mips: m4k alternate pracc code. Patch 4
[openocd.git] / src / target / mips32_pracc.c
blobc72a5078d6eeaa17c510ec7c7942f9708b360eb3
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2009 by David N. Claffey <dnclaffey@gmail.com> *
8 * *
9 * Copyright (C) 2011 by Drasko DRASKOVIC *
10 * drasko.draskovic@gmail.com *
11 * *
12 * This program is free software; you can redistribute it and/or modify *
13 * it under the terms of the GNU General Public License as published by *
14 * the Free Software Foundation; either version 2 of the License, or *
15 * (at your option) any later version. *
16 * *
17 * This program is distributed in the hope that it will be useful, *
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
20 * GNU General Public License for more details. *
21 * *
22 * You should have received a copy of the GNU General Public License *
23 * along with this program; if not, write to the *
24 * Free Software Foundation, Inc., *
25 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
26 ***************************************************************************/
29 * This version has optimized assembly routines for 32 bit operations:
30 * - read word
31 * - write word
32 * - write array of words
34 * One thing to be aware of is that the MIPS32 cpu will execute the
35 * instruction after a branch instruction (one delay slot).
37 * For example:
38 * LW $2, ($5 +10)
39 * B foo
40 * LW $1, ($2 +100)
42 * The LW $1, ($2 +100) instruction is also executed. If this is
43 * not wanted a NOP can be inserted:
45 * LW $2, ($5 +10)
46 * B foo
47 * NOP
48 * LW $1, ($2 +100)
50 * or the code can be changed to:
52 * B foo
53 * LW $2, ($5 +10)
54 * LW $1, ($2 +100)
56 * The original code contained NOPs. I have removed these and moved
57 * the branches.
59 * I also moved the PRACC_STACK to 0xFF204000. This allows
60 * the use of 16 bits offsets to get pointers to the input
61 * and output area relative to the stack. Note that the stack
62 * isn't really a stack (the stack pointer is not 'moving')
63 * but a FIFO simulated in software.
65 * These changes result in a 35% speed increase when programming an
66 * external flash.
68 * More improvement could be gained if the registers do no need
69 * to be preserved but in that case the routines should be aware
70 * OpenOCD is used as a flash programmer or as a debug tool.
72 * Nico Coesel
75 #ifdef HAVE_CONFIG_H
76 #include "config.h"
77 #endif
79 #include <helper/time_support.h>
81 #include "mips32.h"
82 #include "mips32_pracc.h"
84 struct mips32_pracc_context {
85 uint32_t *local_iparam;
86 int num_iparam;
87 uint32_t *local_oparam;
88 int num_oparam;
89 const uint32_t *code;
90 int code_len;
91 uint32_t stack[32];
92 int stack_offset;
93 struct mips_ejtag *ejtag_info;
96 static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
97 uint32_t start_addr, uint32_t end_addr);
98 static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
99 uint32_t start_addr, uint32_t end_addr);
101 static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl)
103 uint32_t ejtag_ctrl;
104 long long then = timeval_ms();
105 int timeout;
106 int retval;
108 /* wait for the PrAcc to become "1" */
109 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
111 while (1) {
112 ejtag_ctrl = ejtag_info->ejtag_ctrl;
113 retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl);
114 if (retval != ERROR_OK)
115 return retval;
117 if (ejtag_ctrl & EJTAG_CTRL_PRACC)
118 break;
120 timeout = timeval_ms() - then;
121 if (timeout > 1000) {
122 LOG_DEBUG("DEBUGMODULE: No memory access in progress!");
123 return ERROR_JTAG_DEVICE_ERROR;
127 *ctrl = ejtag_ctrl;
128 return ERROR_OK;
131 static int mips32_pracc_exec_read(struct mips32_pracc_context *ctx, uint32_t address)
133 struct mips_ejtag *ejtag_info = ctx->ejtag_info;
134 int offset;
135 uint32_t ejtag_ctrl, data;
137 if ((address >= MIPS32_PRACC_PARAM_IN)
138 && (address < MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) {
139 offset = (address - MIPS32_PRACC_PARAM_IN) / 4;
140 data = ctx->local_iparam[offset];
141 } else if ((address >= MIPS32_PRACC_PARAM_OUT)
142 && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
143 offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
144 data = ctx->local_oparam[offset];
145 } else if ((address >= MIPS32_PRACC_TEXT)
146 && (address < MIPS32_PRACC_TEXT + ctx->code_len * 4)) {
147 offset = (address - MIPS32_PRACC_TEXT) / 4;
148 data = ctx->code[offset];
149 } else if (address == MIPS32_PRACC_STACK) {
150 if (ctx->stack_offset <= 0) {
151 LOG_ERROR("Error: Pracc stack out of bounds");
152 return ERROR_JTAG_DEVICE_ERROR;
154 /* save to our debug stack */
155 data = ctx->stack[--ctx->stack_offset];
156 } else {
157 /* TODO: send JMP 0xFF200000 instruction. Hopefully processor jump back
158 * to start of debug vector */
160 LOG_ERROR("Error reading unexpected address 0x%8.8" PRIx32 "", address);
161 return ERROR_JTAG_DEVICE_ERROR;
164 /* Send the data out */
165 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
166 mips_ejtag_drscan_32_out(ctx->ejtag_info, data);
168 /* Clear the access pending bit (let the processor eat!) */
169 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
170 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
171 mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
173 return jtag_execute_queue();
176 static int mips32_pracc_exec_write(struct mips32_pracc_context *ctx, uint32_t address)
178 uint32_t ejtag_ctrl, data;
179 int offset;
180 struct mips_ejtag *ejtag_info = ctx->ejtag_info;
181 int retval;
183 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
184 retval = mips_ejtag_drscan_32(ctx->ejtag_info, &data);
185 if (retval != ERROR_OK)
186 return retval;
188 /* Clear access pending bit */
189 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
190 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
191 mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
193 retval = jtag_execute_queue();
194 if (retval != ERROR_OK)
195 return retval;
197 if ((address >= MIPS32_PRACC_PARAM_OUT)
198 && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
199 offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
200 ctx->local_oparam[offset] = data;
201 } else if (address == MIPS32_PRACC_STACK) {
202 if (ctx->stack_offset >= 32) {
203 LOG_ERROR("Error: Pracc stack out of bounds");
204 return ERROR_JTAG_DEVICE_ERROR;
206 /* save data onto our stack */
207 ctx->stack[ctx->stack_offset++] = data;
208 } else {
209 LOG_ERROR("Error writing unexpected address 0x%8.8" PRIx32 "", address);
210 return ERROR_JTAG_DEVICE_ERROR;
213 return ERROR_OK;
216 int mips32_pracc_exec(struct mips_ejtag *ejtag_info, int code_len, const uint32_t *code,
217 int num_param_in, uint32_t *param_in, int num_param_out, uint32_t *param_out, int cycle)
219 uint32_t ejtag_ctrl;
220 uint32_t address;
221 struct mips32_pracc_context ctx;
222 int retval;
223 int pass = 0;
225 ctx.local_iparam = param_in;
226 ctx.local_oparam = param_out;
227 ctx.num_iparam = num_param_in;
228 ctx.num_oparam = num_param_out;
229 ctx.code = code;
230 ctx.code_len = code_len;
231 ctx.ejtag_info = ejtag_info;
232 ctx.stack_offset = 0;
234 while (1) {
235 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
236 if (retval != ERROR_OK)
237 return retval;
239 address = 0;
240 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
241 retval = mips_ejtag_drscan_32(ejtag_info, &address);
242 if (retval != ERROR_OK)
243 return retval;
245 /* Check for read or write */
246 if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
247 retval = mips32_pracc_exec_write(&ctx, address);
248 if (retval != ERROR_OK)
249 return retval;
250 } else {
251 /* Check to see if its reading at the debug vector. The first pass through
252 * the module is always read at the vector, so the first one we allow. When
253 * the second read from the vector occurs we are done and just exit. */
254 if ((address == MIPS32_PRACC_TEXT) && (pass++))
255 break;
257 retval = mips32_pracc_exec_read(&ctx, address);
258 if (retval != ERROR_OK)
259 return retval;
262 if (cycle == 0)
263 break;
266 /* stack sanity check */
267 if (ctx.stack_offset != 0)
268 LOG_DEBUG("Pracc Stack not zero");
270 return ERROR_OK;
273 inline void pracc_queue_init(struct pracc_queue_info *ctx)
275 ctx->retval = ERROR_OK;
276 ctx->code_count = 0;
277 ctx->store_count = 0;
279 ctx->pracc_list = malloc(2 * ctx->max_code * sizeof(uint32_t));
280 if (ctx->pracc_list == NULL) {
281 LOG_ERROR("Out of memory");
282 ctx->retval = ERROR_FAIL;
286 inline void pracc_add(struct pracc_queue_info *ctx, uint32_t addr, uint32_t instr)
288 ctx->pracc_list[ctx->max_code + ctx->code_count] = addr;
289 ctx->pracc_list[ctx->code_count++] = instr;
290 if (addr)
291 ctx->store_count++;
294 inline void pracc_queue_free(struct pracc_queue_info *ctx)
296 if (ctx->code_count > ctx->max_code) /* Only for internal check, will be erased */
297 LOG_ERROR("Internal error, code count: %d > max code: %d", ctx->code_count, ctx->max_code);
298 if (ctx->pracc_list != NULL)
299 free(ctx->pracc_list);
302 int mips32_pracc_queue_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx, uint32_t *buf)
304 if (ejtag_info->mode == 0)
305 return mips32_pracc_exec(ejtag_info, ctx->code_count, ctx->pracc_list, 0, NULL,
306 ctx->store_count, buf, ctx->code_count - 1);
308 union scan_in {
309 uint8_t scan_96[12];
310 struct {
311 uint8_t ctrl[4];
312 uint8_t data[4];
313 uint8_t addr[4];
314 } scan_32;
316 } *scan_in = malloc(sizeof(union scan_in) * (ctx->code_count + ctx->store_count));
317 if (scan_in == NULL) {
318 LOG_ERROR("Out of memory");
319 return ERROR_FAIL;
322 unsigned num_clocks =
323 ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
325 uint32_t ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
326 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ALL);
328 int scan_count = 0;
329 for (int i = 0; i != 2 * ctx->code_count; i++) {
330 uint32_t data = 0;
331 if (i & 1u) { /* Check store address from previous instruction, if not the first */
332 if (i < 2 || 0 == ctx->pracc_list[ctx->max_code + (i / 2) - 1])
333 continue;
334 } else
335 data = ctx->pracc_list[i / 2];
337 jtag_add_clocks(num_clocks);
338 mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, data, scan_in[scan_count++].scan_96);
341 int retval = jtag_execute_queue(); /* execute queued scans */
342 if (retval != ERROR_OK)
343 goto exit;
345 uint32_t fetch_addr = MIPS32_PRACC_TEXT; /* start address */
346 scan_count = 0;
347 for (int i = 0; i != 2 * ctx->code_count; i++) { /* verify every pracc access */
348 uint32_t store_addr = 0;
349 if (i & 1u) { /* Read store addres from previous instruction, if not the first */
350 store_addr = ctx->pracc_list[ctx->max_code + (i / 2) - 1];
351 if (i < 2 || 0 == store_addr)
352 continue;
355 ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32);
356 if (!(ejtag_ctrl & EJTAG_CTRL_PRACC)) {
357 LOG_ERROR("Error: access not pending count: %d", scan_count);
358 retval = ERROR_FAIL;
359 goto exit;
362 uint32_t addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32);
364 if (store_addr != 0) {
365 if (!(ejtag_ctrl & EJTAG_CTRL_PRNW)) {
366 LOG_ERROR("Not a store/write access, count: %d", scan_count);
367 retval = ERROR_FAIL;
368 goto exit;
370 if (addr != store_addr) {
371 LOG_ERROR("Store address mismatch, read: %x expected: %x count: %d",
372 addr, store_addr, scan_count);
373 retval = ERROR_FAIL;
374 goto exit;
376 int buf_index = (addr - MIPS32_PRACC_PARAM_OUT) / 4;
377 buf[buf_index] = buf_get_u32(scan_in[scan_count].scan_32.data, 0, 32);
379 } else {
380 if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
381 LOG_ERROR("Not a fetch/read access, count: %d", scan_count);
382 retval = ERROR_FAIL;
383 goto exit;
385 if (addr != fetch_addr) {
386 LOG_ERROR("Fetch addr mismatch, read: %x expected: %x count: %d", addr, fetch_addr, scan_count);
387 retval = ERROR_FAIL;
388 goto exit;
390 fetch_addr += 4;
392 scan_count++;
394 exit:
395 free(scan_in);
396 return retval;
399 int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
401 struct pracc_queue_info ctx = {.max_code = 9};
402 pracc_queue_init(&ctx);
403 if (ctx.retval != ERROR_OK)
404 goto exit;
406 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* move $15 to COP0 DeSave */
407 pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
408 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16((addr + 0x8000)))); /* load $8 with modified upper address */
409 pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 8)); /* lw $8, LOWER16(addr)($8) */
410 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
411 MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* sw $8,PRACC_OUT_OFFSET($15) */
412 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 of $8 */
413 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 of $8 */
414 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
415 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
417 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf);
418 exit:
419 pracc_queue_free(&ctx);
420 return ctx.retval;
423 int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
425 if (count == 1 && size == 4)
426 return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf);
428 uint32_t *data = NULL;
429 struct pracc_queue_info ctx = {.max_code = 256 * 3 + 9 + 1}; /* alloc memory for the worst case */
430 pracc_queue_init(&ctx);
431 if (ctx.retval != ERROR_OK)
432 goto exit;
434 if (size != 4) {
435 data = malloc(256 * sizeof(uint32_t));
436 if (data == NULL) {
437 LOG_ERROR("Out of memory");
438 goto exit;
442 uint32_t *buf32 = buf;
443 uint16_t *buf16 = buf;
444 uint8_t *buf8 = buf;
446 while (count) {
447 ctx.code_count = 0;
448 ctx.store_count = 0;
449 int this_round_count = (count > 256) ? 256 : count;
450 uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
452 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* save $15 in DeSave */
453 pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
454 pracc_add(&ctx, 0, MIPS32_LUI(9, last_upper_base_addr)); /* load the upper memory address in $9 */
456 for (int i = 0; i != this_round_count; i++) { /* Main code loop */
457 uint32_t upper_base_addr = UPPER16((addr + 0x8000));
458 if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper address in $9 */
459 pracc_add(&ctx, 0, MIPS32_LUI(9, upper_base_addr));
460 last_upper_base_addr = upper_base_addr;
463 if (size == 4)
464 pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 9)); /* load from memory to $8 */
465 else if (size == 2)
466 pracc_add(&ctx, 0, MIPS32_LHU(8, LOWER16(addr), 9));
467 else
468 pracc_add(&ctx, 0, MIPS32_LBU(8, LOWER16(addr), 9));
470 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + i * 4,
471 MIPS32_SW(8, PRACC_OUT_OFFSET + i * 4, 15)); /* store $8 at param out */
472 addr += size;
474 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of reg 8 */
475 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of reg 8 */
476 pracc_add(&ctx, 0, MIPS32_LUI(9, UPPER16(ejtag_info->reg9))); /* restore upper 16 bits of reg 9 */
477 pracc_add(&ctx, 0, MIPS32_ORI(9, 9, LOWER16(ejtag_info->reg9))); /* restore lower 16 bits of reg 9 */
479 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
480 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */
482 if (size == 4) {
483 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf32);
484 if (ctx.retval != ERROR_OK)
485 goto exit;
486 buf32 += this_round_count;
487 } else {
488 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, data);
489 if (ctx.retval != ERROR_OK)
490 goto exit;
492 uint32_t *data_p = data;
493 for (int i = 0; i != this_round_count; i++) {
494 if (size == 2)
495 *buf16++ = *data_p++;
496 else
497 *buf8++ = *data_p++;
500 count -= this_round_count;
502 exit:
503 pracc_queue_free(&ctx);
504 if (data != NULL)
505 free(data);
506 return ctx.retval;
509 int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel)
511 struct pracc_queue_info ctx = {.max_code = 8};
512 pracc_queue_init(&ctx);
513 if (ctx.retval != ERROR_OK)
514 goto exit;
516 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* move $15 to COP0 DeSave */
517 pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
518 pracc_add(&ctx, 0, MIPS32_MFC0(8, 0, 0) | (cp0_reg << 11) | cp0_sel); /* move COP0 [cp0_reg select] to $8 */
519 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
520 MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */
521 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
522 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of $8 */
523 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
524 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of $8 */
526 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, val);
527 exit:
528 pracc_queue_free(&ctx);
529 return ctx.retval;
532 * Note that our input parametes cp0_reg and cp0_sel
533 * are numbers (not gprs) which make part of mfc0 instruction opcode.
535 * These are not fix, but can be different for each mips32_cp0_read() function call,
536 * and that is why we must insert them directly into opcode,
537 * i.e. we can not pass it on EJTAG microprogram stack (via param_in),
538 * and put them into the gprs later from MIPS32_PRACC_STACK
539 * because mfc0 do not use gpr as a parameter for the cp0_reg and select part,
540 * but plain (immediate) number.
542 * MIPS32_MTC0 is implemented via MIPS32_R_INST macro.
543 * In order to insert our parameters, we must change rd and funct fields.
545 * code[2] |= (cp0_reg << 11) | cp0_sel; change rd and funct of MIPS32_R_INST macro
549 int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel)
551 struct pracc_queue_info ctx = {.max_code = 6};
552 pracc_queue_init(&ctx);
553 if (ctx.retval != ERROR_OK)
554 goto exit;
556 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* move $15 to COP0 DeSave */
557 pracc_add(&ctx, 0, MIPS32_LUI(15, UPPER16(val))); /* Load val to $15 */
558 pracc_add(&ctx, 0, MIPS32_ORI(15, 15, LOWER16(val)));
560 pracc_add(&ctx, 0, MIPS32_MTC0(15, 0, 0) | (cp0_reg << 11) | cp0_sel); /* write cp0 reg / sel */
562 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
563 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
565 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
566 exit:
567 pracc_queue_free(&ctx);
568 return ctx.retval;
571 * Note that MIPS32_MTC0 macro is implemented via MIPS32_R_INST macro.
572 * In order to insert our parameters, we must change rd and funct fields.
573 * code[3] |= (cp0_reg << 11) | cp0_sel; change rd and funct fields of MIPS32_R_INST macro
578 * \b mips32_pracc_sync_cache
580 * Synchronize Caches to Make Instruction Writes Effective
581 * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
582 * Document Number: MD00086, Revision 2.00, June 9, 2003)
584 * When the instruction stream is written, the SYNCI instruction should be used
585 * in conjunction with other instructions to make the newly-written instructions effective.
587 * Explanation :
588 * A program that loads another program into memory is actually writing the D- side cache.
589 * The instructions it has loaded can't be executed until they reach the I-cache.
591 * After the instructions have been written, the loader should arrange
592 * to write back any containing D-cache line and invalidate any locations
593 * already in the I-cache.
595 * You can do that with cache instructions, but those instructions are only available in kernel mode,
596 * and a loader writing instructions for the use of its own process need not be privileged software.
598 * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
599 * which does the whole job for a cache-line-sized chunk of the memory you just loaded:
600 * That is, it arranges a D-cache write-back and an I-cache invalidate.
602 * To employ synci at user level, you need to know the size of a cache line,
603 * and that can be obtained with a rdhwr SYNCI_Step
604 * from one of the standard “hardware registers”.
606 static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
607 uint32_t start_addr, uint32_t end_addr)
609 static const uint32_t code[] = {
610 /* start: */
611 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
612 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
613 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
614 MIPS32_SW(8, 0, 15), /* sw $8,($15) */
615 MIPS32_SW(9, 0, 15), /* sw $9,($15) */
616 MIPS32_SW(10, 0, 15), /* sw $10,($15) */
617 MIPS32_SW(11, 0, 15), /* sw $11,($15) */
619 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
620 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
621 MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */
622 MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */
624 MIPS32_RDHWR(11, MIPS32_SYNCI_STEP), /* $11 = MIPS32_SYNCI_STEP */
625 MIPS32_BEQ(11, 0, 6), /* beq $11, $0, end */
626 MIPS32_NOP,
627 /* synci_loop : */
628 MIPS32_SYNCI(0, 9), /* synci 0($9) */
629 MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 # $8 = $10 < $9 ? 1 : 0 */
630 MIPS32_BNE(8, 0, NEG16(3)), /* bne $8, $0, synci_loop */
631 MIPS32_ADDU(9, 9, 11), /* $9 += MIPS32_SYNCI_STEP */
632 MIPS32_SYNC,
633 /* end: */
634 MIPS32_LW(11, 0, 15), /* lw $11,($15) */
635 MIPS32_LW(10, 0, 15), /* lw $10,($15) */
636 MIPS32_LW(9, 0, 15), /* lw $9,($15) */
637 MIPS32_LW(8, 0, 15), /* lw $8,($15) */
638 MIPS32_B(NEG16(24)), /* b start */
639 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
642 /* TODO remove array */
643 uint32_t *param_in = malloc(2 * sizeof(uint32_t));
644 int retval;
645 param_in[0] = start_addr;
646 param_in[1] = end_addr;
648 retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 2, param_in, 0, NULL, 1);
650 free(param_in);
652 return retval;
656 * \b mips32_pracc_clean_invalidate_cache
658 * Writeback D$ and Invalidate I$
659 * so that the instructions written can be visible to CPU
661 static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
662 uint32_t start_addr, uint32_t end_addr)
664 static const uint32_t code[] = {
665 /* start: */
666 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
667 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
668 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
669 MIPS32_SW(8, 0, 15), /* sw $8,($15) */
670 MIPS32_SW(9, 0, 15), /* sw $9,($15) */
671 MIPS32_SW(10, 0, 15), /* sw $10,($15) */
672 MIPS32_SW(11, 0, 15), /* sw $11,($15) */
674 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
675 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
676 MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */
677 MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */
678 MIPS32_LW(11, 8, 8), /* Load write clsiz to $11 */
680 /* cache_loop: */
681 MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 : $8 <- $10 < $9 ? */
682 MIPS32_BGTZ(8, 6), /* bgtz $8, end */
683 MIPS32_NOP,
685 MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK, 0, 9), /* cache Hit_Writeback_D, 0($9) */
686 MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE, 0, 9), /* cache Hit_Invalidate_I, 0($9) */
688 MIPS32_ADDU(9, 9, 11), /* $9 += $11 */
690 MIPS32_B(NEG16(7)), /* b cache_loop */
691 MIPS32_NOP,
692 /* end: */
693 MIPS32_LW(11, 0, 15), /* lw $11,($15) */
694 MIPS32_LW(10, 0, 15), /* lw $10,($15) */
695 MIPS32_LW(9, 0, 15), /* lw $9,($15) */
696 MIPS32_LW(8, 0, 15), /* lw $8,($15) */
697 MIPS32_B(NEG16(25)), /* b start */
698 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
702 * Find cache line size in bytes
704 uint32_t conf;
705 uint32_t dl, clsiz;
707 mips32_cp0_read(ejtag_info, &conf, 16, 1);
708 dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;
710 /* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... */
711 clsiz = 0x2 << dl;
713 /* TODO remove array */
714 uint32_t *param_in = malloc(3 * sizeof(uint32_t));
715 int retval;
716 param_in[0] = start_addr;
717 param_in[1] = end_addr;
718 param_in[2] = clsiz;
720 retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 3, param_in, 0, NULL, 1);
722 free(param_in);
724 return retval;
727 static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
729 struct pracc_queue_info ctx = {.max_code = 128 * 3 + 6 + 1}; /* alloc memory for the worst case */
730 pracc_queue_init(&ctx);
731 if (ctx.retval != ERROR_OK)
732 goto exit;
734 uint32_t *buf32 = buf;
735 uint16_t *buf16 = buf;
736 uint8_t *buf8 = buf;
738 while (count) {
739 ctx.code_count = 0;
740 ctx.store_count = 0;
741 int this_round_count = (count > 128) ? 128 : count;
742 uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
744 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* save $15 in DeSave */
745 pracc_add(&ctx, 0, MIPS32_LUI(15, last_upper_base_addr)); /* load $15 with memory base address */
747 for (int i = 0; i != this_round_count; i++) {
748 uint32_t upper_base_addr = UPPER16((addr + 0x8000));
749 if (last_upper_base_addr != upper_base_addr) {
750 pracc_add(&ctx, 0, MIPS32_LUI(15, upper_base_addr)); /* if needed, change upper address in $15*/
751 last_upper_base_addr = upper_base_addr;
754 if (size == 4) { /* for word writes check if one half word is 0 and load it accordingly */
755 if (LOWER16(*buf32) == 0)
756 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(*buf32))); /* load only upper value */
757 else if (UPPER16(*buf32) == 0)
758 pracc_add(&ctx, 0, MIPS32_ORI(8, 0, LOWER16(*buf32))); /* load only lower */
759 else {
760 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(*buf32))); /* load upper and lower */
761 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(*buf32)));
763 pracc_add(&ctx, 0, MIPS32_SW(8, LOWER16(addr), 15)); /* store word to memory */
764 buf32++;
766 } else if (size == 2) {
767 pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf16)); /* load lower value */
768 pracc_add(&ctx, 0, MIPS32_SH(8, LOWER16(addr), 15)); /* store half word to memory */
769 buf16++;
771 } else {
772 pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf8)); /* load lower value */
773 pracc_add(&ctx, 0, MIPS32_SB(8, LOWER16(addr), 15)); /* store byte to memory */
774 buf8++;
776 addr += size;
779 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of reg 8 */
780 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of reg 8 */
782 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
783 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */
785 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
786 if (ctx.retval != ERROR_OK)
787 goto exit;
788 count -= this_round_count;
790 exit:
791 pracc_queue_free(&ctx);
792 return ctx.retval;
795 int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
797 int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf);
798 if (retval != ERROR_OK)
799 return retval;
802 * If we are in the cachable regoion and cache is activated,
803 * we must clean D$ + invalidate I$ after we did the write,
804 * so that changes do not continue to live only in D$, but to be
805 * replicated in I$ also (maybe we wrote the istructions)
807 uint32_t conf = 0;
808 int cached = 0;
810 if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff)))
811 return retval; /*Nothing to do*/
813 mips32_cp0_read(ejtag_info, &conf, 16, 0);
815 switch (KSEGX(addr)) {
816 case KUSEG:
817 cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
818 break;
819 case KSEG0:
820 cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
821 break;
822 case KSEG2:
823 case KSEG3:
824 cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
825 break;
826 default:
827 /* what ? */
828 break;
832 * Check cachablitiy bits coherency algorithm -
833 * is the region cacheable or uncached.
834 * If cacheable we have to synchronize the cache
836 if (cached == 0x3) {
837 uint32_t start_addr, end_addr;
838 uint32_t rel;
840 start_addr = addr;
841 end_addr = addr + count * size;
843 /** select cache synchronisation mechanism based on Architecture Release */
844 rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
845 switch (rel) {
846 case MIPS32_ARCH_REL1:
847 /* MIPS32/64 Release 1 - we must use cache instruction */
848 mips32_pracc_clean_invalidate_cache(ejtag_info, start_addr, end_addr);
849 break;
850 case MIPS32_ARCH_REL2:
851 /* MIPS32/64 Release 2 - we can use synci instruction */
852 mips32_pracc_sync_cache(ejtag_info, start_addr, end_addr);
853 break;
854 default:
855 /* what ? */
856 break;
860 return retval;
863 int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
865 static const uint32_t cp0_write_code[] = {
866 MIPS32_MTC0(1, 12, 0), /* move $1 to status */
867 MIPS32_MTLO(1), /* move $1 to lo */
868 MIPS32_MTHI(1), /* move $1 to hi */
869 MIPS32_MTC0(1, 8, 0), /* move $1 to badvaddr */
870 MIPS32_MTC0(1, 13, 0), /* move $1 to cause*/
871 MIPS32_MTC0(1, 24, 0), /* move $1 to depc (pc) */
874 struct pracc_queue_info ctx = {.max_code = 37 * 2 + 6 + 1};
875 pracc_queue_init(&ctx);
876 if (ctx.retval != ERROR_OK)
877 goto exit;
879 /* load registers 2 to 31 with lui and ori instructions, check if some instructions can be saved */
880 for (int i = 2; i < 32; i++) {
881 if (LOWER16((regs[i])) == 0) /* if lower half word is 0, lui instruction only */
882 pracc_add(&ctx, 0, MIPS32_LUI(i, UPPER16((regs[i]))));
883 else if (UPPER16((regs[i])) == 0) /* if upper half word is 0, ori with $0 only*/
884 pracc_add(&ctx, 0, MIPS32_ORI(i, 0, LOWER16((regs[i]))));
885 else { /* default, load with lui and ori instructions */
886 pracc_add(&ctx, 0, MIPS32_LUI(i, UPPER16((regs[i]))));
887 pracc_add(&ctx, 0, MIPS32_ORI(i, i, LOWER16((regs[i]))));
891 for (int i = 0; i != 6; i++) {
892 pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[i + 32])))); /* load CPO value in $1, with lui and ori */
893 pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[i + 32]))));
894 pracc_add(&ctx, 0, cp0_write_code[i]); /* write value from $1 to CPO register */
897 pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[1])))); /* load upper half word in $1 */
898 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
899 pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[1])))); /* load lower half word in $1 */
901 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
903 ejtag_info->reg8 = regs[8];
904 ejtag_info->reg9 = regs[9];
905 exit:
906 pracc_queue_free(&ctx);
907 return ctx.retval;
910 int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
912 static int cp0_read_code[] = {
913 MIPS32_MFC0(8, 12, 0), /* move status to $8 */
914 MIPS32_MFLO(8), /* move lo to $8 */
915 MIPS32_MFHI(8), /* move hi to $8 */
916 MIPS32_MFC0(8, 8, 0), /* move badvaddr to $8 */
917 MIPS32_MFC0(8, 13, 0), /* move cause to $8 */
918 MIPS32_MFC0(8, 24, 0), /* move depc (pc) to $8 */
921 struct pracc_queue_info ctx = {.max_code = 48};
922 pracc_queue_init(&ctx);
923 if (ctx.retval != ERROR_OK)
924 goto exit;
926 pracc_add(&ctx, 0, MIPS32_MTC0(1, 31, 0)); /* move $1 to COP0 DeSave */
927 pracc_add(&ctx, 0, MIPS32_LUI(1, PRACC_UPPER_BASE_ADDR)); /* $1 = MIP32_PRACC_BASE_ADDR */
929 for (int i = 2; i != 32; i++) /* store GPR's 2 to 31 */
930 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i * 4),
931 MIPS32_SW(i, PRACC_OUT_OFFSET + (i * 4), 1));
933 for (int i = 0; i != 6; i++) {
934 pracc_add(&ctx, 0, cp0_read_code[i]); /* load COP0 needed registers to $8 */
935 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i + 32) * 4, /* store $8 at PARAM OUT */
936 MIPS32_SW(8, PRACC_OUT_OFFSET + (i + 32) * 4, 1));
938 pracc_add(&ctx, 0, MIPS32_MFC0(8, 31, 0)); /* move DeSave to $8, reg1 value */
939 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + 4, /* store reg1 value from $8 to param out */
940 MIPS32_SW(8, PRACC_OUT_OFFSET + 4, 1));
942 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
943 pracc_add(&ctx, 0, MIPS32_MFC0(1, 31, 0)); /* move COP0 DeSave to $1, restore reg1 */
945 if (ejtag_info->mode == 0)
946 ctx.store_count++; /* Needed by legacy code, due to offset from reg0 */
948 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, regs);
950 ejtag_info->reg8 = regs[8]; /* reg8 is saved but not restored, next called function should restore it */
951 ejtag_info->reg9 = regs[9];
952 exit:
953 pracc_queue_free(&ctx);
954 return ctx.retval;
957 /* fastdata upload/download requires an initialized working area
958 * to load the download code; it should not be called otherwise
959 * fetch order from the fastdata area
960 * 1. start addr
961 * 2. end addr
962 * 3. data ...
964 int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
965 int write_t, uint32_t addr, int count, uint32_t *buf)
967 uint32_t handler_code[] = {
968 /* caution when editing, table is modified below */
969 /* r15 points to the start of this code */
970 MIPS32_SW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
971 MIPS32_SW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
972 MIPS32_SW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
973 MIPS32_SW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
974 /* start of fastdata area in t0 */
975 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
976 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
977 MIPS32_LW(9, 0, 8), /* start addr in t1 */
978 MIPS32_LW(10, 0, 8), /* end addr to t2 */
979 /* loop: */
980 /* 8 */ MIPS32_LW(11, 0, 0), /* lw t3,[t8 | r9] */
981 /* 9 */ MIPS32_SW(11, 0, 0), /* sw t3,[r9 | r8] */
982 MIPS32_BNE(10, 9, NEG16(3)), /* bne $t2,t1,loop */
983 MIPS32_ADDI(9, 9, 4), /* addi t1,t1,4 */
985 MIPS32_LW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
986 MIPS32_LW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
987 MIPS32_LW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
988 MIPS32_LW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
990 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_TEXT)),
991 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_TEXT)),
992 MIPS32_JR(15), /* jr start */
993 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
996 uint32_t jmp_code[] = {
997 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
998 /* 1 */ MIPS32_LUI(15, 0), /* addr of working area added below */
999 /* 2 */ MIPS32_ORI(15, 15, 0), /* addr of working area added below */
1000 MIPS32_JR(15), /* jump to ram program */
1001 MIPS32_NOP,
1004 int retval, i;
1005 uint32_t val, ejtag_ctrl, address;
1007 if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
1008 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1010 if (write_t) {
1011 handler_code[8] = MIPS32_LW(11, 0, 8); /* load data from probe at fastdata area */
1012 handler_code[9] = MIPS32_SW(11, 0, 9); /* store data to RAM @ r9 */
1013 } else {
1014 handler_code[8] = MIPS32_LW(11, 0, 9); /* load data from RAM @ r9 */
1015 handler_code[9] = MIPS32_SW(11, 0, 8); /* store data to probe at fastdata area */
1018 /* write program into RAM */
1019 if (write_t != ejtag_info->fast_access_save) {
1020 mips32_pracc_write_mem_generic(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code);
1021 /* save previous operation to speed to any consecutive read/writes */
1022 ejtag_info->fast_access_save = write_t;
1025 LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler", __func__, source->address);
1027 jmp_code[1] |= UPPER16(source->address);
1028 jmp_code[2] |= LOWER16(source->address);
1030 for (i = 0; i < (int) ARRAY_SIZE(jmp_code); i++) {
1031 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1032 if (retval != ERROR_OK)
1033 return retval;
1035 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
1036 mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]);
1038 /* Clear the access pending bit (let the processor eat!) */
1039 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
1040 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
1041 mips_ejtag_drscan_32_out(ejtag_info, ejtag_ctrl);
1044 /* wait PrAcc pending bit for FASTDATA write */
1045 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1046 if (retval != ERROR_OK)
1047 return retval;
1049 /* next fetch to dmseg should be in FASTDATA_AREA, check */
1050 address = 0;
1051 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
1052 retval = mips_ejtag_drscan_32(ejtag_info, &address);
1053 if (retval != ERROR_OK)
1054 return retval;
1056 if (address != MIPS32_PRACC_FASTDATA_AREA)
1057 return ERROR_FAIL;
1059 /* Send the load start address */
1060 val = addr;
1061 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
1062 mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
1064 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1065 if (retval != ERROR_OK)
1066 return retval;
1068 /* Send the load end address */
1069 val = addr + (count - 1) * 4;
1070 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
1071 mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
1073 unsigned num_clocks = 0; /* like in legacy code */
1074 if (ejtag_info->mode != 0)
1075 num_clocks = ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
1077 for (i = 0; i < count; i++) {
1078 jtag_add_clocks(num_clocks);
1079 retval = mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++);
1080 if (retval != ERROR_OK)
1081 return retval;
1084 retval = jtag_execute_queue();
1085 if (retval != ERROR_OK) {
1086 LOG_ERROR("fastdata load failed");
1087 return retval;
1090 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1091 if (retval != ERROR_OK)
1092 return retval;
1094 address = 0;
1095 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
1096 retval = mips_ejtag_drscan_32(ejtag_info, &address);
1097 if (retval != ERROR_OK)
1098 return retval;
1100 if (address != MIPS32_PRACC_TEXT)
1101 LOG_ERROR("mini program did not return to start");
1103 return retval;