The openocd-0.10.0-rc2 release candidate
[openocd.git] / src / helper / binarybuffer.c
blob76f657f8df8eb9b88758ff80b29b6370ee092e12
1 /***************************************************************************
2 * Copyright (C) 2004, 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
20 ***************************************************************************/
22 #ifdef HAVE_CONFIG_H
23 #include "config.h"
24 #endif
26 #include "log.h"
27 #include "binarybuffer.h"
29 static const unsigned char bit_reverse_table256[] = {
30 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
31 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
32 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
33 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
34 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
35 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
36 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
37 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
38 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
39 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
40 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
41 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
42 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
43 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
44 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
45 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
48 static const char hex_digits[] = {
49 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
50 'a', 'b', 'c', 'd', 'e', 'f'
53 void *buf_cpy(const void *from, void *_to, unsigned size)
55 if (NULL == from || NULL == _to)
56 return NULL;
58 /* copy entire buffer */
59 memcpy(_to, from, DIV_ROUND_UP(size, 8));
61 /* mask out bits that don't belong to the buffer */
62 unsigned trailing_bits = size % 8;
63 if (trailing_bits) {
64 uint8_t *to = _to;
65 to[size / 8] &= (1 << trailing_bits) - 1;
67 return _to;
70 static bool buf_cmp_masked(uint8_t a, uint8_t b, uint8_t m)
72 return (a & m) != (b & m);
74 static bool buf_cmp_trailing(uint8_t a, uint8_t b, uint8_t m, unsigned trailing)
76 uint8_t mask = (1 << trailing) - 1;
77 return buf_cmp_masked(a, b, mask & m);
80 bool buf_cmp(const void *_buf1, const void *_buf2, unsigned size)
82 if (!_buf1 || !_buf2)
83 return _buf1 != _buf2;
85 unsigned last = size / 8;
86 if (memcmp(_buf1, _buf2, last) != 0)
87 return false;
89 unsigned trailing = size % 8;
90 if (!trailing)
91 return false;
93 const uint8_t *buf1 = _buf1, *buf2 = _buf2;
94 return buf_cmp_trailing(buf1[last], buf2[last], 0xff, trailing);
97 bool buf_cmp_mask(const void *_buf1, const void *_buf2,
98 const void *_mask, unsigned size)
100 if (!_buf1 || !_buf2)
101 return _buf1 != _buf2 || _buf1 != _mask;
103 const uint8_t *buf1 = _buf1, *buf2 = _buf2, *mask = _mask;
104 unsigned last = size / 8;
105 for (unsigned i = 0; i < last; i++) {
106 if (buf_cmp_masked(buf1[i], buf2[i], mask[i]))
107 return true;
109 unsigned trailing = size % 8;
110 if (!trailing)
111 return false;
112 return buf_cmp_trailing(buf1[last], buf2[last], mask[last], trailing);
116 void *buf_set_ones(void *_buf, unsigned size)
118 uint8_t *buf = _buf;
119 if (!buf)
120 return NULL;
122 memset(buf, 0xff, size / 8);
124 unsigned trailing_bits = size % 8;
125 if (trailing_bits)
126 buf[size / 8] = (1 << trailing_bits) - 1;
128 return buf;
131 void *buf_set_buf(const void *_src, unsigned src_start,
132 void *_dst, unsigned dst_start, unsigned len)
134 const uint8_t *src = _src;
135 uint8_t *dst = _dst;
136 unsigned i, sb, db, sq, dq, lb, lq;
138 sb = src_start / 8;
139 db = dst_start / 8;
140 sq = src_start % 8;
141 dq = dst_start % 8;
142 lb = len / 8;
143 lq = len % 8;
145 src += sb;
146 dst += db;
148 /* check if both buffers are on byte boundary and
149 * len is a multiple of 8bit so we can simple copy
150 * the buffer */
151 if ((sq == 0) && (dq == 0) && (lq == 0)) {
152 for (i = 0; i < lb; i++)
153 *dst++ = *src++;
154 return _dst;
157 /* fallback to slow bit copy */
158 for (i = 0; i < len; i++) {
159 if (((*src >> (sq&7)) & 1) == 1)
160 *dst |= 1 << (dq&7);
161 else
162 *dst &= ~(1 << (dq&7));
163 if (sq++ == 7) {
164 sq = 0;
165 src++;
167 if (dq++ == 7) {
168 dq = 0;
169 dst++;
173 return _dst;
176 uint32_t flip_u32(uint32_t value, unsigned int num)
178 uint32_t c = (bit_reverse_table256[value & 0xff] << 24) |
179 (bit_reverse_table256[(value >> 8) & 0xff] << 16) |
180 (bit_reverse_table256[(value >> 16) & 0xff] << 8) |
181 (bit_reverse_table256[(value >> 24) & 0xff]);
183 if (num < 32)
184 c = c >> (32 - num);
186 return c;
189 static int ceil_f_to_u32(float x)
191 if (x < 0) /* return zero for negative numbers */
192 return 0;
194 uint32_t y = x; /* cut off fraction */
196 if ((x - y) > 0.0) /* if there was a fractional part, increase by one */
197 y++;
199 return y;
202 char *buf_to_str(const void *_buf, unsigned buf_len, unsigned radix)
204 float factor;
205 switch (radix) {
206 case 16:
207 factor = 2.0; /* log(256) / log(16) = 2.0 */
208 break;
209 case 10:
210 factor = 2.40824; /* log(256) / log(10) = 2.40824 */
211 break;
212 case 8:
213 factor = 2.66667; /* log(256) / log(8) = 2.66667 */
214 break;
215 default:
216 return NULL;
219 unsigned str_len = ceil_f_to_u32(DIV_ROUND_UP(buf_len, 8) * factor);
220 char *str = calloc(str_len + 1, 1);
222 const uint8_t *buf = _buf;
223 int b256_len = DIV_ROUND_UP(buf_len, 8);
224 for (int i = b256_len - 1; i >= 0; i--) {
225 uint32_t tmp = buf[i];
226 if (((unsigned)i == (buf_len / 8)) && (buf_len % 8))
227 tmp &= (0xff >> (8 - (buf_len % 8)));
229 /* base-256 digits */
230 for (unsigned j = str_len; j > 0; j--) {
231 tmp += (uint32_t)str[j-1] * 256;
232 str[j-1] = (uint8_t)(tmp % radix);
233 tmp /= radix;
237 const char * const DIGITS = "0123456789ABCDEF";
238 for (unsigned j = 0; j < str_len; j++)
239 str[j] = DIGITS[(int)str[j]];
241 return str;
244 /** identify radix, and skip radix-prefix (0, 0x or 0X) */
245 static void str_radix_guess(const char **_str, unsigned *_str_len,
246 unsigned *_radix)
248 unsigned radix = *_radix;
249 if (0 != radix)
250 return;
251 const char *str = *_str;
252 unsigned str_len = *_str_len;
253 if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X')) {
254 radix = 16;
255 str += 2;
256 str_len -= 2;
257 } else if ((str[0] == '0') && (str_len != 1)) {
258 radix = 8;
259 str += 1;
260 str_len -= 1;
261 } else
262 radix = 10;
263 *_str = str;
264 *_str_len = str_len;
265 *_radix = radix;
268 int str_to_buf(const char *str, unsigned str_len,
269 void *_buf, unsigned buf_len, unsigned radix)
271 str_radix_guess(&str, &str_len, &radix);
273 float factor;
274 if (radix == 16)
275 factor = 0.5; /* log(16) / log(256) = 0.5 */
276 else if (radix == 10)
277 factor = 0.41524; /* log(10) / log(256) = 0.41524 */
278 else if (radix == 8)
279 factor = 0.375; /* log(8) / log(256) = 0.375 */
280 else
281 return 0;
283 /* copy to zero-terminated buffer */
284 char *charbuf = strndup(str, str_len);
286 /* number of digits in base-256 notation */
287 unsigned b256_len = ceil_f_to_u32(str_len * factor);
288 uint8_t *b256_buf = calloc(b256_len, 1);
290 /* go through zero terminated buffer
291 * input digits (ASCII) */
292 unsigned i;
293 for (i = 0; charbuf[i]; i++) {
294 uint32_t tmp = charbuf[i];
295 if ((tmp >= '0') && (tmp <= '9'))
296 tmp = (tmp - '0');
297 else if ((tmp >= 'a') && (tmp <= 'f'))
298 tmp = (tmp - 'a' + 10);
299 else if ((tmp >= 'A') && (tmp <= 'F'))
300 tmp = (tmp - 'A' + 10);
301 else
302 continue; /* skip characters other than [0-9,a-f,A-F] */
304 if (tmp >= radix)
305 continue; /* skip digits invalid for the current radix */
307 /* base-256 digits */
308 for (unsigned j = 0; j < b256_len; j++) {
309 tmp += (uint32_t)b256_buf[j] * radix;
310 b256_buf[j] = (uint8_t)(tmp & 0xFF);
311 tmp >>= 8;
316 uint8_t *buf = _buf;
317 for (unsigned j = 0; j < DIV_ROUND_UP(buf_len, 8); j++) {
318 if (j < b256_len)
319 buf[j] = b256_buf[j];
320 else
321 buf[j] = 0;
324 /* mask out bits that don't belong to the buffer */
325 if (buf_len % 8)
326 buf[(buf_len / 8)] &= 0xff >> (8 - (buf_len % 8));
328 free(b256_buf);
329 free(charbuf);
331 return i;
334 void bit_copy_queue_init(struct bit_copy_queue *q)
336 INIT_LIST_HEAD(&q->list);
339 int bit_copy_queued(struct bit_copy_queue *q, uint8_t *dst, unsigned dst_offset, const uint8_t *src,
340 unsigned src_offset, unsigned bit_count)
342 struct bit_copy_queue_entry *qe = malloc(sizeof(*qe));
343 if (!qe)
344 return ERROR_FAIL;
346 qe->dst = dst;
347 qe->dst_offset = dst_offset;
348 qe->src = src;
349 qe->src_offset = src_offset;
350 qe->bit_count = bit_count;
351 list_add_tail(&qe->list, &q->list);
353 return ERROR_OK;
356 void bit_copy_execute(struct bit_copy_queue *q)
358 struct bit_copy_queue_entry *qe;
359 struct bit_copy_queue_entry *tmp;
360 list_for_each_entry_safe(qe, tmp, &q->list, list) {
361 bit_copy(qe->dst, qe->dst_offset, qe->src, qe->src_offset, qe->bit_count);
362 list_del(&qe->list);
363 free(qe);
367 void bit_copy_discard(struct bit_copy_queue *q)
369 struct bit_copy_queue_entry *qe;
370 struct bit_copy_queue_entry *tmp;
371 list_for_each_entry_safe(qe, tmp, &q->list, list) {
372 list_del(&qe->list);
373 free(qe);
378 * Convert a string of hexadecimal pairs into its binary
379 * representation.
381 * @param[out] bin Buffer to store binary representation. The buffer size must
382 * be at least @p count.
383 * @param[in] hex String with hexadecimal pairs to convert into its binary
384 * representation.
385 * @param[in] count Number of hexadecimal pairs to convert.
387 * @return The number of converted hexadecimal pairs.
389 size_t unhexify(uint8_t *bin, const char *hex, size_t count)
391 size_t i;
392 char tmp;
394 if (!bin || !hex)
395 return 0;
397 memset(bin, 0, count);
399 for (i = 0; i < 2 * count; i++) {
400 if (hex[i] >= 'a' && hex[i] <= 'f')
401 tmp = hex[i] - 'a' + 10;
402 else if (hex[i] >= 'A' && hex[i] <= 'F')
403 tmp = hex[i] - 'A' + 10;
404 else if (hex[i] >= '0' && hex[i] <= '9')
405 tmp = hex[i] - '0';
406 else
407 return i / 2;
409 bin[i / 2] |= tmp << (4 * ((i + 1) % 2));
412 return i / 2;
416 * Convert binary data into a string of hexadecimal pairs.
418 * @param[out] hex Buffer to store string of hexadecimal pairs. The buffer size
419 * must be at least @p length.
420 * @param[in] bin Buffer with binary data to convert into hexadecimal pairs.
421 * @param[in] count Number of bytes to convert.
422 * @param[in] length Maximum number of characters, including null-terminator,
423 * to store into @p hex.
425 * @returns The length of the converted string excluding null-terminator.
427 size_t hexify(char *hex, const uint8_t *bin, size_t count, size_t length)
429 size_t i;
430 uint8_t tmp;
432 if (!length)
433 return 0;
435 for (i = 0; i < length - 1 && i < 2 * count; i++) {
436 tmp = (bin[i / 2] >> (4 * ((i + 1) % 2))) & 0x0f;
437 hex[i] = hex_digits[tmp];
440 hex[i] = 0;
442 return i;
445 void buffer_shr(void *_buf, unsigned buf_len, unsigned count)
447 unsigned i;
448 unsigned char *buf = _buf;
449 unsigned bytes_to_remove;
450 unsigned shift;
452 bytes_to_remove = count / 8;
453 shift = count - (bytes_to_remove * 8);
455 for (i = 0; i < (buf_len - 1); i++)
456 buf[i] = (buf[i] >> shift) | ((buf[i+1] << (8 - shift)) & 0xff);
458 buf[(buf_len - 1)] = buf[(buf_len - 1)] >> shift;
460 if (bytes_to_remove) {
461 memmove(buf, &buf[bytes_to_remove], buf_len - bytes_to_remove);
462 memset(&buf[buf_len - bytes_to_remove], 0, bytes_to_remove);