flash/nor/rp2040: check target halted before flash operation
[openocd.git] / src / target / cortex_a.c
blob7286a305ba3b6919477005b716e652aed7503b08
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 /***************************************************************************
4 * Copyright (C) 2005 by Dominic Rath *
5 * Dominic.Rath@gmx.de *
6 * *
7 * Copyright (C) 2006 by Magnus Lundin *
8 * lundin@mlu.mine.nu *
9 * *
10 * Copyright (C) 2008 by Spencer Oliver *
11 * spen@spen-soft.co.uk *
12 * *
13 * Copyright (C) 2009 by Dirk Behme *
14 * dirk.behme@gmail.com - copy from cortex_m3 *
15 * *
16 * Copyright (C) 2010 Øyvind Harboe *
17 * oyvind.harboe@zylin.com *
18 * *
19 * Copyright (C) ST-Ericsson SA 2011 *
20 * michel.jaouen@stericsson.com : smp minimum support *
21 * *
22 * Copyright (C) Broadcom 2012 *
23 * ehunter@broadcom.com : Cortex-R4 support *
24 * *
25 * Copyright (C) 2013 Kamal Dasu *
26 * kdasu.kdev@gmail.com *
27 * *
28 * Copyright (C) 2016 Chengyu Zheng *
29 * chengyu.zheng@polimi.it : watchpoint support *
30 * *
31 * Cortex-A8(tm) TRM, ARM DDI 0344H *
32 * Cortex-A9(tm) TRM, ARM DDI 0407F *
33 * Cortex-A4(tm) TRM, ARM DDI 0363E *
34 * Cortex-A15(tm)TRM, ARM DDI 0438C *
35 * *
36 ***************************************************************************/
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
42 #include "breakpoints.h"
43 #include "cortex_a.h"
44 #include "register.h"
45 #include "armv7a_mmu.h"
46 #include "target_request.h"
47 #include "target_type.h"
48 #include "arm_coresight.h"
49 #include "arm_opcodes.h"
50 #include "arm_semihosting.h"
51 #include "jtag/interface.h"
52 #include "transport/transport.h"
53 #include "smp.h"
54 #include <helper/bits.h>
55 #include <helper/time_support.h>
57 static int cortex_a_poll(struct target *target);
58 static int cortex_a_debug_entry(struct target *target);
59 static int cortex_a_restore_context(struct target *target, bool bpwp);
60 static int cortex_a_set_breakpoint(struct target *target,
61 struct breakpoint *breakpoint, uint8_t matchmode);
62 static int cortex_a_set_context_breakpoint(struct target *target,
63 struct breakpoint *breakpoint, uint8_t matchmode);
64 static int cortex_a_set_hybrid_breakpoint(struct target *target,
65 struct breakpoint *breakpoint);
66 static int cortex_a_unset_breakpoint(struct target *target,
67 struct breakpoint *breakpoint);
68 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
69 uint32_t value, uint32_t *dscr);
70 static int cortex_a_mmu(struct target *target, int *enabled);
71 static int cortex_a_mmu_modify(struct target *target, int enable);
72 static int cortex_a_virt2phys(struct target *target,
73 target_addr_t virt, target_addr_t *phys);
74 static int cortex_a_read_cpu_memory(struct target *target,
75 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
77 static unsigned int ilog2(unsigned int x)
79 unsigned int y = 0;
80 x /= 2;
81 while (x) {
82 ++y;
83 x /= 2;
85 return y;
88 /* restore cp15_control_reg at resume */
89 static int cortex_a_restore_cp15_control_reg(struct target *target)
91 int retval = ERROR_OK;
92 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
93 struct armv7a_common *armv7a = target_to_armv7a(target);
95 if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
96 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
97 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
98 retval = armv7a->arm.mcr(target, 15,
99 0, 0, /* op1, op2 */
100 1, 0, /* CRn, CRm */
101 cortex_a->cp15_control_reg);
103 return retval;
107 * Set up ARM core for memory access.
108 * If !phys_access, switch to SVC mode and make sure MMU is on
109 * If phys_access, switch off mmu
111 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
113 struct armv7a_common *armv7a = target_to_armv7a(target);
114 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
115 int mmu_enabled = 0;
117 if (phys_access == 0) {
118 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
119 cortex_a_mmu(target, &mmu_enabled);
120 if (mmu_enabled)
121 cortex_a_mmu_modify(target, 1);
122 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
123 /* overwrite DACR to all-manager */
124 armv7a->arm.mcr(target, 15,
125 0, 0, 3, 0,
126 0xFFFFFFFF);
128 } else {
129 cortex_a_mmu(target, &mmu_enabled);
130 if (mmu_enabled)
131 cortex_a_mmu_modify(target, 0);
133 return ERROR_OK;
137 * Restore ARM core after memory access.
138 * If !phys_access, switch to previous mode
139 * If phys_access, restore MMU setting
141 static int cortex_a_post_memaccess(struct target *target, int phys_access)
143 struct armv7a_common *armv7a = target_to_armv7a(target);
144 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
146 if (phys_access == 0) {
147 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
148 /* restore */
149 armv7a->arm.mcr(target, 15,
150 0, 0, 3, 0,
151 cortex_a->cp15_dacr_reg);
153 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
154 } else {
155 int mmu_enabled = 0;
156 cortex_a_mmu(target, &mmu_enabled);
157 if (mmu_enabled)
158 cortex_a_mmu_modify(target, 1);
160 return ERROR_OK;
164 /* modify cp15_control_reg in order to enable or disable mmu for :
165 * - virt2phys address conversion
166 * - read or write memory in phys or virt address */
167 static int cortex_a_mmu_modify(struct target *target, int enable)
169 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
170 struct armv7a_common *armv7a = target_to_armv7a(target);
171 int retval = ERROR_OK;
172 int need_write = 0;
174 if (enable) {
175 /* if mmu enabled at target stop and mmu not enable */
176 if (!(cortex_a->cp15_control_reg & 0x1U)) {
177 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
178 return ERROR_FAIL;
180 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
181 cortex_a->cp15_control_reg_curr |= 0x1U;
182 need_write = 1;
184 } else {
185 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
186 cortex_a->cp15_control_reg_curr &= ~0x1U;
187 need_write = 1;
191 if (need_write) {
192 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
193 enable ? "enable mmu" : "disable mmu",
194 cortex_a->cp15_control_reg_curr);
196 retval = armv7a->arm.mcr(target, 15,
197 0, 0, /* op1, op2 */
198 1, 0, /* CRn, CRm */
199 cortex_a->cp15_control_reg_curr);
201 return retval;
205 * Cortex-A Basic debug access, very low level assumes state is saved
207 static int cortex_a_init_debug_access(struct target *target)
209 struct armv7a_common *armv7a = target_to_armv7a(target);
210 uint32_t dscr;
211 int retval;
213 /* lock memory-mapped access to debug registers to prevent
214 * software interference */
215 retval = mem_ap_write_u32(armv7a->debug_ap,
216 armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
217 if (retval != ERROR_OK)
218 return retval;
220 /* Disable cacheline fills and force cache write-through in debug state */
221 retval = mem_ap_write_u32(armv7a->debug_ap,
222 armv7a->debug_base + CPUDBG_DSCCR, 0);
223 if (retval != ERROR_OK)
224 return retval;
226 /* Disable TLB lookup and refill/eviction in debug state */
227 retval = mem_ap_write_u32(armv7a->debug_ap,
228 armv7a->debug_base + CPUDBG_DSMCR, 0);
229 if (retval != ERROR_OK)
230 return retval;
232 retval = dap_run(armv7a->debug_ap->dap);
233 if (retval != ERROR_OK)
234 return retval;
236 /* Enabling of instruction execution in debug mode is done in debug_entry code */
238 /* Resync breakpoint registers */
240 /* Enable halt for breakpoint, watchpoint and vector catch */
241 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
242 armv7a->debug_base + CPUDBG_DSCR, &dscr);
243 if (retval != ERROR_OK)
244 return retval;
245 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
246 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
247 if (retval != ERROR_OK)
248 return retval;
250 /* Since this is likely called from init or reset, update target state information*/
251 return cortex_a_poll(target);
254 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
256 /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
257 * Writes final value of DSCR into *dscr. Pass force to force always
258 * reading DSCR at least once. */
259 struct armv7a_common *armv7a = target_to_armv7a(target);
260 int retval;
262 if (force) {
263 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
264 armv7a->debug_base + CPUDBG_DSCR, dscr);
265 if (retval != ERROR_OK) {
266 LOG_ERROR("Could not read DSCR register");
267 return retval;
271 retval = cortex_a_wait_dscr_bits(target, DSCR_INSTR_COMP, DSCR_INSTR_COMP, dscr);
272 if (retval != ERROR_OK)
273 LOG_ERROR("Error waiting for InstrCompl=1");
274 return retval;
277 /* To reduce needless round-trips, pass in a pointer to the current
278 * DSCR value. Initialize it to zero if you just need to know the
279 * value on return from this function; or DSCR_INSTR_COMP if you
280 * happen to know that no instruction is pending.
282 static int cortex_a_exec_opcode(struct target *target,
283 uint32_t opcode, uint32_t *dscr_p)
285 uint32_t dscr;
286 int retval;
287 struct armv7a_common *armv7a = target_to_armv7a(target);
289 dscr = dscr_p ? *dscr_p : 0;
291 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
293 /* Wait for InstrCompl bit to be set */
294 retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
295 if (retval != ERROR_OK)
296 return retval;
298 retval = mem_ap_write_u32(armv7a->debug_ap,
299 armv7a->debug_base + CPUDBG_ITR, opcode);
300 if (retval != ERROR_OK)
301 return retval;
303 /* Wait for InstrCompl bit to be set */
304 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
305 if (retval != ERROR_OK) {
306 LOG_ERROR("Error waiting for cortex_a_exec_opcode");
307 return retval;
310 if (dscr_p)
311 *dscr_p = dscr;
313 return retval;
316 /* Write to memory mapped registers directly with no cache or mmu handling */
317 static int cortex_a_dap_write_memap_register_u32(struct target *target,
318 uint32_t address,
319 uint32_t value)
321 int retval;
322 struct armv7a_common *armv7a = target_to_armv7a(target);
324 retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
326 return retval;
330 * Cortex-A implementation of Debug Programmer's Model
332 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
333 * so there's no need to poll for it before executing an instruction.
335 * NOTE that in several of these cases the "stall" mode might be useful.
336 * It'd let us queue a few operations together... prepare/finish might
337 * be the places to enable/disable that mode.
340 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
342 return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
345 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
347 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
348 return mem_ap_write_u32(a->armv7a_common.debug_ap,
349 a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
352 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
353 uint32_t *dscr_p)
355 uint32_t dscr = DSCR_INSTR_COMP;
356 int retval;
358 if (dscr_p)
359 dscr = *dscr_p;
361 /* Wait for DTRRXfull */
362 retval = cortex_a_wait_dscr_bits(a->armv7a_common.arm.target,
363 DSCR_DTR_TX_FULL, DSCR_DTR_TX_FULL, &dscr);
364 if (retval != ERROR_OK) {
365 LOG_ERROR("Error waiting for read dcc");
366 return retval;
369 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
370 a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
371 if (retval != ERROR_OK)
372 return retval;
373 /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
375 if (dscr_p)
376 *dscr_p = dscr;
378 return retval;
381 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
383 struct cortex_a_common *a = dpm_to_a(dpm);
384 uint32_t dscr;
385 int retval;
387 /* set up invariant: INSTR_COMP is set after ever DPM operation */
388 retval = cortex_a_wait_instrcmpl(dpm->arm->target, &dscr, true);
389 if (retval != ERROR_OK) {
390 LOG_ERROR("Error waiting for dpm prepare");
391 return retval;
394 /* this "should never happen" ... */
395 if (dscr & DSCR_DTR_RX_FULL) {
396 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
397 /* Clear DCCRX */
398 retval = cortex_a_exec_opcode(
399 a->armv7a_common.arm.target,
400 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
401 &dscr);
402 if (retval != ERROR_OK)
403 return retval;
406 return retval;
409 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
411 /* REVISIT what could be done here? */
412 return ERROR_OK;
415 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
416 uint32_t opcode, uint32_t data)
418 struct cortex_a_common *a = dpm_to_a(dpm);
419 int retval;
420 uint32_t dscr = DSCR_INSTR_COMP;
422 retval = cortex_a_write_dcc(a, data);
423 if (retval != ERROR_OK)
424 return retval;
426 return cortex_a_exec_opcode(
427 a->armv7a_common.arm.target,
428 opcode,
429 &dscr);
432 static int cortex_a_instr_write_data_rt_dcc(struct arm_dpm *dpm,
433 uint8_t rt, uint32_t data)
435 struct cortex_a_common *a = dpm_to_a(dpm);
436 uint32_t dscr = DSCR_INSTR_COMP;
437 int retval;
439 if (rt > 15)
440 return ERROR_TARGET_INVALID;
442 retval = cortex_a_write_dcc(a, data);
443 if (retval != ERROR_OK)
444 return retval;
446 /* DCCRX to Rt, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
447 return cortex_a_exec_opcode(
448 a->armv7a_common.arm.target,
449 ARMV4_5_MRC(14, 0, rt, 0, 5, 0),
450 &dscr);
453 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
454 uint32_t opcode, uint32_t data)
456 struct cortex_a_common *a = dpm_to_a(dpm);
457 uint32_t dscr = DSCR_INSTR_COMP;
458 int retval;
460 retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data);
461 if (retval != ERROR_OK)
462 return retval;
464 /* then the opcode, taking data from R0 */
465 retval = cortex_a_exec_opcode(
466 a->armv7a_common.arm.target,
467 opcode,
468 &dscr);
470 return retval;
473 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
475 struct target *target = dpm->arm->target;
476 uint32_t dscr = DSCR_INSTR_COMP;
478 /* "Prefetch flush" after modifying execution status in CPSR */
479 return cortex_a_exec_opcode(target,
480 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
481 &dscr);
484 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
485 uint32_t opcode, uint32_t *data)
487 struct cortex_a_common *a = dpm_to_a(dpm);
488 int retval;
489 uint32_t dscr = DSCR_INSTR_COMP;
491 /* the opcode, writing data to DCC */
492 retval = cortex_a_exec_opcode(
493 a->armv7a_common.arm.target,
494 opcode,
495 &dscr);
496 if (retval != ERROR_OK)
497 return retval;
499 return cortex_a_read_dcc(a, data, &dscr);
502 static int cortex_a_instr_read_data_rt_dcc(struct arm_dpm *dpm,
503 uint8_t rt, uint32_t *data)
505 struct cortex_a_common *a = dpm_to_a(dpm);
506 uint32_t dscr = DSCR_INSTR_COMP;
507 int retval;
509 if (rt > 15)
510 return ERROR_TARGET_INVALID;
512 retval = cortex_a_exec_opcode(
513 a->armv7a_common.arm.target,
514 ARMV4_5_MCR(14, 0, rt, 0, 5, 0),
515 &dscr);
516 if (retval != ERROR_OK)
517 return retval;
519 return cortex_a_read_dcc(a, data, &dscr);
522 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
523 uint32_t opcode, uint32_t *data)
525 struct cortex_a_common *a = dpm_to_a(dpm);
526 uint32_t dscr = DSCR_INSTR_COMP;
527 int retval;
529 /* the opcode, writing data to R0 */
530 retval = cortex_a_exec_opcode(
531 a->armv7a_common.arm.target,
532 opcode,
533 &dscr);
534 if (retval != ERROR_OK)
535 return retval;
537 /* write R0 to DCC */
538 return cortex_a_instr_read_data_rt_dcc(dpm, 0, data);
541 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
542 uint32_t addr, uint32_t control)
544 struct cortex_a_common *a = dpm_to_a(dpm);
545 uint32_t vr = a->armv7a_common.debug_base;
546 uint32_t cr = a->armv7a_common.debug_base;
547 int retval;
549 switch (index_t) {
550 case 0 ... 15: /* breakpoints */
551 vr += CPUDBG_BVR_BASE;
552 cr += CPUDBG_BCR_BASE;
553 break;
554 case 16 ... 31: /* watchpoints */
555 vr += CPUDBG_WVR_BASE;
556 cr += CPUDBG_WCR_BASE;
557 index_t -= 16;
558 break;
559 default:
560 return ERROR_FAIL;
562 vr += 4 * index_t;
563 cr += 4 * index_t;
565 LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
566 (unsigned) vr, (unsigned) cr);
568 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
569 vr, addr);
570 if (retval != ERROR_OK)
571 return retval;
572 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
573 cr, control);
574 return retval;
577 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
579 struct cortex_a_common *a = dpm_to_a(dpm);
580 uint32_t cr;
582 switch (index_t) {
583 case 0 ... 15:
584 cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
585 break;
586 case 16 ... 31:
587 cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
588 index_t -= 16;
589 break;
590 default:
591 return ERROR_FAIL;
593 cr += 4 * index_t;
595 LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
597 /* clear control register */
598 return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
601 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
603 struct arm_dpm *dpm = &a->armv7a_common.dpm;
604 int retval;
606 dpm->arm = &a->armv7a_common.arm;
607 dpm->didr = didr;
609 dpm->prepare = cortex_a_dpm_prepare;
610 dpm->finish = cortex_a_dpm_finish;
612 dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
613 dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
614 dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
616 dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
617 dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
619 dpm->bpwp_enable = cortex_a_bpwp_enable;
620 dpm->bpwp_disable = cortex_a_bpwp_disable;
622 retval = arm_dpm_setup(dpm);
623 if (retval == ERROR_OK)
624 retval = arm_dpm_initialize(dpm);
626 return retval;
628 static struct target *get_cortex_a(struct target *target, int32_t coreid)
630 struct target_list *head;
632 foreach_smp_target(head, target->smp_targets) {
633 struct target *curr = head->target;
634 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
635 return curr;
637 return target;
639 static int cortex_a_halt(struct target *target);
641 static int cortex_a_halt_smp(struct target *target)
643 int retval = 0;
644 struct target_list *head;
646 foreach_smp_target(head, target->smp_targets) {
647 struct target *curr = head->target;
648 if ((curr != target) && (curr->state != TARGET_HALTED)
649 && target_was_examined(curr))
650 retval += cortex_a_halt(curr);
652 return retval;
655 static int update_halt_gdb(struct target *target)
657 struct target *gdb_target = NULL;
658 struct target_list *head;
659 struct target *curr;
660 int retval = 0;
662 if (target->gdb_service && target->gdb_service->core[0] == -1) {
663 target->gdb_service->target = target;
664 target->gdb_service->core[0] = target->coreid;
665 retval += cortex_a_halt_smp(target);
668 if (target->gdb_service)
669 gdb_target = target->gdb_service->target;
671 foreach_smp_target(head, target->smp_targets) {
672 curr = head->target;
673 /* skip calling context */
674 if (curr == target)
675 continue;
676 if (!target_was_examined(curr))
677 continue;
678 /* skip targets that were already halted */
679 if (curr->state == TARGET_HALTED)
680 continue;
681 /* Skip gdb_target; it alerts GDB so has to be polled as last one */
682 if (curr == gdb_target)
683 continue;
685 /* avoid recursion in cortex_a_poll() */
686 curr->smp = 0;
687 cortex_a_poll(curr);
688 curr->smp = 1;
691 /* after all targets were updated, poll the gdb serving target */
692 if (gdb_target && gdb_target != target)
693 cortex_a_poll(gdb_target);
694 return retval;
698 * Cortex-A Run control
701 static int cortex_a_poll(struct target *target)
703 int retval = ERROR_OK;
704 uint32_t dscr;
705 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
706 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
707 enum target_state prev_target_state = target->state;
708 /* toggle to another core is done by gdb as follow */
709 /* maint packet J core_id */
710 /* continue */
711 /* the next polling trigger an halt event sent to gdb */
712 if ((target->state == TARGET_HALTED) && (target->smp) &&
713 (target->gdb_service) &&
714 (!target->gdb_service->target)) {
715 target->gdb_service->target =
716 get_cortex_a(target, target->gdb_service->core[1]);
717 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
718 return retval;
720 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
721 armv7a->debug_base + CPUDBG_DSCR, &dscr);
722 if (retval != ERROR_OK)
723 return retval;
724 cortex_a->cpudbg_dscr = dscr;
726 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
727 if (prev_target_state != TARGET_HALTED) {
728 /* We have a halting debug event */
729 LOG_DEBUG("Target halted");
730 target->state = TARGET_HALTED;
732 retval = cortex_a_debug_entry(target);
733 if (retval != ERROR_OK)
734 return retval;
736 if (target->smp) {
737 retval = update_halt_gdb(target);
738 if (retval != ERROR_OK)
739 return retval;
742 if (prev_target_state == TARGET_DEBUG_RUNNING) {
743 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
744 } else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
745 if (arm_semihosting(target, &retval) != 0)
746 return retval;
748 target_call_event_callbacks(target,
749 TARGET_EVENT_HALTED);
752 } else
753 target->state = TARGET_RUNNING;
755 return retval;
758 static int cortex_a_halt(struct target *target)
760 int retval;
761 uint32_t dscr;
762 struct armv7a_common *armv7a = target_to_armv7a(target);
765 * Tell the core to be halted by writing DRCR with 0x1
766 * and then wait for the core to be halted.
768 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
769 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
770 if (retval != ERROR_OK)
771 return retval;
773 dscr = 0; /* force read of dscr */
774 retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_HALTED,
775 DSCR_CORE_HALTED, &dscr);
776 if (retval != ERROR_OK) {
777 LOG_ERROR("Error waiting for halt");
778 return retval;
781 target->debug_reason = DBG_REASON_DBGRQ;
783 return ERROR_OK;
786 static int cortex_a_internal_restore(struct target *target, int current,
787 target_addr_t *address, int handle_breakpoints, int debug_execution)
789 struct armv7a_common *armv7a = target_to_armv7a(target);
790 struct arm *arm = &armv7a->arm;
791 int retval;
792 uint32_t resume_pc;
794 if (!debug_execution)
795 target_free_all_working_areas(target);
797 #if 0
798 if (debug_execution) {
799 /* Disable interrupts */
800 /* We disable interrupts in the PRIMASK register instead of
801 * masking with C_MASKINTS,
802 * This is probably the same issue as Cortex-M3 Errata 377493:
803 * C_MASKINTS in parallel with disabled interrupts can cause
804 * local faults to not be taken. */
805 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
806 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
807 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
809 /* Make sure we are in Thumb mode */
810 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_XPSR].value, 0, 32,
811 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_XPSR].value, 0,
812 32) | (1 << 24));
813 armv7m->core_cache->reg_list[ARMV7M_XPSR].dirty = true;
814 armv7m->core_cache->reg_list[ARMV7M_XPSR].valid = true;
816 #endif
818 /* current = 1: continue on current pc, otherwise continue at <address> */
819 resume_pc = buf_get_u32(arm->pc->value, 0, 32);
820 if (!current)
821 resume_pc = *address;
822 else
823 *address = resume_pc;
825 /* Make sure that the Armv7 gdb thumb fixups does not
826 * kill the return address
828 switch (arm->core_state) {
829 case ARM_STATE_ARM:
830 resume_pc &= 0xFFFFFFFC;
831 break;
832 case ARM_STATE_THUMB:
833 case ARM_STATE_THUMB_EE:
834 /* When the return address is loaded into PC
835 * bit 0 must be 1 to stay in Thumb state
837 resume_pc |= 0x1;
838 break;
839 case ARM_STATE_JAZELLE:
840 LOG_ERROR("How do I resume into Jazelle state??");
841 return ERROR_FAIL;
842 case ARM_STATE_AARCH64:
843 LOG_ERROR("Shouldn't be in AARCH64 state");
844 return ERROR_FAIL;
846 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
847 buf_set_u32(arm->pc->value, 0, 32, resume_pc);
848 arm->pc->dirty = true;
849 arm->pc->valid = true;
851 /* restore dpm_mode at system halt */
852 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
853 /* called it now before restoring context because it uses cpu
854 * register r0 for restoring cp15 control register */
855 retval = cortex_a_restore_cp15_control_reg(target);
856 if (retval != ERROR_OK)
857 return retval;
858 retval = cortex_a_restore_context(target, handle_breakpoints);
859 if (retval != ERROR_OK)
860 return retval;
861 target->debug_reason = DBG_REASON_NOTHALTED;
862 target->state = TARGET_RUNNING;
864 /* registers are now invalid */
865 register_cache_invalidate(arm->core_cache);
867 #if 0
868 /* the front-end may request us not to handle breakpoints */
869 if (handle_breakpoints) {
870 /* Single step past breakpoint at current address */
871 breakpoint = breakpoint_find(target, resume_pc);
872 if (breakpoint) {
873 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
874 cortex_m3_unset_breakpoint(target, breakpoint);
875 cortex_m3_single_step_core(target);
876 cortex_m3_set_breakpoint(target, breakpoint);
880 #endif
881 return retval;
884 static int cortex_a_internal_restart(struct target *target)
886 struct armv7a_common *armv7a = target_to_armv7a(target);
887 struct arm *arm = &armv7a->arm;
888 int retval;
889 uint32_t dscr;
891 * * Restart core and wait for it to be started. Clear ITRen and sticky
892 * * exception flags: see ARMv7 ARM, C5.9.
894 * REVISIT: for single stepping, we probably want to
895 * disable IRQs by default, with optional override...
898 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
899 armv7a->debug_base + CPUDBG_DSCR, &dscr);
900 if (retval != ERROR_OK)
901 return retval;
903 if ((dscr & DSCR_INSTR_COMP) == 0)
904 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
906 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
907 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
908 if (retval != ERROR_OK)
909 return retval;
911 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
912 armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
913 DRCR_CLEAR_EXCEPTIONS);
914 if (retval != ERROR_OK)
915 return retval;
917 dscr = 0; /* force read of dscr */
918 retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_RESTARTED,
919 DSCR_CORE_RESTARTED, &dscr);
920 if (retval != ERROR_OK) {
921 LOG_ERROR("Error waiting for resume");
922 return retval;
925 target->debug_reason = DBG_REASON_NOTHALTED;
926 target->state = TARGET_RUNNING;
928 /* registers are now invalid */
929 register_cache_invalidate(arm->core_cache);
931 return ERROR_OK;
934 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
936 int retval = 0;
937 struct target_list *head;
938 target_addr_t address;
940 foreach_smp_target(head, target->smp_targets) {
941 struct target *curr = head->target;
942 if ((curr != target) && (curr->state != TARGET_RUNNING)
943 && target_was_examined(curr)) {
944 /* resume current address , not in step mode */
945 retval += cortex_a_internal_restore(curr, 1, &address,
946 handle_breakpoints, 0);
947 retval += cortex_a_internal_restart(curr);
950 return retval;
953 static int cortex_a_resume(struct target *target, int current,
954 target_addr_t address, int handle_breakpoints, int debug_execution)
956 int retval = 0;
957 /* dummy resume for smp toggle in order to reduce gdb impact */
958 if ((target->smp) && (target->gdb_service->core[1] != -1)) {
959 /* simulate a start and halt of target */
960 target->gdb_service->target = NULL;
961 target->gdb_service->core[0] = target->gdb_service->core[1];
962 /* fake resume at next poll we play the target core[1], see poll*/
963 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
964 return 0;
966 cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
967 if (target->smp) {
968 target->gdb_service->core[0] = -1;
969 retval = cortex_a_restore_smp(target, handle_breakpoints);
970 if (retval != ERROR_OK)
971 return retval;
973 cortex_a_internal_restart(target);
975 if (!debug_execution) {
976 target->state = TARGET_RUNNING;
977 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
978 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
979 } else {
980 target->state = TARGET_DEBUG_RUNNING;
981 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
982 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
985 return ERROR_OK;
988 static int cortex_a_debug_entry(struct target *target)
990 uint32_t dscr;
991 int retval = ERROR_OK;
992 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
993 struct armv7a_common *armv7a = target_to_armv7a(target);
994 struct arm *arm = &armv7a->arm;
996 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
998 /* REVISIT surely we should not re-read DSCR !! */
999 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1000 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1001 if (retval != ERROR_OK)
1002 return retval;
1004 /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1005 * imprecise data aborts get discarded by issuing a Data
1006 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1009 /* Enable the ITR execution once we are in debug mode */
1010 dscr |= DSCR_ITR_EN;
1011 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1012 armv7a->debug_base + CPUDBG_DSCR, dscr);
1013 if (retval != ERROR_OK)
1014 return retval;
1016 /* Examine debug reason */
1017 arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1019 /* save address of instruction that triggered the watchpoint? */
1020 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1021 uint32_t wfar;
1023 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1024 armv7a->debug_base + CPUDBG_WFAR,
1025 &wfar);
1026 if (retval != ERROR_OK)
1027 return retval;
1028 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1031 /* First load register accessible through core debug port */
1032 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1033 if (retval != ERROR_OK)
1034 return retval;
1036 if (arm->spsr) {
1037 /* read SPSR */
1038 retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
1039 if (retval != ERROR_OK)
1040 return retval;
1043 #if 0
1044 /* TODO, Move this */
1045 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1046 cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1047 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1049 cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1050 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1052 cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1053 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1054 #endif
1056 /* Are we in an exception handler */
1057 /* armv4_5->exception_number = 0; */
1058 if (armv7a->post_debug_entry) {
1059 retval = armv7a->post_debug_entry(target);
1060 if (retval != ERROR_OK)
1061 return retval;
1064 return retval;
1067 static int cortex_a_post_debug_entry(struct target *target)
1069 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1070 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1071 int retval;
1073 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1074 retval = armv7a->arm.mrc(target, 15,
1075 0, 0, /* op1, op2 */
1076 1, 0, /* CRn, CRm */
1077 &cortex_a->cp15_control_reg);
1078 if (retval != ERROR_OK)
1079 return retval;
1080 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1081 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1083 if (!armv7a->is_armv7r)
1084 armv7a_read_ttbcr(target);
1086 if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1087 armv7a_identify_cache(target);
1089 if (armv7a->is_armv7r) {
1090 armv7a->armv7a_mmu.mmu_enabled = 0;
1091 } else {
1092 armv7a->armv7a_mmu.mmu_enabled =
1093 (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1095 armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1096 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1097 armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1098 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1099 cortex_a->curr_mode = armv7a->arm.core_mode;
1101 /* switch to SVC mode to read DACR */
1102 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1103 armv7a->arm.mrc(target, 15,
1104 0, 0, 3, 0,
1105 &cortex_a->cp15_dacr_reg);
1107 LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1108 cortex_a->cp15_dacr_reg);
1110 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1111 return ERROR_OK;
1114 static int cortex_a_set_dscr_bits(struct target *target,
1115 unsigned long bit_mask, unsigned long value)
1117 struct armv7a_common *armv7a = target_to_armv7a(target);
1118 uint32_t dscr;
1120 /* Read DSCR */
1121 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1122 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1123 if (retval != ERROR_OK)
1124 return retval;
1126 /* clear bitfield */
1127 dscr &= ~bit_mask;
1128 /* put new value */
1129 dscr |= value & bit_mask;
1131 /* write new DSCR */
1132 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1133 armv7a->debug_base + CPUDBG_DSCR, dscr);
1134 return retval;
1137 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1138 int handle_breakpoints)
1140 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1141 struct armv7a_common *armv7a = target_to_armv7a(target);
1142 struct arm *arm = &armv7a->arm;
1143 struct breakpoint *breakpoint = NULL;
1144 struct breakpoint stepbreakpoint;
1145 struct reg *r;
1146 int retval;
1148 if (target->state != TARGET_HALTED) {
1149 LOG_WARNING("target not halted");
1150 return ERROR_TARGET_NOT_HALTED;
1153 /* current = 1: continue on current pc, otherwise continue at <address> */
1154 r = arm->pc;
1155 if (!current)
1156 buf_set_u32(r->value, 0, 32, address);
1157 else
1158 address = buf_get_u32(r->value, 0, 32);
1160 /* The front-end may request us not to handle breakpoints.
1161 * But since Cortex-A uses breakpoint for single step,
1162 * we MUST handle breakpoints.
1164 handle_breakpoints = 1;
1165 if (handle_breakpoints) {
1166 breakpoint = breakpoint_find(target, address);
1167 if (breakpoint)
1168 cortex_a_unset_breakpoint(target, breakpoint);
1171 /* Setup single step breakpoint */
1172 stepbreakpoint.address = address;
1173 stepbreakpoint.asid = 0;
1174 stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1175 ? 2 : 4;
1176 stepbreakpoint.type = BKPT_HARD;
1177 stepbreakpoint.is_set = false;
1179 /* Disable interrupts during single step if requested */
1180 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1181 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1182 if (retval != ERROR_OK)
1183 return retval;
1186 /* Break on IVA mismatch */
1187 cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1189 target->debug_reason = DBG_REASON_SINGLESTEP;
1191 retval = cortex_a_resume(target, 1, address, 0, 0);
1192 if (retval != ERROR_OK)
1193 return retval;
1195 int64_t then = timeval_ms();
1196 while (target->state != TARGET_HALTED) {
1197 retval = cortex_a_poll(target);
1198 if (retval != ERROR_OK)
1199 return retval;
1200 if (target->state == TARGET_HALTED)
1201 break;
1202 if (timeval_ms() > then + 1000) {
1203 LOG_ERROR("timeout waiting for target halt");
1204 return ERROR_FAIL;
1208 cortex_a_unset_breakpoint(target, &stepbreakpoint);
1210 /* Re-enable interrupts if they were disabled */
1211 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1212 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1213 if (retval != ERROR_OK)
1214 return retval;
1218 target->debug_reason = DBG_REASON_BREAKPOINT;
1220 if (breakpoint)
1221 cortex_a_set_breakpoint(target, breakpoint, 0);
1223 if (target->state != TARGET_HALTED)
1224 LOG_DEBUG("target stepped");
1226 return ERROR_OK;
1229 static int cortex_a_restore_context(struct target *target, bool bpwp)
1231 struct armv7a_common *armv7a = target_to_armv7a(target);
1233 LOG_DEBUG(" ");
1235 if (armv7a->pre_restore_context)
1236 armv7a->pre_restore_context(target);
1238 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1242 * Cortex-A Breakpoint and watchpoint functions
1245 /* Setup hardware Breakpoint Register Pair */
1246 static int cortex_a_set_breakpoint(struct target *target,
1247 struct breakpoint *breakpoint, uint8_t matchmode)
1249 int retval;
1250 int brp_i = 0;
1251 uint32_t control;
1252 uint8_t byte_addr_select = 0x0F;
1253 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1254 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1255 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1257 if (breakpoint->is_set) {
1258 LOG_WARNING("breakpoint already set");
1259 return ERROR_OK;
1262 if (breakpoint->type == BKPT_HARD) {
1263 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1264 brp_i++;
1265 if (brp_i >= cortex_a->brp_num) {
1266 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1267 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1269 breakpoint_hw_set(breakpoint, brp_i);
1270 if (breakpoint->length == 2)
1271 byte_addr_select = (3 << (breakpoint->address & 0x02));
1272 control = ((matchmode & 0x7) << 20)
1273 | (byte_addr_select << 5)
1274 | (3 << 1) | 1;
1275 brp_list[brp_i].used = true;
1276 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1277 brp_list[brp_i].control = control;
1278 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1279 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1280 brp_list[brp_i].value);
1281 if (retval != ERROR_OK)
1282 return retval;
1283 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1284 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1285 brp_list[brp_i].control);
1286 if (retval != ERROR_OK)
1287 return retval;
1288 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1289 brp_list[brp_i].control,
1290 brp_list[brp_i].value);
1291 } else if (breakpoint->type == BKPT_SOFT) {
1292 uint8_t code[4];
1293 /* length == 2: Thumb breakpoint */
1294 if (breakpoint->length == 2)
1295 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1296 else
1297 /* length == 3: Thumb-2 breakpoint, actual encoding is
1298 * a regular Thumb BKPT instruction but we replace a
1299 * 32bit Thumb-2 instruction, so fix-up the breakpoint
1300 * length
1302 if (breakpoint->length == 3) {
1303 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1304 breakpoint->length = 4;
1305 } else
1306 /* length == 4, normal ARM breakpoint */
1307 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1309 retval = target_read_memory(target,
1310 breakpoint->address & 0xFFFFFFFE,
1311 breakpoint->length, 1,
1312 breakpoint->orig_instr);
1313 if (retval != ERROR_OK)
1314 return retval;
1316 /* make sure data cache is cleaned & invalidated down to PoC */
1317 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1318 armv7a_cache_flush_virt(target, breakpoint->address,
1319 breakpoint->length);
1322 retval = target_write_memory(target,
1323 breakpoint->address & 0xFFFFFFFE,
1324 breakpoint->length, 1, code);
1325 if (retval != ERROR_OK)
1326 return retval;
1328 /* update i-cache at breakpoint location */
1329 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1330 breakpoint->length);
1331 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1332 breakpoint->length);
1334 breakpoint->is_set = true;
1337 return ERROR_OK;
1340 static int cortex_a_set_context_breakpoint(struct target *target,
1341 struct breakpoint *breakpoint, uint8_t matchmode)
1343 int retval = ERROR_FAIL;
1344 int brp_i = 0;
1345 uint32_t control;
1346 uint8_t byte_addr_select = 0x0F;
1347 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1348 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1349 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1351 if (breakpoint->is_set) {
1352 LOG_WARNING("breakpoint already set");
1353 return retval;
1355 /*check available context BRPs*/
1356 while ((brp_list[brp_i].used ||
1357 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1358 brp_i++;
1360 if (brp_i >= cortex_a->brp_num) {
1361 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1362 return ERROR_FAIL;
1365 breakpoint_hw_set(breakpoint, brp_i);
1366 control = ((matchmode & 0x7) << 20)
1367 | (byte_addr_select << 5)
1368 | (3 << 1) | 1;
1369 brp_list[brp_i].used = true;
1370 brp_list[brp_i].value = (breakpoint->asid);
1371 brp_list[brp_i].control = control;
1372 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1373 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1374 brp_list[brp_i].value);
1375 if (retval != ERROR_OK)
1376 return retval;
1377 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1378 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1379 brp_list[brp_i].control);
1380 if (retval != ERROR_OK)
1381 return retval;
1382 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1383 brp_list[brp_i].control,
1384 brp_list[brp_i].value);
1385 return ERROR_OK;
1389 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1391 int retval = ERROR_FAIL;
1392 int brp_1 = 0; /* holds the contextID pair */
1393 int brp_2 = 0; /* holds the IVA pair */
1394 uint32_t control_ctx, control_iva;
1395 uint8_t ctx_byte_addr_select = 0x0F;
1396 uint8_t iva_byte_addr_select = 0x0F;
1397 uint8_t ctx_machmode = 0x03;
1398 uint8_t iva_machmode = 0x01;
1399 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1400 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1401 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1403 if (breakpoint->is_set) {
1404 LOG_WARNING("breakpoint already set");
1405 return retval;
1407 /*check available context BRPs*/
1408 while ((brp_list[brp_1].used ||
1409 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1410 brp_1++;
1412 LOG_DEBUG("brp(CTX) found num: %d", brp_1);
1413 if (brp_1 >= cortex_a->brp_num) {
1414 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1415 return ERROR_FAIL;
1418 while ((brp_list[brp_2].used ||
1419 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1420 brp_2++;
1422 LOG_DEBUG("brp(IVA) found num: %d", brp_2);
1423 if (brp_2 >= cortex_a->brp_num) {
1424 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1425 return ERROR_FAIL;
1428 breakpoint_hw_set(breakpoint, brp_1);
1429 breakpoint->linked_brp = brp_2;
1430 control_ctx = ((ctx_machmode & 0x7) << 20)
1431 | (brp_2 << 16)
1432 | (0 << 14)
1433 | (ctx_byte_addr_select << 5)
1434 | (3 << 1) | 1;
1435 brp_list[brp_1].used = true;
1436 brp_list[brp_1].value = (breakpoint->asid);
1437 brp_list[brp_1].control = control_ctx;
1438 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1439 + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].brpn,
1440 brp_list[brp_1].value);
1441 if (retval != ERROR_OK)
1442 return retval;
1443 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1444 + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].brpn,
1445 brp_list[brp_1].control);
1446 if (retval != ERROR_OK)
1447 return retval;
1449 control_iva = ((iva_machmode & 0x7) << 20)
1450 | (brp_1 << 16)
1451 | (iva_byte_addr_select << 5)
1452 | (3 << 1) | 1;
1453 brp_list[brp_2].used = true;
1454 brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1455 brp_list[brp_2].control = control_iva;
1456 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1457 + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].brpn,
1458 brp_list[brp_2].value);
1459 if (retval != ERROR_OK)
1460 return retval;
1461 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1462 + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].brpn,
1463 brp_list[brp_2].control);
1464 if (retval != ERROR_OK)
1465 return retval;
1467 return ERROR_OK;
1470 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1472 int retval;
1473 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1474 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1475 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1477 if (!breakpoint->is_set) {
1478 LOG_WARNING("breakpoint not set");
1479 return ERROR_OK;
1482 if (breakpoint->type == BKPT_HARD) {
1483 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1484 int brp_i = breakpoint->number;
1485 int brp_j = breakpoint->linked_brp;
1486 if (brp_i >= cortex_a->brp_num) {
1487 LOG_DEBUG("Invalid BRP number in breakpoint");
1488 return ERROR_OK;
1490 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1491 brp_list[brp_i].control, brp_list[brp_i].value);
1492 brp_list[brp_i].used = false;
1493 brp_list[brp_i].value = 0;
1494 brp_list[brp_i].control = 0;
1495 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1496 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1497 brp_list[brp_i].control);
1498 if (retval != ERROR_OK)
1499 return retval;
1500 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1501 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1502 brp_list[brp_i].value);
1503 if (retval != ERROR_OK)
1504 return retval;
1505 if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1506 LOG_DEBUG("Invalid BRP number in breakpoint");
1507 return ERROR_OK;
1509 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1510 brp_list[brp_j].control, brp_list[brp_j].value);
1511 brp_list[brp_j].used = false;
1512 brp_list[brp_j].value = 0;
1513 brp_list[brp_j].control = 0;
1514 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1515 + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].brpn,
1516 brp_list[brp_j].control);
1517 if (retval != ERROR_OK)
1518 return retval;
1519 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1520 + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].brpn,
1521 brp_list[brp_j].value);
1522 if (retval != ERROR_OK)
1523 return retval;
1524 breakpoint->linked_brp = 0;
1525 breakpoint->is_set = false;
1526 return ERROR_OK;
1528 } else {
1529 int brp_i = breakpoint->number;
1530 if (brp_i >= cortex_a->brp_num) {
1531 LOG_DEBUG("Invalid BRP number in breakpoint");
1532 return ERROR_OK;
1534 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1535 brp_list[brp_i].control, brp_list[brp_i].value);
1536 brp_list[brp_i].used = false;
1537 brp_list[brp_i].value = 0;
1538 brp_list[brp_i].control = 0;
1539 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1540 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1541 brp_list[brp_i].control);
1542 if (retval != ERROR_OK)
1543 return retval;
1544 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1545 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1546 brp_list[brp_i].value);
1547 if (retval != ERROR_OK)
1548 return retval;
1549 breakpoint->is_set = false;
1550 return ERROR_OK;
1552 } else {
1554 /* make sure data cache is cleaned & invalidated down to PoC */
1555 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1556 armv7a_cache_flush_virt(target, breakpoint->address,
1557 breakpoint->length);
1560 /* restore original instruction (kept in target endianness) */
1561 if (breakpoint->length == 4) {
1562 retval = target_write_memory(target,
1563 breakpoint->address & 0xFFFFFFFE,
1564 4, 1, breakpoint->orig_instr);
1565 if (retval != ERROR_OK)
1566 return retval;
1567 } else {
1568 retval = target_write_memory(target,
1569 breakpoint->address & 0xFFFFFFFE,
1570 2, 1, breakpoint->orig_instr);
1571 if (retval != ERROR_OK)
1572 return retval;
1575 /* update i-cache at breakpoint location */
1576 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1577 breakpoint->length);
1578 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1579 breakpoint->length);
1581 breakpoint->is_set = false;
1583 return ERROR_OK;
1586 static int cortex_a_add_breakpoint(struct target *target,
1587 struct breakpoint *breakpoint)
1589 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1591 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1592 LOG_INFO("no hardware breakpoint available");
1593 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1596 if (breakpoint->type == BKPT_HARD)
1597 cortex_a->brp_num_available--;
1599 return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1602 static int cortex_a_add_context_breakpoint(struct target *target,
1603 struct breakpoint *breakpoint)
1605 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1607 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1608 LOG_INFO("no hardware breakpoint available");
1609 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1612 if (breakpoint->type == BKPT_HARD)
1613 cortex_a->brp_num_available--;
1615 return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1618 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1619 struct breakpoint *breakpoint)
1621 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1623 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1624 LOG_INFO("no hardware breakpoint available");
1625 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1628 if (breakpoint->type == BKPT_HARD)
1629 cortex_a->brp_num_available--;
1631 return cortex_a_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1635 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1637 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1639 #if 0
1640 /* It is perfectly possible to remove breakpoints while the target is running */
1641 if (target->state != TARGET_HALTED) {
1642 LOG_WARNING("target not halted");
1643 return ERROR_TARGET_NOT_HALTED;
1645 #endif
1647 if (breakpoint->is_set) {
1648 cortex_a_unset_breakpoint(target, breakpoint);
1649 if (breakpoint->type == BKPT_HARD)
1650 cortex_a->brp_num_available++;
1654 return ERROR_OK;
1658 * Sets a watchpoint for an Cortex-A target in one of the watchpoint units. It is
1659 * considered a bug to call this function when there are no available watchpoint
1660 * units.
1662 * @param target Pointer to an Cortex-A target to set a watchpoint on
1663 * @param watchpoint Pointer to the watchpoint to be set
1664 * @return Error status if watchpoint set fails or the result of executing the
1665 * JTAG queue
1667 static int cortex_a_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1669 int retval = ERROR_OK;
1670 int wrp_i = 0;
1671 uint32_t control;
1672 uint32_t address;
1673 uint8_t address_mask;
1674 uint8_t byte_address_select;
1675 uint8_t load_store_access_control = 0x3;
1676 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1677 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1678 struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
1680 if (watchpoint->is_set) {
1681 LOG_WARNING("watchpoint already set");
1682 return retval;
1685 /* check available context WRPs */
1686 while (wrp_list[wrp_i].used && (wrp_i < cortex_a->wrp_num))
1687 wrp_i++;
1689 if (wrp_i >= cortex_a->wrp_num) {
1690 LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
1691 return ERROR_FAIL;
1694 if (watchpoint->length == 0 || watchpoint->length > 0x80000000U ||
1695 (watchpoint->length & (watchpoint->length - 1))) {
1696 LOG_WARNING("watchpoint length must be a power of 2");
1697 return ERROR_FAIL;
1700 if (watchpoint->address & (watchpoint->length - 1)) {
1701 LOG_WARNING("watchpoint address must be aligned at length");
1702 return ERROR_FAIL;
1705 /* FIXME: ARM DDI 0406C: address_mask is optional. What to do if it's missing? */
1706 /* handle wp length 1 and 2 through byte select */
1707 switch (watchpoint->length) {
1708 case 1:
1709 byte_address_select = BIT(watchpoint->address & 0x3);
1710 address = watchpoint->address & ~0x3;
1711 address_mask = 0;
1712 break;
1714 case 2:
1715 byte_address_select = 0x03 << (watchpoint->address & 0x2);
1716 address = watchpoint->address & ~0x3;
1717 address_mask = 0;
1718 break;
1720 case 4:
1721 byte_address_select = 0x0f;
1722 address = watchpoint->address;
1723 address_mask = 0;
1724 break;
1726 default:
1727 byte_address_select = 0xff;
1728 address = watchpoint->address;
1729 address_mask = ilog2(watchpoint->length);
1730 break;
1733 watchpoint_set(watchpoint, wrp_i);
1734 control = (address_mask << 24) |
1735 (byte_address_select << 5) |
1736 (load_store_access_control << 3) |
1737 (0x3 << 1) | 1;
1738 wrp_list[wrp_i].used = true;
1739 wrp_list[wrp_i].value = address;
1740 wrp_list[wrp_i].control = control;
1742 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1743 + CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
1744 wrp_list[wrp_i].value);
1745 if (retval != ERROR_OK)
1746 return retval;
1748 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1749 + CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
1750 wrp_list[wrp_i].control);
1751 if (retval != ERROR_OK)
1752 return retval;
1754 LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
1755 wrp_list[wrp_i].control,
1756 wrp_list[wrp_i].value);
1758 return ERROR_OK;
1762 * Unset an existing watchpoint and clear the used watchpoint unit.
1764 * @param target Pointer to the target to have the watchpoint removed
1765 * @param watchpoint Pointer to the watchpoint to be removed
1766 * @return Error status while trying to unset the watchpoint or the result of
1767 * executing the JTAG queue
1769 static int cortex_a_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1771 int retval;
1772 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1773 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1774 struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
1776 if (!watchpoint->is_set) {
1777 LOG_WARNING("watchpoint not set");
1778 return ERROR_OK;
1781 int wrp_i = watchpoint->number;
1782 if (wrp_i >= cortex_a->wrp_num) {
1783 LOG_DEBUG("Invalid WRP number in watchpoint");
1784 return ERROR_OK;
1786 LOG_DEBUG("wrp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
1787 wrp_list[wrp_i].control, wrp_list[wrp_i].value);
1788 wrp_list[wrp_i].used = false;
1789 wrp_list[wrp_i].value = 0;
1790 wrp_list[wrp_i].control = 0;
1791 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1792 + CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
1793 wrp_list[wrp_i].control);
1794 if (retval != ERROR_OK)
1795 return retval;
1796 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1797 + CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
1798 wrp_list[wrp_i].value);
1799 if (retval != ERROR_OK)
1800 return retval;
1801 watchpoint->is_set = false;
1803 return ERROR_OK;
1807 * Add a watchpoint to an Cortex-A target. If there are no watchpoint units
1808 * available, an error response is returned.
1810 * @param target Pointer to the Cortex-A target to add a watchpoint to
1811 * @param watchpoint Pointer to the watchpoint to be added
1812 * @return Error status while trying to add the watchpoint
1814 static int cortex_a_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1816 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1818 if (cortex_a->wrp_num_available < 1) {
1819 LOG_INFO("no hardware watchpoint available");
1820 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1823 int retval = cortex_a_set_watchpoint(target, watchpoint);
1824 if (retval != ERROR_OK)
1825 return retval;
1827 cortex_a->wrp_num_available--;
1828 return ERROR_OK;
1832 * Remove a watchpoint from an Cortex-A target. The watchpoint will be unset and
1833 * the used watchpoint unit will be reopened.
1835 * @param target Pointer to the target to remove a watchpoint from
1836 * @param watchpoint Pointer to the watchpoint to be removed
1837 * @return Result of trying to unset the watchpoint
1839 static int cortex_a_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1841 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1843 if (watchpoint->is_set) {
1844 cortex_a->wrp_num_available++;
1845 cortex_a_unset_watchpoint(target, watchpoint);
1847 return ERROR_OK;
1852 * Cortex-A Reset functions
1855 static int cortex_a_assert_reset(struct target *target)
1857 struct armv7a_common *armv7a = target_to_armv7a(target);
1859 LOG_DEBUG(" ");
1861 /* FIXME when halt is requested, make it work somehow... */
1863 /* This function can be called in "target not examined" state */
1865 /* Issue some kind of warm reset. */
1866 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1867 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1868 else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1869 /* REVISIT handle "pulls" cases, if there's
1870 * hardware that needs them to work.
1874 * FIXME: fix reset when transport is not JTAG. This is a temporary
1875 * work-around for release v0.10 that is not intended to stay!
1877 if (!transport_is_jtag() ||
1878 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1879 adapter_assert_reset();
1881 } else {
1882 LOG_ERROR("%s: how to reset?", target_name(target));
1883 return ERROR_FAIL;
1886 /* registers are now invalid */
1887 if (target_was_examined(target))
1888 register_cache_invalidate(armv7a->arm.core_cache);
1890 target->state = TARGET_RESET;
1892 return ERROR_OK;
1895 static int cortex_a_deassert_reset(struct target *target)
1897 struct armv7a_common *armv7a = target_to_armv7a(target);
1898 int retval;
1900 LOG_DEBUG(" ");
1902 /* be certain SRST is off */
1903 adapter_deassert_reset();
1905 if (target_was_examined(target)) {
1906 retval = cortex_a_poll(target);
1907 if (retval != ERROR_OK)
1908 return retval;
1911 if (target->reset_halt) {
1912 if (target->state != TARGET_HALTED) {
1913 LOG_WARNING("%s: ran after reset and before halt ...",
1914 target_name(target));
1915 if (target_was_examined(target)) {
1916 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1917 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
1918 if (retval != ERROR_OK)
1919 return retval;
1920 } else
1921 target->state = TARGET_UNKNOWN;
1925 return ERROR_OK;
1928 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1930 /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1931 * New desired mode must be in mode. Current value of DSCR must be in
1932 * *dscr, which is updated with new value.
1934 * This function elides actually sending the mode-change over the debug
1935 * interface if the mode is already set as desired.
1937 uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1938 if (new_dscr != *dscr) {
1939 struct armv7a_common *armv7a = target_to_armv7a(target);
1940 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1941 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1942 if (retval == ERROR_OK)
1943 *dscr = new_dscr;
1944 return retval;
1945 } else {
1946 return ERROR_OK;
1950 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1951 uint32_t value, uint32_t *dscr)
1953 /* Waits until the specified bit(s) of DSCR take on a specified value. */
1954 struct armv7a_common *armv7a = target_to_armv7a(target);
1955 int64_t then;
1956 int retval;
1958 if ((*dscr & mask) == value)
1959 return ERROR_OK;
1961 then = timeval_ms();
1962 while (1) {
1963 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1964 armv7a->debug_base + CPUDBG_DSCR, dscr);
1965 if (retval != ERROR_OK) {
1966 LOG_ERROR("Could not read DSCR register");
1967 return retval;
1969 if ((*dscr & mask) == value)
1970 break;
1971 if (timeval_ms() > then + 1000) {
1972 LOG_ERROR("timeout waiting for DSCR bit change");
1973 return ERROR_FAIL;
1976 return ERROR_OK;
1979 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1980 uint32_t *data, uint32_t *dscr)
1982 int retval;
1983 struct armv7a_common *armv7a = target_to_armv7a(target);
1985 /* Move from coprocessor to R0. */
1986 retval = cortex_a_exec_opcode(target, opcode, dscr);
1987 if (retval != ERROR_OK)
1988 return retval;
1990 /* Move from R0 to DTRTX. */
1991 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1992 if (retval != ERROR_OK)
1993 return retval;
1995 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1996 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1997 * must also check TXfull_l). Most of the time this will be free
1998 * because TXfull_l will be set immediately and cached in dscr. */
1999 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2000 DSCR_DTRTX_FULL_LATCHED, dscr);
2001 if (retval != ERROR_OK)
2002 return retval;
2004 /* Read the value transferred to DTRTX. */
2005 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2006 armv7a->debug_base + CPUDBG_DTRTX, data);
2007 if (retval != ERROR_OK)
2008 return retval;
2010 return ERROR_OK;
2013 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2014 uint32_t *dfsr, uint32_t *dscr)
2016 int retval;
2018 if (dfar) {
2019 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2020 if (retval != ERROR_OK)
2021 return retval;
2024 if (dfsr) {
2025 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2026 if (retval != ERROR_OK)
2027 return retval;
2030 return ERROR_OK;
2033 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2034 uint32_t data, uint32_t *dscr)
2036 int retval;
2037 struct armv7a_common *armv7a = target_to_armv7a(target);
2039 /* Write the value into DTRRX. */
2040 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2041 armv7a->debug_base + CPUDBG_DTRRX, data);
2042 if (retval != ERROR_OK)
2043 return retval;
2045 /* Move from DTRRX to R0. */
2046 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2047 if (retval != ERROR_OK)
2048 return retval;
2050 /* Move from R0 to coprocessor. */
2051 retval = cortex_a_exec_opcode(target, opcode, dscr);
2052 if (retval != ERROR_OK)
2053 return retval;
2055 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2056 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2057 * check RXfull_l). Most of the time this will be free because RXfull_l
2058 * will be cleared immediately and cached in dscr. */
2059 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2060 if (retval != ERROR_OK)
2061 return retval;
2063 return ERROR_OK;
2066 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2067 uint32_t dfsr, uint32_t *dscr)
2069 int retval;
2071 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2072 if (retval != ERROR_OK)
2073 return retval;
2075 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2076 if (retval != ERROR_OK)
2077 return retval;
2079 return ERROR_OK;
2082 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2084 uint32_t status, upper4;
2086 if (dfsr & (1 << 9)) {
2087 /* LPAE format. */
2088 status = dfsr & 0x3f;
2089 upper4 = status >> 2;
2090 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2091 return ERROR_TARGET_TRANSLATION_FAULT;
2092 else if (status == 33)
2093 return ERROR_TARGET_UNALIGNED_ACCESS;
2094 else
2095 return ERROR_TARGET_DATA_ABORT;
2096 } else {
2097 /* Normal format. */
2098 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2099 if (status == 1)
2100 return ERROR_TARGET_UNALIGNED_ACCESS;
2101 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2102 status == 9 || status == 11 || status == 13 || status == 15)
2103 return ERROR_TARGET_TRANSLATION_FAULT;
2104 else
2105 return ERROR_TARGET_DATA_ABORT;
2109 static int cortex_a_write_cpu_memory_slow(struct target *target,
2110 uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2112 /* Writes count objects of size size from *buffer. Old value of DSCR must
2113 * be in *dscr; updated to new value. This is slow because it works for
2114 * non-word-sized objects. Avoid unaligned accesses as they do not work
2115 * on memory address space without "Normal" attribute. If size == 4 and
2116 * the address is aligned, cortex_a_write_cpu_memory_fast should be
2117 * preferred.
2118 * Preconditions:
2119 * - Address is in R0.
2120 * - R0 is marked dirty.
2122 struct armv7a_common *armv7a = target_to_armv7a(target);
2123 struct arm *arm = &armv7a->arm;
2124 int retval;
2126 /* Mark register R1 as dirty, to use for transferring data. */
2127 arm_reg_current(arm, 1)->dirty = true;
2129 /* Switch to non-blocking mode if not already in that mode. */
2130 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2131 if (retval != ERROR_OK)
2132 return retval;
2134 /* Go through the objects. */
2135 while (count) {
2136 /* Write the value to store into DTRRX. */
2137 uint32_t data, opcode;
2138 if (size == 1)
2139 data = *buffer;
2140 else if (size == 2)
2141 data = target_buffer_get_u16(target, buffer);
2142 else
2143 data = target_buffer_get_u32(target, buffer);
2144 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2145 armv7a->debug_base + CPUDBG_DTRRX, data);
2146 if (retval != ERROR_OK)
2147 return retval;
2149 /* Transfer the value from DTRRX to R1. */
2150 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2151 if (retval != ERROR_OK)
2152 return retval;
2154 /* Write the value transferred to R1 into memory. */
2155 if (size == 1)
2156 opcode = ARMV4_5_STRB_IP(1, 0);
2157 else if (size == 2)
2158 opcode = ARMV4_5_STRH_IP(1, 0);
2159 else
2160 opcode = ARMV4_5_STRW_IP(1, 0);
2161 retval = cortex_a_exec_opcode(target, opcode, dscr);
2162 if (retval != ERROR_OK)
2163 return retval;
2165 /* Check for faults and return early. */
2166 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2167 return ERROR_OK; /* A data fault is not considered a system failure. */
2169 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2170 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2171 * must also check RXfull_l). Most of the time this will be free
2172 * because RXfull_l will be cleared immediately and cached in dscr. */
2173 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2174 if (retval != ERROR_OK)
2175 return retval;
2177 /* Advance. */
2178 buffer += size;
2179 --count;
2182 return ERROR_OK;
2185 static int cortex_a_write_cpu_memory_fast(struct target *target,
2186 uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2188 /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2189 * in *dscr; updated to new value. This is fast but only works for
2190 * word-sized objects at aligned addresses.
2191 * Preconditions:
2192 * - Address is in R0 and must be a multiple of 4.
2193 * - R0 is marked dirty.
2195 struct armv7a_common *armv7a = target_to_armv7a(target);
2196 int retval;
2198 /* Switch to fast mode if not already in that mode. */
2199 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2200 if (retval != ERROR_OK)
2201 return retval;
2203 /* Latch STC instruction. */
2204 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2205 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2206 if (retval != ERROR_OK)
2207 return retval;
2209 /* Transfer all the data and issue all the instructions. */
2210 return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2211 4, count, armv7a->debug_base + CPUDBG_DTRRX);
2214 static int cortex_a_write_cpu_memory(struct target *target,
2215 uint32_t address, uint32_t size,
2216 uint32_t count, const uint8_t *buffer)
2218 /* Write memory through the CPU. */
2219 int retval, final_retval;
2220 struct armv7a_common *armv7a = target_to_armv7a(target);
2221 struct arm *arm = &armv7a->arm;
2222 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2224 LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2225 address, size, count);
2226 if (target->state != TARGET_HALTED) {
2227 LOG_WARNING("target not halted");
2228 return ERROR_TARGET_NOT_HALTED;
2231 if (!count)
2232 return ERROR_OK;
2234 /* Clear any abort. */
2235 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2236 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2237 if (retval != ERROR_OK)
2238 return retval;
2240 /* Read DSCR. */
2241 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2242 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2243 if (retval != ERROR_OK)
2244 return retval;
2246 /* Switch to non-blocking mode if not already in that mode. */
2247 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2248 if (retval != ERROR_OK)
2249 goto out;
2251 /* Mark R0 as dirty. */
2252 arm_reg_current(arm, 0)->dirty = true;
2254 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2255 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2256 if (retval != ERROR_OK)
2257 goto out;
2259 /* Get the memory address into R0. */
2260 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2261 armv7a->debug_base + CPUDBG_DTRRX, address);
2262 if (retval != ERROR_OK)
2263 goto out;
2264 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2265 if (retval != ERROR_OK)
2266 goto out;
2268 if (size == 4 && (address % 4) == 0) {
2269 /* We are doing a word-aligned transfer, so use fast mode. */
2270 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2271 } else {
2272 /* Use slow path. Adjust size for aligned accesses */
2273 switch (address % 4) {
2274 case 1:
2275 case 3:
2276 count *= size;
2277 size = 1;
2278 break;
2279 case 2:
2280 if (size == 4) {
2281 count *= 2;
2282 size = 2;
2284 case 0:
2285 default:
2286 break;
2288 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2291 out:
2292 final_retval = retval;
2294 /* Switch to non-blocking mode if not already in that mode. */
2295 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2296 if (final_retval == ERROR_OK)
2297 final_retval = retval;
2299 /* Wait for last issued instruction to complete. */
2300 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2301 if (final_retval == ERROR_OK)
2302 final_retval = retval;
2304 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2305 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2306 * check RXfull_l). Most of the time this will be free because RXfull_l
2307 * will be cleared immediately and cached in dscr. However, don't do this
2308 * if there is fault, because then the instruction might not have completed
2309 * successfully. */
2310 if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2311 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2312 if (retval != ERROR_OK)
2313 return retval;
2316 /* If there were any sticky abort flags, clear them. */
2317 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2318 fault_dscr = dscr;
2319 mem_ap_write_atomic_u32(armv7a->debug_ap,
2320 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2321 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2322 } else {
2323 fault_dscr = 0;
2326 /* Handle synchronous data faults. */
2327 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2328 if (final_retval == ERROR_OK) {
2329 /* Final return value will reflect cause of fault. */
2330 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2331 if (retval == ERROR_OK) {
2332 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2333 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2334 } else
2335 final_retval = retval;
2337 /* Fault destroyed DFAR/DFSR; restore them. */
2338 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2339 if (retval != ERROR_OK)
2340 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2343 /* Handle asynchronous data faults. */
2344 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2345 if (final_retval == ERROR_OK)
2346 /* No other error has been recorded so far, so keep this one. */
2347 final_retval = ERROR_TARGET_DATA_ABORT;
2350 /* If the DCC is nonempty, clear it. */
2351 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2352 uint32_t dummy;
2353 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2354 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2355 if (final_retval == ERROR_OK)
2356 final_retval = retval;
2358 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2359 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2360 if (final_retval == ERROR_OK)
2361 final_retval = retval;
2364 /* Done. */
2365 return final_retval;
2368 static int cortex_a_read_cpu_memory_slow(struct target *target,
2369 uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2371 /* Reads count objects of size size into *buffer. Old value of DSCR must be
2372 * in *dscr; updated to new value. This is slow because it works for
2373 * non-word-sized objects. Avoid unaligned accesses as they do not work
2374 * on memory address space without "Normal" attribute. If size == 4 and
2375 * the address is aligned, cortex_a_read_cpu_memory_fast should be
2376 * preferred.
2377 * Preconditions:
2378 * - Address is in R0.
2379 * - R0 is marked dirty.
2381 struct armv7a_common *armv7a = target_to_armv7a(target);
2382 struct arm *arm = &armv7a->arm;
2383 int retval;
2385 /* Mark register R1 as dirty, to use for transferring data. */
2386 arm_reg_current(arm, 1)->dirty = true;
2388 /* Switch to non-blocking mode if not already in that mode. */
2389 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2390 if (retval != ERROR_OK)
2391 return retval;
2393 /* Go through the objects. */
2394 while (count) {
2395 /* Issue a load of the appropriate size to R1. */
2396 uint32_t opcode, data;
2397 if (size == 1)
2398 opcode = ARMV4_5_LDRB_IP(1, 0);
2399 else if (size == 2)
2400 opcode = ARMV4_5_LDRH_IP(1, 0);
2401 else
2402 opcode = ARMV4_5_LDRW_IP(1, 0);
2403 retval = cortex_a_exec_opcode(target, opcode, dscr);
2404 if (retval != ERROR_OK)
2405 return retval;
2407 /* Issue a write of R1 to DTRTX. */
2408 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2409 if (retval != ERROR_OK)
2410 return retval;
2412 /* Check for faults and return early. */
2413 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2414 return ERROR_OK; /* A data fault is not considered a system failure. */
2416 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2417 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2418 * must also check TXfull_l). Most of the time this will be free
2419 * because TXfull_l will be set immediately and cached in dscr. */
2420 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2421 DSCR_DTRTX_FULL_LATCHED, dscr);
2422 if (retval != ERROR_OK)
2423 return retval;
2425 /* Read the value transferred to DTRTX into the buffer. */
2426 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2427 armv7a->debug_base + CPUDBG_DTRTX, &data);
2428 if (retval != ERROR_OK)
2429 return retval;
2430 if (size == 1)
2431 *buffer = (uint8_t) data;
2432 else if (size == 2)
2433 target_buffer_set_u16(target, buffer, (uint16_t) data);
2434 else
2435 target_buffer_set_u32(target, buffer, data);
2437 /* Advance. */
2438 buffer += size;
2439 --count;
2442 return ERROR_OK;
2445 static int cortex_a_read_cpu_memory_fast(struct target *target,
2446 uint32_t count, uint8_t *buffer, uint32_t *dscr)
2448 /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2449 * *dscr; updated to new value. This is fast but only works for word-sized
2450 * objects at aligned addresses.
2451 * Preconditions:
2452 * - Address is in R0 and must be a multiple of 4.
2453 * - R0 is marked dirty.
2455 struct armv7a_common *armv7a = target_to_armv7a(target);
2456 uint32_t u32;
2457 int retval;
2459 /* Switch to non-blocking mode if not already in that mode. */
2460 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2461 if (retval != ERROR_OK)
2462 return retval;
2464 /* Issue the LDC instruction via a write to ITR. */
2465 retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2466 if (retval != ERROR_OK)
2467 return retval;
2469 count--;
2471 if (count > 0) {
2472 /* Switch to fast mode if not already in that mode. */
2473 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2474 if (retval != ERROR_OK)
2475 return retval;
2477 /* Latch LDC instruction. */
2478 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2479 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2480 if (retval != ERROR_OK)
2481 return retval;
2483 /* Read the value transferred to DTRTX into the buffer. Due to fast
2484 * mode rules, this blocks until the instruction finishes executing and
2485 * then reissues the read instruction to read the next word from
2486 * memory. The last read of DTRTX in this call reads the second-to-last
2487 * word from memory and issues the read instruction for the last word.
2489 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2490 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2491 if (retval != ERROR_OK)
2492 return retval;
2494 /* Advance. */
2495 buffer += count * 4;
2498 /* Wait for last issued instruction to complete. */
2499 retval = cortex_a_wait_instrcmpl(target, dscr, false);
2500 if (retval != ERROR_OK)
2501 return retval;
2503 /* Switch to non-blocking mode if not already in that mode. */
2504 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2505 if (retval != ERROR_OK)
2506 return retval;
2508 /* Check for faults and return early. */
2509 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2510 return ERROR_OK; /* A data fault is not considered a system failure. */
2512 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2513 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2514 * check TXfull_l). Most of the time this will be free because TXfull_l
2515 * will be set immediately and cached in dscr. */
2516 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2517 DSCR_DTRTX_FULL_LATCHED, dscr);
2518 if (retval != ERROR_OK)
2519 return retval;
2521 /* Read the value transferred to DTRTX into the buffer. This is the last
2522 * word. */
2523 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2524 armv7a->debug_base + CPUDBG_DTRTX, &u32);
2525 if (retval != ERROR_OK)
2526 return retval;
2527 target_buffer_set_u32(target, buffer, u32);
2529 return ERROR_OK;
2532 static int cortex_a_read_cpu_memory(struct target *target,
2533 uint32_t address, uint32_t size,
2534 uint32_t count, uint8_t *buffer)
2536 /* Read memory through the CPU. */
2537 int retval, final_retval;
2538 struct armv7a_common *armv7a = target_to_armv7a(target);
2539 struct arm *arm = &armv7a->arm;
2540 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2542 LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2543 address, size, count);
2544 if (target->state != TARGET_HALTED) {
2545 LOG_WARNING("target not halted");
2546 return ERROR_TARGET_NOT_HALTED;
2549 if (!count)
2550 return ERROR_OK;
2552 /* Clear any abort. */
2553 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2554 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2555 if (retval != ERROR_OK)
2556 return retval;
2558 /* Read DSCR */
2559 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2560 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2561 if (retval != ERROR_OK)
2562 return retval;
2564 /* Switch to non-blocking mode if not already in that mode. */
2565 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2566 if (retval != ERROR_OK)
2567 goto out;
2569 /* Mark R0 as dirty. */
2570 arm_reg_current(arm, 0)->dirty = true;
2572 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2573 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2574 if (retval != ERROR_OK)
2575 goto out;
2577 /* Get the memory address into R0. */
2578 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2579 armv7a->debug_base + CPUDBG_DTRRX, address);
2580 if (retval != ERROR_OK)
2581 goto out;
2582 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2583 if (retval != ERROR_OK)
2584 goto out;
2586 if (size == 4 && (address % 4) == 0) {
2587 /* We are doing a word-aligned transfer, so use fast mode. */
2588 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2589 } else {
2590 /* Use slow path. Adjust size for aligned accesses */
2591 switch (address % 4) {
2592 case 1:
2593 case 3:
2594 count *= size;
2595 size = 1;
2596 break;
2597 case 2:
2598 if (size == 4) {
2599 count *= 2;
2600 size = 2;
2602 break;
2603 case 0:
2604 default:
2605 break;
2607 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2610 out:
2611 final_retval = retval;
2613 /* Switch to non-blocking mode if not already in that mode. */
2614 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2615 if (final_retval == ERROR_OK)
2616 final_retval = retval;
2618 /* Wait for last issued instruction to complete. */
2619 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2620 if (final_retval == ERROR_OK)
2621 final_retval = retval;
2623 /* If there were any sticky abort flags, clear them. */
2624 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2625 fault_dscr = dscr;
2626 mem_ap_write_atomic_u32(armv7a->debug_ap,
2627 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2628 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2629 } else {
2630 fault_dscr = 0;
2633 /* Handle synchronous data faults. */
2634 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2635 if (final_retval == ERROR_OK) {
2636 /* Final return value will reflect cause of fault. */
2637 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2638 if (retval == ERROR_OK) {
2639 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2640 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2641 } else
2642 final_retval = retval;
2644 /* Fault destroyed DFAR/DFSR; restore them. */
2645 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2646 if (retval != ERROR_OK)
2647 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2650 /* Handle asynchronous data faults. */
2651 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2652 if (final_retval == ERROR_OK)
2653 /* No other error has been recorded so far, so keep this one. */
2654 final_retval = ERROR_TARGET_DATA_ABORT;
2657 /* If the DCC is nonempty, clear it. */
2658 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2659 uint32_t dummy;
2660 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2661 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2662 if (final_retval == ERROR_OK)
2663 final_retval = retval;
2665 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2666 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2667 if (final_retval == ERROR_OK)
2668 final_retval = retval;
2671 /* Done. */
2672 return final_retval;
2677 * Cortex-A Memory access
2679 * This is same Cortex-M3 but we must also use the correct
2680 * ap number for every access.
2683 static int cortex_a_read_phys_memory(struct target *target,
2684 target_addr_t address, uint32_t size,
2685 uint32_t count, uint8_t *buffer)
2687 int retval;
2689 if (!count || !buffer)
2690 return ERROR_COMMAND_SYNTAX_ERROR;
2692 LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2693 address, size, count);
2695 /* read memory through the CPU */
2696 cortex_a_prep_memaccess(target, 1);
2697 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2698 cortex_a_post_memaccess(target, 1);
2700 return retval;
2703 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2704 uint32_t size, uint32_t count, uint8_t *buffer)
2706 int retval;
2708 /* cortex_a handles unaligned memory access */
2709 LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2710 address, size, count);
2712 cortex_a_prep_memaccess(target, 0);
2713 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2714 cortex_a_post_memaccess(target, 0);
2716 return retval;
2719 static int cortex_a_write_phys_memory(struct target *target,
2720 target_addr_t address, uint32_t size,
2721 uint32_t count, const uint8_t *buffer)
2723 int retval;
2725 if (!count || !buffer)
2726 return ERROR_COMMAND_SYNTAX_ERROR;
2728 LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2729 address, size, count);
2731 /* write memory through the CPU */
2732 cortex_a_prep_memaccess(target, 1);
2733 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2734 cortex_a_post_memaccess(target, 1);
2736 return retval;
2739 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2740 uint32_t size, uint32_t count, const uint8_t *buffer)
2742 int retval;
2744 /* cortex_a handles unaligned memory access */
2745 LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2746 address, size, count);
2748 /* memory writes bypass the caches, must flush before writing */
2749 armv7a_cache_auto_flush_on_write(target, address, size * count);
2751 cortex_a_prep_memaccess(target, 0);
2752 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2753 cortex_a_post_memaccess(target, 0);
2754 return retval;
2757 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2758 uint32_t count, uint8_t *buffer)
2760 uint32_t size;
2762 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2763 * will have something to do with the size we leave to it. */
2764 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2765 if (address & size) {
2766 int retval = target_read_memory(target, address, size, 1, buffer);
2767 if (retval != ERROR_OK)
2768 return retval;
2769 address += size;
2770 count -= size;
2771 buffer += size;
2775 /* Read the data with as large access size as possible. */
2776 for (; size > 0; size /= 2) {
2777 uint32_t aligned = count - count % size;
2778 if (aligned > 0) {
2779 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2780 if (retval != ERROR_OK)
2781 return retval;
2782 address += aligned;
2783 count -= aligned;
2784 buffer += aligned;
2788 return ERROR_OK;
2791 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2792 uint32_t count, const uint8_t *buffer)
2794 uint32_t size;
2796 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2797 * will have something to do with the size we leave to it. */
2798 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2799 if (address & size) {
2800 int retval = target_write_memory(target, address, size, 1, buffer);
2801 if (retval != ERROR_OK)
2802 return retval;
2803 address += size;
2804 count -= size;
2805 buffer += size;
2809 /* Write the data with as large access size as possible. */
2810 for (; size > 0; size /= 2) {
2811 uint32_t aligned = count - count % size;
2812 if (aligned > 0) {
2813 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2814 if (retval != ERROR_OK)
2815 return retval;
2816 address += aligned;
2817 count -= aligned;
2818 buffer += aligned;
2822 return ERROR_OK;
2825 static int cortex_a_handle_target_request(void *priv)
2827 struct target *target = priv;
2828 struct armv7a_common *armv7a = target_to_armv7a(target);
2829 int retval;
2831 if (!target_was_examined(target))
2832 return ERROR_OK;
2833 if (!target->dbg_msg_enabled)
2834 return ERROR_OK;
2836 if (target->state == TARGET_RUNNING) {
2837 uint32_t request;
2838 uint32_t dscr;
2839 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2840 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2842 /* check if we have data */
2843 int64_t then = timeval_ms();
2844 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2845 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2846 armv7a->debug_base + CPUDBG_DTRTX, &request);
2847 if (retval == ERROR_OK) {
2848 target_request(target, request);
2849 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2850 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2852 if (timeval_ms() > then + 1000) {
2853 LOG_ERROR("Timeout waiting for dtr tx full");
2854 return ERROR_FAIL;
2859 return ERROR_OK;
2863 * Cortex-A target information and configuration
2866 static int cortex_a_examine_first(struct target *target)
2868 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2869 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2870 struct adiv5_dap *swjdp = armv7a->arm.dap;
2871 struct adiv5_private_config *pc = target->private_config;
2873 int i;
2874 int retval = ERROR_OK;
2875 uint32_t didr, cpuid, dbg_osreg, dbg_idpfr1;
2877 if (armv7a->debug_ap) {
2878 dap_put_ap(armv7a->debug_ap);
2879 armv7a->debug_ap = NULL;
2882 if (pc->ap_num == DP_APSEL_INVALID) {
2883 /* Search for the APB-AP - it is needed for access to debug registers */
2884 retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2885 if (retval != ERROR_OK) {
2886 LOG_ERROR("Could not find APB-AP for debug access");
2887 return retval;
2889 } else {
2890 armv7a->debug_ap = dap_get_ap(swjdp, pc->ap_num);
2891 if (!armv7a->debug_ap) {
2892 LOG_ERROR("Cannot get AP");
2893 return ERROR_FAIL;
2897 retval = mem_ap_init(armv7a->debug_ap);
2898 if (retval != ERROR_OK) {
2899 LOG_ERROR("Could not initialize the APB-AP");
2900 return retval;
2903 armv7a->debug_ap->memaccess_tck = 80;
2905 if (!target->dbgbase_set) {
2906 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2907 target->cmd_name);
2908 /* Lookup Processor DAP */
2909 retval = dap_lookup_cs_component(armv7a->debug_ap, ARM_CS_C9_DEVTYPE_CORE_DEBUG,
2910 &armv7a->debug_base, target->coreid);
2911 if (retval != ERROR_OK) {
2912 LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2913 target->cmd_name);
2914 return retval;
2916 LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT,
2917 target->coreid, armv7a->debug_base);
2918 } else
2919 armv7a->debug_base = target->dbgbase;
2921 if ((armv7a->debug_base & (1UL<<31)) == 0)
2922 LOG_WARNING("Debug base address for target %s has bit 31 set to 0. Access to debug registers will likely fail!\n"
2923 "Please fix the target configuration.", target_name(target));
2925 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2926 armv7a->debug_base + CPUDBG_DIDR, &didr);
2927 if (retval != ERROR_OK) {
2928 LOG_DEBUG("Examine %s failed", "DIDR");
2929 return retval;
2932 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2933 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2934 if (retval != ERROR_OK) {
2935 LOG_DEBUG("Examine %s failed", "CPUID");
2936 return retval;
2939 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2940 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2942 cortex_a->didr = didr;
2943 cortex_a->cpuid = cpuid;
2945 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2946 armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2947 if (retval != ERROR_OK)
2948 return retval;
2949 LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR 0x%" PRIx32, target->coreid, dbg_osreg);
2951 if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
2952 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
2953 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2954 return ERROR_TARGET_INIT_FAILED;
2957 if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
2958 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
2960 /* Read DBGOSLSR and check if OSLK is implemented */
2961 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2962 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2963 if (retval != ERROR_OK)
2964 return retval;
2965 LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
2967 /* check if OS Lock is implemented */
2968 if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
2969 /* check if OS Lock is set */
2970 if (dbg_osreg & OSLSR_OSLK) {
2971 LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
2973 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2974 armv7a->debug_base + CPUDBG_OSLAR,
2976 if (retval == ERROR_OK)
2977 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2978 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2980 /* if we fail to access the register or cannot reset the OSLK bit, bail out */
2981 if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
2982 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
2983 target->coreid);
2984 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2985 return ERROR_TARGET_INIT_FAILED;
2990 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2991 armv7a->debug_base + CPUDBG_ID_PFR1, &dbg_idpfr1);
2992 if (retval != ERROR_OK)
2993 return retval;
2995 if (dbg_idpfr1 & 0x000000f0) {
2996 LOG_DEBUG("target->coreid %" PRId32 " has security extensions",
2997 target->coreid);
2998 armv7a->arm.core_type = ARM_CORE_TYPE_SEC_EXT;
3000 if (dbg_idpfr1 & 0x0000f000) {
3001 LOG_DEBUG("target->coreid %" PRId32 " has virtualization extensions",
3002 target->coreid);
3004 * overwrite and simplify the checks.
3005 * virtualization extensions require implementation of security extension
3007 armv7a->arm.core_type = ARM_CORE_TYPE_VIRT_EXT;
3010 /* Avoid recreating the registers cache */
3011 if (!target_was_examined(target)) {
3012 retval = cortex_a_dpm_setup(cortex_a, didr);
3013 if (retval != ERROR_OK)
3014 return retval;
3017 /* Setup Breakpoint Register Pairs */
3018 cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3019 cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3020 cortex_a->brp_num_available = cortex_a->brp_num;
3021 free(cortex_a->brp_list);
3022 cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3023 /* cortex_a->brb_enabled = ????; */
3024 for (i = 0; i < cortex_a->brp_num; i++) {
3025 cortex_a->brp_list[i].used = false;
3026 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3027 cortex_a->brp_list[i].type = BRP_NORMAL;
3028 else
3029 cortex_a->brp_list[i].type = BRP_CONTEXT;
3030 cortex_a->brp_list[i].value = 0;
3031 cortex_a->brp_list[i].control = 0;
3032 cortex_a->brp_list[i].brpn = i;
3035 LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3037 /* Setup Watchpoint Register Pairs */
3038 cortex_a->wrp_num = ((didr >> 28) & 0x0F) + 1;
3039 cortex_a->wrp_num_available = cortex_a->wrp_num;
3040 free(cortex_a->wrp_list);
3041 cortex_a->wrp_list = calloc(cortex_a->wrp_num, sizeof(struct cortex_a_wrp));
3042 for (i = 0; i < cortex_a->wrp_num; i++) {
3043 cortex_a->wrp_list[i].used = false;
3044 cortex_a->wrp_list[i].value = 0;
3045 cortex_a->wrp_list[i].control = 0;
3046 cortex_a->wrp_list[i].wrpn = i;
3049 LOG_DEBUG("Configured %i hw watchpoints", cortex_a->wrp_num);
3051 /* select debug_ap as default */
3052 swjdp->apsel = armv7a->debug_ap->ap_num;
3054 target_set_examined(target);
3055 return ERROR_OK;
3058 static int cortex_a_examine(struct target *target)
3060 int retval = ERROR_OK;
3062 /* Reestablish communication after target reset */
3063 retval = cortex_a_examine_first(target);
3065 /* Configure core debug access */
3066 if (retval == ERROR_OK)
3067 retval = cortex_a_init_debug_access(target);
3069 return retval;
3073 * Cortex-A target creation and initialization
3076 static int cortex_a_init_target(struct command_context *cmd_ctx,
3077 struct target *target)
3079 /* examine_first() does a bunch of this */
3080 arm_semihosting_init(target);
3081 return ERROR_OK;
3084 static int cortex_a_init_arch_info(struct target *target,
3085 struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
3087 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3089 /* Setup struct cortex_a_common */
3090 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3091 armv7a->arm.dap = dap;
3093 /* register arch-specific functions */
3094 armv7a->examine_debug_reason = NULL;
3096 armv7a->post_debug_entry = cortex_a_post_debug_entry;
3098 armv7a->pre_restore_context = NULL;
3100 armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3103 /* arm7_9->handle_target_request = cortex_a_handle_target_request; */
3105 /* REVISIT v7a setup should be in a v7a-specific routine */
3106 armv7a_init_arch_info(target, armv7a);
3107 target_register_timer_callback(cortex_a_handle_target_request, 1,
3108 TARGET_TIMER_TYPE_PERIODIC, target);
3110 return ERROR_OK;
3113 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3115 struct cortex_a_common *cortex_a;
3116 struct adiv5_private_config *pc;
3118 if (!target->private_config)
3119 return ERROR_FAIL;
3121 pc = (struct adiv5_private_config *)target->private_config;
3123 cortex_a = calloc(1, sizeof(struct cortex_a_common));
3124 if (!cortex_a) {
3125 LOG_ERROR("Out of memory");
3126 return ERROR_FAIL;
3128 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3129 cortex_a->armv7a_common.is_armv7r = false;
3130 cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
3132 return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3135 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3137 struct cortex_a_common *cortex_a;
3138 struct adiv5_private_config *pc;
3140 pc = (struct adiv5_private_config *)target->private_config;
3141 if (adiv5_verify_config(pc) != ERROR_OK)
3142 return ERROR_FAIL;
3144 cortex_a = calloc(1, sizeof(struct cortex_a_common));
3145 if (!cortex_a) {
3146 LOG_ERROR("Out of memory");
3147 return ERROR_FAIL;
3149 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3150 cortex_a->armv7a_common.is_armv7r = true;
3152 return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3155 static void cortex_a_deinit_target(struct target *target)
3157 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3158 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3159 struct arm_dpm *dpm = &armv7a->dpm;
3160 uint32_t dscr;
3161 int retval;
3163 if (target_was_examined(target)) {
3164 /* Disable halt for breakpoint, watchpoint and vector catch */
3165 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3166 armv7a->debug_base + CPUDBG_DSCR, &dscr);
3167 if (retval == ERROR_OK)
3168 mem_ap_write_atomic_u32(armv7a->debug_ap,
3169 armv7a->debug_base + CPUDBG_DSCR,
3170 dscr & ~DSCR_HALT_DBG_MODE);
3173 if (armv7a->debug_ap)
3174 dap_put_ap(armv7a->debug_ap);
3176 free(cortex_a->wrp_list);
3177 free(cortex_a->brp_list);
3178 arm_free_reg_cache(dpm->arm);
3179 free(dpm->dbp);
3180 free(dpm->dwp);
3181 free(target->private_config);
3182 free(cortex_a);
3185 static int cortex_a_mmu(struct target *target, int *enabled)
3187 struct armv7a_common *armv7a = target_to_armv7a(target);
3189 if (target->state != TARGET_HALTED) {
3190 LOG_ERROR("%s: target not halted", __func__);
3191 return ERROR_TARGET_INVALID;
3194 if (armv7a->is_armv7r)
3195 *enabled = 0;
3196 else
3197 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3199 return ERROR_OK;
3202 static int cortex_a_virt2phys(struct target *target,
3203 target_addr_t virt, target_addr_t *phys)
3205 int retval;
3206 int mmu_enabled = 0;
3209 * If the MMU was not enabled at debug entry, there is no
3210 * way of knowing if there was ever a valid configuration
3211 * for it and thus it's not safe to enable it. In this case,
3212 * just return the virtual address as physical.
3214 cortex_a_mmu(target, &mmu_enabled);
3215 if (!mmu_enabled) {
3216 *phys = virt;
3217 return ERROR_OK;
3220 /* mmu must be enable in order to get a correct translation */
3221 retval = cortex_a_mmu_modify(target, 1);
3222 if (retval != ERROR_OK)
3223 return retval;
3224 return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3225 phys, 1);
3228 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3230 struct target *target = get_current_target(CMD_CTX);
3231 struct armv7a_common *armv7a = target_to_armv7a(target);
3233 return armv7a_handle_cache_info_command(CMD,
3234 &armv7a->armv7a_mmu.armv7a_cache);
3238 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3240 struct target *target = get_current_target(CMD_CTX);
3241 if (!target_was_examined(target)) {
3242 LOG_ERROR("target not examined yet");
3243 return ERROR_FAIL;
3246 return cortex_a_init_debug_access(target);
3249 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3251 struct target *target = get_current_target(CMD_CTX);
3252 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3254 static const struct jim_nvp nvp_maskisr_modes[] = {
3255 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3256 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3257 { .name = NULL, .value = -1 },
3259 const struct jim_nvp *n;
3261 if (CMD_ARGC > 0) {
3262 n = jim_nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3263 if (!n->name) {
3264 LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3265 return ERROR_COMMAND_SYNTAX_ERROR;
3268 cortex_a->isrmasking_mode = n->value;
3271 n = jim_nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3272 command_print(CMD, "cortex_a interrupt mask %s", n->name);
3274 return ERROR_OK;
3277 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3279 struct target *target = get_current_target(CMD_CTX);
3280 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3282 static const struct jim_nvp nvp_dacrfixup_modes[] = {
3283 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3284 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3285 { .name = NULL, .value = -1 },
3287 const struct jim_nvp *n;
3289 if (CMD_ARGC > 0) {
3290 n = jim_nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3291 if (!n->name)
3292 return ERROR_COMMAND_SYNTAX_ERROR;
3293 cortex_a->dacrfixup_mode = n->value;
3297 n = jim_nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3298 command_print(CMD, "cortex_a domain access control fixup %s", n->name);
3300 return ERROR_OK;
3303 static const struct command_registration cortex_a_exec_command_handlers[] = {
3305 .name = "cache_info",
3306 .handler = cortex_a_handle_cache_info_command,
3307 .mode = COMMAND_EXEC,
3308 .help = "display information about target caches",
3309 .usage = "",
3312 .name = "dbginit",
3313 .handler = cortex_a_handle_dbginit_command,
3314 .mode = COMMAND_EXEC,
3315 .help = "Initialize core debug",
3316 .usage = "",
3319 .name = "maskisr",
3320 .handler = handle_cortex_a_mask_interrupts_command,
3321 .mode = COMMAND_ANY,
3322 .help = "mask cortex_a interrupts",
3323 .usage = "['on'|'off']",
3326 .name = "dacrfixup",
3327 .handler = handle_cortex_a_dacrfixup_command,
3328 .mode = COMMAND_ANY,
3329 .help = "set domain access control (DACR) to all-manager "
3330 "on memory access",
3331 .usage = "['on'|'off']",
3334 .chain = armv7a_mmu_command_handlers,
3337 .chain = smp_command_handlers,
3340 COMMAND_REGISTRATION_DONE
3342 static const struct command_registration cortex_a_command_handlers[] = {
3344 .chain = arm_command_handlers,
3347 .chain = armv7a_command_handlers,
3350 .name = "cortex_a",
3351 .mode = COMMAND_ANY,
3352 .help = "Cortex-A command group",
3353 .usage = "",
3354 .chain = cortex_a_exec_command_handlers,
3356 COMMAND_REGISTRATION_DONE
3359 struct target_type cortexa_target = {
3360 .name = "cortex_a",
3362 .poll = cortex_a_poll,
3363 .arch_state = armv7a_arch_state,
3365 .halt = cortex_a_halt,
3366 .resume = cortex_a_resume,
3367 .step = cortex_a_step,
3369 .assert_reset = cortex_a_assert_reset,
3370 .deassert_reset = cortex_a_deassert_reset,
3372 /* REVISIT allow exporting VFP3 registers ... */
3373 .get_gdb_arch = arm_get_gdb_arch,
3374 .get_gdb_reg_list = arm_get_gdb_reg_list,
3376 .read_memory = cortex_a_read_memory,
3377 .write_memory = cortex_a_write_memory,
3379 .read_buffer = cortex_a_read_buffer,
3380 .write_buffer = cortex_a_write_buffer,
3382 .checksum_memory = arm_checksum_memory,
3383 .blank_check_memory = arm_blank_check_memory,
3385 .run_algorithm = armv4_5_run_algorithm,
3387 .add_breakpoint = cortex_a_add_breakpoint,
3388 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3389 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3390 .remove_breakpoint = cortex_a_remove_breakpoint,
3391 .add_watchpoint = cortex_a_add_watchpoint,
3392 .remove_watchpoint = cortex_a_remove_watchpoint,
3394 .commands = cortex_a_command_handlers,
3395 .target_create = cortex_a_target_create,
3396 .target_jim_configure = adiv5_jim_configure,
3397 .init_target = cortex_a_init_target,
3398 .examine = cortex_a_examine,
3399 .deinit_target = cortex_a_deinit_target,
3401 .read_phys_memory = cortex_a_read_phys_memory,
3402 .write_phys_memory = cortex_a_write_phys_memory,
3403 .mmu = cortex_a_mmu,
3404 .virt2phys = cortex_a_virt2phys,
3407 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3409 .name = "dbginit",
3410 .handler = cortex_a_handle_dbginit_command,
3411 .mode = COMMAND_EXEC,
3412 .help = "Initialize core debug",
3413 .usage = "",
3416 .name = "maskisr",
3417 .handler = handle_cortex_a_mask_interrupts_command,
3418 .mode = COMMAND_EXEC,
3419 .help = "mask cortex_r4 interrupts",
3420 .usage = "['on'|'off']",
3423 COMMAND_REGISTRATION_DONE
3425 static const struct command_registration cortex_r4_command_handlers[] = {
3427 .chain = arm_command_handlers,
3430 .name = "cortex_r4",
3431 .mode = COMMAND_ANY,
3432 .help = "Cortex-R4 command group",
3433 .usage = "",
3434 .chain = cortex_r4_exec_command_handlers,
3436 COMMAND_REGISTRATION_DONE
3439 struct target_type cortexr4_target = {
3440 .name = "cortex_r4",
3442 .poll = cortex_a_poll,
3443 .arch_state = armv7a_arch_state,
3445 .halt = cortex_a_halt,
3446 .resume = cortex_a_resume,
3447 .step = cortex_a_step,
3449 .assert_reset = cortex_a_assert_reset,
3450 .deassert_reset = cortex_a_deassert_reset,
3452 /* REVISIT allow exporting VFP3 registers ... */
3453 .get_gdb_arch = arm_get_gdb_arch,
3454 .get_gdb_reg_list = arm_get_gdb_reg_list,
3456 .read_memory = cortex_a_read_phys_memory,
3457 .write_memory = cortex_a_write_phys_memory,
3459 .checksum_memory = arm_checksum_memory,
3460 .blank_check_memory = arm_blank_check_memory,
3462 .run_algorithm = armv4_5_run_algorithm,
3464 .add_breakpoint = cortex_a_add_breakpoint,
3465 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3466 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3467 .remove_breakpoint = cortex_a_remove_breakpoint,
3468 .add_watchpoint = cortex_a_add_watchpoint,
3469 .remove_watchpoint = cortex_a_remove_watchpoint,
3471 .commands = cortex_r4_command_handlers,
3472 .target_create = cortex_r4_target_create,
3473 .target_jim_configure = adiv5_jim_configure,
3474 .init_target = cortex_a_init_target,
3475 .examine = cortex_a_examine,
3476 .deinit_target = cortex_a_deinit_target,