contrib: fix udev rules for tty based adaptors
[openocd.git] / src / target / target.c
blobbe9742f5c2d0dc9d5f9967b899a456e85dfba2b7
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * This program is free software; you can redistribute it and/or modify *
24 * it under the terms of the GNU General Public License as published by *
25 * the Free Software Foundation; either version 2 of the License, or *
26 * (at your option) any later version. *
27 * *
28 * This program is distributed in the hope that it will be useful, *
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
31 * GNU General Public License for more details. *
32 * *
33 * You should have received a copy of the GNU General Public License *
34 * along with this program; if not, write to the *
35 * Free Software Foundation, Inc., *
36 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
37 ***************************************************************************/
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
42 #include <helper/time_support.h>
43 #include <jtag/jtag.h>
44 #include <flash/nor/core.h>
46 #include "target.h"
47 #include "target_type.h"
48 #include "target_request.h"
49 #include "breakpoints.h"
50 #include "register.h"
51 #include "trace.h"
52 #include "image.h"
53 #include "rtos/rtos.h"
56 static int target_read_buffer_default(struct target *target, uint32_t address,
57 uint32_t size, uint8_t *buffer);
58 static int target_write_buffer_default(struct target *target, uint32_t address,
59 uint32_t size, const uint8_t *buffer);
60 static int target_array2mem(Jim_Interp *interp, struct target *target,
61 int argc, Jim_Obj *const *argv);
62 static int target_mem2array(Jim_Interp *interp, struct target *target,
63 int argc, Jim_Obj *const *argv);
64 static int target_register_user_commands(struct command_context *cmd_ctx);
66 /* targets */
67 extern struct target_type arm7tdmi_target;
68 extern struct target_type arm720t_target;
69 extern struct target_type arm9tdmi_target;
70 extern struct target_type arm920t_target;
71 extern struct target_type arm966e_target;
72 extern struct target_type arm946e_target;
73 extern struct target_type arm926ejs_target;
74 extern struct target_type fa526_target;
75 extern struct target_type feroceon_target;
76 extern struct target_type dragonite_target;
77 extern struct target_type xscale_target;
78 extern struct target_type cortexm3_target;
79 extern struct target_type cortexa8_target;
80 extern struct target_type arm11_target;
81 extern struct target_type mips_m4k_target;
82 extern struct target_type avr_target;
83 extern struct target_type dsp563xx_target;
84 extern struct target_type dsp5680xx_target;
85 extern struct target_type testee_target;
86 extern struct target_type avr32_ap7k_target;
88 static struct target_type *target_types[] =
90 &arm7tdmi_target,
91 &arm9tdmi_target,
92 &arm920t_target,
93 &arm720t_target,
94 &arm966e_target,
95 &arm946e_target,
96 &arm926ejs_target,
97 &fa526_target,
98 &feroceon_target,
99 &dragonite_target,
100 &xscale_target,
101 &cortexm3_target,
102 &cortexa8_target,
103 &arm11_target,
104 &mips_m4k_target,
105 &avr_target,
106 &dsp563xx_target,
107 &dsp5680xx_target,
108 &testee_target,
109 &avr32_ap7k_target,
110 NULL,
113 struct target *all_targets = NULL;
114 static struct target_event_callback *target_event_callbacks = NULL;
115 static struct target_timer_callback *target_timer_callbacks = NULL;
116 static const int polling_interval = 100;
118 static const Jim_Nvp nvp_assert[] = {
119 { .name = "assert", NVP_ASSERT },
120 { .name = "deassert", NVP_DEASSERT },
121 { .name = "T", NVP_ASSERT },
122 { .name = "F", NVP_DEASSERT },
123 { .name = "t", NVP_ASSERT },
124 { .name = "f", NVP_DEASSERT },
125 { .name = NULL, .value = -1 }
128 static const Jim_Nvp nvp_error_target[] = {
129 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
130 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
131 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
132 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
133 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
134 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
135 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
136 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
137 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
138 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
139 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
140 { .value = -1, .name = NULL }
143 static const char *target_strerror_safe(int err)
145 const Jim_Nvp *n;
147 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
148 if (n->name == NULL) {
149 return "unknown";
150 } else {
151 return n->name;
155 static const Jim_Nvp nvp_target_event[] = {
156 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
157 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
159 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
160 { .value = TARGET_EVENT_HALTED, .name = "halted" },
161 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
162 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
163 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
165 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
166 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
168 /* historical name */
170 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
172 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
173 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
174 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
175 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
176 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
177 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
178 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
179 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
180 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
181 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
182 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
184 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
185 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
187 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
188 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
190 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
191 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
193 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
194 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
196 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
197 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
199 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
200 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
201 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
203 { .name = NULL, .value = -1 }
206 static const Jim_Nvp nvp_target_state[] = {
207 { .name = "unknown", .value = TARGET_UNKNOWN },
208 { .name = "running", .value = TARGET_RUNNING },
209 { .name = "halted", .value = TARGET_HALTED },
210 { .name = "reset", .value = TARGET_RESET },
211 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
212 { .name = NULL, .value = -1 },
215 static const Jim_Nvp nvp_target_debug_reason [] = {
216 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
217 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
218 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
219 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
220 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
221 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
222 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
223 { .name = NULL, .value = -1 },
226 static const Jim_Nvp nvp_target_endian[] = {
227 { .name = "big", .value = TARGET_BIG_ENDIAN },
228 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
229 { .name = "be", .value = TARGET_BIG_ENDIAN },
230 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
231 { .name = NULL, .value = -1 },
234 static const Jim_Nvp nvp_reset_modes[] = {
235 { .name = "unknown", .value = RESET_UNKNOWN },
236 { .name = "run" , .value = RESET_RUN },
237 { .name = "halt" , .value = RESET_HALT },
238 { .name = "init" , .value = RESET_INIT },
239 { .name = NULL , .value = -1 },
242 const char *debug_reason_name(struct target *t)
244 const char *cp;
246 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
247 t->debug_reason)->name;
248 if (!cp) {
249 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
250 cp = "(*BUG*unknown*BUG*)";
252 return cp;
255 const char *
256 target_state_name( struct target *t )
258 const char *cp;
259 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
260 if( !cp ){
261 LOG_ERROR("Invalid target state: %d", (int)(t->state));
262 cp = "(*BUG*unknown*BUG*)";
264 return cp;
267 /* determine the number of the new target */
268 static int new_target_number(void)
270 struct target *t;
271 int x;
273 /* number is 0 based */
274 x = -1;
275 t = all_targets;
276 while (t) {
277 if (x < t->target_number) {
278 x = t->target_number;
280 t = t->next;
282 return x + 1;
285 /* read a uint32_t from a buffer in target memory endianness */
286 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
288 if (target->endianness == TARGET_LITTLE_ENDIAN)
289 return le_to_h_u32(buffer);
290 else
291 return be_to_h_u32(buffer);
294 /* read a uint24_t from a buffer in target memory endianness */
295 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
297 if (target->endianness == TARGET_LITTLE_ENDIAN)
298 return le_to_h_u24(buffer);
299 else
300 return be_to_h_u24(buffer);
303 /* read a uint16_t from a buffer in target memory endianness */
304 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
306 if (target->endianness == TARGET_LITTLE_ENDIAN)
307 return le_to_h_u16(buffer);
308 else
309 return be_to_h_u16(buffer);
312 /* read a uint8_t from a buffer in target memory endianness */
313 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
315 return *buffer & 0x0ff;
318 /* write a uint32_t to a buffer in target memory endianness */
319 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
321 if (target->endianness == TARGET_LITTLE_ENDIAN)
322 h_u32_to_le(buffer, value);
323 else
324 h_u32_to_be(buffer, value);
327 /* write a uint24_t to a buffer in target memory endianness */
328 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
330 if (target->endianness == TARGET_LITTLE_ENDIAN)
331 h_u24_to_le(buffer, value);
332 else
333 h_u24_to_be(buffer, value);
336 /* write a uint16_t to a buffer in target memory endianness */
337 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
339 if (target->endianness == TARGET_LITTLE_ENDIAN)
340 h_u16_to_le(buffer, value);
341 else
342 h_u16_to_be(buffer, value);
345 /* write a uint8_t to a buffer in target memory endianness */
346 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
348 *buffer = value;
351 /* write a uint32_t array to a buffer in target memory endianness */
352 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
354 uint32_t i;
355 for(i = 0; i < count; i ++)
356 dstbuf[i] = target_buffer_get_u32(target,&buffer[i*4]);
359 /* write a uint16_t array to a buffer in target memory endianness */
360 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
362 uint32_t i;
363 for(i = 0; i < count; i ++)
364 dstbuf[i] = target_buffer_get_u16(target,&buffer[i*2]);
367 /* write a uint32_t array to a buffer in target memory endianness */
368 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
370 uint32_t i;
371 for(i = 0; i < count; i ++)
372 target_buffer_set_u32(target,&buffer[i*4],srcbuf[i]);
375 /* write a uint16_t array to a buffer in target memory endianness */
376 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
378 uint32_t i;
379 for(i = 0; i < count; i ++)
380 target_buffer_set_u16(target,&buffer[i*2],srcbuf[i]);
383 /* return a pointer to a configured target; id is name or number */
384 struct target *get_target(const char *id)
386 struct target *target;
388 /* try as tcltarget name */
389 for (target = all_targets; target; target = target->next) {
390 if (target->cmd_name == NULL)
391 continue;
392 if (strcmp(id, target->cmd_name) == 0)
393 return target;
396 /* It's OK to remove this fallback sometime after August 2010 or so */
398 /* no match, try as number */
399 unsigned num;
400 if (parse_uint(id, &num) != ERROR_OK)
401 return NULL;
403 for (target = all_targets; target; target = target->next) {
404 if (target->target_number == (int)num) {
405 LOG_WARNING("use '%s' as target identifier, not '%u'",
406 target->cmd_name, num);
407 return target;
411 return NULL;
414 /* returns a pointer to the n-th configured target */
415 static struct target *get_target_by_num(int num)
417 struct target *target = all_targets;
419 while (target) {
420 if (target->target_number == num) {
421 return target;
423 target = target->next;
426 return NULL;
429 struct target* get_current_target(struct command_context *cmd_ctx)
431 struct target *target = get_target_by_num(cmd_ctx->current_target);
433 if (target == NULL)
435 LOG_ERROR("BUG: current_target out of bounds");
436 exit(-1);
439 return target;
442 int target_poll(struct target *target)
444 int retval;
446 /* We can't poll until after examine */
447 if (!target_was_examined(target))
449 /* Fail silently lest we pollute the log */
450 return ERROR_FAIL;
453 retval = target->type->poll(target);
454 if (retval != ERROR_OK)
455 return retval;
457 if (target->halt_issued)
459 if (target->state == TARGET_HALTED)
461 target->halt_issued = false;
462 } else
464 long long t = timeval_ms() - target->halt_issued_time;
465 if (t>1000)
467 target->halt_issued = false;
468 LOG_INFO("Halt timed out, wake up GDB.");
469 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
474 return ERROR_OK;
477 int target_halt(struct target *target)
479 int retval;
480 /* We can't poll until after examine */
481 if (!target_was_examined(target))
483 LOG_ERROR("Target not examined yet");
484 return ERROR_FAIL;
487 retval = target->type->halt(target);
488 if (retval != ERROR_OK)
489 return retval;
491 target->halt_issued = true;
492 target->halt_issued_time = timeval_ms();
494 return ERROR_OK;
498 * Make the target (re)start executing using its saved execution
499 * context (possibly with some modifications).
501 * @param target Which target should start executing.
502 * @param current True to use the target's saved program counter instead
503 * of the address parameter
504 * @param address Optionally used as the program counter.
505 * @param handle_breakpoints True iff breakpoints at the resumption PC
506 * should be skipped. (For example, maybe execution was stopped by
507 * such a breakpoint, in which case it would be counterprodutive to
508 * let it re-trigger.
509 * @param debug_execution False if all working areas allocated by OpenOCD
510 * should be released and/or restored to their original contents.
511 * (This would for example be true to run some downloaded "helper"
512 * algorithm code, which resides in one such working buffer and uses
513 * another for data storage.)
515 * @todo Resolve the ambiguity about what the "debug_execution" flag
516 * signifies. For example, Target implementations don't agree on how
517 * it relates to invalidation of the register cache, or to whether
518 * breakpoints and watchpoints should be enabled. (It would seem wrong
519 * to enable breakpoints when running downloaded "helper" algorithms
520 * (debug_execution true), since the breakpoints would be set to match
521 * target firmware being debugged, not the helper algorithm.... and
522 * enabling them could cause such helpers to malfunction (for example,
523 * by overwriting data with a breakpoint instruction. On the other
524 * hand the infrastructure for running such helpers might use this
525 * procedure but rely on hardware breakpoint to detect termination.)
527 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
529 int retval;
531 /* We can't poll until after examine */
532 if (!target_was_examined(target))
534 LOG_ERROR("Target not examined yet");
535 return ERROR_FAIL;
538 /* note that resume *must* be asynchronous. The CPU can halt before
539 * we poll. The CPU can even halt at the current PC as a result of
540 * a software breakpoint being inserted by (a bug?) the application.
542 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
543 return retval;
545 return retval;
548 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
550 char buf[100];
551 int retval;
552 Jim_Nvp *n;
553 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
554 if (n->name == NULL) {
555 LOG_ERROR("invalid reset mode");
556 return ERROR_FAIL;
559 /* disable polling during reset to make reset event scripts
560 * more predictable, i.e. dr/irscan & pathmove in events will
561 * not have JTAG operations injected into the middle of a sequence.
563 bool save_poll = jtag_poll_get_enabled();
565 jtag_poll_set_enabled(false);
567 sprintf(buf, "ocd_process_reset %s", n->name);
568 retval = Jim_Eval(cmd_ctx->interp, buf);
570 jtag_poll_set_enabled(save_poll);
572 if (retval != JIM_OK) {
573 Jim_MakeErrorMessage(cmd_ctx->interp);
574 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
575 return ERROR_FAIL;
578 /* We want any events to be processed before the prompt */
579 retval = target_call_timer_callbacks_now();
581 struct target *target;
582 for (target = all_targets; target; target = target->next) {
583 target->type->check_reset(target);
586 return retval;
589 static int identity_virt2phys(struct target *target,
590 uint32_t virtual, uint32_t *physical)
592 *physical = virtual;
593 return ERROR_OK;
596 static int no_mmu(struct target *target, int *enabled)
598 *enabled = 0;
599 return ERROR_OK;
602 static int default_examine(struct target *target)
604 target_set_examined(target);
605 return ERROR_OK;
608 /* no check by default */
609 static int default_check_reset(struct target *target)
611 return ERROR_OK;
614 int target_examine_one(struct target *target)
616 return target->type->examine(target);
619 static int jtag_enable_callback(enum jtag_event event, void *priv)
621 struct target *target = priv;
623 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
624 return ERROR_OK;
626 jtag_unregister_event_callback(jtag_enable_callback, target);
627 return target_examine_one(target);
631 /* Targets that correctly implement init + examine, i.e.
632 * no communication with target during init:
634 * XScale
636 int target_examine(void)
638 int retval = ERROR_OK;
639 struct target *target;
641 for (target = all_targets; target; target = target->next)
643 /* defer examination, but don't skip it */
644 if (!target->tap->enabled) {
645 jtag_register_event_callback(jtag_enable_callback,
646 target);
647 continue;
649 if ((retval = target_examine_one(target)) != ERROR_OK)
650 return retval;
652 return retval;
654 const char *target_type_name(struct target *target)
656 return target->type->name;
659 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
661 if (!target_was_examined(target))
663 LOG_ERROR("Target not examined yet");
664 return ERROR_FAIL;
666 return target->type->write_memory_imp(target, address, size, count, buffer);
669 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
671 if (!target_was_examined(target))
673 LOG_ERROR("Target not examined yet");
674 return ERROR_FAIL;
676 return target->type->read_memory_imp(target, address, size, count, buffer);
679 static int target_soft_reset_halt_imp(struct target *target)
681 if (!target_was_examined(target))
683 LOG_ERROR("Target not examined yet");
684 return ERROR_FAIL;
686 if (!target->type->soft_reset_halt_imp) {
687 LOG_ERROR("Target %s does not support soft_reset_halt",
688 target_name(target));
689 return ERROR_FAIL;
691 return target->type->soft_reset_halt_imp(target);
695 * Downloads a target-specific native code algorithm to the target,
696 * and executes it. * Note that some targets may need to set up, enable,
697 * and tear down a breakpoint (hard or * soft) to detect algorithm
698 * termination, while others may support lower overhead schemes where
699 * soft breakpoints embedded in the algorithm automatically terminate the
700 * algorithm.
702 * @param target used to run the algorithm
703 * @param arch_info target-specific description of the algorithm.
705 int target_run_algorithm(struct target *target,
706 int num_mem_params, struct mem_param *mem_params,
707 int num_reg_params, struct reg_param *reg_param,
708 uint32_t entry_point, uint32_t exit_point,
709 int timeout_ms, void *arch_info)
711 int retval = ERROR_FAIL;
713 if (!target_was_examined(target))
715 LOG_ERROR("Target not examined yet");
716 goto done;
718 if (!target->type->run_algorithm) {
719 LOG_ERROR("Target type '%s' does not support %s",
720 target_type_name(target), __func__);
721 goto done;
724 target->running_alg = true;
725 retval = target->type->run_algorithm(target,
726 num_mem_params, mem_params,
727 num_reg_params, reg_param,
728 entry_point, exit_point, timeout_ms, arch_info);
729 target->running_alg = false;
731 done:
732 return retval;
736 int target_read_memory(struct target *target,
737 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
739 return target->type->read_memory(target, address, size, count, buffer);
742 static int target_read_phys_memory(struct target *target,
743 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
745 return target->type->read_phys_memory(target, address, size, count, buffer);
748 int target_write_memory(struct target *target,
749 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
751 return target->type->write_memory(target, address, size, count, buffer);
754 static int target_write_phys_memory(struct target *target,
755 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
757 return target->type->write_phys_memory(target, address, size, count, buffer);
760 int target_bulk_write_memory(struct target *target,
761 uint32_t address, uint32_t count, const uint8_t *buffer)
763 return target->type->bulk_write_memory(target, address, count, buffer);
766 int target_add_breakpoint(struct target *target,
767 struct breakpoint *breakpoint)
769 if ((target->state != TARGET_HALTED)&&(breakpoint->type!=BKPT_HARD)) {
770 LOG_WARNING("target %s is not halted", target->cmd_name);
771 return ERROR_TARGET_NOT_HALTED;
773 return target->type->add_breakpoint(target, breakpoint);
776 int target_add_context_breakpoint(struct target *target,
777 struct breakpoint *breakpoint)
779 if (target->state != TARGET_HALTED) {
780 LOG_WARNING("target %s is not halted", target->cmd_name);
781 return ERROR_TARGET_NOT_HALTED;
783 return target->type->add_context_breakpoint(target, breakpoint);
786 int target_add_hybrid_breakpoint(struct target *target,
787 struct breakpoint *breakpoint)
789 if (target->state != TARGET_HALTED) {
790 LOG_WARNING("target %s is not halted", target->cmd_name);
791 return ERROR_TARGET_NOT_HALTED;
793 return target->type->add_hybrid_breakpoint(target, breakpoint);
796 int target_remove_breakpoint(struct target *target,
797 struct breakpoint *breakpoint)
799 return target->type->remove_breakpoint(target, breakpoint);
802 int target_add_watchpoint(struct target *target,
803 struct watchpoint *watchpoint)
805 if (target->state != TARGET_HALTED) {
806 LOG_WARNING("target %s is not halted", target->cmd_name);
807 return ERROR_TARGET_NOT_HALTED;
809 return target->type->add_watchpoint(target, watchpoint);
811 int target_remove_watchpoint(struct target *target,
812 struct watchpoint *watchpoint)
814 return target->type->remove_watchpoint(target, watchpoint);
817 int target_get_gdb_reg_list(struct target *target,
818 struct reg **reg_list[], int *reg_list_size)
820 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
822 int target_step(struct target *target,
823 int current, uint32_t address, int handle_breakpoints)
825 return target->type->step(target, current, address, handle_breakpoints);
830 * Reset the @c examined flag for the given target.
831 * Pure paranoia -- targets are zeroed on allocation.
833 static void target_reset_examined(struct target *target)
835 target->examined = false;
838 static int
839 err_read_phys_memory(struct target *target, uint32_t address,
840 uint32_t size, uint32_t count, uint8_t *buffer)
842 LOG_ERROR("Not implemented: %s", __func__);
843 return ERROR_FAIL;
846 static int
847 err_write_phys_memory(struct target *target, uint32_t address,
848 uint32_t size, uint32_t count, const uint8_t *buffer)
850 LOG_ERROR("Not implemented: %s", __func__);
851 return ERROR_FAIL;
854 static int handle_target(void *priv);
856 static int target_init_one(struct command_context *cmd_ctx,
857 struct target *target)
859 target_reset_examined(target);
861 struct target_type *type = target->type;
862 if (type->examine == NULL)
863 type->examine = default_examine;
865 if (type->check_reset== NULL)
866 type->check_reset = default_check_reset;
868 int retval = type->init_target(cmd_ctx, target);
869 if (ERROR_OK != retval)
871 LOG_ERROR("target '%s' init failed", target_name(target));
872 return retval;
876 * @todo get rid of those *memory_imp() methods, now that all
877 * callers are using target_*_memory() accessors ... and make
878 * sure the "physical" paths handle the same issues.
880 /* a non-invasive way(in terms of patches) to add some code that
881 * runs before the type->write/read_memory implementation
883 type->write_memory_imp = target->type->write_memory;
884 type->write_memory = target_write_memory_imp;
886 type->read_memory_imp = target->type->read_memory;
887 type->read_memory = target_read_memory_imp;
889 type->soft_reset_halt_imp = target->type->soft_reset_halt;
890 type->soft_reset_halt = target_soft_reset_halt_imp;
892 /* Sanity-check MMU support ... stub in what we must, to help
893 * implement it in stages, but warn if we need to do so.
895 if (type->mmu)
897 if (type->write_phys_memory == NULL)
899 LOG_ERROR("type '%s' is missing write_phys_memory",
900 type->name);
901 type->write_phys_memory = err_write_phys_memory;
903 if (type->read_phys_memory == NULL)
905 LOG_ERROR("type '%s' is missing read_phys_memory",
906 type->name);
907 type->read_phys_memory = err_read_phys_memory;
909 if (type->virt2phys == NULL)
911 LOG_ERROR("type '%s' is missing virt2phys", type->name);
912 type->virt2phys = identity_virt2phys;
915 else
917 /* Make sure no-MMU targets all behave the same: make no
918 * distinction between physical and virtual addresses, and
919 * ensure that virt2phys() is always an identity mapping.
921 if (type->write_phys_memory || type->read_phys_memory
922 || type->virt2phys)
924 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
927 type->mmu = no_mmu;
928 type->write_phys_memory = type->write_memory;
929 type->read_phys_memory = type->read_memory;
930 type->virt2phys = identity_virt2phys;
933 if (target->type->read_buffer == NULL)
934 target->type->read_buffer = target_read_buffer_default;
936 if (target->type->write_buffer == NULL)
937 target->type->write_buffer = target_write_buffer_default;
939 return ERROR_OK;
942 static int target_init(struct command_context *cmd_ctx)
944 struct target *target;
945 int retval;
947 for (target = all_targets; target; target = target->next)
949 retval = target_init_one(cmd_ctx, target);
950 if (ERROR_OK != retval)
951 return retval;
954 if (!all_targets)
955 return ERROR_OK;
957 retval = target_register_user_commands(cmd_ctx);
958 if (ERROR_OK != retval)
959 return retval;
961 retval = target_register_timer_callback(&handle_target,
962 polling_interval, 1, cmd_ctx->interp);
963 if (ERROR_OK != retval)
964 return retval;
966 return ERROR_OK;
969 COMMAND_HANDLER(handle_target_init_command)
971 if (CMD_ARGC != 0)
972 return ERROR_COMMAND_SYNTAX_ERROR;
974 static bool target_initialized = false;
975 if (target_initialized)
977 LOG_INFO("'target init' has already been called");
978 return ERROR_OK;
980 target_initialized = true;
982 LOG_DEBUG("Initializing targets...");
983 return target_init(CMD_CTX);
986 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
988 struct target_event_callback **callbacks_p = &target_event_callbacks;
990 if (callback == NULL)
992 return ERROR_INVALID_ARGUMENTS;
995 if (*callbacks_p)
997 while ((*callbacks_p)->next)
998 callbacks_p = &((*callbacks_p)->next);
999 callbacks_p = &((*callbacks_p)->next);
1002 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1003 (*callbacks_p)->callback = callback;
1004 (*callbacks_p)->priv = priv;
1005 (*callbacks_p)->next = NULL;
1007 return ERROR_OK;
1010 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1012 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1013 struct timeval now;
1015 if (callback == NULL)
1017 return ERROR_INVALID_ARGUMENTS;
1020 if (*callbacks_p)
1022 while ((*callbacks_p)->next)
1023 callbacks_p = &((*callbacks_p)->next);
1024 callbacks_p = &((*callbacks_p)->next);
1027 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1028 (*callbacks_p)->callback = callback;
1029 (*callbacks_p)->periodic = periodic;
1030 (*callbacks_p)->time_ms = time_ms;
1032 gettimeofday(&now, NULL);
1033 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1034 time_ms -= (time_ms % 1000);
1035 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1036 if ((*callbacks_p)->when.tv_usec > 1000000)
1038 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1039 (*callbacks_p)->when.tv_sec += 1;
1042 (*callbacks_p)->priv = priv;
1043 (*callbacks_p)->next = NULL;
1045 return ERROR_OK;
1048 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1050 struct target_event_callback **p = &target_event_callbacks;
1051 struct target_event_callback *c = target_event_callbacks;
1053 if (callback == NULL)
1055 return ERROR_INVALID_ARGUMENTS;
1058 while (c)
1060 struct target_event_callback *next = c->next;
1061 if ((c->callback == callback) && (c->priv == priv))
1063 *p = next;
1064 free(c);
1065 return ERROR_OK;
1067 else
1068 p = &(c->next);
1069 c = next;
1072 return ERROR_OK;
1075 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1077 struct target_timer_callback **p = &target_timer_callbacks;
1078 struct target_timer_callback *c = target_timer_callbacks;
1080 if (callback == NULL)
1082 return ERROR_INVALID_ARGUMENTS;
1085 while (c)
1087 struct target_timer_callback *next = c->next;
1088 if ((c->callback == callback) && (c->priv == priv))
1090 *p = next;
1091 free(c);
1092 return ERROR_OK;
1094 else
1095 p = &(c->next);
1096 c = next;
1099 return ERROR_OK;
1102 int target_call_event_callbacks(struct target *target, enum target_event event)
1104 struct target_event_callback *callback = target_event_callbacks;
1105 struct target_event_callback *next_callback;
1107 if (event == TARGET_EVENT_HALTED)
1109 /* execute early halted first */
1110 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1113 LOG_DEBUG("target event %i (%s)",
1114 event,
1115 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1117 target_handle_event(target, event);
1119 while (callback)
1121 next_callback = callback->next;
1122 callback->callback(target, event, callback->priv);
1123 callback = next_callback;
1126 return ERROR_OK;
1129 static int target_timer_callback_periodic_restart(
1130 struct target_timer_callback *cb, struct timeval *now)
1132 int time_ms = cb->time_ms;
1133 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1134 time_ms -= (time_ms % 1000);
1135 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1136 if (cb->when.tv_usec > 1000000)
1138 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1139 cb->when.tv_sec += 1;
1141 return ERROR_OK;
1144 static int target_call_timer_callback(struct target_timer_callback *cb,
1145 struct timeval *now)
1147 cb->callback(cb->priv);
1149 if (cb->periodic)
1150 return target_timer_callback_periodic_restart(cb, now);
1152 return target_unregister_timer_callback(cb->callback, cb->priv);
1155 static int target_call_timer_callbacks_check_time(int checktime)
1157 keep_alive();
1159 struct timeval now;
1160 gettimeofday(&now, NULL);
1162 struct target_timer_callback *callback = target_timer_callbacks;
1163 while (callback)
1165 // cleaning up may unregister and free this callback
1166 struct target_timer_callback *next_callback = callback->next;
1168 bool call_it = callback->callback &&
1169 ((!checktime && callback->periodic) ||
1170 now.tv_sec > callback->when.tv_sec ||
1171 (now.tv_sec == callback->when.tv_sec &&
1172 now.tv_usec >= callback->when.tv_usec));
1174 if (call_it)
1176 int retval = target_call_timer_callback(callback, &now);
1177 if (retval != ERROR_OK)
1178 return retval;
1181 callback = next_callback;
1184 return ERROR_OK;
1187 int target_call_timer_callbacks(void)
1189 return target_call_timer_callbacks_check_time(1);
1192 /* invoke periodic callbacks immediately */
1193 int target_call_timer_callbacks_now(void)
1195 return target_call_timer_callbacks_check_time(0);
1198 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1200 struct working_area *c = target->working_areas;
1201 struct working_area *new_wa = NULL;
1203 /* Reevaluate working area address based on MMU state*/
1204 if (target->working_areas == NULL)
1206 int retval;
1207 int enabled;
1209 retval = target->type->mmu(target, &enabled);
1210 if (retval != ERROR_OK)
1212 return retval;
1215 if (!enabled) {
1216 if (target->working_area_phys_spec) {
1217 LOG_DEBUG("MMU disabled, using physical "
1218 "address for working memory 0x%08x",
1219 (unsigned)target->working_area_phys);
1220 target->working_area = target->working_area_phys;
1221 } else {
1222 LOG_ERROR("No working memory available. "
1223 "Specify -work-area-phys to target.");
1224 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1226 } else {
1227 if (target->working_area_virt_spec) {
1228 LOG_DEBUG("MMU enabled, using virtual "
1229 "address for working memory 0x%08x",
1230 (unsigned)target->working_area_virt);
1231 target->working_area = target->working_area_virt;
1232 } else {
1233 LOG_ERROR("No working memory available. "
1234 "Specify -work-area-virt to target.");
1235 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1240 /* only allocate multiples of 4 byte */
1241 if (size % 4)
1243 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1244 size = (size + 3) & (~3);
1247 /* see if there's already a matching working area */
1248 while (c)
1250 if ((c->free) && (c->size == size))
1252 new_wa = c;
1253 break;
1255 c = c->next;
1258 /* if not, allocate a new one */
1259 if (!new_wa)
1261 struct working_area **p = &target->working_areas;
1262 uint32_t first_free = target->working_area;
1263 uint32_t free_size = target->working_area_size;
1265 c = target->working_areas;
1266 while (c)
1268 first_free += c->size;
1269 free_size -= c->size;
1270 p = &c->next;
1271 c = c->next;
1274 if (free_size < size)
1276 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1279 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1281 new_wa = malloc(sizeof(struct working_area));
1282 new_wa->next = NULL;
1283 new_wa->size = size;
1284 new_wa->address = first_free;
1286 if (target->backup_working_area)
1288 int retval;
1289 new_wa->backup = malloc(new_wa->size);
1290 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1292 free(new_wa->backup);
1293 free(new_wa);
1294 return retval;
1297 else
1299 new_wa->backup = NULL;
1302 /* put new entry in list */
1303 *p = new_wa;
1306 /* mark as used, and return the new (reused) area */
1307 new_wa->free = false;
1308 *area = new_wa;
1310 /* user pointer */
1311 new_wa->user = area;
1313 return ERROR_OK;
1316 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1318 int retval;
1320 retval = target_alloc_working_area_try(target, size, area);
1321 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1323 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1325 return retval;
1329 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1331 if (area->free)
1332 return ERROR_OK;
1334 if (restore && target->backup_working_area)
1336 int retval;
1337 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1338 return retval;
1341 area->free = true;
1343 /* mark user pointer invalid */
1344 *area->user = NULL;
1345 area->user = NULL;
1347 return ERROR_OK;
1350 int target_free_working_area(struct target *target, struct working_area *area)
1352 return target_free_working_area_restore(target, area, 1);
1355 /* free resources and restore memory, if restoring memory fails,
1356 * free up resources anyway
1358 static void target_free_all_working_areas_restore(struct target *target, int restore)
1360 struct working_area *c = target->working_areas;
1362 while (c)
1364 struct working_area *next = c->next;
1365 target_free_working_area_restore(target, c, restore);
1367 if (c->backup)
1368 free(c->backup);
1370 free(c);
1372 c = next;
1375 target->working_areas = NULL;
1378 void target_free_all_working_areas(struct target *target)
1380 target_free_all_working_areas_restore(target, 1);
1383 int target_arch_state(struct target *target)
1385 int retval;
1386 if (target == NULL)
1388 LOG_USER("No target has been configured");
1389 return ERROR_OK;
1392 LOG_USER("target state: %s", target_state_name( target ));
1394 if (target->state != TARGET_HALTED)
1395 return ERROR_OK;
1397 retval = target->type->arch_state(target);
1398 return retval;
1401 /* Single aligned words are guaranteed to use 16 or 32 bit access
1402 * mode respectively, otherwise data is handled as quickly as
1403 * possible
1405 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1407 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1408 (int)size, (unsigned)address);
1410 if (!target_was_examined(target))
1412 LOG_ERROR("Target not examined yet");
1413 return ERROR_FAIL;
1416 if (size == 0) {
1417 return ERROR_OK;
1420 if ((address + size - 1) < address)
1422 /* GDB can request this when e.g. PC is 0xfffffffc*/
1423 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1424 (unsigned)address,
1425 (unsigned)size);
1426 return ERROR_FAIL;
1429 return target->type->write_buffer(target, address, size, buffer);
1432 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1434 int retval = ERROR_OK;
1436 if (((address % 2) == 0) && (size == 2))
1438 return target_write_memory(target, address, 2, 1, buffer);
1441 /* handle unaligned head bytes */
1442 if (address % 4)
1444 uint32_t unaligned = 4 - (address % 4);
1446 if (unaligned > size)
1447 unaligned = size;
1449 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1450 return retval;
1452 buffer += unaligned;
1453 address += unaligned;
1454 size -= unaligned;
1457 /* handle aligned words */
1458 if (size >= 4)
1460 int aligned = size - (size % 4);
1462 /* use bulk writes above a certain limit. This may have to be changed */
1463 if (aligned > 128)
1465 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1466 return retval;
1468 else
1470 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1471 return retval;
1474 buffer += aligned;
1475 address += aligned;
1476 size -= aligned;
1479 /* handle tail writes of less than 4 bytes */
1480 if (size > 0)
1482 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1483 return retval;
1486 return retval;
1489 /* Single aligned words are guaranteed to use 16 or 32 bit access
1490 * mode respectively, otherwise data is handled as quickly as
1491 * possible
1493 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1495 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1496 (int)size, (unsigned)address);
1498 if (!target_was_examined(target))
1500 LOG_ERROR("Target not examined yet");
1501 return ERROR_FAIL;
1504 if (size == 0) {
1505 return ERROR_OK;
1508 if ((address + size - 1) < address)
1510 /* GDB can request this when e.g. PC is 0xfffffffc*/
1511 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1512 address,
1513 size);
1514 return ERROR_FAIL;
1517 return target->type->read_buffer(target, address, size, buffer);
1520 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1522 int retval = ERROR_OK;
1524 if (((address % 2) == 0) && (size == 2))
1526 return target_read_memory(target, address, 2, 1, buffer);
1529 /* handle unaligned head bytes */
1530 if (address % 4)
1532 uint32_t unaligned = 4 - (address % 4);
1534 if (unaligned > size)
1535 unaligned = size;
1537 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1538 return retval;
1540 buffer += unaligned;
1541 address += unaligned;
1542 size -= unaligned;
1545 /* handle aligned words */
1546 if (size >= 4)
1548 int aligned = size - (size % 4);
1550 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1551 return retval;
1553 buffer += aligned;
1554 address += aligned;
1555 size -= aligned;
1558 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1559 if(size >=2)
1561 int aligned = size - (size%2);
1562 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1563 if (retval != ERROR_OK)
1564 return retval;
1566 buffer += aligned;
1567 address += aligned;
1568 size -= aligned;
1570 /* handle tail writes of less than 4 bytes */
1571 if (size > 0)
1573 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1574 return retval;
1577 return ERROR_OK;
1580 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1582 uint8_t *buffer;
1583 int retval;
1584 uint32_t i;
1585 uint32_t checksum = 0;
1586 if (!target_was_examined(target))
1588 LOG_ERROR("Target not examined yet");
1589 return ERROR_FAIL;
1592 if ((retval = target->type->checksum_memory(target, address,
1593 size, &checksum)) != ERROR_OK)
1595 buffer = malloc(size);
1596 if (buffer == NULL)
1598 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1599 return ERROR_INVALID_ARGUMENTS;
1601 retval = target_read_buffer(target, address, size, buffer);
1602 if (retval != ERROR_OK)
1604 free(buffer);
1605 return retval;
1608 /* convert to target endianness */
1609 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1611 uint32_t target_data;
1612 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1613 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1616 retval = image_calculate_checksum(buffer, size, &checksum);
1617 free(buffer);
1620 *crc = checksum;
1622 return retval;
1625 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1627 int retval;
1628 if (!target_was_examined(target))
1630 LOG_ERROR("Target not examined yet");
1631 return ERROR_FAIL;
1634 if (target->type->blank_check_memory == 0)
1635 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1637 retval = target->type->blank_check_memory(target, address, size, blank);
1639 return retval;
1642 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1644 uint8_t value_buf[4];
1645 if (!target_was_examined(target))
1647 LOG_ERROR("Target not examined yet");
1648 return ERROR_FAIL;
1651 int retval = target_read_memory(target, address, 4, 1, value_buf);
1653 if (retval == ERROR_OK)
1655 *value = target_buffer_get_u32(target, value_buf);
1656 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1657 address,
1658 *value);
1660 else
1662 *value = 0x0;
1663 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1664 address);
1667 return retval;
1670 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1672 uint8_t value_buf[2];
1673 if (!target_was_examined(target))
1675 LOG_ERROR("Target not examined yet");
1676 return ERROR_FAIL;
1679 int retval = target_read_memory(target, address, 2, 1, value_buf);
1681 if (retval == ERROR_OK)
1683 *value = target_buffer_get_u16(target, value_buf);
1684 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1685 address,
1686 *value);
1688 else
1690 *value = 0x0;
1691 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1692 address);
1695 return retval;
1698 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1700 int retval = target_read_memory(target, address, 1, 1, value);
1701 if (!target_was_examined(target))
1703 LOG_ERROR("Target not examined yet");
1704 return ERROR_FAIL;
1707 if (retval == ERROR_OK)
1709 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1710 address,
1711 *value);
1713 else
1715 *value = 0x0;
1716 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1717 address);
1720 return retval;
1723 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1725 int retval;
1726 uint8_t value_buf[4];
1727 if (!target_was_examined(target))
1729 LOG_ERROR("Target not examined yet");
1730 return ERROR_FAIL;
1733 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1734 address,
1735 value);
1737 target_buffer_set_u32(target, value_buf, value);
1738 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1740 LOG_DEBUG("failed: %i", retval);
1743 return retval;
1746 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1748 int retval;
1749 uint8_t value_buf[2];
1750 if (!target_was_examined(target))
1752 LOG_ERROR("Target not examined yet");
1753 return ERROR_FAIL;
1756 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1757 address,
1758 value);
1760 target_buffer_set_u16(target, value_buf, value);
1761 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1763 LOG_DEBUG("failed: %i", retval);
1766 return retval;
1769 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1771 int retval;
1772 if (!target_was_examined(target))
1774 LOG_ERROR("Target not examined yet");
1775 return ERROR_FAIL;
1778 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1779 address, value);
1781 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1783 LOG_DEBUG("failed: %i", retval);
1786 return retval;
1789 COMMAND_HANDLER(handle_targets_command)
1791 struct target *target = all_targets;
1793 if (CMD_ARGC == 1)
1795 target = get_target(CMD_ARGV[0]);
1796 if (target == NULL) {
1797 command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1798 goto DumpTargets;
1800 if (!target->tap->enabled) {
1801 command_print(CMD_CTX,"Target: TAP %s is disabled, "
1802 "can't be the current target\n",
1803 target->tap->dotted_name);
1804 return ERROR_FAIL;
1807 CMD_CTX->current_target = target->target_number;
1808 return ERROR_OK;
1810 DumpTargets:
1812 target = all_targets;
1813 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1814 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1815 while (target)
1817 const char *state;
1818 char marker = ' ';
1820 if (target->tap->enabled)
1821 state = target_state_name( target );
1822 else
1823 state = "tap-disabled";
1825 if (CMD_CTX->current_target == target->target_number)
1826 marker = '*';
1828 /* keep columns lined up to match the headers above */
1829 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1830 target->target_number,
1831 marker,
1832 target_name(target),
1833 target_type_name(target),
1834 Jim_Nvp_value2name_simple(nvp_target_endian,
1835 target->endianness)->name,
1836 target->tap->dotted_name,
1837 state);
1838 target = target->next;
1841 return ERROR_OK;
1844 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1846 static int powerDropout;
1847 static int srstAsserted;
1849 static int runPowerRestore;
1850 static int runPowerDropout;
1851 static int runSrstAsserted;
1852 static int runSrstDeasserted;
1854 static int sense_handler(void)
1856 static int prevSrstAsserted = 0;
1857 static int prevPowerdropout = 0;
1859 int retval;
1860 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1861 return retval;
1863 int powerRestored;
1864 powerRestored = prevPowerdropout && !powerDropout;
1865 if (powerRestored)
1867 runPowerRestore = 1;
1870 long long current = timeval_ms();
1871 static long long lastPower = 0;
1872 int waitMore = lastPower + 2000 > current;
1873 if (powerDropout && !waitMore)
1875 runPowerDropout = 1;
1876 lastPower = current;
1879 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1880 return retval;
1882 int srstDeasserted;
1883 srstDeasserted = prevSrstAsserted && !srstAsserted;
1885 static long long lastSrst = 0;
1886 waitMore = lastSrst + 2000 > current;
1887 if (srstDeasserted && !waitMore)
1889 runSrstDeasserted = 1;
1890 lastSrst = current;
1893 if (!prevSrstAsserted && srstAsserted)
1895 runSrstAsserted = 1;
1898 prevSrstAsserted = srstAsserted;
1899 prevPowerdropout = powerDropout;
1901 if (srstDeasserted || powerRestored)
1903 /* Other than logging the event we can't do anything here.
1904 * Issuing a reset is a particularly bad idea as we might
1905 * be inside a reset already.
1909 return ERROR_OK;
1912 static int backoff_times = 0;
1913 static int backoff_count = 0;
1915 /* process target state changes */
1916 static int handle_target(void *priv)
1918 Jim_Interp *interp = (Jim_Interp *)priv;
1919 int retval = ERROR_OK;
1921 if (!is_jtag_poll_safe())
1923 /* polling is disabled currently */
1924 return ERROR_OK;
1927 /* we do not want to recurse here... */
1928 static int recursive = 0;
1929 if (! recursive)
1931 recursive = 1;
1932 sense_handler();
1933 /* danger! running these procedures can trigger srst assertions and power dropouts.
1934 * We need to avoid an infinite loop/recursion here and we do that by
1935 * clearing the flags after running these events.
1937 int did_something = 0;
1938 if (runSrstAsserted)
1940 LOG_INFO("srst asserted detected, running srst_asserted proc.");
1941 Jim_Eval(interp, "srst_asserted");
1942 did_something = 1;
1944 if (runSrstDeasserted)
1946 Jim_Eval(interp, "srst_deasserted");
1947 did_something = 1;
1949 if (runPowerDropout)
1951 LOG_INFO("Power dropout detected, running power_dropout proc.");
1952 Jim_Eval(interp, "power_dropout");
1953 did_something = 1;
1955 if (runPowerRestore)
1957 Jim_Eval(interp, "power_restore");
1958 did_something = 1;
1961 if (did_something)
1963 /* clear detect flags */
1964 sense_handler();
1967 /* clear action flags */
1969 runSrstAsserted = 0;
1970 runSrstDeasserted = 0;
1971 runPowerRestore = 0;
1972 runPowerDropout = 0;
1974 recursive = 0;
1977 if (backoff_times > backoff_count)
1979 /* do not poll this time as we failed previously */
1980 backoff_count++;
1981 return ERROR_OK;
1983 backoff_count = 0;
1985 /* Poll targets for state changes unless that's globally disabled.
1986 * Skip targets that are currently disabled.
1988 for (struct target *target = all_targets;
1989 is_jtag_poll_safe() && target;
1990 target = target->next)
1992 if (!target->tap->enabled)
1993 continue;
1995 /* only poll target if we've got power and srst isn't asserted */
1996 if (!powerDropout && !srstAsserted)
1998 /* polling may fail silently until the target has been examined */
1999 if ((retval = target_poll(target)) != ERROR_OK)
2001 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2002 if (backoff_times * polling_interval < 5000)
2004 backoff_times *= 2;
2005 backoff_times++;
2007 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);
2009 /* Tell GDB to halt the debugger. This allows the user to
2010 * run monitor commands to handle the situation.
2012 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2013 return retval;
2015 /* Since we succeeded, we reset backoff count */
2016 if (backoff_times > 0)
2018 LOG_USER("Polling succeeded again");
2020 backoff_times = 0;
2024 return retval;
2027 COMMAND_HANDLER(handle_reg_command)
2029 struct target *target;
2030 struct reg *reg = NULL;
2031 unsigned count = 0;
2032 char *value;
2034 LOG_DEBUG("-");
2036 target = get_current_target(CMD_CTX);
2038 /* list all available registers for the current target */
2039 if (CMD_ARGC == 0)
2041 struct reg_cache *cache = target->reg_cache;
2043 count = 0;
2044 while (cache)
2046 unsigned i;
2048 command_print(CMD_CTX, "===== %s", cache->name);
2050 for (i = 0, reg = cache->reg_list;
2051 i < cache->num_regs;
2052 i++, reg++, count++)
2054 /* only print cached values if they are valid */
2055 if (reg->valid) {
2056 value = buf_to_str(reg->value,
2057 reg->size, 16);
2058 command_print(CMD_CTX,
2059 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2060 count, reg->name,
2061 reg->size, value,
2062 reg->dirty
2063 ? " (dirty)"
2064 : "");
2065 free(value);
2066 } else {
2067 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2068 count, reg->name,
2069 reg->size) ;
2072 cache = cache->next;
2075 return ERROR_OK;
2078 /* access a single register by its ordinal number */
2079 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
2081 unsigned num;
2082 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2084 struct reg_cache *cache = target->reg_cache;
2085 count = 0;
2086 while (cache)
2088 unsigned i;
2089 for (i = 0; i < cache->num_regs; i++)
2091 if (count++ == num)
2093 reg = &cache->reg_list[i];
2094 break;
2097 if (reg)
2098 break;
2099 cache = cache->next;
2102 if (!reg)
2104 command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
2105 return ERROR_OK;
2107 } else /* access a single register by its name */
2109 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2111 if (!reg)
2113 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2114 return ERROR_OK;
2118 /* display a register */
2119 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2121 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2122 reg->valid = 0;
2124 if (reg->valid == 0)
2126 reg->type->get(reg);
2128 value = buf_to_str(reg->value, reg->size, 16);
2129 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2130 free(value);
2131 return ERROR_OK;
2134 /* set register value */
2135 if (CMD_ARGC == 2)
2137 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2138 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2140 reg->type->set(reg, buf);
2142 value = buf_to_str(reg->value, reg->size, 16);
2143 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2144 free(value);
2146 free(buf);
2148 return ERROR_OK;
2151 command_print(CMD_CTX, "usage: reg <#|name> [value]");
2153 return ERROR_OK;
2156 COMMAND_HANDLER(handle_poll_command)
2158 int retval = ERROR_OK;
2159 struct target *target = get_current_target(CMD_CTX);
2161 if (CMD_ARGC == 0)
2163 command_print(CMD_CTX, "background polling: %s",
2164 jtag_poll_get_enabled() ? "on" : "off");
2165 command_print(CMD_CTX, "TAP: %s (%s)",
2166 target->tap->dotted_name,
2167 target->tap->enabled ? "enabled" : "disabled");
2168 if (!target->tap->enabled)
2169 return ERROR_OK;
2170 if ((retval = target_poll(target)) != ERROR_OK)
2171 return retval;
2172 if ((retval = target_arch_state(target)) != ERROR_OK)
2173 return retval;
2175 else if (CMD_ARGC == 1)
2177 bool enable;
2178 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2179 jtag_poll_set_enabled(enable);
2181 else
2183 return ERROR_COMMAND_SYNTAX_ERROR;
2186 return retval;
2189 COMMAND_HANDLER(handle_wait_halt_command)
2191 if (CMD_ARGC > 1)
2192 return ERROR_COMMAND_SYNTAX_ERROR;
2194 unsigned ms = 5000;
2195 if (1 == CMD_ARGC)
2197 int retval = parse_uint(CMD_ARGV[0], &ms);
2198 if (ERROR_OK != retval)
2200 command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2201 return ERROR_COMMAND_SYNTAX_ERROR;
2203 // convert seconds (given) to milliseconds (needed)
2204 ms *= 1000;
2207 struct target *target = get_current_target(CMD_CTX);
2208 return target_wait_state(target, TARGET_HALTED, ms);
2211 /* wait for target state to change. The trick here is to have a low
2212 * latency for short waits and not to suck up all the CPU time
2213 * on longer waits.
2215 * After 500ms, keep_alive() is invoked
2217 int target_wait_state(struct target *target, enum target_state state, int ms)
2219 int retval;
2220 long long then = 0, cur;
2221 int once = 1;
2223 for (;;)
2225 if ((retval = target_poll(target)) != ERROR_OK)
2226 return retval;
2227 if (target->state == state)
2229 break;
2231 cur = timeval_ms();
2232 if (once)
2234 once = 0;
2235 then = timeval_ms();
2236 LOG_DEBUG("waiting for target %s...",
2237 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2240 if (cur-then > 500)
2242 keep_alive();
2245 if ((cur-then) > ms)
2247 LOG_ERROR("timed out while waiting for target %s",
2248 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2249 return ERROR_FAIL;
2253 return ERROR_OK;
2256 COMMAND_HANDLER(handle_halt_command)
2258 LOG_DEBUG("-");
2260 struct target *target = get_current_target(CMD_CTX);
2261 int retval = target_halt(target);
2262 if (ERROR_OK != retval)
2263 return retval;
2265 if (CMD_ARGC == 1)
2267 unsigned wait_local;
2268 retval = parse_uint(CMD_ARGV[0], &wait_local);
2269 if (ERROR_OK != retval)
2270 return ERROR_COMMAND_SYNTAX_ERROR;
2271 if (!wait_local)
2272 return ERROR_OK;
2275 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2278 COMMAND_HANDLER(handle_soft_reset_halt_command)
2280 struct target *target = get_current_target(CMD_CTX);
2282 LOG_USER("requesting target halt and executing a soft reset");
2284 target->type->soft_reset_halt(target);
2286 return ERROR_OK;
2289 COMMAND_HANDLER(handle_reset_command)
2291 if (CMD_ARGC > 1)
2292 return ERROR_COMMAND_SYNTAX_ERROR;
2294 enum target_reset_mode reset_mode = RESET_RUN;
2295 if (CMD_ARGC == 1)
2297 const Jim_Nvp *n;
2298 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2299 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2300 return ERROR_COMMAND_SYNTAX_ERROR;
2302 reset_mode = n->value;
2305 /* reset *all* targets */
2306 return target_process_reset(CMD_CTX, reset_mode);
2310 COMMAND_HANDLER(handle_resume_command)
2312 int current = 1;
2313 if (CMD_ARGC > 1)
2314 return ERROR_COMMAND_SYNTAX_ERROR;
2316 struct target *target = get_current_target(CMD_CTX);
2317 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2319 /* with no CMD_ARGV, resume from current pc, addr = 0,
2320 * with one arguments, addr = CMD_ARGV[0],
2321 * handle breakpoints, not debugging */
2322 uint32_t addr = 0;
2323 if (CMD_ARGC == 1)
2325 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2326 current = 0;
2329 return target_resume(target, current, addr, 1, 0);
2332 COMMAND_HANDLER(handle_step_command)
2334 if (CMD_ARGC > 1)
2335 return ERROR_COMMAND_SYNTAX_ERROR;
2337 LOG_DEBUG("-");
2339 /* with no CMD_ARGV, step from current pc, addr = 0,
2340 * with one argument addr = CMD_ARGV[0],
2341 * handle breakpoints, debugging */
2342 uint32_t addr = 0;
2343 int current_pc = 1;
2344 if (CMD_ARGC == 1)
2346 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2347 current_pc = 0;
2350 struct target *target = get_current_target(CMD_CTX);
2352 return target->type->step(target, current_pc, addr, 1);
2355 static void handle_md_output(struct command_context *cmd_ctx,
2356 struct target *target, uint32_t address, unsigned size,
2357 unsigned count, const uint8_t *buffer)
2359 const unsigned line_bytecnt = 32;
2360 unsigned line_modulo = line_bytecnt / size;
2362 char output[line_bytecnt * 4 + 1];
2363 unsigned output_len = 0;
2365 const char *value_fmt;
2366 switch (size) {
2367 case 4: value_fmt = "%8.8x "; break;
2368 case 2: value_fmt = "%4.4x "; break;
2369 case 1: value_fmt = "%2.2x "; break;
2370 default:
2371 /* "can't happen", caller checked */
2372 LOG_ERROR("invalid memory read size: %u", size);
2373 return;
2376 for (unsigned i = 0; i < count; i++)
2378 if (i % line_modulo == 0)
2380 output_len += snprintf(output + output_len,
2381 sizeof(output) - output_len,
2382 "0x%8.8x: ",
2383 (unsigned)(address + (i*size)));
2386 uint32_t value = 0;
2387 const uint8_t *value_ptr = buffer + i * size;
2388 switch (size) {
2389 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2390 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2391 case 1: value = *value_ptr;
2393 output_len += snprintf(output + output_len,
2394 sizeof(output) - output_len,
2395 value_fmt, value);
2397 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2399 command_print(cmd_ctx, "%s", output);
2400 output_len = 0;
2405 COMMAND_HANDLER(handle_md_command)
2407 if (CMD_ARGC < 1)
2408 return ERROR_COMMAND_SYNTAX_ERROR;
2410 unsigned size = 0;
2411 switch (CMD_NAME[2]) {
2412 case 'w': size = 4; break;
2413 case 'h': size = 2; break;
2414 case 'b': size = 1; break;
2415 default: return ERROR_COMMAND_SYNTAX_ERROR;
2418 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2419 int (*fn)(struct target *target,
2420 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2421 if (physical)
2423 CMD_ARGC--;
2424 CMD_ARGV++;
2425 fn=target_read_phys_memory;
2426 } else
2428 fn=target_read_memory;
2430 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2432 return ERROR_COMMAND_SYNTAX_ERROR;
2435 uint32_t address;
2436 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2438 unsigned count = 1;
2439 if (CMD_ARGC == 2)
2440 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2442 uint8_t *buffer = calloc(count, size);
2444 struct target *target = get_current_target(CMD_CTX);
2445 int retval = fn(target, address, size, count, buffer);
2446 if (ERROR_OK == retval)
2447 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2449 free(buffer);
2451 return retval;
2454 typedef int (*target_write_fn)(struct target *target,
2455 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2457 static int target_write_memory_fast(struct target *target,
2458 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2460 return target_write_buffer(target, address, size * count, buffer);
2463 static int target_fill_mem(struct target *target,
2464 uint32_t address,
2465 target_write_fn fn,
2466 unsigned data_size,
2467 /* value */
2468 uint32_t b,
2469 /* count */
2470 unsigned c)
2472 /* We have to write in reasonably large chunks to be able
2473 * to fill large memory areas with any sane speed */
2474 const unsigned chunk_size = 16384;
2475 uint8_t *target_buf = malloc(chunk_size * data_size);
2476 if (target_buf == NULL)
2478 LOG_ERROR("Out of memory");
2479 return ERROR_FAIL;
2482 for (unsigned i = 0; i < chunk_size; i ++)
2484 switch (data_size)
2486 case 4:
2487 target_buffer_set_u32(target, target_buf + i*data_size, b);
2488 break;
2489 case 2:
2490 target_buffer_set_u16(target, target_buf + i*data_size, b);
2491 break;
2492 case 1:
2493 target_buffer_set_u8(target, target_buf + i*data_size, b);
2494 break;
2495 default:
2496 exit(-1);
2500 int retval = ERROR_OK;
2502 for (unsigned x = 0; x < c; x += chunk_size)
2504 unsigned current;
2505 current = c - x;
2506 if (current > chunk_size)
2508 current = chunk_size;
2510 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2511 if (retval != ERROR_OK)
2513 break;
2515 /* avoid GDB timeouts */
2516 keep_alive();
2518 free(target_buf);
2520 return retval;
2524 COMMAND_HANDLER(handle_mw_command)
2526 if (CMD_ARGC < 2)
2528 return ERROR_COMMAND_SYNTAX_ERROR;
2530 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2531 target_write_fn fn;
2532 if (physical)
2534 CMD_ARGC--;
2535 CMD_ARGV++;
2536 fn=target_write_phys_memory;
2537 } else
2539 fn = target_write_memory_fast;
2541 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2542 return ERROR_COMMAND_SYNTAX_ERROR;
2544 uint32_t address;
2545 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2547 uint32_t value;
2548 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2550 unsigned count = 1;
2551 if (CMD_ARGC == 3)
2552 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2554 struct target *target = get_current_target(CMD_CTX);
2555 unsigned wordsize;
2556 switch (CMD_NAME[2])
2558 case 'w':
2559 wordsize = 4;
2560 break;
2561 case 'h':
2562 wordsize = 2;
2563 break;
2564 case 'b':
2565 wordsize = 1;
2566 break;
2567 default:
2568 return ERROR_COMMAND_SYNTAX_ERROR;
2571 return target_fill_mem(target, address, fn, wordsize, value, count);
2574 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2575 uint32_t *min_address, uint32_t *max_address)
2577 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2578 return ERROR_COMMAND_SYNTAX_ERROR;
2580 /* a base address isn't always necessary,
2581 * default to 0x0 (i.e. don't relocate) */
2582 if (CMD_ARGC >= 2)
2584 uint32_t addr;
2585 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2586 image->base_address = addr;
2587 image->base_address_set = 1;
2589 else
2590 image->base_address_set = 0;
2592 image->start_address_set = 0;
2594 if (CMD_ARGC >= 4)
2596 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2598 if (CMD_ARGC == 5)
2600 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2601 // use size (given) to find max (required)
2602 *max_address += *min_address;
2605 if (*min_address > *max_address)
2606 return ERROR_COMMAND_SYNTAX_ERROR;
2608 return ERROR_OK;
2611 COMMAND_HANDLER(handle_load_image_command)
2613 uint8_t *buffer;
2614 size_t buf_cnt;
2615 uint32_t image_size;
2616 uint32_t min_address = 0;
2617 uint32_t max_address = 0xffffffff;
2618 int i;
2619 struct image image;
2621 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2622 &image, &min_address, &max_address);
2623 if (ERROR_OK != retval)
2624 return retval;
2626 struct target *target = get_current_target(CMD_CTX);
2628 struct duration bench;
2629 duration_start(&bench);
2631 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2633 return ERROR_OK;
2636 image_size = 0x0;
2637 retval = ERROR_OK;
2638 for (i = 0; i < image.num_sections; i++)
2640 buffer = malloc(image.sections[i].size);
2641 if (buffer == NULL)
2643 command_print(CMD_CTX,
2644 "error allocating buffer for section (%d bytes)",
2645 (int)(image.sections[i].size));
2646 break;
2649 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2651 free(buffer);
2652 break;
2655 uint32_t offset = 0;
2656 uint32_t length = buf_cnt;
2658 /* DANGER!!! beware of unsigned comparision here!!! */
2660 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2661 (image.sections[i].base_address < max_address))
2663 if (image.sections[i].base_address < min_address)
2665 /* clip addresses below */
2666 offset += min_address-image.sections[i].base_address;
2667 length -= offset;
2670 if (image.sections[i].base_address + buf_cnt > max_address)
2672 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2675 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2677 free(buffer);
2678 break;
2680 image_size += length;
2681 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2682 (unsigned int)length,
2683 image.sections[i].base_address + offset);
2686 free(buffer);
2689 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2691 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2692 "in %fs (%0.3f KiB/s)", image_size,
2693 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2696 image_close(&image);
2698 return retval;
2702 COMMAND_HANDLER(handle_dump_image_command)
2704 struct fileio fileio;
2705 uint8_t buffer[560];
2706 int retval, retvaltemp;
2707 uint32_t address, size;
2708 struct duration bench;
2709 struct target *target = get_current_target(CMD_CTX);
2711 if (CMD_ARGC != 3)
2712 return ERROR_COMMAND_SYNTAX_ERROR;
2714 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2715 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2717 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2718 if (retval != ERROR_OK)
2719 return retval;
2721 duration_start(&bench);
2723 retval = ERROR_OK;
2724 while (size > 0)
2726 size_t size_written;
2727 uint32_t this_run_size = (size > 560) ? 560 : size;
2728 retval = target_read_buffer(target, address, this_run_size, buffer);
2729 if (retval != ERROR_OK)
2731 break;
2734 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2735 if (retval != ERROR_OK)
2737 break;
2740 size -= this_run_size;
2741 address += this_run_size;
2744 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2746 int filesize;
2747 retval = fileio_size(&fileio, &filesize);
2748 if (retval != ERROR_OK)
2749 return retval;
2750 command_print(CMD_CTX,
2751 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2752 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2755 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2756 return retvaltemp;
2758 return retval;
2761 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2763 uint8_t *buffer;
2764 size_t buf_cnt;
2765 uint32_t image_size;
2766 int i;
2767 int retval;
2768 uint32_t checksum = 0;
2769 uint32_t mem_checksum = 0;
2771 struct image image;
2773 struct target *target = get_current_target(CMD_CTX);
2775 if (CMD_ARGC < 1)
2777 return ERROR_COMMAND_SYNTAX_ERROR;
2780 if (!target)
2782 LOG_ERROR("no target selected");
2783 return ERROR_FAIL;
2786 struct duration bench;
2787 duration_start(&bench);
2789 if (CMD_ARGC >= 2)
2791 uint32_t addr;
2792 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2793 image.base_address = addr;
2794 image.base_address_set = 1;
2796 else
2798 image.base_address_set = 0;
2799 image.base_address = 0x0;
2802 image.start_address_set = 0;
2804 if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2806 return retval;
2809 image_size = 0x0;
2810 int diffs = 0;
2811 retval = ERROR_OK;
2812 for (i = 0; i < image.num_sections; i++)
2814 buffer = malloc(image.sections[i].size);
2815 if (buffer == NULL)
2817 command_print(CMD_CTX,
2818 "error allocating buffer for section (%d bytes)",
2819 (int)(image.sections[i].size));
2820 break;
2822 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2824 free(buffer);
2825 break;
2828 if (verify)
2830 /* calculate checksum of image */
2831 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2832 if (retval != ERROR_OK)
2834 free(buffer);
2835 break;
2838 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2839 if (retval != ERROR_OK)
2841 free(buffer);
2842 break;
2845 if (checksum != mem_checksum)
2847 /* failed crc checksum, fall back to a binary compare */
2848 uint8_t *data;
2850 if (diffs == 0)
2852 LOG_ERROR("checksum mismatch - attempting binary compare");
2855 data = (uint8_t*)malloc(buf_cnt);
2857 /* Can we use 32bit word accesses? */
2858 int size = 1;
2859 int count = buf_cnt;
2860 if ((count % 4) == 0)
2862 size *= 4;
2863 count /= 4;
2865 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2866 if (retval == ERROR_OK)
2868 uint32_t t;
2869 for (t = 0; t < buf_cnt; t++)
2871 if (data[t] != buffer[t])
2873 command_print(CMD_CTX,
2874 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2875 diffs,
2876 (unsigned)(t + image.sections[i].base_address),
2877 data[t],
2878 buffer[t]);
2879 if (diffs++ >= 127)
2881 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2882 free(data);
2883 free(buffer);
2884 goto done;
2887 keep_alive();
2890 free(data);
2892 } else
2894 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2895 image.sections[i].base_address,
2896 buf_cnt);
2899 free(buffer);
2900 image_size += buf_cnt;
2902 if (diffs > 0)
2904 command_print(CMD_CTX, "No more differences found.");
2906 done:
2907 if (diffs > 0)
2909 retval = ERROR_FAIL;
2911 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2913 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2914 "in %fs (%0.3f KiB/s)", image_size,
2915 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2918 image_close(&image);
2920 return retval;
2923 COMMAND_HANDLER(handle_verify_image_command)
2925 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2928 COMMAND_HANDLER(handle_test_image_command)
2930 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2933 static int handle_bp_command_list(struct command_context *cmd_ctx)
2935 struct target *target = get_current_target(cmd_ctx);
2936 struct breakpoint *breakpoint = target->breakpoints;
2937 while (breakpoint)
2939 if (breakpoint->type == BKPT_SOFT)
2941 char* buf = buf_to_str(breakpoint->orig_instr,
2942 breakpoint->length, 16);
2943 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2944 breakpoint->address,
2945 breakpoint->length,
2946 breakpoint->set, buf);
2947 free(buf);
2949 else
2951 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
2952 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
2953 breakpoint->asid,
2954 breakpoint->length, breakpoint->set);
2955 else if ((breakpoint->address != 0) && (breakpoint->asid != 0))
2957 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
2958 breakpoint->address,
2959 breakpoint->length, breakpoint->set);
2960 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
2961 breakpoint->asid);
2963 else
2964 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
2965 breakpoint->address,
2966 breakpoint->length, breakpoint->set);
2969 breakpoint = breakpoint->next;
2971 return ERROR_OK;
2974 static int handle_bp_command_set(struct command_context *cmd_ctx,
2975 uint32_t addr, uint32_t asid, uint32_t length, int hw)
2977 struct target *target = get_current_target(cmd_ctx);
2979 if (asid == 0)
2980 { int retval = breakpoint_add(target, addr, length, hw);
2981 if (ERROR_OK == retval)
2982 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2983 else
2985 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
2986 return retval;
2989 else if (addr == 0)
2991 int retval = context_breakpoint_add(target, asid, length, hw);
2992 if (ERROR_OK == retval)
2993 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
2994 else
2996 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
2997 return retval;
3000 else
3002 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3003 if(ERROR_OK == retval)
3004 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3005 else
3007 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3008 return retval;
3011 return ERROR_OK;
3016 COMMAND_HANDLER(handle_bp_command)
3018 uint32_t addr;
3019 uint32_t asid;
3020 uint32_t length;
3021 int hw = BKPT_SOFT;
3022 switch(CMD_ARGC)
3024 case 0:
3025 return handle_bp_command_list(CMD_CTX);
3026 case 3:
3028 if(strcmp(CMD_ARGV[2], "hw") == 0)
3030 hw = BKPT_HARD;
3031 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3033 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3035 asid = 0;
3036 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3038 else if(strcmp(CMD_ARGV[2], "hw_ctx") == 0)
3040 hw = BKPT_HARD;
3041 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3042 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3043 addr = 0;
3044 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3047 case 4:
3048 hw = BKPT_HARD;
3049 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3050 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3051 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3052 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3053 default:
3054 command_print(CMD_CTX, "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']");
3055 return ERROR_COMMAND_SYNTAX_ERROR;
3061 COMMAND_HANDLER(handle_rbp_command)
3063 if (CMD_ARGC != 1)
3064 return ERROR_COMMAND_SYNTAX_ERROR;
3066 uint32_t addr;
3067 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3069 struct target *target = get_current_target(CMD_CTX);
3070 breakpoint_remove(target, addr);
3072 return ERROR_OK;
3075 COMMAND_HANDLER(handle_wp_command)
3077 struct target *target = get_current_target(CMD_CTX);
3079 if (CMD_ARGC == 0)
3081 struct watchpoint *watchpoint = target->watchpoints;
3083 while (watchpoint)
3085 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3086 ", len: 0x%8.8" PRIx32
3087 ", r/w/a: %i, value: 0x%8.8" PRIx32
3088 ", mask: 0x%8.8" PRIx32,
3089 watchpoint->address,
3090 watchpoint->length,
3091 (int)watchpoint->rw,
3092 watchpoint->value,
3093 watchpoint->mask);
3094 watchpoint = watchpoint->next;
3096 return ERROR_OK;
3099 enum watchpoint_rw type = WPT_ACCESS;
3100 uint32_t addr = 0;
3101 uint32_t length = 0;
3102 uint32_t data_value = 0x0;
3103 uint32_t data_mask = 0xffffffff;
3105 switch (CMD_ARGC)
3107 case 5:
3108 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3109 // fall through
3110 case 4:
3111 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3112 // fall through
3113 case 3:
3114 switch (CMD_ARGV[2][0])
3116 case 'r':
3117 type = WPT_READ;
3118 break;
3119 case 'w':
3120 type = WPT_WRITE;
3121 break;
3122 case 'a':
3123 type = WPT_ACCESS;
3124 break;
3125 default:
3126 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3127 return ERROR_COMMAND_SYNTAX_ERROR;
3129 // fall through
3130 case 2:
3131 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3132 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3133 break;
3135 default:
3136 command_print(CMD_CTX, "usage: wp [address length "
3137 "[(r|w|a) [value [mask]]]]");
3138 return ERROR_COMMAND_SYNTAX_ERROR;
3141 int retval = watchpoint_add(target, addr, length, type,
3142 data_value, data_mask);
3143 if (ERROR_OK != retval)
3144 LOG_ERROR("Failure setting watchpoints");
3146 return retval;
3149 COMMAND_HANDLER(handle_rwp_command)
3151 if (CMD_ARGC != 1)
3152 return ERROR_COMMAND_SYNTAX_ERROR;
3154 uint32_t addr;
3155 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3157 struct target *target = get_current_target(CMD_CTX);
3158 watchpoint_remove(target, addr);
3160 return ERROR_OK;
3165 * Translate a virtual address to a physical address.
3167 * The low-level target implementation must have logged a detailed error
3168 * which is forwarded to telnet/GDB session.
3170 COMMAND_HANDLER(handle_virt2phys_command)
3172 if (CMD_ARGC != 1)
3173 return ERROR_COMMAND_SYNTAX_ERROR;
3175 uint32_t va;
3176 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3177 uint32_t pa;
3179 struct target *target = get_current_target(CMD_CTX);
3180 int retval = target->type->virt2phys(target, va, &pa);
3181 if (retval == ERROR_OK)
3182 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3184 return retval;
3187 static void writeData(FILE *f, const void *data, size_t len)
3189 size_t written = fwrite(data, 1, len, f);
3190 if (written != len)
3191 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3194 static void writeLong(FILE *f, int l)
3196 int i;
3197 for (i = 0; i < 4; i++)
3199 char c = (l >> (i*8))&0xff;
3200 writeData(f, &c, 1);
3205 static void writeString(FILE *f, char *s)
3207 writeData(f, s, strlen(s));
3210 /* Dump a gmon.out histogram file. */
3211 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3213 uint32_t i;
3214 FILE *f = fopen(filename, "w");
3215 if (f == NULL)
3216 return;
3217 writeString(f, "gmon");
3218 writeLong(f, 0x00000001); /* Version */
3219 writeLong(f, 0); /* padding */
3220 writeLong(f, 0); /* padding */
3221 writeLong(f, 0); /* padding */
3223 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3224 writeData(f, &zero, 1);
3226 /* figure out bucket size */
3227 uint32_t min = samples[0];
3228 uint32_t max = samples[0];
3229 for (i = 0; i < sampleNum; i++)
3231 if (min > samples[i])
3233 min = samples[i];
3235 if (max < samples[i])
3237 max = samples[i];
3241 int addressSpace = (max-min + 1);
3243 static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3244 uint32_t length = addressSpace;
3245 if (length > maxBuckets)
3247 length = maxBuckets;
3249 int *buckets = malloc(sizeof(int)*length);
3250 if (buckets == NULL)
3252 fclose(f);
3253 return;
3255 memset(buckets, 0, sizeof(int)*length);
3256 for (i = 0; i < sampleNum;i++)
3258 uint32_t address = samples[i];
3259 long long a = address-min;
3260 long long b = length-1;
3261 long long c = addressSpace-1;
3262 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3263 buckets[index_t]++;
3266 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3267 writeLong(f, min); /* low_pc */
3268 writeLong(f, max); /* high_pc */
3269 writeLong(f, length); /* # of samples */
3270 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3271 writeString(f, "seconds");
3272 for (i = 0; i < (15-strlen("seconds")); i++)
3273 writeData(f, &zero, 1);
3274 writeString(f, "s");
3276 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3278 char *data = malloc(2*length);
3279 if (data != NULL)
3281 for (i = 0; i < length;i++)
3283 int val;
3284 val = buckets[i];
3285 if (val > 65535)
3287 val = 65535;
3289 data[i*2]=val&0xff;
3290 data[i*2 + 1]=(val >> 8)&0xff;
3292 free(buckets);
3293 writeData(f, data, length * 2);
3294 free(data);
3295 } else
3297 free(buckets);
3300 fclose(f);
3303 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3304 * which will be used as a random sampling of PC */
3305 COMMAND_HANDLER(handle_profile_command)
3307 struct target *target = get_current_target(CMD_CTX);
3308 struct timeval timeout, now;
3310 gettimeofday(&timeout, NULL);
3311 if (CMD_ARGC != 2)
3313 return ERROR_COMMAND_SYNTAX_ERROR;
3315 unsigned offset;
3316 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3318 timeval_add_time(&timeout, offset, 0);
3321 * @todo: Some cores let us sample the PC without the
3322 * annoying halt/resume step; for example, ARMv7 PCSR.
3323 * Provide a way to use that more efficient mechanism.
3326 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3328 static const int maxSample = 10000;
3329 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3330 if (samples == NULL)
3331 return ERROR_OK;
3333 int numSamples = 0;
3334 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3335 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3337 for (;;)
3339 int retval;
3340 target_poll(target);
3341 if (target->state == TARGET_HALTED)
3343 uint32_t t=*((uint32_t *)reg->value);
3344 samples[numSamples++]=t;
3345 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3346 target_poll(target);
3347 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3348 } else if (target->state == TARGET_RUNNING)
3350 /* We want to quickly sample the PC. */
3351 if ((retval = target_halt(target)) != ERROR_OK)
3353 free(samples);
3354 return retval;
3356 } else
3358 command_print(CMD_CTX, "Target not halted or running");
3359 retval = ERROR_OK;
3360 break;
3362 if (retval != ERROR_OK)
3364 break;
3367 gettimeofday(&now, NULL);
3368 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3370 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3371 if ((retval = target_poll(target)) != ERROR_OK)
3373 free(samples);
3374 return retval;
3376 if (target->state == TARGET_HALTED)
3378 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3380 if ((retval = target_poll(target)) != ERROR_OK)
3382 free(samples);
3383 return retval;
3385 writeGmon(samples, numSamples, CMD_ARGV[1]);
3386 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3387 break;
3390 free(samples);
3392 return ERROR_OK;
3395 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3397 char *namebuf;
3398 Jim_Obj *nameObjPtr, *valObjPtr;
3399 int result;
3401 namebuf = alloc_printf("%s(%d)", varname, idx);
3402 if (!namebuf)
3403 return JIM_ERR;
3405 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3406 valObjPtr = Jim_NewIntObj(interp, val);
3407 if (!nameObjPtr || !valObjPtr)
3409 free(namebuf);
3410 return JIM_ERR;
3413 Jim_IncrRefCount(nameObjPtr);
3414 Jim_IncrRefCount(valObjPtr);
3415 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3416 Jim_DecrRefCount(interp, nameObjPtr);
3417 Jim_DecrRefCount(interp, valObjPtr);
3418 free(namebuf);
3419 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3420 return result;
3423 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3425 struct command_context *context;
3426 struct target *target;
3428 context = current_command_context(interp);
3429 assert (context != NULL);
3431 target = get_current_target(context);
3432 if (target == NULL)
3434 LOG_ERROR("mem2array: no current target");
3435 return JIM_ERR;
3438 return target_mem2array(interp, target, argc-1, argv + 1);
3441 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3443 long l;
3444 uint32_t width;
3445 int len;
3446 uint32_t addr;
3447 uint32_t count;
3448 uint32_t v;
3449 const char *varname;
3450 int n, e, retval;
3451 uint32_t i;
3453 /* argv[1] = name of array to receive the data
3454 * argv[2] = desired width
3455 * argv[3] = memory address
3456 * argv[4] = count of times to read
3458 if (argc != 4) {
3459 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3460 return JIM_ERR;
3462 varname = Jim_GetString(argv[0], &len);
3463 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3465 e = Jim_GetLong(interp, argv[1], &l);
3466 width = l;
3467 if (e != JIM_OK) {
3468 return e;
3471 e = Jim_GetLong(interp, argv[2], &l);
3472 addr = l;
3473 if (e != JIM_OK) {
3474 return e;
3476 e = Jim_GetLong(interp, argv[3], &l);
3477 len = l;
3478 if (e != JIM_OK) {
3479 return e;
3481 switch (width) {
3482 case 8:
3483 width = 1;
3484 break;
3485 case 16:
3486 width = 2;
3487 break;
3488 case 32:
3489 width = 4;
3490 break;
3491 default:
3492 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3493 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3494 return JIM_ERR;
3496 if (len == 0) {
3497 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3498 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3499 return JIM_ERR;
3501 if ((addr + (len * width)) < addr) {
3502 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3503 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3504 return JIM_ERR;
3506 /* absurd transfer size? */
3507 if (len > 65536) {
3508 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3509 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3510 return JIM_ERR;
3513 if ((width == 1) ||
3514 ((width == 2) && ((addr & 1) == 0)) ||
3515 ((width == 4) && ((addr & 3) == 0))) {
3516 /* all is well */
3517 } else {
3518 char buf[100];
3519 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3520 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3521 addr,
3522 width);
3523 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3524 return JIM_ERR;
3527 /* Transfer loop */
3529 /* index counter */
3530 n = 0;
3532 size_t buffersize = 4096;
3533 uint8_t *buffer = malloc(buffersize);
3534 if (buffer == NULL)
3535 return JIM_ERR;
3537 /* assume ok */
3538 e = JIM_OK;
3539 while (len) {
3540 /* Slurp... in buffer size chunks */
3542 count = len; /* in objects.. */
3543 if (count > (buffersize/width)) {
3544 count = (buffersize/width);
3547 retval = target_read_memory(target, addr, width, count, buffer);
3548 if (retval != ERROR_OK) {
3549 /* BOO !*/
3550 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3551 (unsigned int)addr,
3552 (int)width,
3553 (int)count);
3554 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3555 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3556 e = JIM_ERR;
3557 len = 0;
3558 } else {
3559 v = 0; /* shut up gcc */
3560 for (i = 0 ;i < count ;i++, n++) {
3561 switch (width) {
3562 case 4:
3563 v = target_buffer_get_u32(target, &buffer[i*width]);
3564 break;
3565 case 2:
3566 v = target_buffer_get_u16(target, &buffer[i*width]);
3567 break;
3568 case 1:
3569 v = buffer[i] & 0x0ff;
3570 break;
3572 new_int_array_element(interp, varname, n, v);
3574 len -= count;
3578 free(buffer);
3580 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3582 return JIM_OK;
3585 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3587 char *namebuf;
3588 Jim_Obj *nameObjPtr, *valObjPtr;
3589 int result;
3590 long l;
3592 namebuf = alloc_printf("%s(%d)", varname, idx);
3593 if (!namebuf)
3594 return JIM_ERR;
3596 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3597 if (!nameObjPtr)
3599 free(namebuf);
3600 return JIM_ERR;
3603 Jim_IncrRefCount(nameObjPtr);
3604 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3605 Jim_DecrRefCount(interp, nameObjPtr);
3606 free(namebuf);
3607 if (valObjPtr == NULL)
3608 return JIM_ERR;
3610 result = Jim_GetLong(interp, valObjPtr, &l);
3611 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3612 *val = l;
3613 return result;
3616 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3618 struct command_context *context;
3619 struct target *target;
3621 context = current_command_context(interp);
3622 assert (context != NULL);
3624 target = get_current_target(context);
3625 if (target == NULL) {
3626 LOG_ERROR("array2mem: no current target");
3627 return JIM_ERR;
3630 return target_array2mem(interp,target, argc-1, argv + 1);
3633 static int target_array2mem(Jim_Interp *interp, struct target *target,
3634 int argc, Jim_Obj *const *argv)
3636 long l;
3637 uint32_t width;
3638 int len;
3639 uint32_t addr;
3640 uint32_t count;
3641 uint32_t v;
3642 const char *varname;
3643 int n, e, retval;
3644 uint32_t i;
3646 /* argv[1] = name of array to get the data
3647 * argv[2] = desired width
3648 * argv[3] = memory address
3649 * argv[4] = count to write
3651 if (argc != 4) {
3652 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3653 return JIM_ERR;
3655 varname = Jim_GetString(argv[0], &len);
3656 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3658 e = Jim_GetLong(interp, argv[1], &l);
3659 width = l;
3660 if (e != JIM_OK) {
3661 return e;
3664 e = Jim_GetLong(interp, argv[2], &l);
3665 addr = l;
3666 if (e != JIM_OK) {
3667 return e;
3669 e = Jim_GetLong(interp, argv[3], &l);
3670 len = l;
3671 if (e != JIM_OK) {
3672 return e;
3674 switch (width) {
3675 case 8:
3676 width = 1;
3677 break;
3678 case 16:
3679 width = 2;
3680 break;
3681 case 32:
3682 width = 4;
3683 break;
3684 default:
3685 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3686 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3687 return JIM_ERR;
3689 if (len == 0) {
3690 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3691 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3692 return JIM_ERR;
3694 if ((addr + (len * width)) < addr) {
3695 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3696 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3697 return JIM_ERR;
3699 /* absurd transfer size? */
3700 if (len > 65536) {
3701 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3702 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3703 return JIM_ERR;
3706 if ((width == 1) ||
3707 ((width == 2) && ((addr & 1) == 0)) ||
3708 ((width == 4) && ((addr & 3) == 0))) {
3709 /* all is well */
3710 } else {
3711 char buf[100];
3712 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3713 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3714 (unsigned int)addr,
3715 (int)width);
3716 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3717 return JIM_ERR;
3720 /* Transfer loop */
3722 /* index counter */
3723 n = 0;
3724 /* assume ok */
3725 e = JIM_OK;
3727 size_t buffersize = 4096;
3728 uint8_t *buffer = malloc(buffersize);
3729 if (buffer == NULL)
3730 return JIM_ERR;
3732 while (len) {
3733 /* Slurp... in buffer size chunks */
3735 count = len; /* in objects.. */
3736 if (count > (buffersize/width)) {
3737 count = (buffersize/width);
3740 v = 0; /* shut up gcc */
3741 for (i = 0 ;i < count ;i++, n++) {
3742 get_int_array_element(interp, varname, n, &v);
3743 switch (width) {
3744 case 4:
3745 target_buffer_set_u32(target, &buffer[i*width], v);
3746 break;
3747 case 2:
3748 target_buffer_set_u16(target, &buffer[i*width], v);
3749 break;
3750 case 1:
3751 buffer[i] = v & 0x0ff;
3752 break;
3755 len -= count;
3757 retval = target_write_memory(target, addr, width, count, buffer);
3758 if (retval != ERROR_OK) {
3759 /* BOO !*/
3760 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3761 (unsigned int)addr,
3762 (int)width,
3763 (int)count);
3764 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3765 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3766 e = JIM_ERR;
3767 len = 0;
3771 free(buffer);
3773 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3775 return JIM_OK;
3778 /* FIX? should we propagate errors here rather than printing them
3779 * and continuing?
3781 void target_handle_event(struct target *target, enum target_event e)
3783 struct target_event_action *teap;
3785 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3786 if (teap->event == e) {
3787 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3788 target->target_number,
3789 target_name(target),
3790 target_type_name(target),
3792 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3793 Jim_GetString(teap->body, NULL));
3794 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3796 Jim_MakeErrorMessage(teap->interp);
3797 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3804 * Returns true only if the target has a handler for the specified event.
3806 bool target_has_event_action(struct target *target, enum target_event event)
3808 struct target_event_action *teap;
3810 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3811 if (teap->event == event)
3812 return true;
3814 return false;
3817 enum target_cfg_param {
3818 TCFG_TYPE,
3819 TCFG_EVENT,
3820 TCFG_WORK_AREA_VIRT,
3821 TCFG_WORK_AREA_PHYS,
3822 TCFG_WORK_AREA_SIZE,
3823 TCFG_WORK_AREA_BACKUP,
3824 TCFG_ENDIAN,
3825 TCFG_VARIANT,
3826 TCFG_COREID,
3827 TCFG_CHAIN_POSITION,
3828 TCFG_DBGBASE,
3829 TCFG_RTOS,
3832 static Jim_Nvp nvp_config_opts[] = {
3833 { .name = "-type", .value = TCFG_TYPE },
3834 { .name = "-event", .value = TCFG_EVENT },
3835 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3836 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3837 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3838 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3839 { .name = "-endian" , .value = TCFG_ENDIAN },
3840 { .name = "-variant", .value = TCFG_VARIANT },
3841 { .name = "-coreid", .value = TCFG_COREID },
3842 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3843 { .name = "-dbgbase", .value = TCFG_DBGBASE },
3844 { .name = "-rtos", .value = TCFG_RTOS },
3845 { .name = NULL, .value = -1 }
3848 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3850 Jim_Nvp *n;
3851 Jim_Obj *o;
3852 jim_wide w;
3853 char *cp;
3854 int e;
3856 /* parse config or cget options ... */
3857 while (goi->argc > 0) {
3858 Jim_SetEmptyResult(goi->interp);
3859 /* Jim_GetOpt_Debug(goi); */
3861 if (target->type->target_jim_configure) {
3862 /* target defines a configure function */
3863 /* target gets first dibs on parameters */
3864 e = (*(target->type->target_jim_configure))(target, goi);
3865 if (e == JIM_OK) {
3866 /* more? */
3867 continue;
3869 if (e == JIM_ERR) {
3870 /* An error */
3871 return e;
3873 /* otherwise we 'continue' below */
3875 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3876 if (e != JIM_OK) {
3877 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3878 return e;
3880 switch (n->value) {
3881 case TCFG_TYPE:
3882 /* not setable */
3883 if (goi->isconfigure) {
3884 Jim_SetResultFormatted(goi->interp,
3885 "not settable: %s", n->name);
3886 return JIM_ERR;
3887 } else {
3888 no_params:
3889 if (goi->argc != 0) {
3890 Jim_WrongNumArgs(goi->interp,
3891 goi->argc, goi->argv,
3892 "NO PARAMS");
3893 return JIM_ERR;
3896 Jim_SetResultString(goi->interp,
3897 target_type_name(target), -1);
3898 /* loop for more */
3899 break;
3900 case TCFG_EVENT:
3901 if (goi->argc == 0) {
3902 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3903 return JIM_ERR;
3906 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3907 if (e != JIM_OK) {
3908 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3909 return e;
3912 if (goi->isconfigure) {
3913 if (goi->argc != 1) {
3914 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3915 return JIM_ERR;
3917 } else {
3918 if (goi->argc != 0) {
3919 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3920 return JIM_ERR;
3925 struct target_event_action *teap;
3927 teap = target->event_action;
3928 /* replace existing? */
3929 while (teap) {
3930 if (teap->event == (enum target_event)n->value) {
3931 break;
3933 teap = teap->next;
3936 if (goi->isconfigure) {
3937 bool replace = true;
3938 if (teap == NULL) {
3939 /* create new */
3940 teap = calloc(1, sizeof(*teap));
3941 replace = false;
3943 teap->event = n->value;
3944 teap->interp = goi->interp;
3945 Jim_GetOpt_Obj(goi, &o);
3946 if (teap->body) {
3947 Jim_DecrRefCount(teap->interp, teap->body);
3949 teap->body = Jim_DuplicateObj(goi->interp, o);
3951 * FIXME:
3952 * Tcl/TK - "tk events" have a nice feature.
3953 * See the "BIND" command.
3954 * We should support that here.
3955 * You can specify %X and %Y in the event code.
3956 * The idea is: %T - target name.
3957 * The idea is: %N - target number
3958 * The idea is: %E - event name.
3960 Jim_IncrRefCount(teap->body);
3962 if (!replace)
3964 /* add to head of event list */
3965 teap->next = target->event_action;
3966 target->event_action = teap;
3968 Jim_SetEmptyResult(goi->interp);
3969 } else {
3970 /* get */
3971 if (teap == NULL) {
3972 Jim_SetEmptyResult(goi->interp);
3973 } else {
3974 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3978 /* loop for more */
3979 break;
3981 case TCFG_WORK_AREA_VIRT:
3982 if (goi->isconfigure) {
3983 target_free_all_working_areas(target);
3984 e = Jim_GetOpt_Wide(goi, &w);
3985 if (e != JIM_OK) {
3986 return e;
3988 target->working_area_virt = w;
3989 target->working_area_virt_spec = true;
3990 } else {
3991 if (goi->argc != 0) {
3992 goto no_params;
3995 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3996 /* loop for more */
3997 break;
3999 case TCFG_WORK_AREA_PHYS:
4000 if (goi->isconfigure) {
4001 target_free_all_working_areas(target);
4002 e = Jim_GetOpt_Wide(goi, &w);
4003 if (e != JIM_OK) {
4004 return e;
4006 target->working_area_phys = w;
4007 target->working_area_phys_spec = true;
4008 } else {
4009 if (goi->argc != 0) {
4010 goto no_params;
4013 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4014 /* loop for more */
4015 break;
4017 case TCFG_WORK_AREA_SIZE:
4018 if (goi->isconfigure) {
4019 target_free_all_working_areas(target);
4020 e = Jim_GetOpt_Wide(goi, &w);
4021 if (e != JIM_OK) {
4022 return e;
4024 target->working_area_size = w;
4025 } else {
4026 if (goi->argc != 0) {
4027 goto no_params;
4030 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4031 /* loop for more */
4032 break;
4034 case TCFG_WORK_AREA_BACKUP:
4035 if (goi->isconfigure) {
4036 target_free_all_working_areas(target);
4037 e = Jim_GetOpt_Wide(goi, &w);
4038 if (e != JIM_OK) {
4039 return e;
4041 /* make this exactly 1 or 0 */
4042 target->backup_working_area = (!!w);
4043 } else {
4044 if (goi->argc != 0) {
4045 goto no_params;
4048 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4049 /* loop for more e*/
4050 break;
4053 case TCFG_ENDIAN:
4054 if (goi->isconfigure) {
4055 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4056 if (e != JIM_OK) {
4057 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4058 return e;
4060 target->endianness = n->value;
4061 } else {
4062 if (goi->argc != 0) {
4063 goto no_params;
4066 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4067 if (n->name == NULL) {
4068 target->endianness = TARGET_LITTLE_ENDIAN;
4069 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4071 Jim_SetResultString(goi->interp, n->name, -1);
4072 /* loop for more */
4073 break;
4075 case TCFG_VARIANT:
4076 if (goi->isconfigure) {
4077 if (goi->argc < 1) {
4078 Jim_SetResultFormatted(goi->interp,
4079 "%s ?STRING?",
4080 n->name);
4081 return JIM_ERR;
4083 if (target->variant) {
4084 free((void *)(target->variant));
4086 e = Jim_GetOpt_String(goi, &cp, NULL);
4087 target->variant = strdup(cp);
4088 } else {
4089 if (goi->argc != 0) {
4090 goto no_params;
4093 Jim_SetResultString(goi->interp, target->variant,-1);
4094 /* loop for more */
4095 break;
4097 case TCFG_COREID:
4098 if (goi->isconfigure) {
4099 e = Jim_GetOpt_Wide(goi, &w);
4100 if (e != JIM_OK) {
4101 return e;
4103 target->coreid = (int32_t)w;
4104 } else {
4105 if (goi->argc != 0) {
4106 goto no_params;
4109 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4110 /* loop for more */
4111 break;
4113 case TCFG_CHAIN_POSITION:
4114 if (goi->isconfigure) {
4115 Jim_Obj *o_t;
4116 struct jtag_tap *tap;
4117 target_free_all_working_areas(target);
4118 e = Jim_GetOpt_Obj(goi, &o_t);
4119 if (e != JIM_OK) {
4120 return e;
4122 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4123 if (tap == NULL) {
4124 return JIM_ERR;
4126 /* make this exactly 1 or 0 */
4127 target->tap = tap;
4128 } else {
4129 if (goi->argc != 0) {
4130 goto no_params;
4133 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4134 /* loop for more e*/
4135 break;
4136 case TCFG_DBGBASE:
4137 if (goi->isconfigure) {
4138 e = Jim_GetOpt_Wide(goi, &w);
4139 if (e != JIM_OK) {
4140 return e;
4142 target->dbgbase = (uint32_t)w;
4143 target->dbgbase_set = true;
4144 } else {
4145 if (goi->argc != 0) {
4146 goto no_params;
4149 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4150 /* loop for more */
4151 break;
4153 case TCFG_RTOS:
4154 /* RTOS */
4156 int result = rtos_create( goi, target );
4157 if ( result != JIM_OK )
4159 return result;
4162 /* loop for more */
4163 break;
4165 } /* while (goi->argc) */
4168 /* done - we return */
4169 return JIM_OK;
4172 static int
4173 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4175 Jim_GetOptInfo goi;
4177 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4178 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4179 int need_args = 1 + goi.isconfigure;
4180 if (goi.argc < need_args)
4182 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4183 goi.isconfigure
4184 ? "missing: -option VALUE ..."
4185 : "missing: -option ...");
4186 return JIM_ERR;
4188 struct target *target = Jim_CmdPrivData(goi.interp);
4189 return target_configure(&goi, target);
4192 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4194 const char *cmd_name = Jim_GetString(argv[0], NULL);
4196 Jim_GetOptInfo goi;
4197 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4199 if (goi.argc < 2 || goi.argc > 4)
4201 Jim_SetResultFormatted(goi.interp,
4202 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4203 return JIM_ERR;
4206 target_write_fn fn;
4207 fn = target_write_memory_fast;
4209 int e;
4210 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4212 /* consume it */
4213 struct Jim_Obj *obj;
4214 e = Jim_GetOpt_Obj(&goi, &obj);
4215 if (e != JIM_OK)
4216 return e;
4218 fn = target_write_phys_memory;
4221 jim_wide a;
4222 e = Jim_GetOpt_Wide(&goi, &a);
4223 if (e != JIM_OK)
4224 return e;
4226 jim_wide b;
4227 e = Jim_GetOpt_Wide(&goi, &b);
4228 if (e != JIM_OK)
4229 return e;
4231 jim_wide c = 1;
4232 if (goi.argc == 1)
4234 e = Jim_GetOpt_Wide(&goi, &c);
4235 if (e != JIM_OK)
4236 return e;
4239 /* all args must be consumed */
4240 if (goi.argc != 0)
4242 return JIM_ERR;
4245 struct target *target = Jim_CmdPrivData(goi.interp);
4246 unsigned data_size;
4247 if (strcasecmp(cmd_name, "mww") == 0) {
4248 data_size = 4;
4250 else if (strcasecmp(cmd_name, "mwh") == 0) {
4251 data_size = 2;
4253 else if (strcasecmp(cmd_name, "mwb") == 0) {
4254 data_size = 1;
4255 } else {
4256 LOG_ERROR("command '%s' unknown: ", cmd_name);
4257 return JIM_ERR;
4260 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4263 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4265 const char *cmd_name = Jim_GetString(argv[0], NULL);
4267 Jim_GetOptInfo goi;
4268 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4270 if ((goi.argc < 1) || (goi.argc > 3))
4272 Jim_SetResultFormatted(goi.interp,
4273 "usage: %s [phys] <address> [<count>]", cmd_name);
4274 return JIM_ERR;
4277 int (*fn)(struct target *target,
4278 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4279 fn=target_read_memory;
4281 int e;
4282 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4284 /* consume it */
4285 struct Jim_Obj *obj;
4286 e = Jim_GetOpt_Obj(&goi, &obj);
4287 if (e != JIM_OK)
4288 return e;
4290 fn=target_read_phys_memory;
4293 jim_wide a;
4294 e = Jim_GetOpt_Wide(&goi, &a);
4295 if (e != JIM_OK) {
4296 return JIM_ERR;
4298 jim_wide c;
4299 if (goi.argc == 1) {
4300 e = Jim_GetOpt_Wide(&goi, &c);
4301 if (e != JIM_OK) {
4302 return JIM_ERR;
4304 } else {
4305 c = 1;
4308 /* all args must be consumed */
4309 if (goi.argc != 0)
4311 return JIM_ERR;
4314 jim_wide b = 1; /* shut up gcc */
4315 if (strcasecmp(cmd_name, "mdw") == 0)
4316 b = 4;
4317 else if (strcasecmp(cmd_name, "mdh") == 0)
4318 b = 2;
4319 else if (strcasecmp(cmd_name, "mdb") == 0)
4320 b = 1;
4321 else {
4322 LOG_ERROR("command '%s' unknown: ", cmd_name);
4323 return JIM_ERR;
4326 /* convert count to "bytes" */
4327 c = c * b;
4329 struct target *target = Jim_CmdPrivData(goi.interp);
4330 uint8_t target_buf[32];
4331 jim_wide x, y, z;
4332 while (c > 0) {
4333 y = c;
4334 if (y > 16) {
4335 y = 16;
4337 e = fn(target, a, b, y / b, target_buf);
4338 if (e != ERROR_OK) {
4339 char tmp[10];
4340 snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
4341 Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
4342 return JIM_ERR;
4345 command_print(NULL, "0x%08x ", (int)(a));
4346 switch (b) {
4347 case 4:
4348 for (x = 0; x < 16 && x < y; x += 4)
4350 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4351 command_print(NULL, "%08x ", (int)(z));
4353 for (; (x < 16) ; x += 4) {
4354 command_print(NULL, " ");
4356 break;
4357 case 2:
4358 for (x = 0; x < 16 && x < y; x += 2)
4360 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4361 command_print(NULL, "%04x ", (int)(z));
4363 for (; (x < 16) ; x += 2) {
4364 command_print(NULL, " ");
4366 break;
4367 case 1:
4368 default:
4369 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4370 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4371 command_print(NULL, "%02x ", (int)(z));
4373 for (; (x < 16) ; x += 1) {
4374 command_print(NULL, " ");
4376 break;
4378 /* ascii-ify the bytes */
4379 for (x = 0 ; x < y ; x++) {
4380 if ((target_buf[x] >= 0x20) &&
4381 (target_buf[x] <= 0x7e)) {
4382 /* good */
4383 } else {
4384 /* smack it */
4385 target_buf[x] = '.';
4388 /* space pad */
4389 while (x < 16) {
4390 target_buf[x] = ' ';
4391 x++;
4393 /* terminate */
4394 target_buf[16] = 0;
4395 /* print - with a newline */
4396 command_print(NULL, "%s\n", target_buf);
4397 /* NEXT... */
4398 c -= 16;
4399 a += 16;
4401 return JIM_OK;
4404 static int jim_target_mem2array(Jim_Interp *interp,
4405 int argc, Jim_Obj *const *argv)
4407 struct target *target = Jim_CmdPrivData(interp);
4408 return target_mem2array(interp, target, argc - 1, argv + 1);
4411 static int jim_target_array2mem(Jim_Interp *interp,
4412 int argc, Jim_Obj *const *argv)
4414 struct target *target = Jim_CmdPrivData(interp);
4415 return target_array2mem(interp, target, argc - 1, argv + 1);
4418 static int jim_target_tap_disabled(Jim_Interp *interp)
4420 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4421 return JIM_ERR;
4424 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4426 if (argc != 1)
4428 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4429 return JIM_ERR;
4431 struct target *target = Jim_CmdPrivData(interp);
4432 if (!target->tap->enabled)
4433 return jim_target_tap_disabled(interp);
4435 int e = target->type->examine(target);
4436 if (e != ERROR_OK)
4438 return JIM_ERR;
4440 return JIM_OK;
4443 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4445 if (argc != 1)
4447 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4448 return JIM_ERR;
4450 struct target *target = Jim_CmdPrivData(interp);
4452 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4453 return JIM_ERR;
4455 return JIM_OK;
4458 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4460 if (argc != 1)
4462 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4463 return JIM_ERR;
4465 struct target *target = Jim_CmdPrivData(interp);
4466 if (!target->tap->enabled)
4467 return jim_target_tap_disabled(interp);
4469 int e;
4470 if (!(target_was_examined(target))) {
4471 e = ERROR_TARGET_NOT_EXAMINED;
4472 } else {
4473 e = target->type->poll(target);
4475 if (e != ERROR_OK)
4477 return JIM_ERR;
4479 return JIM_OK;
4482 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4484 Jim_GetOptInfo goi;
4485 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4487 if (goi.argc != 2)
4489 Jim_WrongNumArgs(interp, 0, argv,
4490 "([tT]|[fF]|assert|deassert) BOOL");
4491 return JIM_ERR;
4494 Jim_Nvp *n;
4495 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4496 if (e != JIM_OK)
4498 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4499 return e;
4501 /* the halt or not param */
4502 jim_wide a;
4503 e = Jim_GetOpt_Wide(&goi, &a);
4504 if (e != JIM_OK)
4505 return e;
4507 struct target *target = Jim_CmdPrivData(goi.interp);
4508 if (!target->tap->enabled)
4509 return jim_target_tap_disabled(interp);
4510 if (!(target_was_examined(target)))
4512 LOG_ERROR("Target not examined yet");
4513 return ERROR_TARGET_NOT_EXAMINED;
4515 if (!target->type->assert_reset || !target->type->deassert_reset)
4517 Jim_SetResultFormatted(interp,
4518 "No target-specific reset for %s",
4519 target_name(target));
4520 return JIM_ERR;
4522 /* determine if we should halt or not. */
4523 target->reset_halt = !!a;
4524 /* When this happens - all workareas are invalid. */
4525 target_free_all_working_areas_restore(target, 0);
4527 /* do the assert */
4528 if (n->value == NVP_ASSERT) {
4529 e = target->type->assert_reset(target);
4530 } else {
4531 e = target->type->deassert_reset(target);
4533 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4536 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4538 if (argc != 1) {
4539 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4540 return JIM_ERR;
4542 struct target *target = Jim_CmdPrivData(interp);
4543 if (!target->tap->enabled)
4544 return jim_target_tap_disabled(interp);
4545 int e = target->type->halt(target);
4546 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4549 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4551 Jim_GetOptInfo goi;
4552 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4554 /* params: <name> statename timeoutmsecs */
4555 if (goi.argc != 2)
4557 const char *cmd_name = Jim_GetString(argv[0], NULL);
4558 Jim_SetResultFormatted(goi.interp,
4559 "%s <state_name> <timeout_in_msec>", cmd_name);
4560 return JIM_ERR;
4563 Jim_Nvp *n;
4564 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4565 if (e != JIM_OK) {
4566 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4567 return e;
4569 jim_wide a;
4570 e = Jim_GetOpt_Wide(&goi, &a);
4571 if (e != JIM_OK) {
4572 return e;
4574 struct target *target = Jim_CmdPrivData(interp);
4575 if (!target->tap->enabled)
4576 return jim_target_tap_disabled(interp);
4578 e = target_wait_state(target, n->value, a);
4579 if (e != ERROR_OK)
4581 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4582 Jim_SetResultFormatted(goi.interp,
4583 "target: %s wait %s fails (%#s) %s",
4584 target_name(target), n->name,
4585 eObj, target_strerror_safe(e));
4586 Jim_FreeNewObj(interp, eObj);
4587 return JIM_ERR;
4589 return JIM_OK;
4591 /* List for human, Events defined for this target.
4592 * scripts/programs should use 'name cget -event NAME'
4594 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4596 struct command_context *cmd_ctx = current_command_context(interp);
4597 assert (cmd_ctx != NULL);
4599 struct target *target = Jim_CmdPrivData(interp);
4600 struct target_event_action *teap = target->event_action;
4601 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4602 target->target_number,
4603 target_name(target));
4604 command_print(cmd_ctx, "%-25s | Body", "Event");
4605 command_print(cmd_ctx, "------------------------- | "
4606 "----------------------------------------");
4607 while (teap)
4609 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4610 command_print(cmd_ctx, "%-25s | %s",
4611 opt->name, Jim_GetString(teap->body, NULL));
4612 teap = teap->next;
4614 command_print(cmd_ctx, "***END***");
4615 return JIM_OK;
4617 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4619 if (argc != 1)
4621 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4622 return JIM_ERR;
4624 struct target *target = Jim_CmdPrivData(interp);
4625 Jim_SetResultString(interp, target_state_name(target), -1);
4626 return JIM_OK;
4628 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4630 Jim_GetOptInfo goi;
4631 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4632 if (goi.argc != 1)
4634 const char *cmd_name = Jim_GetString(argv[0], NULL);
4635 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4636 return JIM_ERR;
4638 Jim_Nvp *n;
4639 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4640 if (e != JIM_OK)
4642 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4643 return e;
4645 struct target *target = Jim_CmdPrivData(interp);
4646 target_handle_event(target, n->value);
4647 return JIM_OK;
4650 static const struct command_registration target_instance_command_handlers[] = {
4652 .name = "configure",
4653 .mode = COMMAND_CONFIG,
4654 .jim_handler = jim_target_configure,
4655 .help = "configure a new target for use",
4656 .usage = "[target_attribute ...]",
4659 .name = "cget",
4660 .mode = COMMAND_ANY,
4661 .jim_handler = jim_target_configure,
4662 .help = "returns the specified target attribute",
4663 .usage = "target_attribute",
4666 .name = "mww",
4667 .mode = COMMAND_EXEC,
4668 .jim_handler = jim_target_mw,
4669 .help = "Write 32-bit word(s) to target memory",
4670 .usage = "address data [count]",
4673 .name = "mwh",
4674 .mode = COMMAND_EXEC,
4675 .jim_handler = jim_target_mw,
4676 .help = "Write 16-bit half-word(s) to target memory",
4677 .usage = "address data [count]",
4680 .name = "mwb",
4681 .mode = COMMAND_EXEC,
4682 .jim_handler = jim_target_mw,
4683 .help = "Write byte(s) to target memory",
4684 .usage = "address data [count]",
4687 .name = "mdw",
4688 .mode = COMMAND_EXEC,
4689 .jim_handler = jim_target_md,
4690 .help = "Display target memory as 32-bit words",
4691 .usage = "address [count]",
4694 .name = "mdh",
4695 .mode = COMMAND_EXEC,
4696 .jim_handler = jim_target_md,
4697 .help = "Display target memory as 16-bit half-words",
4698 .usage = "address [count]",
4701 .name = "mdb",
4702 .mode = COMMAND_EXEC,
4703 .jim_handler = jim_target_md,
4704 .help = "Display target memory as 8-bit bytes",
4705 .usage = "address [count]",
4708 .name = "array2mem",
4709 .mode = COMMAND_EXEC,
4710 .jim_handler = jim_target_array2mem,
4711 .help = "Writes Tcl array of 8/16/32 bit numbers "
4712 "to target memory",
4713 .usage = "arrayname bitwidth address count",
4716 .name = "mem2array",
4717 .mode = COMMAND_EXEC,
4718 .jim_handler = jim_target_mem2array,
4719 .help = "Loads Tcl array of 8/16/32 bit numbers "
4720 "from target memory",
4721 .usage = "arrayname bitwidth address count",
4724 .name = "eventlist",
4725 .mode = COMMAND_EXEC,
4726 .jim_handler = jim_target_event_list,
4727 .help = "displays a table of events defined for this target",
4730 .name = "curstate",
4731 .mode = COMMAND_EXEC,
4732 .jim_handler = jim_target_current_state,
4733 .help = "displays the current state of this target",
4736 .name = "arp_examine",
4737 .mode = COMMAND_EXEC,
4738 .jim_handler = jim_target_examine,
4739 .help = "used internally for reset processing",
4742 .name = "arp_halt_gdb",
4743 .mode = COMMAND_EXEC,
4744 .jim_handler = jim_target_halt_gdb,
4745 .help = "used internally for reset processing to halt GDB",
4748 .name = "arp_poll",
4749 .mode = COMMAND_EXEC,
4750 .jim_handler = jim_target_poll,
4751 .help = "used internally for reset processing",
4754 .name = "arp_reset",
4755 .mode = COMMAND_EXEC,
4756 .jim_handler = jim_target_reset,
4757 .help = "used internally for reset processing",
4760 .name = "arp_halt",
4761 .mode = COMMAND_EXEC,
4762 .jim_handler = jim_target_halt,
4763 .help = "used internally for reset processing",
4766 .name = "arp_waitstate",
4767 .mode = COMMAND_EXEC,
4768 .jim_handler = jim_target_wait_state,
4769 .help = "used internally for reset processing",
4772 .name = "invoke-event",
4773 .mode = COMMAND_EXEC,
4774 .jim_handler = jim_target_invoke_event,
4775 .help = "invoke handler for specified event",
4776 .usage = "event_name",
4778 COMMAND_REGISTRATION_DONE
4781 static int target_create(Jim_GetOptInfo *goi)
4783 Jim_Obj *new_cmd;
4784 Jim_Cmd *cmd;
4785 const char *cp;
4786 char *cp2;
4787 int e;
4788 int x;
4789 struct target *target;
4790 struct command_context *cmd_ctx;
4792 cmd_ctx = current_command_context(goi->interp);
4793 assert (cmd_ctx != NULL);
4795 if (goi->argc < 3) {
4796 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4797 return JIM_ERR;
4800 /* COMMAND */
4801 Jim_GetOpt_Obj(goi, &new_cmd);
4802 /* does this command exist? */
4803 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4804 if (cmd) {
4805 cp = Jim_GetString(new_cmd, NULL);
4806 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4807 return JIM_ERR;
4810 /* TYPE */
4811 e = Jim_GetOpt_String(goi, &cp2, NULL);
4812 cp = cp2;
4813 /* now does target type exist */
4814 for (x = 0 ; target_types[x] ; x++) {
4815 if (0 == strcmp(cp, target_types[x]->name)) {
4816 /* found */
4817 break;
4820 if (target_types[x] == NULL) {
4821 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4822 for (x = 0 ; target_types[x] ; x++) {
4823 if (target_types[x + 1]) {
4824 Jim_AppendStrings(goi->interp,
4825 Jim_GetResult(goi->interp),
4826 target_types[x]->name,
4827 ", ", NULL);
4828 } else {
4829 Jim_AppendStrings(goi->interp,
4830 Jim_GetResult(goi->interp),
4831 " or ",
4832 target_types[x]->name,NULL);
4835 return JIM_ERR;
4838 /* Create it */
4839 target = calloc(1,sizeof(struct target));
4840 /* set target number */
4841 target->target_number = new_target_number();
4843 /* allocate memory for each unique target type */
4844 target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4846 memcpy(target->type, target_types[x], sizeof(struct target_type));
4848 /* will be set by "-endian" */
4849 target->endianness = TARGET_ENDIAN_UNKNOWN;
4851 /* default to first core, override with -coreid */
4852 target->coreid = 0;
4854 target->working_area = 0x0;
4855 target->working_area_size = 0x0;
4856 target->working_areas = NULL;
4857 target->backup_working_area = 0;
4859 target->state = TARGET_UNKNOWN;
4860 target->debug_reason = DBG_REASON_UNDEFINED;
4861 target->reg_cache = NULL;
4862 target->breakpoints = NULL;
4863 target->watchpoints = NULL;
4864 target->next = NULL;
4865 target->arch_info = NULL;
4867 target->display = 1;
4869 target->halt_issued = false;
4871 /* initialize trace information */
4872 target->trace_info = malloc(sizeof(struct trace));
4873 target->trace_info->num_trace_points = 0;
4874 target->trace_info->trace_points_size = 0;
4875 target->trace_info->trace_points = NULL;
4876 target->trace_info->trace_history_size = 0;
4877 target->trace_info->trace_history = NULL;
4878 target->trace_info->trace_history_pos = 0;
4879 target->trace_info->trace_history_overflowed = 0;
4881 target->dbgmsg = NULL;
4882 target->dbg_msg_enabled = 0;
4884 target->endianness = TARGET_ENDIAN_UNKNOWN;
4886 target->rtos = NULL;
4887 target->rtos_auto_detect = false;
4889 /* Do the rest as "configure" options */
4890 goi->isconfigure = 1;
4891 e = target_configure(goi, target);
4893 if (target->tap == NULL)
4895 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4896 e = JIM_ERR;
4899 if (e != JIM_OK) {
4900 free(target->type);
4901 free(target);
4902 return e;
4905 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4906 /* default endian to little if not specified */
4907 target->endianness = TARGET_LITTLE_ENDIAN;
4910 /* incase variant is not set */
4911 if (!target->variant)
4912 target->variant = strdup("");
4914 cp = Jim_GetString(new_cmd, NULL);
4915 target->cmd_name = strdup(cp);
4917 /* create the target specific commands */
4918 if (target->type->commands) {
4919 e = register_commands(cmd_ctx, NULL, target->type->commands);
4920 if (ERROR_OK != e)
4921 LOG_ERROR("unable to register '%s' commands", cp);
4923 if (target->type->target_create) {
4924 (*(target->type->target_create))(target, goi->interp);
4927 /* append to end of list */
4929 struct target **tpp;
4930 tpp = &(all_targets);
4931 while (*tpp) {
4932 tpp = &((*tpp)->next);
4934 *tpp = target;
4937 /* now - create the new target name command */
4938 const const struct command_registration target_subcommands[] = {
4940 .chain = target_instance_command_handlers,
4943 .chain = target->type->commands,
4945 COMMAND_REGISTRATION_DONE
4947 const const struct command_registration target_commands[] = {
4949 .name = cp,
4950 .mode = COMMAND_ANY,
4951 .help = "target command group",
4952 .chain = target_subcommands,
4954 COMMAND_REGISTRATION_DONE
4956 e = register_commands(cmd_ctx, NULL, target_commands);
4957 if (ERROR_OK != e)
4958 return JIM_ERR;
4960 struct command *c = command_find_in_context(cmd_ctx, cp);
4961 assert(c);
4962 command_set_handler_data(c, target);
4964 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4967 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4969 if (argc != 1)
4971 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4972 return JIM_ERR;
4974 struct command_context *cmd_ctx = current_command_context(interp);
4975 assert (cmd_ctx != NULL);
4977 Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4978 return JIM_OK;
4981 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4983 if (argc != 1)
4985 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4986 return JIM_ERR;
4988 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4989 for (unsigned x = 0; NULL != target_types[x]; x++)
4991 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4992 Jim_NewStringObj(interp, target_types[x]->name, -1));
4994 return JIM_OK;
4997 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4999 if (argc != 1)
5001 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5002 return JIM_ERR;
5004 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5005 struct target *target = all_targets;
5006 while (target)
5008 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5009 Jim_NewStringObj(interp, target_name(target), -1));
5010 target = target->next;
5012 return JIM_OK;
5015 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5017 int i;
5018 const char *targetname;
5019 int retval,len;
5020 struct target *target;
5021 struct target_list *head, *curr, *new;
5022 curr = (struct target_list*) NULL;
5023 head = (struct target_list*) NULL;
5024 new = (struct target_list*) NULL;
5026 retval = 0;
5027 LOG_DEBUG("%d",argc);
5028 /* argv[1] = target to associate in smp
5029 * argv[2] = target to assoicate in smp
5030 * argv[3] ...
5033 for(i=1;i<argc;i++)
5036 targetname = Jim_GetString(argv[i], &len);
5037 target = get_target(targetname);
5038 LOG_DEBUG("%s ",targetname);
5039 if (target)
5041 new=malloc(sizeof(struct target_list));
5042 new->target = target;
5043 new->next = (struct target_list*)NULL;
5044 if (head == (struct target_list*)NULL)
5046 head = new;
5047 curr = head;
5049 else
5051 curr->next = new;
5052 curr = new;
5056 /* now parse the list of cpu and put the target in smp mode*/
5057 curr=head;
5059 while(curr!=(struct target_list *)NULL)
5061 target=curr->target;
5062 target->smp = 1;
5063 target->head = head;
5064 curr=curr->next;
5066 return retval;
5070 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5072 Jim_GetOptInfo goi;
5073 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5074 if (goi.argc < 3)
5076 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5077 "<name> <target_type> [<target_options> ...]");
5078 return JIM_ERR;
5080 return target_create(&goi);
5083 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5085 Jim_GetOptInfo goi;
5086 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5088 /* It's OK to remove this mechanism sometime after August 2010 or so */
5089 LOG_WARNING("don't use numbers as target identifiers; use names");
5090 if (goi.argc != 1)
5092 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5093 return JIM_ERR;
5095 jim_wide w;
5096 int e = Jim_GetOpt_Wide(&goi, &w);
5097 if (e != JIM_OK)
5098 return JIM_ERR;
5100 struct target *target;
5101 for (target = all_targets; NULL != target; target = target->next)
5103 if (target->target_number != w)
5104 continue;
5106 Jim_SetResultString(goi.interp, target_name(target), -1);
5107 return JIM_OK;
5110 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5111 Jim_SetResultFormatted(goi.interp,
5112 "Target: number %#s does not exist", wObj);
5113 Jim_FreeNewObj(interp, wObj);
5115 return JIM_ERR;
5118 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5120 if (argc != 1)
5122 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5123 return JIM_ERR;
5125 unsigned count = 0;
5126 struct target *target = all_targets;
5127 while (NULL != target)
5129 target = target->next;
5130 count++;
5132 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5133 return JIM_OK;
5136 static const struct command_registration target_subcommand_handlers[] = {
5138 .name = "init",
5139 .mode = COMMAND_CONFIG,
5140 .handler = handle_target_init_command,
5141 .help = "initialize targets",
5144 .name = "create",
5145 /* REVISIT this should be COMMAND_CONFIG ... */
5146 .mode = COMMAND_ANY,
5147 .jim_handler = jim_target_create,
5148 .usage = "name type '-chain-position' name [options ...]",
5149 .help = "Creates and selects a new target",
5152 .name = "current",
5153 .mode = COMMAND_ANY,
5154 .jim_handler = jim_target_current,
5155 .help = "Returns the currently selected target",
5158 .name = "types",
5159 .mode = COMMAND_ANY,
5160 .jim_handler = jim_target_types,
5161 .help = "Returns the available target types as "
5162 "a list of strings",
5165 .name = "names",
5166 .mode = COMMAND_ANY,
5167 .jim_handler = jim_target_names,
5168 .help = "Returns the names of all targets as a list of strings",
5171 .name = "number",
5172 .mode = COMMAND_ANY,
5173 .jim_handler = jim_target_number,
5174 .usage = "number",
5175 .help = "Returns the name of the numbered target "
5176 "(DEPRECATED)",
5179 .name = "count",
5180 .mode = COMMAND_ANY,
5181 .jim_handler = jim_target_count,
5182 .help = "Returns the number of targets as an integer "
5183 "(DEPRECATED)",
5186 .name = "smp",
5187 .mode = COMMAND_ANY,
5188 .jim_handler = jim_target_smp,
5189 .usage = "targetname1 targetname2 ...",
5190 .help = "gather several target in a smp list"
5193 COMMAND_REGISTRATION_DONE
5196 struct FastLoad
5198 uint32_t address;
5199 uint8_t *data;
5200 int length;
5204 static int fastload_num;
5205 static struct FastLoad *fastload;
5207 static void free_fastload(void)
5209 if (fastload != NULL)
5211 int i;
5212 for (i = 0; i < fastload_num; i++)
5214 if (fastload[i].data)
5215 free(fastload[i].data);
5217 free(fastload);
5218 fastload = NULL;
5225 COMMAND_HANDLER(handle_fast_load_image_command)
5227 uint8_t *buffer;
5228 size_t buf_cnt;
5229 uint32_t image_size;
5230 uint32_t min_address = 0;
5231 uint32_t max_address = 0xffffffff;
5232 int i;
5234 struct image image;
5236 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5237 &image, &min_address, &max_address);
5238 if (ERROR_OK != retval)
5239 return retval;
5241 struct duration bench;
5242 duration_start(&bench);
5244 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5245 if (retval != ERROR_OK)
5247 return retval;
5250 image_size = 0x0;
5251 retval = ERROR_OK;
5252 fastload_num = image.num_sections;
5253 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5254 if (fastload == NULL)
5256 command_print(CMD_CTX, "out of memory");
5257 image_close(&image);
5258 return ERROR_FAIL;
5260 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5261 for (i = 0; i < image.num_sections; i++)
5263 buffer = malloc(image.sections[i].size);
5264 if (buffer == NULL)
5266 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5267 (int)(image.sections[i].size));
5268 retval = ERROR_FAIL;
5269 break;
5272 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
5274 free(buffer);
5275 break;
5278 uint32_t offset = 0;
5279 uint32_t length = buf_cnt;
5282 /* DANGER!!! beware of unsigned comparision here!!! */
5284 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
5285 (image.sections[i].base_address < max_address))
5287 if (image.sections[i].base_address < min_address)
5289 /* clip addresses below */
5290 offset += min_address-image.sections[i].base_address;
5291 length -= offset;
5294 if (image.sections[i].base_address + buf_cnt > max_address)
5296 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5299 fastload[i].address = image.sections[i].base_address + offset;
5300 fastload[i].data = malloc(length);
5301 if (fastload[i].data == NULL)
5303 free(buffer);
5304 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5305 length);
5306 retval = ERROR_FAIL;
5307 break;
5309 memcpy(fastload[i].data, buffer + offset, length);
5310 fastload[i].length = length;
5312 image_size += length;
5313 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5314 (unsigned int)length,
5315 ((unsigned int)(image.sections[i].base_address + offset)));
5318 free(buffer);
5321 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
5323 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5324 "in %fs (%0.3f KiB/s)", image_size,
5325 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5327 command_print(CMD_CTX,
5328 "WARNING: image has not been loaded to target!"
5329 "You can issue a 'fast_load' to finish loading.");
5332 image_close(&image);
5334 if (retval != ERROR_OK)
5336 free_fastload();
5339 return retval;
5342 COMMAND_HANDLER(handle_fast_load_command)
5344 if (CMD_ARGC > 0)
5345 return ERROR_COMMAND_SYNTAX_ERROR;
5346 if (fastload == NULL)
5348 LOG_ERROR("No image in memory");
5349 return ERROR_FAIL;
5351 int i;
5352 int ms = timeval_ms();
5353 int size = 0;
5354 int retval = ERROR_OK;
5355 for (i = 0; i < fastload_num;i++)
5357 struct target *target = get_current_target(CMD_CTX);
5358 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5359 (unsigned int)(fastload[i].address),
5360 (unsigned int)(fastload[i].length));
5361 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5362 if (retval != ERROR_OK)
5364 break;
5366 size += fastload[i].length;
5368 if (retval == ERROR_OK)
5370 int after = timeval_ms();
5371 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5373 return retval;
5376 static const struct command_registration target_command_handlers[] = {
5378 .name = "targets",
5379 .handler = handle_targets_command,
5380 .mode = COMMAND_ANY,
5381 .help = "change current default target (one parameter) "
5382 "or prints table of all targets (no parameters)",
5383 .usage = "[target]",
5386 .name = "target",
5387 .mode = COMMAND_CONFIG,
5388 .help = "configure target",
5390 .chain = target_subcommand_handlers,
5392 COMMAND_REGISTRATION_DONE
5395 int target_register_commands(struct command_context *cmd_ctx)
5397 return register_commands(cmd_ctx, NULL, target_command_handlers);
5400 static bool target_reset_nag = true;
5402 bool get_target_reset_nag(void)
5404 return target_reset_nag;
5407 COMMAND_HANDLER(handle_target_reset_nag)
5409 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5410 &target_reset_nag, "Nag after each reset about options to improve "
5411 "performance");
5414 static const struct command_registration target_exec_command_handlers[] = {
5416 .name = "fast_load_image",
5417 .handler = handle_fast_load_image_command,
5418 .mode = COMMAND_ANY,
5419 .help = "Load image into server memory for later use by "
5420 "fast_load; primarily for profiling",
5421 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5422 "[min_address [max_length]]",
5425 .name = "fast_load",
5426 .handler = handle_fast_load_command,
5427 .mode = COMMAND_EXEC,
5428 .help = "loads active fast load image to current target "
5429 "- mainly for profiling purposes",
5432 .name = "profile",
5433 .handler = handle_profile_command,
5434 .mode = COMMAND_EXEC,
5435 .help = "profiling samples the CPU PC",
5437 /** @todo don't register virt2phys() unless target supports it */
5439 .name = "virt2phys",
5440 .handler = handle_virt2phys_command,
5441 .mode = COMMAND_ANY,
5442 .help = "translate a virtual address into a physical address",
5443 .usage = "virtual_address",
5446 .name = "reg",
5447 .handler = handle_reg_command,
5448 .mode = COMMAND_EXEC,
5449 .help = "display or set a register; with no arguments, "
5450 "displays all registers and their values",
5451 .usage = "[(register_name|register_number) [value]]",
5454 .name = "poll",
5455 .handler = handle_poll_command,
5456 .mode = COMMAND_EXEC,
5457 .help = "poll target state; or reconfigure background polling",
5458 .usage = "['on'|'off']",
5461 .name = "wait_halt",
5462 .handler = handle_wait_halt_command,
5463 .mode = COMMAND_EXEC,
5464 .help = "wait up to the specified number of milliseconds "
5465 "(default 5) for a previously requested halt",
5466 .usage = "[milliseconds]",
5469 .name = "halt",
5470 .handler = handle_halt_command,
5471 .mode = COMMAND_EXEC,
5472 .help = "request target to halt, then wait up to the specified"
5473 "number of milliseconds (default 5) for it to complete",
5474 .usage = "[milliseconds]",
5477 .name = "resume",
5478 .handler = handle_resume_command,
5479 .mode = COMMAND_EXEC,
5480 .help = "resume target execution from current PC or address",
5481 .usage = "[address]",
5484 .name = "reset",
5485 .handler = handle_reset_command,
5486 .mode = COMMAND_EXEC,
5487 .usage = "[run|halt|init]",
5488 .help = "Reset all targets into the specified mode."
5489 "Default reset mode is run, if not given.",
5492 .name = "soft_reset_halt",
5493 .handler = handle_soft_reset_halt_command,
5494 .mode = COMMAND_EXEC,
5495 .help = "halt the target and do a soft reset",
5498 .name = "step",
5499 .handler = handle_step_command,
5500 .mode = COMMAND_EXEC,
5501 .help = "step one instruction from current PC or address",
5502 .usage = "[address]",
5505 .name = "mdw",
5506 .handler = handle_md_command,
5507 .mode = COMMAND_EXEC,
5508 .help = "display memory words",
5509 .usage = "['phys'] address [count]",
5512 .name = "mdh",
5513 .handler = handle_md_command,
5514 .mode = COMMAND_EXEC,
5515 .help = "display memory half-words",
5516 .usage = "['phys'] address [count]",
5519 .name = "mdb",
5520 .handler = handle_md_command,
5521 .mode = COMMAND_EXEC,
5522 .help = "display memory bytes",
5523 .usage = "['phys'] address [count]",
5526 .name = "mww",
5527 .handler = handle_mw_command,
5528 .mode = COMMAND_EXEC,
5529 .help = "write memory word",
5530 .usage = "['phys'] address value [count]",
5533 .name = "mwh",
5534 .handler = handle_mw_command,
5535 .mode = COMMAND_EXEC,
5536 .help = "write memory half-word",
5537 .usage = "['phys'] address value [count]",
5540 .name = "mwb",
5541 .handler = handle_mw_command,
5542 .mode = COMMAND_EXEC,
5543 .help = "write memory byte",
5544 .usage = "['phys'] address value [count]",
5547 .name = "bp",
5548 .handler = handle_bp_command,
5549 .mode = COMMAND_EXEC,
5550 .help = "list or set hardware or software breakpoint",
5551 .usage = "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']",
5554 .name = "rbp",
5555 .handler = handle_rbp_command,
5556 .mode = COMMAND_EXEC,
5557 .help = "remove breakpoint",
5558 .usage = "address",
5561 .name = "wp",
5562 .handler = handle_wp_command,
5563 .mode = COMMAND_EXEC,
5564 .help = "list (no params) or create watchpoints",
5565 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5568 .name = "rwp",
5569 .handler = handle_rwp_command,
5570 .mode = COMMAND_EXEC,
5571 .help = "remove watchpoint",
5572 .usage = "address",
5575 .name = "load_image",
5576 .handler = handle_load_image_command,
5577 .mode = COMMAND_EXEC,
5578 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5579 "[min_address] [max_length]",
5582 .name = "dump_image",
5583 .handler = handle_dump_image_command,
5584 .mode = COMMAND_EXEC,
5585 .usage = "filename address size",
5588 .name = "verify_image",
5589 .handler = handle_verify_image_command,
5590 .mode = COMMAND_EXEC,
5591 .usage = "filename [offset [type]]",
5594 .name = "test_image",
5595 .handler = handle_test_image_command,
5596 .mode = COMMAND_EXEC,
5597 .usage = "filename [offset [type]]",
5600 .name = "mem2array",
5601 .mode = COMMAND_EXEC,
5602 .jim_handler = jim_mem2array,
5603 .help = "read 8/16/32 bit memory and return as a TCL array "
5604 "for script processing",
5605 .usage = "arrayname bitwidth address count",
5608 .name = "array2mem",
5609 .mode = COMMAND_EXEC,
5610 .jim_handler = jim_array2mem,
5611 .help = "convert a TCL array to memory locations "
5612 "and write the 8/16/32 bit values",
5613 .usage = "arrayname bitwidth address count",
5616 .name = "reset_nag",
5617 .handler = handle_target_reset_nag,
5618 .mode = COMMAND_ANY,
5619 .help = "Nag after each reset about options that could have been "
5620 "enabled to improve performance. ",
5621 .usage = "['enable'|'disable']",
5623 COMMAND_REGISTRATION_DONE
5625 static int target_register_user_commands(struct command_context *cmd_ctx)
5627 int retval = ERROR_OK;
5628 if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5629 return retval;
5631 if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5632 return retval;
5635 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);