms_elapsed = timeval_ms() - ms_start;
487 if (!man_reset_requested && ms_elapsed > 100) {
488 LOG_INFO("MDM: Press RESET button now if possible.");
489 man_reset_requested = true;
492 if (ms_elapsed > 3000) {
493 LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
494 LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
495 LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
496 goto deassert_reset_and_exit;
498 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
499 if (retval != ERROR_OK) {
500 cnt_ready = 0;
501 continue;
504 if (!(stat & MDM_STAT_FMEEN)) {
505 cnt_ready = 0;
506 cnt_mass_erase_disabled++;
507 if (cnt_mass_erase_disabled > 10) {
508 LOG_ERROR("MDM: mass erase is disabled");
509 goto deassert_reset_and_exit;
511 continue;
514 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
515 cnt_ready++;
516 else
517 cnt_ready = 0;
519 } while (cnt_ready < 32);
522 * ... Write the MDM-AP control register to set the Flash Mass
523 * Erase in Progress bit. This will start the mass erase
524 * process...
526 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
527 if (retval != ERROR_OK) {
528 LOG_ERROR("MDM: failed to start mass erase");
529 goto deassert_reset_and_exit;
533 * ... Read the MDM-AP control register until the Flash Mass
534 * Erase in Progress bit clears...
535 * Data sheed defines erase time <3.6 sec/512kB flash block.
536 * The biggest device has 4 pflash blocks => timeout 16 sec.
538 retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
539 if (retval != ERROR_OK) {
540 LOG_ERROR("MDM: mass erase timeout");
541 goto deassert_reset_and_exit;
544 target_poll(target);
545 /* enable polling in case kinetis_check_flash_security_status disabled it */
546 jtag_poll_set_enabled(true);
548 alive_sleep(100);
550 target->reset_halt = true;
551 target->type->assert_reset(target);
554 * ... Negate the RESET signal or clear the System Reset Request
555 * bit in the MDM-AP control register.
557 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
558 if (retval != ERROR_OK)
559 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
561 target->type->deassert_reset(target);
563 return retval;
565 deassert_reset_and_exit:
566 kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
567 if (has_srst)
568 adapter_deassert_reset();
569 return retval;
572 static const uint32_t kinetis_known_mdm_ids[] = {
573 0x001C0000, /* Kinetis-K Series */
574 0x001C0020, /* Kinetis-L/M/V/E Series */
578 * This function implements the procedure to connect to
579 * SWD/JTAG on Kinetis K and L series of devices as it is described in
580 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
581 * and L-series MCUs" Section 4.1.1
583 COMMAND_HANDLER(kinetis_check_flash_security_status)
585 struct target *target = get_current_target(CMD_CTX);
586 struct cortex_m_common *cortex_m = target_to_cm(target);
587 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
589 if (!dap) {
590 LOG_WARNING("Cannot check flash security status with a high-level adapter");
591 return ERROR_OK;
594 uint32_t val;
595 int retval;
598 * ... The MDM-AP ID register can be read to verify that the
599 * connection is working correctly...
601 retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
602 if (retval != ERROR_OK) {
603 LOG_ERROR("MDM: failed to read ID register");
604 return ERROR_OK;
607 if (val == 0)
608 return ERROR_OK;
610 bool found = false;
611 for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
612 if (val == kinetis_known_mdm_ids[i]) {
613 found = true;
614 break;
618 if (!found)
619 LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
622 * ... Read the System Security bit to determine if security is enabled.
623 * If System Security = 0, then proceed. If System Security = 1, then
624 * communication with the internals of the processor, including the
625 * flash, will not be possible without issuing a mass erase command or
626 * unsecuring the part through other means (backdoor key unlock)...
628 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
629 if (retval != ERROR_OK) {
630 LOG_ERROR("MDM: failed to read MDM_REG_STAT");
631 return ERROR_OK;
635 * System Security bit is also active for short time during reset.
636 * If a MCU has blank flash and runs in RESET/WDOG loop,
637 * System Security bit is active most of time!
638 * We should observe Flash Ready bit and read status several times
639 * to avoid false detection of secured MCU
641 int secured_score = 0, flash_not_ready_score = 0;
643 if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
644 uint32_t stats[32];
645 int i;
647 for (i = 0; i < 32; i++) {
648 stats[i] = MDM_STAT_FREADY;
649 dap_queue_ap_read(dap_ap(dap, MDM_AP), MDM_REG_STAT, &stats[i]);
651 retval = dap_run(dap);
652 if (retval != ERROR_OK) {
653 LOG_DEBUG("MDM: dap_run failed when validating secured state");
654 return ERROR_OK;
656 for (i = 0; i < 32; i++) {
657 if (stats[i] & MDM_STAT_SYSSEC)
658 secured_score++;
659 if (!(stats[i] & MDM_STAT_FREADY))
660 flash_not_ready_score++;
664 if (flash_not_ready_score <= 8 && secured_score > 24) {
665 jtag_poll_set_enabled(false);
667 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
668 LOG_WARNING("**** ****");
669 LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****");
670 LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****");
671 LOG_WARNING("**** interface will NOT work. In order to restore its ****");
672 LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****");
673 LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****");
674 LOG_WARNING("**** ****");
675 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
677 } else if (flash_not_ready_score > 24) {
678 jtag_poll_set_enabled(false);
679 LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
680 LOG_WARNING("**** Common reason is a blank flash (at least a reset vector). ****");
681 LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected ****");
682 LOG_WARNING("**** and configured, use 'reset halt' ****");
683 LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running ****");
684 LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase' ****");
686 } else {
687 LOG_INFO("MDM: Chip is unsecured. Continuing.");
688 jtag_poll_set_enabled(true);
691 return ERROR_OK;
694 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
696 struct kinetis_flash_bank *bank_info;
698 if (CMD_ARGC < 6)
699 return ERROR_COMMAND_SYNTAX_ERROR;
701 LOG_INFO("add flash_bank kinetis %s", bank->name);
703 bank_info = malloc(sizeof(struct kinetis_flash_bank));
705 memset(bank_info, 0, sizeof(struct kinetis_flash_bank));
707 bank->driver_priv = bank_info;
709 return ERROR_OK;
712 /* Disable the watchdog on Kinetis devices */
713 int kinetis_disable_wdog(struct target *target, uint32_t sim_sdid)
715 struct working_area *wdog_algorithm;
716 struct armv7m_algorithm armv7m_info;
717 uint16_t wdog;
718 int retval;
720 static const uint8_t kinetis_unlock_wdog_code[] = {
721 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
724 /* Decide whether the connected device needs watchdog disabling.
725 * Disable for all Kx and KVx devices, return if it is a KLx */
727 if ((sim_sdid & KINETIS_SDID_SERIESID_MASK) == KINETIS_SDID_SERIESID_KL)
728 return ERROR_OK;
730 /* The connected device requires watchdog disabling. */
731 retval = target_read_u16(target, WDOG_STCTRH, &wdog);
732 if (retval != ERROR_OK)
733 return retval;
735 if ((wdog & 0x1) == 0) {
736 /* watchdog already disabled */
737 return ERROR_OK;
739 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%x)", wdog);
741 if (target->state != TARGET_HALTED) {
742 LOG_ERROR("Target not halted");
743 return ERROR_TARGET_NOT_HALTED;
746 retval = target_alloc_working_area(target, sizeof(kinetis_unlock_wdog_code), &wdog_algorithm);
747 if (retval != ERROR_OK)
748 return retval;
750 retval = target_write_buffer(target, wdog_algorithm->address,
751 sizeof(kinetis_unlock_wdog_code), (uint8_t *)kinetis_unlock_wdog_code);
752 if (retval != ERROR_OK) {
753 target_free_working_area(target, wdog_algorithm);
754 return retval;
757 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
758 armv7m_info.core_mode = ARM_MODE_THREAD;
760 retval = target_run_algorithm(target, 0, NULL, 0, NULL, wdog_algorithm->address,
761 wdog_algorithm->address + (sizeof(kinetis_unlock_wdog_code) - 2),
762 10000, &armv7m_info);
764 if (retval != ERROR_OK)
765 LOG_ERROR("error executing kinetis wdog unlock algorithm");
767 retval = target_read_u16(target, WDOG_STCTRH, &wdog);
768 if (retval != ERROR_OK)
769 return retval;
770 LOG_INFO("WDOG_STCTRLH = 0x%x", wdog);
772 target_free_working_area(target, wdog_algorithm);
774 return retval;
777 COMMAND_HANDLER(kinetis_disable_wdog_handler)
779 int result;
780 uint32_t sim_sdid;
781 struct target *target = get_current_target(CMD_CTX);
783 if (CMD_ARGC > 0)
784 return ERROR_COMMAND_SYNTAX_ERROR;
786 result = target_read_u32(target, SIM_SDID, &sim_sdid);
787 if (result != ERROR_OK) {
788 LOG_ERROR("Failed to read SIMSDID");
789 return result;
792 result = kinetis_disable_wdog(target, sim_sdid);
793 return result;
797 static int kinetis_ftfx_decode_error(uint8_t fstat)
799 if (fstat & 0x20) {
800 LOG_ERROR("Flash operation failed, illegal command");
801 return ERROR_FLASH_OPER_UNSUPPORTED;
803 } else if (fstat & 0x10)
804 LOG_ERROR("Flash operation failed, protection violated");
806 else if (fstat & 0x40)
807 LOG_ERROR("Flash operation failed, read collision");
809 else if (fstat & 0x80)
810 return ERROR_OK;
812 else
813 LOG_ERROR("Flash operation timed out");
815 return ERROR_FLASH_OPERATION_FAILED;
819 static int kinetis_ftfx_prepare(struct target *target)
821 int result, i;
822 uint8_t fstat;
824 /* wait until busy */
825 for (i = 0; i < 50; i++) {
826 result = target_read_u8(target, FTFx_FSTAT, &fstat);
827 if (result != ERROR_OK)
828 return result;
830 if (fstat & 0x80)
831 break;
834 if ((fstat & 0x80) == 0) {
835 LOG_ERROR("Flash controller is busy");
836 return ERROR_FLASH_OPERATION_FAILED;
838 if (fstat != 0x80) {
839 /* reset error flags */
840 result = target_write_u8(target, FTFx_FSTAT, 0x70);
842 return result;
845 /* Kinetis Program-LongWord Microcodes */
846 static const uint8_t kinetis_flash_write_code[] = {
847 /* Params:
848 * r0 - workarea buffer
849 * r1 - target address
850 * r2 - wordcount
851 * Clobbered:
852 * r4 - tmp
853 * r5 - tmp
854 * r6 - tmp
855 * r7 - tmp
858 /* .L1: */
859 /* for(register uint32_t i=0;i<wcount;i++){ */
860 0x04, 0x1C, /* mov r4, r0 */
861 0x00, 0x23, /* mov r3, #0 */
862 /* .L2: */
863 0x0E, 0x1A, /* sub r6, r1, r0 */
864 0xA6, 0x19, /* add r6, r4, r6 */
865 0x93, 0x42, /* cmp r3, r2 */
866 0x16, 0xD0, /* beq .L9 */
867 /* .L5: */
868 /* while((FTFx_FSTAT&FTFA_FSTAT_CCIF_MASK) != FTFA_FSTAT_CCIF_MASK){}; */
869 0x0B, 0x4D, /* ldr r5, .L10 */
870 0x2F, 0x78, /* ldrb r7, [r5] */
871 0x7F, 0xB2, /* sxtb r7, r7 */
872 0x00, 0x2F, /* cmp r7, #0 */
873 0xFA, 0xDA, /* bge .L5 */
874 /* FTFx_FSTAT = FTFA_FSTAT_ACCERR_MASK|FTFA_FSTAT_FPVIOL_MASK|FTFA_FSTAT_RDCO */
875 0x70, 0x27, /* mov r7, #112 */
876 0x2F, 0x70, /* strb r7, [r5] */
877 /* FTFx_FCCOB3 = faddr; */
878 0x09, 0x4F, /* ldr r7, .L10+4 */
879 0x3E, 0x60, /* str r6, [r7] */
880 0x06, 0x27, /* mov r7, #6 */
881 /* FTFx_FCCOB0 = 0x06; */
882 0x08, 0x4E, /* ldr r6, .L10+8 */
883 0x37, 0x70, /* strb r7, [r6] */
884 /* FTFx_FCCOB7 = *pLW; */
885 0x80, 0xCC, /* ldmia r4!, {r7} */
886 0x08, 0x4E, /* ldr r6, .L10+12 */
887 0x37, 0x60, /* str r7, [r6] */
888 /* FTFx_FSTAT = FTFA_FSTAT_CCIF_MASK; */
889 0x80, 0x27, /* mov r7, #128 */
890 0x2F, 0x70, /* strb r7, [r5] */
891 /* .L4: */
892 /* while((FTFx_FSTAT&FTFA_FSTAT_CCIF_MASK) != FTFA_FSTAT_CCIF_MASK){}; */
893 0x2E, 0x78, /* ldrb r6, [r5] */
894 0x77, 0xB2, /* sxtb r7, r6 */
895 0x00, 0x2F, /* cmp r7, #0 */
896 0xFB, 0xDA, /* bge .L4 */
897 0x01, 0x33, /* add r3, r3, #1 */
898 0xE4, 0xE7, /* b .L2 */
899 /* .L9: */
900 0x00, 0xBE, /* bkpt #0 */
901 /* .L10: */
902 0x00, 0x00, 0x02, 0x40, /* .word 1073872896 */
903 0x04, 0x00, 0x02, 0x40, /* .word 1073872900 */
904 0x07, 0x00, 0x02, 0x40, /* .word 1073872903 */
905 0x08, 0x00, 0x02, 0x40, /* .word 1073872904 */
908 /* Program LongWord Block Write */
909 static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
910 uint32_t offset, uint32_t wcount)
912 struct target *target = bank->target;
913 uint32_t buffer_size = 2048; /* Default minimum value */
914 struct working_area *write_algorithm;
915 struct working_area *source;
916 struct kinetis_flash_bank *kinfo = bank->driver_priv;
917 uint32_t address = kinfo->prog_base + offset;
918 struct reg_param reg_params[3];
919 struct armv7m_algorithm armv7m_info;
920 int retval = ERROR_OK;
922 /* Params:
923 * r0 - workarea buffer
924 * r1 - target address
925 * r2 - wordcount
926 * Clobbered:
927 * r4 - tmp
928 * r5 - tmp
929 * r6 - tmp
930 * r7 - tmp
933 /* Increase buffer_size if needed */
934 if (buffer_size < (target->working_area_size/2))
935 buffer_size = (target->working_area_size/2);
937 /* allocate working area with flash programming code */
938 if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
939 &write_algorithm) != ERROR_OK) {
940 LOG_WARNING("no working area available, can't do block memory writes");
941 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
944 retval = target_write_buffer(target, write_algorithm->address,
945 sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
946 if (retval != ERROR_OK)
947 return retval;
949 /* memory buffer */
950 while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
951 buffer_size /= 4;
952 if (buffer_size <= 256) {
953 /* free working area, write algorithm already allocated */
954 target_free_working_area(target, write_algorithm);
956 LOG_WARNING("No large enough working area available, can't do block memory writes");
957 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
961 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
962 armv7m_info.core_mode = ARM_MODE_THREAD;
964 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT); /* *pLW (*buffer) */
965 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* faddr */
966 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* number of words to program */
968 /* write code buffer and use Flash programming code within kinetis */
969 /* Set breakpoint to 0 with time-out of 1000 ms */
970 while (wcount > 0) {
971 uint32_t thisrun_count = (wcount > (buffer_size / 4)) ? (buffer_size / 4) : wcount;
973 retval = target_write_buffer(target, source->address, thisrun_count * 4, buffer);
974 if (retval != ERROR_OK)
975 break;
977 buf_set_u32(reg_params[0].value, 0, 32, source->address);
978 buf_set_u32(reg_params[1].value, 0, 32, address);
979 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
981 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
982 write_algorithm->address, 0, 100000, &armv7m_info);
983 if (retval != ERROR_OK) {
984 LOG_ERROR("Error executing kinetis Flash programming algorithm");
985 retval = ERROR_FLASH_OPERATION_FAILED;
986 break;
989 buffer += thisrun_count * 4;
990 address += thisrun_count * 4;
991 wcount -= thisrun_count;
994 target_free_working_area(target, source);
995 target_free_working_area(target, write_algorithm);
997 destroy_reg_param(&reg_params[0]);
998 destroy_reg_param(&reg_params[1]);
999 destroy_reg_param(&reg_params[2]);
1001 return retval;
1004 static int kinetis_protect(struct flash_bank *bank, int set, int first, int last)
1006 LOG_WARNING("kinetis_protect not supported yet");
1007 /* FIXME: TODO */
1009 if (bank->target->state != TARGET_HALTED) {
1010 LOG_ERROR("Target not halted");
1011 return ERROR_TARGET_NOT_HALTED;
1014 return ERROR_FLASH_BANK_INVALID;
1017 static int kinetis_protect_check(struct flash_bank *bank)
1019 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1020 int result;
1021 int i, b;
1022 uint32_t fprot, psec;
1024 if (bank->target->state != TARGET_HALTED) {
1025 LOG_ERROR("Target not halted");
1026 return ERROR_TARGET_NOT_HALTED;
1029 if (kinfo->flash_class == FC_PFLASH) {
1031 /* read protection register */
1032 result = target_read_u32(bank->target, FTFx_FPROT3, &fprot);
1033 if (result != ERROR_OK)
1034 return result;
1036 /* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
1038 } else if (kinfo->flash_class == FC_FLEX_NVM) {
1039 uint8_t fdprot;
1041 /* read protection register */
1042 result = target_read_u8(bank->target, FTFx_FDPROT, &fdprot);
1043 if (result != ERROR_OK)
1044 return result;
1046 fprot = fdprot;
1048 } else {
1049 LOG_ERROR("Protection checks for FlexRAM not supported");
1050 return ERROR_FLASH_BANK_INVALID;
1053 b = kinfo->protection_block;
1054 for (psec = 0, i = 0; i < bank->num_sectors; i++) {
1055 if ((fprot >> b) & 1)
1056 bank->sectors[i].is_protected = 0;
1057 else
1058 bank->sectors[i].is_protected = 1;
1060 psec += bank->sectors[i].size;
1062 if (psec >= kinfo->protection_size) {
1063 psec = 0;
1064 b++;
1068 return ERROR_OK;
1071 static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
1072 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
1073 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
1074 uint8_t *ftfx_fstat)
1076 uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
1077 fccob7, fccob6, fccob5, fccob4,
1078 fccobb, fccoba, fccob9, fccob8};
1079 int result;
1080 uint8_t fstat;
1081 int64_t ms_timeout = timeval_ms() + 250;
1083 result = target_write_memory(target, FTFx_FCCOB3, 4, 3, command);
1084 if (result != ERROR_OK)
1085 return result;
1087 /* start command */
1088 result = target_write_u8(target, FTFx_FSTAT, 0x80);
1089 if (result != ERROR_OK)
1090 return result;
1092 /* wait for done */
1093 do {
1094 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1096 if (result != ERROR_OK)
1097 return result;
1099 if (fstat & 0x80)
1100 break;
1102 } while (timeval_ms() < ms_timeout);
1104 if (ftfx_fstat)
1105 *ftfx_fstat = fstat;
1107 if ((fstat & 0xf0) != 0x80) {
1108 LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
1109 fstat, command[3], command[2], command[1], command[0],
1110 command[7], command[6], command[5], command[4],
1111 command[11], command[10], command[9], command[8]);
1113 return kinetis_ftfx_decode_error(fstat);
1116 return ERROR_OK;
1120 static int kinetis_check_run_mode(struct target *target)
1122 int result, i;
1123 uint8_t pmctrl, pmstat;
1125 if (target->state != TARGET_HALTED) {
1126 LOG_ERROR("Target not halted");
1127 return ERROR_TARGET_NOT_HALTED;
1130 result = target_read_u8(target, SMC_PMSTAT, &pmstat);
1131 if (result != ERROR_OK)
1132 return result;
1134 if (pmstat == PM_STAT_RUN)
1135 return ERROR_OK;
1137 if (pmstat == PM_STAT_VLPR) {
1138 /* It is safe to switch from VLPR to RUN mode without changing clock */
1139 LOG_INFO("Switching from VLPR to RUN mode.");
1140 pmctrl = PM_CTRL_RUNM_RUN;
1141 result = target_write_u8(target, SMC_PMCTRL, pmctrl);
1142 if (result != ERROR_OK)
1143 return result;
1145 for (i = 100; i; i--) {
1146 result = target_read_u8(target, SMC_PMSTAT, &pmstat);
1147 if (result != ERROR_OK)
1148 return result;
1150 if (pmstat == PM_STAT_RUN)
1151 return ERROR_OK;
1155 LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
1156 LOG_ERROR("Issue a 'reset init' command.");
1157 return ERROR_TARGET_NOT_HALTED;
1161 static void kinetis_invalidate_flash_cache(struct flash_bank *bank)
1163 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1164 uint8_t pfb01cr_byte2 = 0xf0;
1166 if (!(kinfo->flash_support & FS_INVALIDATE_CACHE))
1167 return;
1169 target_write_memory(bank->target, FMC_PFB01CR + 2, 1, 1, &pfb01cr_byte2);
1170 return;
1174 static int kinetis_erase(struct flash_bank *bank, int first, int last)
1176 int result, i;
1177 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1179 result = kinetis_check_run_mode(bank->target);
1180 if (result != ERROR_OK)
1181 return result;
1183 /* reset error flags */
1184 result = kinetis_ftfx_prepare(bank->target);
1185 if (result != ERROR_OK)
1186 return result;
1188 if ((first > bank->num_sectors) || (last > bank->num_sectors))
1189 return ERROR_FLASH_OPERATION_FAILED;
1192 * FIXME: TODO: use the 'Erase Flash Block' command if the
1193 * requested erase is PFlash or NVM and encompasses the entire
1194 * block. Should be quicker.
1196 for (i = first; i <= last; i++) {
1197 /* set command and sector address */
1198 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTERASE, kinfo->prog_base + bank->sectors[i].offset,
1199 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1201 if (result != ERROR_OK) {
1202 LOG_WARNING("erase sector %d failed", i);
1203 return ERROR_FLASH_OPERATION_FAILED;
1206 bank->sectors[i].is_erased = 1;
1209 kinetis_invalidate_flash_cache(bank);
1211 if (first == 0) {
1212 LOG_WARNING
1213 ("flash configuration field erased, please reset the device");
1216 return ERROR_OK;
1219 static int kinetis_make_ram_ready(struct target *target)
1221 int result;
1222 uint8_t ftfx_fcnfg;
1224 /* check if ram ready */
1225 result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1226 if (result != ERROR_OK)
1227 return result;
1229 if (ftfx_fcnfg & (1 << 1))
1230 return ERROR_OK; /* ram ready */
1232 /* make flex ram available */
1233 result = kinetis_ftfx_command(target, FTFx_CMD_SETFLEXRAM, 0x00ff0000,
1234 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1235 if (result != ERROR_OK)
1236 return ERROR_FLASH_OPERATION_FAILED;
1238 /* check again */
1239 result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1240 if (result != ERROR_OK)
1241 return result;
1243 if (ftfx_fcnfg & (1 << 1))
1244 return ERROR_OK; /* ram ready */
1246 return ERROR_FLASH_OPERATION_FAILED;
1249 static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
1250 uint32_t offset, uint32_t count)
1252 unsigned int i;
1253 int result, fallback = 0;
1254 uint32_t wc;
1255 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1257 result = kinetis_check_run_mode(bank->target);
1258 if (result != ERROR_OK)
1259 return result;
1261 /* reset error flags */
1262 result = kinetis_ftfx_prepare(bank->target);
1263 if (result != ERROR_OK)
1264 return result;
1266 if (!(kinfo->flash_support & FS_PROGRAM_SECTOR)) {
1267 /* fallback to longword write */
1268 fallback = 1;
1269 LOG_WARNING("This device supports Program Longword execution only.");
1270 } else {
1271 result = kinetis_make_ram_ready(bank->target);
1272 if (result != ERROR_OK) {
1273 fallback = 1;
1274 LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
1278 LOG_DEBUG("flash write @08%" PRIx32, bank->base + offset);
1281 /* program section command */
1282 if (fallback == 0) {
1284 * Kinetis uses different terms for the granularity of
1285 * sector writes, e.g. "phrase" or "128 bits". We use
1286 * the generic term "chunk". The largest possible
1287 * Kinetis "chunk" is 16 bytes (128 bits).
1289 unsigned prog_section_chunk_bytes = kinfo->sector_size >> 8;
1290 unsigned prog_size_bytes = kinfo->max_flash_prog_size;
1291 for (i = 0; i < count; i += prog_size_bytes) {
1292 uint8_t residual_buffer[16];
1293 uint8_t ftfx_fstat;
1294 uint32_t section_count = prog_size_bytes / prog_section_chunk_bytes;
1295 uint32_t residual_wc = 0;
1298 * Assume the word count covers an entire
1299 * sector.
1301 wc = prog_size_bytes / 4;
1304 * If bytes to be programmed are less than the
1305 * full sector, then determine the number of
1306 * full-words to program, and put together the
1307 * residual buffer so that a full "section"
1308 * may always be programmed.
1310 if ((count - i) < prog_size_bytes) {
1311 /* number of bytes to program beyond full section */
1312 unsigned residual_bc = (count-i) % prog_section_chunk_bytes;
1314 /* number of complete words to copy directly from buffer */
1315 wc = (count - i - residual_bc) / 4;
1317 /* number of total sections to write, including residual */
1318 section_count = DIV_ROUND_UP((count-i), prog_section_chunk_bytes);
1320 /* any residual bytes delivers a whole residual section */
1321 residual_wc = (residual_bc ? prog_section_chunk_bytes : 0)/4;
1323 /* clear residual buffer then populate residual bytes */
1324 (void) memset(residual_buffer, 0xff, prog_section_chunk_bytes);
1325 (void) memcpy(residual_buffer, &buffer[i+4*wc], residual_bc);
1328 LOG_DEBUG("write section @ %08" PRIX32 " with length %" PRIu32 " bytes",
1329 offset + i, (uint32_t)wc*4);
1331 /* write data to flexram as whole-words */
1332 result = target_write_memory(bank->target, FLEXRAM, 4, wc,
1333 buffer + i);
1335 if (result != ERROR_OK) {
1336 LOG_ERROR("target_write_memory failed");
1337 return result;
1340 /* write the residual words to the flexram */
1341 if (residual_wc) {
1342 result = target_write_memory(bank->target,
1343 FLEXRAM+4*wc,
1344 4, residual_wc,
1345 residual_buffer);
1347 if (result != ERROR_OK) {
1348 LOG_ERROR("target_write_memory failed");
1349 return result;
1353 /* execute section-write command */
1354 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTWRITE, kinfo->prog_base + offset + i,
1355 section_count>>8, section_count, 0, 0,
1356 0, 0, 0, 0, &ftfx_fstat);
1358 if (result != ERROR_OK)
1359 return ERROR_FLASH_OPERATION_FAILED;
1362 else if (kinfo->flash_support & FS_PROGRAM_LONGWORD) {
1363 /* program longword command, not supported in FTFE */
1364 uint8_t *new_buffer = NULL;
1366 /* check word alignment */
1367 if (offset & 0x3) {
1368 LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
1369 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
1372 if (count & 0x3) {
1373 uint32_t old_count = count;
1374 count = (old_count | 3) + 1;
1375 new_buffer = malloc(count);
1376 if (new_buffer == NULL) {
1377 LOG_ERROR("odd number of bytes to write and no memory "
1378 "for padding buffer");
1379 return ERROR_FAIL;
1381 LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
1382 "and padding with 0xff", old_count, count);
1383 memset(new_buffer + old_count, 0xff, count - old_count);
1384 buffer = memcpy(new_buffer, buffer, old_count);
1387 uint32_t words_remaining = count / 4;
1389 kinetis_disable_wdog(bank->target, kinfo->sim_sdid);
1391 /* try using a block write */
1392 result = kinetis_write_block(bank, buffer, offset, words_remaining);
1394 if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1395 /* if block write failed (no sufficient working area),
1396 * we use normal (slow) single word accesses */
1397 LOG_WARNING("couldn't use block writes, falling back to single "
1398 "memory accesses");
1400 while (words_remaining) {
1401 uint8_t ftfx_fstat;
1403 LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
1405 result = kinetis_ftfx_command(bank->target, FTFx_CMD_LWORDPROG, kinfo->prog_base + offset,
1406 buffer[3], buffer[2], buffer[1], buffer[0],
1407 0, 0, 0, 0, &ftfx_fstat);
1409 if (result != ERROR_OK) {
1410 LOG_ERROR("Error writing longword at %08" PRIx32, bank->base + offset);
1411 break;
1414 if (ftfx_fstat & 0x01)
1415 LOG_ERROR("Flash write error at %08" PRIx32, bank->base + offset);
1417 buffer += 4;
1418 offset += 4;
1419 words_remaining--;
1422 free(new_buffer);
1423 } else {
1424 LOG_ERROR("Flash write strategy not implemented");
1425 return ERROR_FLASH_OPERATION_FAILED;
1428 kinetis_invalidate_flash_cache(bank);
1429 return result;
1433 static int kinetis_probe(struct flash_bank *bank)
1435 int result, i;
1436 uint32_t offset = 0;
1437 uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
1438 uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
1439 uint32_t nvm_size = 0, pf_size = 0, df_size = 0, ee_size = 0;
1440 unsigned num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0, first_nvm_bank = 0,
1441 pflash_sector_size_bytes = 0, nvm_sector_size_bytes = 0;
1442 struct target *target = bank->target;
1443 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1445 kinfo->probed = false;
1447 result = target_read_u32(target, SIM_SDID, &kinfo->sim_sdid);
1448 if (result != ERROR_OK)
1449 return result;
1451 if ((kinfo->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
1452 /* older K-series MCU */
1453 uint32_t mcu_type = kinfo->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
1455 switch (mcu_type) {
1456 case KINETIS_K_SDID_K10_M50:
1457 case KINETIS_K_SDID_K20_M50:
1458 /* 1kB sectors */
1459 pflash_sector_size_bytes = 1<<10;
1460 nvm_sector_size_bytes = 1<<10;
1461 num_blocks = 2;
1462 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1463 break;
1464 case KINETIS_K_SDID_K10_M72:
1465 case KINETIS_K_SDID_K20_M72:
1466 case KINETIS_K_SDID_K30_M72:
1467 case KINETIS_K_SDID_K30_M100:
1468 case KINETIS_K_SDID_K40_M72:
1469 case KINETIS_K_SDID_K40_M100:
1470 case KINETIS_K_SDID_K50_M72:
1471 /* 2kB sectors, 1kB FlexNVM sectors */
1472 pflash_sector_size_bytes = 2<<10;
1473 nvm_sector_size_bytes = 1<<10;
1474 num_blocks = 2;
1475 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1476 kinfo->max_flash_prog_size = 1<<10;
1477 break;
1478 case KINETIS_K_SDID_K10_M100:
1479 case KINETIS_K_SDID_K20_M100:
1480 case KINETIS_K_SDID_K11:
1481 case KINETIS_K_SDID_K12:
1482 case KINETIS_K_SDID_K21_M50:
1483 case KINETIS_K_SDID_K22_M50:
1484 case KINETIS_K_SDID_K51_M72:
1485 case KINETIS_K_SDID_K53:
1486 case KINETIS_K_SDID_K60_M100:
1487 /* 2kB sectors */
1488 pflash_sector_size_bytes = 2<<10;
1489 nvm_sector_size_bytes = 2<<10;
1490 num_blocks = 2;
1491 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1492 break;
1493 case KINETIS_K_SDID_K21_M120:
1494 case KINETIS_K_SDID_K22_M120:
1495 /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
1496 pflash_sector_size_bytes = 4<<10;
1497 kinfo->max_flash_prog_size = 1<<10;
1498 nvm_sector_size_bytes = 4<<10;
1499 num_blocks = 2;
1500 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1501 break;
1502 case KINETIS_K_SDID_K10_M120:
1503 case KINETIS_K_SDID_K20_M120:
1504 case KINETIS_K_SDID_K60_M150:
1505 case KINETIS_K_SDID_K70_M150:
1506 /* 4kB sectors */
1507 pflash_sector_size_bytes = 4<<10;
1508 nvm_sector_size_bytes = 4<<10;
1509 num_blocks = 4;
1510 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1511 break;
1512 default:
1513 LOG_ERROR("Unsupported K-family FAMID");
1515 } else {
1516 /* Newer K-series or KL series MCU */
1517 switch (kinfo->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
1518 case KINETIS_SDID_SERIESID_K:
1519 switch (kinfo->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
1520 case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
1521 /* K02FN64, K02FN128: FTFA, 2kB sectors */
1522 pflash_sector_size_bytes = 2<<10;
1523 num_blocks = 1;
1524 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1525 break;
1527 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
1528 /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
1529 uint32_t sopt1;
1530 result = target_read_u32(target, SIM_SOPT1, &sopt1);
1531 if (result != ERROR_OK)
1532 return result;
1534 if (((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
1535 ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
1536 /* MK24FN1M */
1537 pflash_sector_size_bytes = 4<<10;
1538 num_blocks = 2;
1539 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1540 kinfo->max_flash_prog_size = 1<<10;
1541 break;
1543 if ((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
1544 || (kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
1545 || (kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
1546 /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
1547 pflash_sector_size_bytes = 2<<10;
1548 /* autodetect 1 or 2 blocks */
1549 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1550 break;
1552 LOG_ERROR("Unsupported Kinetis K22 DIEID");
1553 break;
1555 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
1556 pflash_sector_size_bytes = 4<<10;
1557 if ((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
1558 /* K24FN256 - smaller pflash with FTFA */
1559 num_blocks = 1;
1560 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1561 break;
1563 /* K24FN1M without errata 7534 */
1564 num_blocks = 2;
1565 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1566 kinfo->max_flash_prog_size = 1<<10;
1567 break;
1569 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
1570 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */
1571 /* K63FN1M0 */
1572 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
1573 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */
1574 /* K64FN1M0, K64FX512 */
1575 pflash_sector_size_bytes = 4<<10;
1576 nvm_sector_size_bytes = 4<<10;
1577 kinfo->max_flash_prog_size = 1<<10;
1578 num_blocks = 2;
1579 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1580 break;
1582 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
1583 /* K26FN2M0 */
1584 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
1585 /* K66FN2M0, K66FX1M0 */
1586 pflash_sector_size_bytes = 4<<10;
1587 nvm_sector_size_bytes = 4<<10;
1588 kinfo->max_flash_prog_size = 1<<10;
1589 num_blocks = 4;
1590 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1591 break;
1592 default:
1593 LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
1595 break;
1597 case KINETIS_SDID_SERIESID_KL:
1598 /* KL-series */
1599 pflash_sector_size_bytes = 1<<10;
1600 nvm_sector_size_bytes = 1<<10;
1601 /* autodetect 1 or 2 blocks */
1602 kinfo->flash_support = FS_PROGRAM_LONGWORD;
1603 break;
1605 case KINETIS_SDID_SERIESID_KV:
1606 /* KV-series */
1607 switch (kinfo->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
1608 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
1609 /* KV10: FTFA, 1kB sectors */
1610 pflash_sector_size_bytes = 1<<10;
1611 num_blocks = 1;
1612 kinfo->flash_support = FS_PROGRAM_LONGWORD;
1613 break;
1615 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
1616 /* KV11: FTFA, 2kB sectors */
1617 pflash_sector_size_bytes = 2<<10;
1618 num_blocks = 1;
1619 kinfo->flash_support = FS_PROGRAM_LONGWORD;
1620 break;
1622 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
1623 /* KV30: FTFA, 2kB sectors, 1 block */
1624 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
1625 /* KV31: FTFA, 2kB sectors, 2 blocks */
1626 pflash_sector_size_bytes = 2<<10;
1627 /* autodetect 1 or 2 blocks */
1628 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1629 break;
1631 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
1632 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
1633 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
1634 /* KV4x: FTFA, 4kB sectors */
1635 pflash_sector_size_bytes = 4<<10;
1636 num_blocks = 1;
1637 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1638 break;
1640 default:
1641 LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
1643 break;
1645 default:
1646 LOG_ERROR("Unsupported K-series");
1650 if (pflash_sector_size_bytes == 0) {
1651 LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, kinfo->sim_sdid);
1652 return ERROR_FLASH_OPER_UNSUPPORTED;
1655 result = target_read_u32(target, SIM_FCFG1, &kinfo->sim_fcfg1);
1656 if (result != ERROR_OK)
1657 return result;
1659 result = target_read_u32(target, SIM_FCFG2, &kinfo->sim_fcfg2);
1660 if (result != ERROR_OK)
1661 return result;
1663 LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, kinfo->sim_sdid,
1664 kinfo->sim_fcfg1, kinfo->sim_fcfg2);
1666 fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f);
1667 fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f);
1668 fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f);
1669 fcfg1_depart = (uint8_t)((kinfo->sim_fcfg1 >> 8) & 0x0f);
1671 fcfg2_pflsh = (uint8_t)((kinfo->sim_fcfg2 >> 23) & 0x01);
1672 fcfg2_maxaddr0 = (uint8_t)((kinfo->sim_fcfg2 >> 24) & 0x7f);
1673 fcfg2_maxaddr1 = (uint8_t)((kinfo->sim_fcfg2 >> 16) & 0x7f);
1675 if (num_blocks == 0)
1676 num_blocks = fcfg2_maxaddr1 ? 2 : 1;
1677 else if (fcfg2_maxaddr1 == 0 && num_blocks >= 2) {
1678 num_blocks = 1;
1679 LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
1680 } else if (fcfg2_maxaddr1 != 0 && num_blocks == 1) {
1681 num_blocks = 2;
1682 LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
1685 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
1686 if (!fcfg2_pflsh) {
1687 switch (fcfg1_nvmsize) {
1688 case 0x03:
1689 case 0x05:
1690 case 0x07:
1691 case 0x09:
1692 case 0x0b:
1693 nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
1694 break;
1695 case 0x0f:
1696 if (pflash_sector_size_bytes >= 4<<10)
1697 nvm_size = 512<<10;
1698 else
1699 /* K20_100 */
1700 nvm_size = 256<<10;
1701 break;
1702 default:
1703 nvm_size = 0;
1704 break;
1707 switch (fcfg1_eesize) {
1708 case 0x00:
1709 case 0x01:
1710 case 0x02:
1711 case 0x03:
1712 case 0x04:
1713 case 0x05:
1714 case 0x06:
1715 case 0x07:
1716 case 0x08:
1717 case 0x09:
1718 ee_size = (16 << (10 - fcfg1_eesize));
1719 break;
1720 default:
1721 ee_size = 0;
1722 break;
1725 switch (fcfg1_depart) {
1726 case 0x01:
1727 case 0x02:
1728 case 0x03:
1729 case 0x04:
1730 case 0x05:
1731 case 0x06:
1732 df_size = nvm_size - (4096 << fcfg1_depart);
1733 break;
1734 case 0x08:
1735 df_size = 0;
1736 break;
1737 case 0x09:
1738 case 0x0a:
1739 case 0x0b:
1740 case 0x0c:
1741 case 0x0d:
1742 df_size = 4096 << (fcfg1_depart & 0x7);
1743 break;
1744 default:
1745 df_size = nvm_size;
1746 break;
1750 switch (fcfg1_pfsize) {
1751 case 0x03:
1752 case 0x05:
1753 case 0x07:
1754 case 0x09:
1755 case 0x0b:
1756 case 0x0d:
1757 pf_size = 1 << (14 + (fcfg1_pfsize >> 1));
1758 break;
1759 case 0x0f:
1760 /* a peculiar case: Freescale states different sizes for 0xf
1761 * K02P64M100SFARM 128 KB ... duplicate of code 0x7
1762 * K22P121M120SF8RM 256 KB ... duplicate of code 0x9
1763 * K22P121M120SF7RM 512 KB ... duplicate of code 0xb
1764 * K22P100M120SF5RM 1024 KB ... duplicate of code 0xd
1765 * K26P169M180SF5RM 2048 KB ... the only unique value
1766 * fcfg2_maxaddr0 seems to be the only clue to pf_size
1767 * Checking fcfg2_maxaddr0 later in this routine is pointless then
1769 if (fcfg2_pflsh)
1770 pf_size = ((uint32_t)fcfg2_maxaddr0 << 13) * num_blocks;
1771 else
1772 pf_size = ((uint32_t)fcfg2_maxaddr0 << 13) * num_blocks / 2;
1773 if (pf_size != 2048<<10)
1774 LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %u KB", pf_size>>10);
1776 break;
1777 default:
1778 pf_size = 0;
1779 break;
1782 LOG_DEBUG("FlexNVM: %" PRIu32 " PFlash: %" PRIu32 " FlexRAM: %" PRIu32 " PFLSH: %d",
1783 nvm_size, pf_size, ee_size, fcfg2_pflsh);
1785 num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
1786 first_nvm_bank = num_pflash_blocks;
1787 num_nvm_blocks = num_blocks - num_pflash_blocks;
1789 LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
1790 num_blocks, num_pflash_blocks, num_nvm_blocks);
1792 LOG_INFO("Probing flash info for bank %d", bank->bank_number);
1794 if ((unsigned)bank->bank_number < num_pflash_blocks) {
1795 /* pflash, banks start at address zero */
1796 kinfo->flash_class = FC_PFLASH;
1797 bank->size = (pf_size / num_pflash_blocks);
1798 bank->base = 0x00000000 + bank->size * bank->bank_number;
1799 kinfo->prog_base = bank->base;
1800 kinfo->sector_size = pflash_sector_size_bytes;
1801 /* pflash is divided into 32 protection areas for
1802 * parts with more than 32K of PFlash. For parts with
1803 * less the protection unit is set to 1024 bytes */
1804 kinfo->protection_size = MAX(pf_size / 32, 1024);
1805 kinfo->protection_block = (32 / num_pflash_blocks) * bank->bank_number;
1807 } else if ((unsigned)bank->bank_number < num_blocks) {
1808 /* nvm, banks start at address 0x10000000 */
1809 unsigned nvm_ord = bank->bank_number - first_nvm_bank;
1810 uint32_t limit;
1812 kinfo->flash_class = FC_FLEX_NVM;
1813 bank->size = (nvm_size / num_nvm_blocks);
1814 bank->base = 0x10000000 + bank->size * nvm_ord;
1815 kinfo->prog_base = 0x00800000 + bank->size * nvm_ord;
1816 kinfo->sector_size = nvm_sector_size_bytes;
1817 if (df_size == 0) {
1818 kinfo->protection_size = 0;
1819 } else {
1820 for (i = df_size; ~i & 1; i >>= 1)
1822 if (i == 1)
1823 kinfo->protection_size = df_size / 8; /* data flash size = 2^^n */
1824 else
1825 kinfo->protection_size = nvm_size / 8; /* TODO: verify on SF1, not documented in RM */
1827 kinfo->protection_block = (8 / num_nvm_blocks) * nvm_ord;
1829 /* EEPROM backup part of FlexNVM is not accessible, use df_size as a limit */
1830 if (df_size > bank->size * nvm_ord)
1831 limit = df_size - bank->size * nvm_ord;
1832 else
1833 limit = 0;
1835 if (bank->size > limit) {
1836 bank->size = limit;
1837 LOG_DEBUG("FlexNVM bank %d limited to 0x%08" PRIx32 " due to active EEPROM backup",
1838 bank->bank_number, limit);
1841 } else if ((unsigned)bank->bank_number == num_blocks) {
1842 LOG_ERROR("FlexRAM support not yet implemented");
1843 return ERROR_FLASH_OPER_UNSUPPORTED;
1844 } else {
1845 LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
1846 bank->bank_number, num_blocks);
1847 return ERROR_FLASH_BANK_INVALID;
1850 if (bank->bank_number == 0 && ((uint32_t)fcfg2_maxaddr0 << 13) != bank->size)
1851 LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
1852 " please report to OpenOCD mailing list", fcfg2_maxaddr0);
1853 if (fcfg2_pflsh) {
1854 if (bank->bank_number == 1 && ((uint32_t)fcfg2_maxaddr1 << 13) != bank->size)
1855 LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
1856 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
1857 } else {
1858 if ((unsigned)bank->bank_number == first_nvm_bank
1859 && ((uint32_t)fcfg2_maxaddr1 << 13) != df_size)
1860 LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
1861 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
1864 if (bank->sectors) {
1865 free(bank->sectors);
1866 bank->sectors = NULL;
1869 if (kinfo->sector_size == 0) {
1870 LOG_ERROR("Unknown sector size for bank %d", bank->bank_number);
1871 return ERROR_FLASH_BANK_INVALID;
1874 if (kinfo->flash_support & FS_PROGRAM_SECTOR
1875 && kinfo->max_flash_prog_size == 0) {
1876 kinfo->max_flash_prog_size = kinfo->sector_size;
1877 /* Program section size is equal to sector size by default */
1880 bank->num_sectors = bank->size / kinfo->sector_size;
1882 if (bank->num_sectors > 0) {
1883 /* FlexNVM bank can be used for EEPROM backup therefore zero sized */
1884 bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
1886 for (i = 0; i < bank->num_sectors; i++) {
1887 bank->sectors[i].offset = offset;
1888 bank->sectors[i].size = kinfo->sector_size;
1889 offset += kinfo->sector_size;
1890 bank->sectors[i].is_erased = -1;
1891 bank->sectors[i].is_protected = 1;
1895 kinfo->probed = true;
1897 return ERROR_OK;
1900 static int kinetis_auto_probe(struct flash_bank *bank)
1902 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1904 if (kinfo && kinfo->probed)
1905 return ERROR_OK;
1907 return kinetis_probe(bank);
1910 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
1912 const char *bank_class_names[] = {
1913 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
1916 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1918 (void) snprintf(buf, buf_size,
1919 "%s driver for %s flash bank %s at 0x%8.8" PRIx32 "",
1920 bank->driver->name, bank_class_names[kinfo->flash_class],
1921 bank->name, bank->base);
1923 return ERROR_OK;
1926 static int kinetis_blank_check(struct flash_bank *bank)
1928 struct kinetis_flash_bank *kinfo = bank->driver_priv;
1929 int result;
1931 /* suprisingly blank check does not work in VLPR and HSRUN modes */
1932 result = kinetis_check_run_mode(bank->target);
1933 if (result != ERROR_OK)
1934 return result;
1936 /* reset error flags */
1937 result = kinetis_ftfx_prepare(bank->target);
1938 if (result != ERROR_OK)
1939 return result;
1941 if (kinfo->flash_class == FC_PFLASH || kinfo->flash_class == FC_FLEX_NVM) {
1942 bool block_dirty = false;
1943 uint8_t ftfx_fstat;
1945 if (kinfo->flash_class == FC_FLEX_NVM) {
1946 uint8_t fcfg1_depart = (uint8_t)((kinfo->sim_fcfg1 >> 8) & 0x0f);
1947 /* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
1948 if (fcfg1_depart != 0xf && fcfg1_depart != 0)
1949 block_dirty = true;
1952 if (!block_dirty) {
1953 /* check if whole bank is blank */
1954 result = kinetis_ftfx_command(bank->target, FTFx_CMD_BLOCKSTAT, kinfo->prog_base,
1955 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
1957 if (result != ERROR_OK || (ftfx_fstat & 0x01))
1958 block_dirty = true;
1961 if (block_dirty) {
1962 /* the whole bank is not erased, check sector-by-sector */
1963 int i;
1964 for (i = 0; i < bank->num_sectors; i++) {
1965 /* normal margin */
1966 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTSTAT,
1967 kinfo->prog_base + bank->sectors[i].offset,
1968 1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
1970 if (result == ERROR_OK) {
1971 bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
1972 } else {
1973 LOG_DEBUG("Ignoring errored PFlash sector blank-check");
1974 bank->sectors[i].is_erased = -1;
1977 } else {
1978 /* the whole bank is erased, update all sectors */
1979 int i;
1980 for (i = 0; i < bank->num_sectors; i++)
1981 bank->sectors[i].is_erased = 1;
1983 } else {
1984 LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
1985 return ERROR_FLASH_OPERATION_FAILED;
1988 return ERROR_OK;
1992 COMMAND_HANDLER(kinetis_nvm_partition)
1994 int result, i;
1995 unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
1996 enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
1997 bool enable;
1998 uint8_t load_flex_ram = 1;
1999 uint8_t ee_size_code = 0x3f;
2000 uint8_t flex_nvm_partition_code = 0;
2001 uint8_t ee_split = 3;
2002 struct target *target = get_current_target(CMD_CTX);
2003 struct flash_bank *bank;
2004 struct kinetis_flash_bank *kinfo;
2005 uint32_t sim_fcfg1;
2007 if (CMD_ARGC >= 2) {
2008 if (strcmp(CMD_ARGV[0], "dataflash") == 0)
2009 sz_type = DF_SIZE;
2010 else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
2011 sz_type = EEBKP_SIZE;
2013 par = strtoul(CMD_ARGV[1], NULL, 10);
2014 while (par >> (log2 + 3))
2015 log2++;
2017 switch (sz_type) {
2018 case SHOW_INFO:
2019 result = target_read_u32(target, SIM_FCFG1, &sim_fcfg1);
2020 if (result != ERROR_OK)
2021 return result;
2023 flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
2024 switch (flex_nvm_partition_code) {
2025 case 0:
2026 command_print(CMD_CTX, "No EEPROM backup, data flash only");
2027 break;
2028 case 1:
2029 case 2:
2030 case 3:
2031 case 4:
2032 case 5:
2033 case 6:
2034 command_print(CMD_CTX, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
2035 break;
2036 case 8:
2037 command_print(CMD_CTX, "No data flash, EEPROM backup only");
2038 break;
2039 case 0x9:
2040 case 0xA:
2041 case 0xB:
2042 case 0xC:
2043 case 0xD:
2044 case 0xE:
2045 command_print(CMD_CTX, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
2046 break;
2047 case 0xf:
2048 command_print(CMD_CTX, "No EEPROM backup, data flash only (DEPART not set)");
2049 break;
2050 default:
2051 command_print(CMD_CTX, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
2053 return ERROR_OK;
2055 case DF_SIZE:
2056 flex_nvm_partition_code = 0x8 | log2;
2057 break;
2059 case EEBKP_SIZE:
2060 flex_nvm_partition_code = log2;
2061 break;
2064 if (CMD_ARGC == 3)
2065 ee1 = ee2 = strtoul(CMD_ARGV[2], NULL, 10) / 2;
2066 else if (CMD_ARGC >= 4) {
2067 ee1 = strtoul(CMD_ARGV[2], NULL, 10);
2068 ee2 = strtoul(CMD_ARGV[3], NULL, 10);
2071 enable = ee1 + ee2 > 0;
2072 if (enable) {
2073 for (log2 = 2; ; log2++) {
2074 if (ee1 + ee2 == (16u << 10) >> log2)
2075 break;
2076 if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
2077 LOG_ERROR("Unsupported EEPROM size");
2078 return ERROR_FLASH_OPERATION_FAILED;
2082 if (ee1 * 3 == ee2)
2083 ee_split = 1;
2084 else if (ee1 * 7 == ee2)
2085 ee_split = 0;
2086 else if (ee1 != ee2) {
2087 LOG_ERROR("Unsupported EEPROM sizes ratio");
2088 return ERROR_FLASH_OPERATION_FAILED;
2091 ee_size_code = log2 | ee_split << 4;
2094 if (CMD_ARGC >= 5)
2095 COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
2096 if (enable)
2097 load_flex_ram = 0;
2099 LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
2100 flex_nvm_partition_code, ee_size_code);
2102 result = kinetis_check_run_mode(target);
2103 if (result != ERROR_OK)
2104 return result;
2106 /* reset error flags */
2107 result = kinetis_ftfx_prepare(target);
2108 if (result != ERROR_OK)
2109 return result;
2111 result = kinetis_ftfx_command(target, FTFx_CMD_PGMPART, load_flex_ram,
2112 ee_size_code, flex_nvm_partition_code, 0, 0,
2113 0, 0, 0, 0, NULL);
2114 if (result != ERROR_OK)
2115 return result;
2117 command_print(CMD_CTX, "FlexNVM partition set. Please reset MCU.");
2119 for (i = 1; i < 4; i++) {
2120 bank = get_flash_bank_by_num_noprobe(i);
2121 if (bank == NULL)
2122 break;
2124 kinfo = bank->driver_priv;
2125 if (kinfo && kinfo->flash_class == FC_FLEX_NVM)
2126 kinfo->probed = false; /* re-probe before next use */
2129 command_print(CMD_CTX, "FlexNVM banks will be re-probed to set new data flash size.");
2130 return ERROR_OK;
2134 static const struct command_registration kinetis_security_command_handlers[] = {
2136 .name = "check_security",
2137 .mode = COMMAND_EXEC,
2138 .help = "Check status of device security lock",
2139 .usage = "",
2140 .handler = kinetis_check_flash_security_status,
2143 .name = "halt",
2144 .mode = COMMAND_EXEC,
2145 .help = "Issue a halt via the MDM-AP",
2146 .usage = "",
2147 .handler = kinetis_mdm_halt,
2150 .name = "mass_erase",
2151 .mode = COMMAND_EXEC,
2152 .help = "Issue a complete flash erase via the MDM-AP",
2153 .usage = "",
2154 .handler = kinetis_mdm_mass_erase,
2156 { .name = "reset",
2157 .mode = COMMAND_EXEC,
2158 .help = "Issue a reset via the MDM-AP",
2159 .usage = "",
2160 .handler = kinetis_mdm_reset,
2162 COMMAND_REGISTRATION_DONE
2165 static const struct command_registration kinetis_exec_command_handlers[] = {
2167 .name = "mdm",
2168 .mode = COMMAND_ANY,
2169 .help = "MDM-AP command group",
2170 .usage = "",
2171 .chain = kinetis_security_command_handlers,
2174 .name = "disable_wdog",
2175 .mode = COMMAND_EXEC,
2176 .help = "Disable the watchdog timer",
2177 .usage = "",
2178 .handler = kinetis_disable_wdog_handler,
2181 .name = "nvm_partition",
2182 .mode = COMMAND_EXEC,
2183 .help = "Show/set data flash or EEPROM backup size in kilobytes,"
2184 " set two EEPROM sizes in bytes and FlexRAM loading during reset",
2185 .usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
2186 .handler = kinetis_nvm_partition,
2188 COMMAND_REGISTRATION_DONE
2191 static const struct command_registration kinetis_command_handler[] = {
2193 .name = "kinetis",
2194 .mode = COMMAND_ANY,
2195 .help = "Kinetis flash controller commands",
2196 .usage = "",
2197 .chain = kinetis_exec_command_handlers,
2199 COMMAND_REGISTRATION_DONE
2204 struct flash_driver kinetis_flash = {
2205 .name = "kinetis",
2206 .commands = kinetis_command_handler,
2207 .flash_bank_command = kinetis_flash_bank_command,
2208 .erase = kinetis_erase,
2209 .protect = kinetis_protect,
2210 .write = kinetis_write,
2211 .read = default_flash_read,
2212 .probe = kinetis_probe,
2213 .auto_probe = kinetis_auto_probe,
2214 .erase_check = kinetis_blank_check,
2215 .protect_check = kinetis_protect_check,
2216 .info = kinetis_info,