aarch64: fix reading of translation table registers
[openocd.git] / src / target / target.c
blobee302ee47c7a3673108ae2e9e9f4fe8d31318241
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
61 static int target_read_buffer_default(struct target *target, target_addr_t address,
62 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, target_addr_t address,
64 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type aarch64_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type ls1_sap_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
109 static struct target_type *target_types[] = {
110 &arm7tdmi_target,
111 &arm9tdmi_target,
112 &arm920t_target,
113 &arm720t_target,
114 &arm966e_target,
115 &arm946e_target,
116 &arm926ejs_target,
117 &fa526_target,
118 &feroceon_target,
119 &dragonite_target,
120 &xscale_target,
121 &cortexm_target,
122 &cortexa_target,
123 &cortexr4_target,
124 &arm11_target,
125 &ls1_sap_target,
126 &mips_m4k_target,
127 &avr_target,
128 &dsp563xx_target,
129 &dsp5680xx_target,
130 &testee_target,
131 &avr32_ap7k_target,
132 &hla_target,
133 &nds32_v2_target,
134 &nds32_v3_target,
135 &nds32_v3m_target,
136 &or1k_target,
137 &quark_x10xx_target,
138 &quark_d20xx_target,
139 #if BUILD_TARGET64
140 &aarch64_target,
141 #endif
142 NULL,
145 struct target *all_targets;
146 static struct target_event_callback *target_event_callbacks;
147 static struct target_timer_callback *target_timer_callbacks;
148 LIST_HEAD(target_reset_callback_list);
149 LIST_HEAD(target_trace_callback_list);
150 static const int polling_interval = 100;
152 static const Jim_Nvp nvp_assert[] = {
153 { .name = "assert", NVP_ASSERT },
154 { .name = "deassert", NVP_DEASSERT },
155 { .name = "T", NVP_ASSERT },
156 { .name = "F", NVP_DEASSERT },
157 { .name = "t", NVP_ASSERT },
158 { .name = "f", NVP_DEASSERT },
159 { .name = NULL, .value = -1 }
162 static const Jim_Nvp nvp_error_target[] = {
163 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
164 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
165 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
166 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
167 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
168 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
169 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
170 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
171 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
172 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
173 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
174 { .value = -1, .name = NULL }
177 static const char *target_strerror_safe(int err)
179 const Jim_Nvp *n;
181 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
182 if (n->name == NULL)
183 return "unknown";
184 else
185 return n->name;
188 static const Jim_Nvp nvp_target_event[] = {
190 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
191 { .value = TARGET_EVENT_HALTED, .name = "halted" },
192 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
193 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
194 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
196 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
197 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
199 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
200 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
201 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
202 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
203 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
204 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
205 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
206 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
207 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
208 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
209 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
210 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
212 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
213 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
215 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
216 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
218 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
219 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
221 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
222 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
224 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
225 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
227 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
229 { .name = NULL, .value = -1 }
232 static const Jim_Nvp nvp_target_state[] = {
233 { .name = "unknown", .value = TARGET_UNKNOWN },
234 { .name = "running", .value = TARGET_RUNNING },
235 { .name = "halted", .value = TARGET_HALTED },
236 { .name = "reset", .value = TARGET_RESET },
237 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
238 { .name = NULL, .value = -1 },
241 static const Jim_Nvp nvp_target_debug_reason[] = {
242 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
243 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
244 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
245 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
246 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
247 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
248 { .name = "program-exit" , .value = DBG_REASON_EXIT },
249 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
250 { .name = NULL, .value = -1 },
253 static const Jim_Nvp nvp_target_endian[] = {
254 { .name = "big", .value = TARGET_BIG_ENDIAN },
255 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
256 { .name = "be", .value = TARGET_BIG_ENDIAN },
257 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
258 { .name = NULL, .value = -1 },
261 static const Jim_Nvp nvp_reset_modes[] = {
262 { .name = "unknown", .value = RESET_UNKNOWN },
263 { .name = "run" , .value = RESET_RUN },
264 { .name = "halt" , .value = RESET_HALT },
265 { .name = "init" , .value = RESET_INIT },
266 { .name = NULL , .value = -1 },
269 const char *debug_reason_name(struct target *t)
271 const char *cp;
273 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
274 t->debug_reason)->name;
275 if (!cp) {
276 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
277 cp = "(*BUG*unknown*BUG*)";
279 return cp;
282 const char *target_state_name(struct target *t)
284 const char *cp;
285 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
286 if (!cp) {
287 LOG_ERROR("Invalid target state: %d", (int)(t->state));
288 cp = "(*BUG*unknown*BUG*)";
291 if (!target_was_examined(t) && t->defer_examine)
292 cp = "examine deferred";
294 return cp;
297 const char *target_event_name(enum target_event event)
299 const char *cp;
300 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
301 if (!cp) {
302 LOG_ERROR("Invalid target event: %d", (int)(event));
303 cp = "(*BUG*unknown*BUG*)";
305 return cp;
308 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
310 const char *cp;
311 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
312 if (!cp) {
313 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
314 cp = "(*BUG*unknown*BUG*)";
316 return cp;
319 /* determine the number of the new target */
320 static int new_target_number(void)
322 struct target *t;
323 int x;
325 /* number is 0 based */
326 x = -1;
327 t = all_targets;
328 while (t) {
329 if (x < t->target_number)
330 x = t->target_number;
331 t = t->next;
333 return x + 1;
336 /* read a uint64_t from a buffer in target memory endianness */
337 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
339 if (target->endianness == TARGET_LITTLE_ENDIAN)
340 return le_to_h_u64(buffer);
341 else
342 return be_to_h_u64(buffer);
345 /* read a uint32_t from a buffer in target memory endianness */
346 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
348 if (target->endianness == TARGET_LITTLE_ENDIAN)
349 return le_to_h_u32(buffer);
350 else
351 return be_to_h_u32(buffer);
354 /* read a uint24_t from a buffer in target memory endianness */
355 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
357 if (target->endianness == TARGET_LITTLE_ENDIAN)
358 return le_to_h_u24(buffer);
359 else
360 return be_to_h_u24(buffer);
363 /* read a uint16_t from a buffer in target memory endianness */
364 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
366 if (target->endianness == TARGET_LITTLE_ENDIAN)
367 return le_to_h_u16(buffer);
368 else
369 return be_to_h_u16(buffer);
372 /* read a uint8_t from a buffer in target memory endianness */
373 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
375 return *buffer & 0x0ff;
378 /* write a uint64_t to a buffer in target memory endianness */
379 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
381 if (target->endianness == TARGET_LITTLE_ENDIAN)
382 h_u64_to_le(buffer, value);
383 else
384 h_u64_to_be(buffer, value);
387 /* write a uint32_t to a buffer in target memory endianness */
388 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
390 if (target->endianness == TARGET_LITTLE_ENDIAN)
391 h_u32_to_le(buffer, value);
392 else
393 h_u32_to_be(buffer, value);
396 /* write a uint24_t to a buffer in target memory endianness */
397 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
399 if (target->endianness == TARGET_LITTLE_ENDIAN)
400 h_u24_to_le(buffer, value);
401 else
402 h_u24_to_be(buffer, value);
405 /* write a uint16_t to a buffer in target memory endianness */
406 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
408 if (target->endianness == TARGET_LITTLE_ENDIAN)
409 h_u16_to_le(buffer, value);
410 else
411 h_u16_to_be(buffer, value);
414 /* write a uint8_t to a buffer in target memory endianness */
415 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
417 *buffer = value;
420 /* write a uint64_t array to a buffer in target memory endianness */
421 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
423 uint32_t i;
424 for (i = 0; i < count; i++)
425 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
428 /* write a uint32_t array to a buffer in target memory endianness */
429 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
431 uint32_t i;
432 for (i = 0; i < count; i++)
433 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
436 /* write a uint16_t array to a buffer in target memory endianness */
437 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
439 uint32_t i;
440 for (i = 0; i < count; i++)
441 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
444 /* write a uint64_t array to a buffer in target memory endianness */
445 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
447 uint32_t i;
448 for (i = 0; i < count; i++)
449 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
452 /* write a uint32_t array to a buffer in target memory endianness */
453 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
455 uint32_t i;
456 for (i = 0; i < count; i++)
457 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
460 /* write a uint16_t array to a buffer in target memory endianness */
461 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
463 uint32_t i;
464 for (i = 0; i < count; i++)
465 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
468 /* return a pointer to a configured target; id is name or number */
469 struct target *get_target(const char *id)
471 struct target *target;
473 /* try as tcltarget name */
474 for (target = all_targets; target; target = target->next) {
475 if (target_name(target) == NULL)
476 continue;
477 if (strcmp(id, target_name(target)) == 0)
478 return target;
481 /* It's OK to remove this fallback sometime after August 2010 or so */
483 /* no match, try as number */
484 unsigned num;
485 if (parse_uint(id, &num) != ERROR_OK)
486 return NULL;
488 for (target = all_targets; target; target = target->next) {
489 if (target->target_number == (int)num) {
490 LOG_WARNING("use '%s' as target identifier, not '%u'",
491 target_name(target), num);
492 return target;
496 return NULL;
499 /* returns a pointer to the n-th configured target */
500 struct target *get_target_by_num(int num)
502 struct target *target = all_targets;
504 while (target) {
505 if (target->target_number == num)
506 return target;
507 target = target->next;
510 return NULL;
513 struct target *get_current_target(struct command_context *cmd_ctx)
515 struct target *target = get_target_by_num(cmd_ctx->current_target);
517 if (target == NULL) {
518 LOG_ERROR("BUG: current_target out of bounds");
519 exit(-1);
522 return target;
525 int target_poll(struct target *target)
527 int retval;
529 /* We can't poll until after examine */
530 if (!target_was_examined(target)) {
531 /* Fail silently lest we pollute the log */
532 return ERROR_FAIL;
535 retval = target->type->poll(target);
536 if (retval != ERROR_OK)
537 return retval;
539 if (target->halt_issued) {
540 if (target->state == TARGET_HALTED)
541 target->halt_issued = false;
542 else {
543 int64_t t = timeval_ms() - target->halt_issued_time;
544 if (t > DEFAULT_HALT_TIMEOUT) {
545 target->halt_issued = false;
546 LOG_INFO("Halt timed out, wake up GDB.");
547 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
552 return ERROR_OK;
555 int target_halt(struct target *target)
557 int retval;
558 /* We can't poll until after examine */
559 if (!target_was_examined(target)) {
560 LOG_ERROR("Target not examined yet");
561 return ERROR_FAIL;
564 retval = target->type->halt(target);
565 if (retval != ERROR_OK)
566 return retval;
568 target->halt_issued = true;
569 target->halt_issued_time = timeval_ms();
571 return ERROR_OK;
575 * Make the target (re)start executing using its saved execution
576 * context (possibly with some modifications).
578 * @param target Which target should start executing.
579 * @param current True to use the target's saved program counter instead
580 * of the address parameter
581 * @param address Optionally used as the program counter.
582 * @param handle_breakpoints True iff breakpoints at the resumption PC
583 * should be skipped. (For example, maybe execution was stopped by
584 * such a breakpoint, in which case it would be counterprodutive to
585 * let it re-trigger.
586 * @param debug_execution False if all working areas allocated by OpenOCD
587 * should be released and/or restored to their original contents.
588 * (This would for example be true to run some downloaded "helper"
589 * algorithm code, which resides in one such working buffer and uses
590 * another for data storage.)
592 * @todo Resolve the ambiguity about what the "debug_execution" flag
593 * signifies. For example, Target implementations don't agree on how
594 * it relates to invalidation of the register cache, or to whether
595 * breakpoints and watchpoints should be enabled. (It would seem wrong
596 * to enable breakpoints when running downloaded "helper" algorithms
597 * (debug_execution true), since the breakpoints would be set to match
598 * target firmware being debugged, not the helper algorithm.... and
599 * enabling them could cause such helpers to malfunction (for example,
600 * by overwriting data with a breakpoint instruction. On the other
601 * hand the infrastructure for running such helpers might use this
602 * procedure but rely on hardware breakpoint to detect termination.)
604 int target_resume(struct target *target, int current, target_addr_t address,
605 int handle_breakpoints, int debug_execution)
607 int retval;
609 /* We can't poll until after examine */
610 if (!target_was_examined(target)) {
611 LOG_ERROR("Target not examined yet");
612 return ERROR_FAIL;
615 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
617 /* note that resume *must* be asynchronous. The CPU can halt before
618 * we poll. The CPU can even halt at the current PC as a result of
619 * a software breakpoint being inserted by (a bug?) the application.
621 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
622 if (retval != ERROR_OK)
623 return retval;
625 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
627 return retval;
630 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
632 char buf[100];
633 int retval;
634 Jim_Nvp *n;
635 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
636 if (n->name == NULL) {
637 LOG_ERROR("invalid reset mode");
638 return ERROR_FAIL;
641 struct target *target;
642 for (target = all_targets; target; target = target->next)
643 target_call_reset_callbacks(target, reset_mode);
645 /* disable polling during reset to make reset event scripts
646 * more predictable, i.e. dr/irscan & pathmove in events will
647 * not have JTAG operations injected into the middle of a sequence.
649 bool save_poll = jtag_poll_get_enabled();
651 jtag_poll_set_enabled(false);
653 sprintf(buf, "ocd_process_reset %s", n->name);
654 retval = Jim_Eval(cmd_ctx->interp, buf);
656 jtag_poll_set_enabled(save_poll);
658 if (retval != JIM_OK) {
659 Jim_MakeErrorMessage(cmd_ctx->interp);
660 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
661 return ERROR_FAIL;
664 /* We want any events to be processed before the prompt */
665 retval = target_call_timer_callbacks_now();
667 for (target = all_targets; target; target = target->next) {
668 target->type->check_reset(target);
669 target->running_alg = false;
672 return retval;
675 static int identity_virt2phys(struct target *target,
676 target_addr_t virtual, target_addr_t *physical)
678 *physical = virtual;
679 return ERROR_OK;
682 static int no_mmu(struct target *target, int *enabled)
684 *enabled = 0;
685 return ERROR_OK;
688 static int default_examine(struct target *target)
690 target_set_examined(target);
691 return ERROR_OK;
694 /* no check by default */
695 static int default_check_reset(struct target *target)
697 return ERROR_OK;
700 int target_examine_one(struct target *target)
702 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
704 int retval = target->type->examine(target);
705 if (retval != ERROR_OK)
706 return retval;
708 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
710 return ERROR_OK;
713 static int jtag_enable_callback(enum jtag_event event, void *priv)
715 struct target *target = priv;
717 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
718 return ERROR_OK;
720 jtag_unregister_event_callback(jtag_enable_callback, target);
722 return target_examine_one(target);
725 /* Targets that correctly implement init + examine, i.e.
726 * no communication with target during init:
728 * XScale
730 int target_examine(void)
732 int retval = ERROR_OK;
733 struct target *target;
735 for (target = all_targets; target; target = target->next) {
736 /* defer examination, but don't skip it */
737 if (!target->tap->enabled) {
738 jtag_register_event_callback(jtag_enable_callback,
739 target);
740 continue;
743 if (target->defer_examine)
744 continue;
746 retval = target_examine_one(target);
747 if (retval != ERROR_OK)
748 return retval;
750 return retval;
753 const char *target_type_name(struct target *target)
755 return target->type->name;
758 static int target_soft_reset_halt(struct target *target)
760 if (!target_was_examined(target)) {
761 LOG_ERROR("Target not examined yet");
762 return ERROR_FAIL;
764 if (!target->type->soft_reset_halt) {
765 LOG_ERROR("Target %s does not support soft_reset_halt",
766 target_name(target));
767 return ERROR_FAIL;
769 return target->type->soft_reset_halt(target);
773 * Downloads a target-specific native code algorithm to the target,
774 * and executes it. * Note that some targets may need to set up, enable,
775 * and tear down a breakpoint (hard or * soft) to detect algorithm
776 * termination, while others may support lower overhead schemes where
777 * soft breakpoints embedded in the algorithm automatically terminate the
778 * algorithm.
780 * @param target used to run the algorithm
781 * @param arch_info target-specific description of the algorithm.
783 int target_run_algorithm(struct target *target,
784 int num_mem_params, struct mem_param *mem_params,
785 int num_reg_params, struct reg_param *reg_param,
786 uint32_t entry_point, uint32_t exit_point,
787 int timeout_ms, void *arch_info)
789 int retval = ERROR_FAIL;
791 if (!target_was_examined(target)) {
792 LOG_ERROR("Target not examined yet");
793 goto done;
795 if (!target->type->run_algorithm) {
796 LOG_ERROR("Target type '%s' does not support %s",
797 target_type_name(target), __func__);
798 goto done;
801 target->running_alg = true;
802 retval = target->type->run_algorithm(target,
803 num_mem_params, mem_params,
804 num_reg_params, reg_param,
805 entry_point, exit_point, timeout_ms, arch_info);
806 target->running_alg = false;
808 done:
809 return retval;
813 * Downloads a target-specific native code algorithm to the target,
814 * executes and leaves it running.
816 * @param target used to run the algorithm
817 * @param arch_info target-specific description of the algorithm.
819 int target_start_algorithm(struct target *target,
820 int num_mem_params, struct mem_param *mem_params,
821 int num_reg_params, struct reg_param *reg_params,
822 uint32_t entry_point, uint32_t exit_point,
823 void *arch_info)
825 int retval = ERROR_FAIL;
827 if (!target_was_examined(target)) {
828 LOG_ERROR("Target not examined yet");
829 goto done;
831 if (!target->type->start_algorithm) {
832 LOG_ERROR("Target type '%s' does not support %s",
833 target_type_name(target), __func__);
834 goto done;
836 if (target->running_alg) {
837 LOG_ERROR("Target is already running an algorithm");
838 goto done;
841 target->running_alg = true;
842 retval = target->type->start_algorithm(target,
843 num_mem_params, mem_params,
844 num_reg_params, reg_params,
845 entry_point, exit_point, arch_info);
847 done:
848 return retval;
852 * Waits for an algorithm started with target_start_algorithm() to complete.
854 * @param target used to run the algorithm
855 * @param arch_info target-specific description of the algorithm.
857 int target_wait_algorithm(struct target *target,
858 int num_mem_params, struct mem_param *mem_params,
859 int num_reg_params, struct reg_param *reg_params,
860 uint32_t exit_point, int timeout_ms,
861 void *arch_info)
863 int retval = ERROR_FAIL;
865 if (!target->type->wait_algorithm) {
866 LOG_ERROR("Target type '%s' does not support %s",
867 target_type_name(target), __func__);
868 goto done;
870 if (!target->running_alg) {
871 LOG_ERROR("Target is not running an algorithm");
872 goto done;
875 retval = target->type->wait_algorithm(target,
876 num_mem_params, mem_params,
877 num_reg_params, reg_params,
878 exit_point, timeout_ms, arch_info);
879 if (retval != ERROR_TARGET_TIMEOUT)
880 target->running_alg = false;
882 done:
883 return retval;
887 * Executes a target-specific native code algorithm in the target.
888 * It differs from target_run_algorithm in that the algorithm is asynchronous.
889 * Because of this it requires an compliant algorithm:
890 * see contrib/loaders/flash/stm32f1x.S for example.
892 * @param target used to run the algorithm
895 int target_run_flash_async_algorithm(struct target *target,
896 const uint8_t *buffer, uint32_t count, int block_size,
897 int num_mem_params, struct mem_param *mem_params,
898 int num_reg_params, struct reg_param *reg_params,
899 uint32_t buffer_start, uint32_t buffer_size,
900 uint32_t entry_point, uint32_t exit_point, void *arch_info)
902 int retval;
903 int timeout = 0;
905 const uint8_t *buffer_orig = buffer;
907 /* Set up working area. First word is write pointer, second word is read pointer,
908 * rest is fifo data area. */
909 uint32_t wp_addr = buffer_start;
910 uint32_t rp_addr = buffer_start + 4;
911 uint32_t fifo_start_addr = buffer_start + 8;
912 uint32_t fifo_end_addr = buffer_start + buffer_size;
914 uint32_t wp = fifo_start_addr;
915 uint32_t rp = fifo_start_addr;
917 /* validate block_size is 2^n */
918 assert(!block_size || !(block_size & (block_size - 1)));
920 retval = target_write_u32(target, wp_addr, wp);
921 if (retval != ERROR_OK)
922 return retval;
923 retval = target_write_u32(target, rp_addr, rp);
924 if (retval != ERROR_OK)
925 return retval;
927 /* Start up algorithm on target and let it idle while writing the first chunk */
928 retval = target_start_algorithm(target, num_mem_params, mem_params,
929 num_reg_params, reg_params,
930 entry_point,
931 exit_point,
932 arch_info);
934 if (retval != ERROR_OK) {
935 LOG_ERROR("error starting target flash write algorithm");
936 return retval;
939 while (count > 0) {
941 retval = target_read_u32(target, rp_addr, &rp);
942 if (retval != ERROR_OK) {
943 LOG_ERROR("failed to get read pointer");
944 break;
947 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
948 (size_t) (buffer - buffer_orig), count, wp, rp);
950 if (rp == 0) {
951 LOG_ERROR("flash write algorithm aborted by target");
952 retval = ERROR_FLASH_OPERATION_FAILED;
953 break;
956 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
957 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
958 break;
961 /* Count the number of bytes available in the fifo without
962 * crossing the wrap around. Make sure to not fill it completely,
963 * because that would make wp == rp and that's the empty condition. */
964 uint32_t thisrun_bytes;
965 if (rp > wp)
966 thisrun_bytes = rp - wp - block_size;
967 else if (rp > fifo_start_addr)
968 thisrun_bytes = fifo_end_addr - wp;
969 else
970 thisrun_bytes = fifo_end_addr - wp - block_size;
972 if (thisrun_bytes == 0) {
973 /* Throttle polling a bit if transfer is (much) faster than flash
974 * programming. The exact delay shouldn't matter as long as it's
975 * less than buffer size / flash speed. This is very unlikely to
976 * run when using high latency connections such as USB. */
977 alive_sleep(10);
979 /* to stop an infinite loop on some targets check and increment a timeout
980 * this issue was observed on a stellaris using the new ICDI interface */
981 if (timeout++ >= 500) {
982 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
983 return ERROR_FLASH_OPERATION_FAILED;
985 continue;
988 /* reset our timeout */
989 timeout = 0;
991 /* Limit to the amount of data we actually want to write */
992 if (thisrun_bytes > count * block_size)
993 thisrun_bytes = count * block_size;
995 /* Write data to fifo */
996 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
997 if (retval != ERROR_OK)
998 break;
1000 /* Update counters and wrap write pointer */
1001 buffer += thisrun_bytes;
1002 count -= thisrun_bytes / block_size;
1003 wp += thisrun_bytes;
1004 if (wp >= fifo_end_addr)
1005 wp = fifo_start_addr;
1007 /* Store updated write pointer to target */
1008 retval = target_write_u32(target, wp_addr, wp);
1009 if (retval != ERROR_OK)
1010 break;
1013 if (retval != ERROR_OK) {
1014 /* abort flash write algorithm on target */
1015 target_write_u32(target, wp_addr, 0);
1018 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1019 num_reg_params, reg_params,
1020 exit_point,
1021 10000,
1022 arch_info);
1024 if (retval2 != ERROR_OK) {
1025 LOG_ERROR("error waiting for target flash write algorithm");
1026 retval = retval2;
1029 if (retval == ERROR_OK) {
1030 /* check if algorithm set rp = 0 after fifo writer loop finished */
1031 retval = target_read_u32(target, rp_addr, &rp);
1032 if (retval == ERROR_OK && rp == 0) {
1033 LOG_ERROR("flash write algorithm aborted by target");
1034 retval = ERROR_FLASH_OPERATION_FAILED;
1038 return retval;
1041 int target_read_memory(struct target *target,
1042 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1044 if (!target_was_examined(target)) {
1045 LOG_ERROR("Target not examined yet");
1046 return ERROR_FAIL;
1048 if (!target->type->read_memory) {
1049 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1050 return ERROR_FAIL;
1052 return target->type->read_memory(target, address, size, count, buffer);
1055 int target_read_phys_memory(struct target *target,
1056 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1058 if (!target_was_examined(target)) {
1059 LOG_ERROR("Target not examined yet");
1060 return ERROR_FAIL;
1062 if (!target->type->read_phys_memory) {
1063 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1064 return ERROR_FAIL;
1066 return target->type->read_phys_memory(target, address, size, count, buffer);
1069 int target_write_memory(struct target *target,
1070 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1072 if (!target_was_examined(target)) {
1073 LOG_ERROR("Target not examined yet");
1074 return ERROR_FAIL;
1076 if (!target->type->write_memory) {
1077 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1078 return ERROR_FAIL;
1080 return target->type->write_memory(target, address, size, count, buffer);
1083 int target_write_phys_memory(struct target *target,
1084 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1086 if (!target_was_examined(target)) {
1087 LOG_ERROR("Target not examined yet");
1088 return ERROR_FAIL;
1090 if (!target->type->write_phys_memory) {
1091 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1092 return ERROR_FAIL;
1094 return target->type->write_phys_memory(target, address, size, count, buffer);
1097 int target_add_breakpoint(struct target *target,
1098 struct breakpoint *breakpoint)
1100 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1101 LOG_WARNING("target %s is not halted", target_name(target));
1102 return ERROR_TARGET_NOT_HALTED;
1104 return target->type->add_breakpoint(target, breakpoint);
1107 int target_add_context_breakpoint(struct target *target,
1108 struct breakpoint *breakpoint)
1110 if (target->state != TARGET_HALTED) {
1111 LOG_WARNING("target %s is not halted", target_name(target));
1112 return ERROR_TARGET_NOT_HALTED;
1114 return target->type->add_context_breakpoint(target, breakpoint);
1117 int target_add_hybrid_breakpoint(struct target *target,
1118 struct breakpoint *breakpoint)
1120 if (target->state != TARGET_HALTED) {
1121 LOG_WARNING("target %s is not halted", target_name(target));
1122 return ERROR_TARGET_NOT_HALTED;
1124 return target->type->add_hybrid_breakpoint(target, breakpoint);
1127 int target_remove_breakpoint(struct target *target,
1128 struct breakpoint *breakpoint)
1130 return target->type->remove_breakpoint(target, breakpoint);
1133 int target_add_watchpoint(struct target *target,
1134 struct watchpoint *watchpoint)
1136 if (target->state != TARGET_HALTED) {
1137 LOG_WARNING("target %s is not halted", target_name(target));
1138 return ERROR_TARGET_NOT_HALTED;
1140 return target->type->add_watchpoint(target, watchpoint);
1142 int target_remove_watchpoint(struct target *target,
1143 struct watchpoint *watchpoint)
1145 return target->type->remove_watchpoint(target, watchpoint);
1147 int target_hit_watchpoint(struct target *target,
1148 struct watchpoint **hit_watchpoint)
1150 if (target->state != TARGET_HALTED) {
1151 LOG_WARNING("target %s is not halted", target->cmd_name);
1152 return ERROR_TARGET_NOT_HALTED;
1155 if (target->type->hit_watchpoint == NULL) {
1156 /* For backward compatible, if hit_watchpoint is not implemented,
1157 * return ERROR_FAIL such that gdb_server will not take the nonsense
1158 * information. */
1159 return ERROR_FAIL;
1162 return target->type->hit_watchpoint(target, hit_watchpoint);
1165 int target_get_gdb_reg_list(struct target *target,
1166 struct reg **reg_list[], int *reg_list_size,
1167 enum target_register_class reg_class)
1169 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1171 int target_step(struct target *target,
1172 int current, target_addr_t address, int handle_breakpoints)
1174 return target->type->step(target, current, address, handle_breakpoints);
1177 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1179 if (target->state != TARGET_HALTED) {
1180 LOG_WARNING("target %s is not halted", target->cmd_name);
1181 return ERROR_TARGET_NOT_HALTED;
1183 return target->type->get_gdb_fileio_info(target, fileio_info);
1186 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1188 if (target->state != TARGET_HALTED) {
1189 LOG_WARNING("target %s is not halted", target->cmd_name);
1190 return ERROR_TARGET_NOT_HALTED;
1192 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1195 int target_profiling(struct target *target, uint32_t *samples,
1196 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1198 if (target->state != TARGET_HALTED) {
1199 LOG_WARNING("target %s is not halted", target->cmd_name);
1200 return ERROR_TARGET_NOT_HALTED;
1202 return target->type->profiling(target, samples, max_num_samples,
1203 num_samples, seconds);
1207 * Reset the @c examined flag for the given target.
1208 * Pure paranoia -- targets are zeroed on allocation.
1210 static void target_reset_examined(struct target *target)
1212 target->examined = false;
1215 static int handle_target(void *priv);
1217 static int target_init_one(struct command_context *cmd_ctx,
1218 struct target *target)
1220 target_reset_examined(target);
1222 struct target_type *type = target->type;
1223 if (type->examine == NULL)
1224 type->examine = default_examine;
1226 if (type->check_reset == NULL)
1227 type->check_reset = default_check_reset;
1229 assert(type->init_target != NULL);
1231 int retval = type->init_target(cmd_ctx, target);
1232 if (ERROR_OK != retval) {
1233 LOG_ERROR("target '%s' init failed", target_name(target));
1234 return retval;
1237 /* Sanity-check MMU support ... stub in what we must, to help
1238 * implement it in stages, but warn if we need to do so.
1240 if (type->mmu) {
1241 if (type->virt2phys == NULL) {
1242 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1243 type->virt2phys = identity_virt2phys;
1245 } else {
1246 /* Make sure no-MMU targets all behave the same: make no
1247 * distinction between physical and virtual addresses, and
1248 * ensure that virt2phys() is always an identity mapping.
1250 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1251 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1253 type->mmu = no_mmu;
1254 type->write_phys_memory = type->write_memory;
1255 type->read_phys_memory = type->read_memory;
1256 type->virt2phys = identity_virt2phys;
1259 if (target->type->read_buffer == NULL)
1260 target->type->read_buffer = target_read_buffer_default;
1262 if (target->type->write_buffer == NULL)
1263 target->type->write_buffer = target_write_buffer_default;
1265 if (target->type->get_gdb_fileio_info == NULL)
1266 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1268 if (target->type->gdb_fileio_end == NULL)
1269 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1271 if (target->type->profiling == NULL)
1272 target->type->profiling = target_profiling_default;
1274 return ERROR_OK;
1277 static int target_init(struct command_context *cmd_ctx)
1279 struct target *target;
1280 int retval;
1282 for (target = all_targets; target; target = target->next) {
1283 retval = target_init_one(cmd_ctx, target);
1284 if (ERROR_OK != retval)
1285 return retval;
1288 if (!all_targets)
1289 return ERROR_OK;
1291 retval = target_register_user_commands(cmd_ctx);
1292 if (ERROR_OK != retval)
1293 return retval;
1295 retval = target_register_timer_callback(&handle_target,
1296 polling_interval, 1, cmd_ctx->interp);
1297 if (ERROR_OK != retval)
1298 return retval;
1300 return ERROR_OK;
1303 COMMAND_HANDLER(handle_target_init_command)
1305 int retval;
1307 if (CMD_ARGC != 0)
1308 return ERROR_COMMAND_SYNTAX_ERROR;
1310 static bool target_initialized;
1311 if (target_initialized) {
1312 LOG_INFO("'target init' has already been called");
1313 return ERROR_OK;
1315 target_initialized = true;
1317 retval = command_run_line(CMD_CTX, "init_targets");
1318 if (ERROR_OK != retval)
1319 return retval;
1321 retval = command_run_line(CMD_CTX, "init_target_events");
1322 if (ERROR_OK != retval)
1323 return retval;
1325 retval = command_run_line(CMD_CTX, "init_board");
1326 if (ERROR_OK != retval)
1327 return retval;
1329 LOG_DEBUG("Initializing targets...");
1330 return target_init(CMD_CTX);
1333 int target_register_event_callback(int (*callback)(struct target *target,
1334 enum target_event event, void *priv), void *priv)
1336 struct target_event_callback **callbacks_p = &target_event_callbacks;
1338 if (callback == NULL)
1339 return ERROR_COMMAND_SYNTAX_ERROR;
1341 if (*callbacks_p) {
1342 while ((*callbacks_p)->next)
1343 callbacks_p = &((*callbacks_p)->next);
1344 callbacks_p = &((*callbacks_p)->next);
1347 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1348 (*callbacks_p)->callback = callback;
1349 (*callbacks_p)->priv = priv;
1350 (*callbacks_p)->next = NULL;
1352 return ERROR_OK;
1355 int target_register_reset_callback(int (*callback)(struct target *target,
1356 enum target_reset_mode reset_mode, void *priv), void *priv)
1358 struct target_reset_callback *entry;
1360 if (callback == NULL)
1361 return ERROR_COMMAND_SYNTAX_ERROR;
1363 entry = malloc(sizeof(struct target_reset_callback));
1364 if (entry == NULL) {
1365 LOG_ERROR("error allocating buffer for reset callback entry");
1366 return ERROR_COMMAND_SYNTAX_ERROR;
1369 entry->callback = callback;
1370 entry->priv = priv;
1371 list_add(&entry->list, &target_reset_callback_list);
1374 return ERROR_OK;
1377 int target_register_trace_callback(int (*callback)(struct target *target,
1378 size_t len, uint8_t *data, void *priv), void *priv)
1380 struct target_trace_callback *entry;
1382 if (callback == NULL)
1383 return ERROR_COMMAND_SYNTAX_ERROR;
1385 entry = malloc(sizeof(struct target_trace_callback));
1386 if (entry == NULL) {
1387 LOG_ERROR("error allocating buffer for trace callback entry");
1388 return ERROR_COMMAND_SYNTAX_ERROR;
1391 entry->callback = callback;
1392 entry->priv = priv;
1393 list_add(&entry->list, &target_trace_callback_list);
1396 return ERROR_OK;
1399 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1401 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1402 struct timeval now;
1404 if (callback == NULL)
1405 return ERROR_COMMAND_SYNTAX_ERROR;
1407 if (*callbacks_p) {
1408 while ((*callbacks_p)->next)
1409 callbacks_p = &((*callbacks_p)->next);
1410 callbacks_p = &((*callbacks_p)->next);
1413 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1414 (*callbacks_p)->callback = callback;
1415 (*callbacks_p)->periodic = periodic;
1416 (*callbacks_p)->time_ms = time_ms;
1417 (*callbacks_p)->removed = false;
1419 gettimeofday(&now, NULL);
1420 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1421 time_ms -= (time_ms % 1000);
1422 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1423 if ((*callbacks_p)->when.tv_usec > 1000000) {
1424 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1425 (*callbacks_p)->when.tv_sec += 1;
1428 (*callbacks_p)->priv = priv;
1429 (*callbacks_p)->next = NULL;
1431 return ERROR_OK;
1434 int target_unregister_event_callback(int (*callback)(struct target *target,
1435 enum target_event event, void *priv), void *priv)
1437 struct target_event_callback **p = &target_event_callbacks;
1438 struct target_event_callback *c = target_event_callbacks;
1440 if (callback == NULL)
1441 return ERROR_COMMAND_SYNTAX_ERROR;
1443 while (c) {
1444 struct target_event_callback *next = c->next;
1445 if ((c->callback == callback) && (c->priv == priv)) {
1446 *p = next;
1447 free(c);
1448 return ERROR_OK;
1449 } else
1450 p = &(c->next);
1451 c = next;
1454 return ERROR_OK;
1457 int target_unregister_reset_callback(int (*callback)(struct target *target,
1458 enum target_reset_mode reset_mode, void *priv), void *priv)
1460 struct target_reset_callback *entry;
1462 if (callback == NULL)
1463 return ERROR_COMMAND_SYNTAX_ERROR;
1465 list_for_each_entry(entry, &target_reset_callback_list, list) {
1466 if (entry->callback == callback && entry->priv == priv) {
1467 list_del(&entry->list);
1468 free(entry);
1469 break;
1473 return ERROR_OK;
1476 int target_unregister_trace_callback(int (*callback)(struct target *target,
1477 size_t len, uint8_t *data, void *priv), void *priv)
1479 struct target_trace_callback *entry;
1481 if (callback == NULL)
1482 return ERROR_COMMAND_SYNTAX_ERROR;
1484 list_for_each_entry(entry, &target_trace_callback_list, list) {
1485 if (entry->callback == callback && entry->priv == priv) {
1486 list_del(&entry->list);
1487 free(entry);
1488 break;
1492 return ERROR_OK;
1495 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1497 if (callback == NULL)
1498 return ERROR_COMMAND_SYNTAX_ERROR;
1500 for (struct target_timer_callback *c = target_timer_callbacks;
1501 c; c = c->next) {
1502 if ((c->callback == callback) && (c->priv == priv)) {
1503 c->removed = true;
1504 return ERROR_OK;
1508 return ERROR_FAIL;
1511 int target_call_event_callbacks(struct target *target, enum target_event event)
1513 struct target_event_callback *callback = target_event_callbacks;
1514 struct target_event_callback *next_callback;
1516 if (event == TARGET_EVENT_HALTED) {
1517 /* execute early halted first */
1518 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1521 LOG_DEBUG("target event %i (%s)", event,
1522 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1524 target_handle_event(target, event);
1526 while (callback) {
1527 next_callback = callback->next;
1528 callback->callback(target, event, callback->priv);
1529 callback = next_callback;
1532 return ERROR_OK;
1535 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1537 struct target_reset_callback *callback;
1539 LOG_DEBUG("target reset %i (%s)", reset_mode,
1540 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1542 list_for_each_entry(callback, &target_reset_callback_list, list)
1543 callback->callback(target, reset_mode, callback->priv);
1545 return ERROR_OK;
1548 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1550 struct target_trace_callback *callback;
1552 list_for_each_entry(callback, &target_trace_callback_list, list)
1553 callback->callback(target, len, data, callback->priv);
1555 return ERROR_OK;
1558 static int target_timer_callback_periodic_restart(
1559 struct target_timer_callback *cb, struct timeval *now)
1561 int time_ms = cb->time_ms;
1562 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1563 time_ms -= (time_ms % 1000);
1564 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1565 if (cb->when.tv_usec > 1000000) {
1566 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1567 cb->when.tv_sec += 1;
1569 return ERROR_OK;
1572 static int target_call_timer_callback(struct target_timer_callback *cb,
1573 struct timeval *now)
1575 cb->callback(cb->priv);
1577 if (cb->periodic)
1578 return target_timer_callback_periodic_restart(cb, now);
1580 return target_unregister_timer_callback(cb->callback, cb->priv);
1583 static int target_call_timer_callbacks_check_time(int checktime)
1585 static bool callback_processing;
1587 /* Do not allow nesting */
1588 if (callback_processing)
1589 return ERROR_OK;
1591 callback_processing = true;
1593 keep_alive();
1595 struct timeval now;
1596 gettimeofday(&now, NULL);
1598 /* Store an address of the place containing a pointer to the
1599 * next item; initially, that's a standalone "root of the
1600 * list" variable. */
1601 struct target_timer_callback **callback = &target_timer_callbacks;
1602 while (*callback) {
1603 if ((*callback)->removed) {
1604 struct target_timer_callback *p = *callback;
1605 *callback = (*callback)->next;
1606 free(p);
1607 continue;
1610 bool call_it = (*callback)->callback &&
1611 ((!checktime && (*callback)->periodic) ||
1612 now.tv_sec > (*callback)->when.tv_sec ||
1613 (now.tv_sec == (*callback)->when.tv_sec &&
1614 now.tv_usec >= (*callback)->when.tv_usec));
1616 if (call_it)
1617 target_call_timer_callback(*callback, &now);
1619 callback = &(*callback)->next;
1622 callback_processing = false;
1623 return ERROR_OK;
1626 int target_call_timer_callbacks(void)
1628 return target_call_timer_callbacks_check_time(1);
1631 /* invoke periodic callbacks immediately */
1632 int target_call_timer_callbacks_now(void)
1634 return target_call_timer_callbacks_check_time(0);
1637 /* Prints the working area layout for debug purposes */
1638 static void print_wa_layout(struct target *target)
1640 struct working_area *c = target->working_areas;
1642 while (c) {
1643 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1644 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1645 c->address, c->address + c->size - 1, c->size);
1646 c = c->next;
1650 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1651 static void target_split_working_area(struct working_area *area, uint32_t size)
1653 assert(area->free); /* Shouldn't split an allocated area */
1654 assert(size <= area->size); /* Caller should guarantee this */
1656 /* Split only if not already the right size */
1657 if (size < area->size) {
1658 struct working_area *new_wa = malloc(sizeof(*new_wa));
1660 if (new_wa == NULL)
1661 return;
1663 new_wa->next = area->next;
1664 new_wa->size = area->size - size;
1665 new_wa->address = area->address + size;
1666 new_wa->backup = NULL;
1667 new_wa->user = NULL;
1668 new_wa->free = true;
1670 area->next = new_wa;
1671 area->size = size;
1673 /* If backup memory was allocated to this area, it has the wrong size
1674 * now so free it and it will be reallocated if/when needed */
1675 if (area->backup) {
1676 free(area->backup);
1677 area->backup = NULL;
1682 /* Merge all adjacent free areas into one */
1683 static void target_merge_working_areas(struct target *target)
1685 struct working_area *c = target->working_areas;
1687 while (c && c->next) {
1688 assert(c->next->address == c->address + c->size); /* This is an invariant */
1690 /* Find two adjacent free areas */
1691 if (c->free && c->next->free) {
1692 /* Merge the last into the first */
1693 c->size += c->next->size;
1695 /* Remove the last */
1696 struct working_area *to_be_freed = c->next;
1697 c->next = c->next->next;
1698 if (to_be_freed->backup)
1699 free(to_be_freed->backup);
1700 free(to_be_freed);
1702 /* If backup memory was allocated to the remaining area, it's has
1703 * the wrong size now */
1704 if (c->backup) {
1705 free(c->backup);
1706 c->backup = NULL;
1708 } else {
1709 c = c->next;
1714 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1716 /* Reevaluate working area address based on MMU state*/
1717 if (target->working_areas == NULL) {
1718 int retval;
1719 int enabled;
1721 retval = target->type->mmu(target, &enabled);
1722 if (retval != ERROR_OK)
1723 return retval;
1725 if (!enabled) {
1726 if (target->working_area_phys_spec) {
1727 LOG_DEBUG("MMU disabled, using physical "
1728 "address for working memory " TARGET_ADDR_FMT,
1729 target->working_area_phys);
1730 target->working_area = target->working_area_phys;
1731 } else {
1732 LOG_ERROR("No working memory available. "
1733 "Specify -work-area-phys to target.");
1734 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1736 } else {
1737 if (target->working_area_virt_spec) {
1738 LOG_DEBUG("MMU enabled, using virtual "
1739 "address for working memory " TARGET_ADDR_FMT,
1740 target->working_area_virt);
1741 target->working_area = target->working_area_virt;
1742 } else {
1743 LOG_ERROR("No working memory available. "
1744 "Specify -work-area-virt to target.");
1745 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1749 /* Set up initial working area on first call */
1750 struct working_area *new_wa = malloc(sizeof(*new_wa));
1751 if (new_wa) {
1752 new_wa->next = NULL;
1753 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1754 new_wa->address = target->working_area;
1755 new_wa->backup = NULL;
1756 new_wa->user = NULL;
1757 new_wa->free = true;
1760 target->working_areas = new_wa;
1763 /* only allocate multiples of 4 byte */
1764 if (size % 4)
1765 size = (size + 3) & (~3UL);
1767 struct working_area *c = target->working_areas;
1769 /* Find the first large enough working area */
1770 while (c) {
1771 if (c->free && c->size >= size)
1772 break;
1773 c = c->next;
1776 if (c == NULL)
1777 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1779 /* Split the working area into the requested size */
1780 target_split_working_area(c, size);
1782 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1783 size, c->address);
1785 if (target->backup_working_area) {
1786 if (c->backup == NULL) {
1787 c->backup = malloc(c->size);
1788 if (c->backup == NULL)
1789 return ERROR_FAIL;
1792 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1793 if (retval != ERROR_OK)
1794 return retval;
1797 /* mark as used, and return the new (reused) area */
1798 c->free = false;
1799 *area = c;
1801 /* user pointer */
1802 c->user = area;
1804 print_wa_layout(target);
1806 return ERROR_OK;
1809 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1811 int retval;
1813 retval = target_alloc_working_area_try(target, size, area);
1814 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1815 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1816 return retval;
1820 static int target_restore_working_area(struct target *target, struct working_area *area)
1822 int retval = ERROR_OK;
1824 if (target->backup_working_area && area->backup != NULL) {
1825 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1826 if (retval != ERROR_OK)
1827 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1828 area->size, area->address);
1831 return retval;
1834 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1835 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1837 int retval = ERROR_OK;
1839 if (area->free)
1840 return retval;
1842 if (restore) {
1843 retval = target_restore_working_area(target, area);
1844 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1845 if (retval != ERROR_OK)
1846 return retval;
1849 area->free = true;
1851 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1852 area->size, area->address);
1854 /* mark user pointer invalid */
1855 /* TODO: Is this really safe? It points to some previous caller's memory.
1856 * How could we know that the area pointer is still in that place and not
1857 * some other vital data? What's the purpose of this, anyway? */
1858 *area->user = NULL;
1859 area->user = NULL;
1861 target_merge_working_areas(target);
1863 print_wa_layout(target);
1865 return retval;
1868 int target_free_working_area(struct target *target, struct working_area *area)
1870 return target_free_working_area_restore(target, area, 1);
1873 void target_quit(void)
1875 struct target_event_callback *pe = target_event_callbacks;
1876 while (pe) {
1877 struct target_event_callback *t = pe->next;
1878 free(pe);
1879 pe = t;
1881 target_event_callbacks = NULL;
1883 struct target_timer_callback *pt = target_timer_callbacks;
1884 while (pt) {
1885 struct target_timer_callback *t = pt->next;
1886 free(pt);
1887 pt = t;
1889 target_timer_callbacks = NULL;
1891 for (struct target *target = all_targets;
1892 target; target = target->next) {
1893 if (target->type->deinit_target)
1894 target->type->deinit_target(target);
1898 /* free resources and restore memory, if restoring memory fails,
1899 * free up resources anyway
1901 static void target_free_all_working_areas_restore(struct target *target, int restore)
1903 struct working_area *c = target->working_areas;
1905 LOG_DEBUG("freeing all working areas");
1907 /* Loop through all areas, restoring the allocated ones and marking them as free */
1908 while (c) {
1909 if (!c->free) {
1910 if (restore)
1911 target_restore_working_area(target, c);
1912 c->free = true;
1913 *c->user = NULL; /* Same as above */
1914 c->user = NULL;
1916 c = c->next;
1919 /* Run a merge pass to combine all areas into one */
1920 target_merge_working_areas(target);
1922 print_wa_layout(target);
1925 void target_free_all_working_areas(struct target *target)
1927 target_free_all_working_areas_restore(target, 1);
1930 /* Find the largest number of bytes that can be allocated */
1931 uint32_t target_get_working_area_avail(struct target *target)
1933 struct working_area *c = target->working_areas;
1934 uint32_t max_size = 0;
1936 if (c == NULL)
1937 return target->working_area_size;
1939 while (c) {
1940 if (c->free && max_size < c->size)
1941 max_size = c->size;
1943 c = c->next;
1946 return max_size;
1949 int target_arch_state(struct target *target)
1951 int retval;
1952 if (target == NULL) {
1953 LOG_WARNING("No target has been configured");
1954 return ERROR_OK;
1957 if (target->state != TARGET_HALTED)
1958 return ERROR_OK;
1960 retval = target->type->arch_state(target);
1961 return retval;
1964 static int target_get_gdb_fileio_info_default(struct target *target,
1965 struct gdb_fileio_info *fileio_info)
1967 /* If target does not support semi-hosting function, target
1968 has no need to provide .get_gdb_fileio_info callback.
1969 It just return ERROR_FAIL and gdb_server will return "Txx"
1970 as target halted every time. */
1971 return ERROR_FAIL;
1974 static int target_gdb_fileio_end_default(struct target *target,
1975 int retcode, int fileio_errno, bool ctrl_c)
1977 return ERROR_OK;
1980 static int target_profiling_default(struct target *target, uint32_t *samples,
1981 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1983 struct timeval timeout, now;
1985 gettimeofday(&timeout, NULL);
1986 timeval_add_time(&timeout, seconds, 0);
1988 LOG_INFO("Starting profiling. Halting and resuming the"
1989 " target as often as we can...");
1991 uint32_t sample_count = 0;
1992 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1993 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1995 int retval = ERROR_OK;
1996 for (;;) {
1997 target_poll(target);
1998 if (target->state == TARGET_HALTED) {
1999 uint32_t t = buf_get_u32(reg->value, 0, 32);
2000 samples[sample_count++] = t;
2001 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2002 retval = target_resume(target, 1, 0, 0, 0);
2003 target_poll(target);
2004 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2005 } else if (target->state == TARGET_RUNNING) {
2006 /* We want to quickly sample the PC. */
2007 retval = target_halt(target);
2008 } else {
2009 LOG_INFO("Target not halted or running");
2010 retval = ERROR_OK;
2011 break;
2014 if (retval != ERROR_OK)
2015 break;
2017 gettimeofday(&now, NULL);
2018 if ((sample_count >= max_num_samples) ||
2019 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2020 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2021 break;
2025 *num_samples = sample_count;
2026 return retval;
2029 /* Single aligned words are guaranteed to use 16 or 32 bit access
2030 * mode respectively, otherwise data is handled as quickly as
2031 * possible
2033 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2035 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2036 size, address);
2038 if (!target_was_examined(target)) {
2039 LOG_ERROR("Target not examined yet");
2040 return ERROR_FAIL;
2043 if (size == 0)
2044 return ERROR_OK;
2046 if ((address + size - 1) < address) {
2047 /* GDB can request this when e.g. PC is 0xfffffffc */
2048 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2049 address,
2050 size);
2051 return ERROR_FAIL;
2054 return target->type->write_buffer(target, address, size, buffer);
2057 static int target_write_buffer_default(struct target *target,
2058 target_addr_t address, uint32_t count, const uint8_t *buffer)
2060 uint32_t size;
2062 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2063 * will have something to do with the size we leave to it. */
2064 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2065 if (address & size) {
2066 int retval = target_write_memory(target, address, size, 1, buffer);
2067 if (retval != ERROR_OK)
2068 return retval;
2069 address += size;
2070 count -= size;
2071 buffer += size;
2075 /* Write the data with as large access size as possible. */
2076 for (; size > 0; size /= 2) {
2077 uint32_t aligned = count - count % size;
2078 if (aligned > 0) {
2079 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2080 if (retval != ERROR_OK)
2081 return retval;
2082 address += aligned;
2083 count -= aligned;
2084 buffer += aligned;
2088 return ERROR_OK;
2091 /* Single aligned words are guaranteed to use 16 or 32 bit access
2092 * mode respectively, otherwise data is handled as quickly as
2093 * possible
2095 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2097 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2098 size, address);
2100 if (!target_was_examined(target)) {
2101 LOG_ERROR("Target not examined yet");
2102 return ERROR_FAIL;
2105 if (size == 0)
2106 return ERROR_OK;
2108 if ((address + size - 1) < address) {
2109 /* GDB can request this when e.g. PC is 0xfffffffc */
2110 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2111 address,
2112 size);
2113 return ERROR_FAIL;
2116 return target->type->read_buffer(target, address, size, buffer);
2119 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2121 uint32_t size;
2123 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2124 * will have something to do with the size we leave to it. */
2125 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2126 if (address & size) {
2127 int retval = target_read_memory(target, address, size, 1, buffer);
2128 if (retval != ERROR_OK)
2129 return retval;
2130 address += size;
2131 count -= size;
2132 buffer += size;
2136 /* Read the data with as large access size as possible. */
2137 for (; size > 0; size /= 2) {
2138 uint32_t aligned = count - count % size;
2139 if (aligned > 0) {
2140 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2141 if (retval != ERROR_OK)
2142 return retval;
2143 address += aligned;
2144 count -= aligned;
2145 buffer += aligned;
2149 return ERROR_OK;
2152 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2154 uint8_t *buffer;
2155 int retval;
2156 uint32_t i;
2157 uint32_t checksum = 0;
2158 if (!target_was_examined(target)) {
2159 LOG_ERROR("Target not examined yet");
2160 return ERROR_FAIL;
2163 retval = target->type->checksum_memory(target, address, size, &checksum);
2164 if (retval != ERROR_OK) {
2165 buffer = malloc(size);
2166 if (buffer == NULL) {
2167 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2168 return ERROR_COMMAND_SYNTAX_ERROR;
2170 retval = target_read_buffer(target, address, size, buffer);
2171 if (retval != ERROR_OK) {
2172 free(buffer);
2173 return retval;
2176 /* convert to target endianness */
2177 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2178 uint32_t target_data;
2179 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2180 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2183 retval = image_calculate_checksum(buffer, size, &checksum);
2184 free(buffer);
2187 *crc = checksum;
2189 return retval;
2192 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2193 uint8_t erased_value)
2195 int retval;
2196 if (!target_was_examined(target)) {
2197 LOG_ERROR("Target not examined yet");
2198 return ERROR_FAIL;
2201 if (target->type->blank_check_memory == 0)
2202 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2204 retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2206 return retval;
2209 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2211 uint8_t value_buf[8];
2212 if (!target_was_examined(target)) {
2213 LOG_ERROR("Target not examined yet");
2214 return ERROR_FAIL;
2217 int retval = target_read_memory(target, address, 8, 1, value_buf);
2219 if (retval == ERROR_OK) {
2220 *value = target_buffer_get_u64(target, value_buf);
2221 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2222 address,
2223 *value);
2224 } else {
2225 *value = 0x0;
2226 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2227 address);
2230 return retval;
2233 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2235 uint8_t value_buf[4];
2236 if (!target_was_examined(target)) {
2237 LOG_ERROR("Target not examined yet");
2238 return ERROR_FAIL;
2241 int retval = target_read_memory(target, address, 4, 1, value_buf);
2243 if (retval == ERROR_OK) {
2244 *value = target_buffer_get_u32(target, value_buf);
2245 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2246 address,
2247 *value);
2248 } else {
2249 *value = 0x0;
2250 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2251 address);
2254 return retval;
2257 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2259 uint8_t value_buf[2];
2260 if (!target_was_examined(target)) {
2261 LOG_ERROR("Target not examined yet");
2262 return ERROR_FAIL;
2265 int retval = target_read_memory(target, address, 2, 1, value_buf);
2267 if (retval == ERROR_OK) {
2268 *value = target_buffer_get_u16(target, value_buf);
2269 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2270 address,
2271 *value);
2272 } else {
2273 *value = 0x0;
2274 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2275 address);
2278 return retval;
2281 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2283 if (!target_was_examined(target)) {
2284 LOG_ERROR("Target not examined yet");
2285 return ERROR_FAIL;
2288 int retval = target_read_memory(target, address, 1, 1, value);
2290 if (retval == ERROR_OK) {
2291 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2292 address,
2293 *value);
2294 } else {
2295 *value = 0x0;
2296 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2297 address);
2300 return retval;
2303 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2305 int retval;
2306 uint8_t value_buf[8];
2307 if (!target_was_examined(target)) {
2308 LOG_ERROR("Target not examined yet");
2309 return ERROR_FAIL;
2312 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2313 address,
2314 value);
2316 target_buffer_set_u64(target, value_buf, value);
2317 retval = target_write_memory(target, address, 8, 1, value_buf);
2318 if (retval != ERROR_OK)
2319 LOG_DEBUG("failed: %i", retval);
2321 return retval;
2324 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2326 int retval;
2327 uint8_t value_buf[4];
2328 if (!target_was_examined(target)) {
2329 LOG_ERROR("Target not examined yet");
2330 return ERROR_FAIL;
2333 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2334 address,
2335 value);
2337 target_buffer_set_u32(target, value_buf, value);
2338 retval = target_write_memory(target, address, 4, 1, value_buf);
2339 if (retval != ERROR_OK)
2340 LOG_DEBUG("failed: %i", retval);
2342 return retval;
2345 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2347 int retval;
2348 uint8_t value_buf[2];
2349 if (!target_was_examined(target)) {
2350 LOG_ERROR("Target not examined yet");
2351 return ERROR_FAIL;
2354 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2355 address,
2356 value);
2358 target_buffer_set_u16(target, value_buf, value);
2359 retval = target_write_memory(target, address, 2, 1, value_buf);
2360 if (retval != ERROR_OK)
2361 LOG_DEBUG("failed: %i", retval);
2363 return retval;
2366 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2368 int retval;
2369 if (!target_was_examined(target)) {
2370 LOG_ERROR("Target not examined yet");
2371 return ERROR_FAIL;
2374 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2375 address, value);
2377 retval = target_write_memory(target, address, 1, 1, &value);
2378 if (retval != ERROR_OK)
2379 LOG_DEBUG("failed: %i", retval);
2381 return retval;
2384 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2386 int retval;
2387 uint8_t value_buf[8];
2388 if (!target_was_examined(target)) {
2389 LOG_ERROR("Target not examined yet");
2390 return ERROR_FAIL;
2393 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2394 address,
2395 value);
2397 target_buffer_set_u64(target, value_buf, value);
2398 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2399 if (retval != ERROR_OK)
2400 LOG_DEBUG("failed: %i", retval);
2402 return retval;
2405 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2407 int retval;
2408 uint8_t value_buf[4];
2409 if (!target_was_examined(target)) {
2410 LOG_ERROR("Target not examined yet");
2411 return ERROR_FAIL;
2414 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2415 address,
2416 value);
2418 target_buffer_set_u32(target, value_buf, value);
2419 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2420 if (retval != ERROR_OK)
2421 LOG_DEBUG("failed: %i", retval);
2423 return retval;
2426 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2428 int retval;
2429 uint8_t value_buf[2];
2430 if (!target_was_examined(target)) {
2431 LOG_ERROR("Target not examined yet");
2432 return ERROR_FAIL;
2435 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2436 address,
2437 value);
2439 target_buffer_set_u16(target, value_buf, value);
2440 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2441 if (retval != ERROR_OK)
2442 LOG_DEBUG("failed: %i", retval);
2444 return retval;
2447 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2449 int retval;
2450 if (!target_was_examined(target)) {
2451 LOG_ERROR("Target not examined yet");
2452 return ERROR_FAIL;
2455 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2456 address, value);
2458 retval = target_write_phys_memory(target, address, 1, 1, &value);
2459 if (retval != ERROR_OK)
2460 LOG_DEBUG("failed: %i", retval);
2462 return retval;
2465 static int find_target(struct command_context *cmd_ctx, const char *name)
2467 struct target *target = get_target(name);
2468 if (target == NULL) {
2469 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2470 return ERROR_FAIL;
2472 if (!target->tap->enabled) {
2473 LOG_USER("Target: TAP %s is disabled, "
2474 "can't be the current target\n",
2475 target->tap->dotted_name);
2476 return ERROR_FAIL;
2479 cmd_ctx->current_target = target->target_number;
2480 return ERROR_OK;
2484 COMMAND_HANDLER(handle_targets_command)
2486 int retval = ERROR_OK;
2487 if (CMD_ARGC == 1) {
2488 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2489 if (retval == ERROR_OK) {
2490 /* we're done! */
2491 return retval;
2495 struct target *target = all_targets;
2496 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2497 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2498 while (target) {
2499 const char *state;
2500 char marker = ' ';
2502 if (target->tap->enabled)
2503 state = target_state_name(target);
2504 else
2505 state = "tap-disabled";
2507 if (CMD_CTX->current_target == target->target_number)
2508 marker = '*';
2510 /* keep columns lined up to match the headers above */
2511 command_print(CMD_CTX,
2512 "%2d%c %-18s %-10s %-6s %-18s %s",
2513 target->target_number,
2514 marker,
2515 target_name(target),
2516 target_type_name(target),
2517 Jim_Nvp_value2name_simple(nvp_target_endian,
2518 target->endianness)->name,
2519 target->tap->dotted_name,
2520 state);
2521 target = target->next;
2524 return retval;
2527 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2529 static int powerDropout;
2530 static int srstAsserted;
2532 static int runPowerRestore;
2533 static int runPowerDropout;
2534 static int runSrstAsserted;
2535 static int runSrstDeasserted;
2537 static int sense_handler(void)
2539 static int prevSrstAsserted;
2540 static int prevPowerdropout;
2542 int retval = jtag_power_dropout(&powerDropout);
2543 if (retval != ERROR_OK)
2544 return retval;
2546 int powerRestored;
2547 powerRestored = prevPowerdropout && !powerDropout;
2548 if (powerRestored)
2549 runPowerRestore = 1;
2551 int64_t current = timeval_ms();
2552 static int64_t lastPower;
2553 bool waitMore = lastPower + 2000 > current;
2554 if (powerDropout && !waitMore) {
2555 runPowerDropout = 1;
2556 lastPower = current;
2559 retval = jtag_srst_asserted(&srstAsserted);
2560 if (retval != ERROR_OK)
2561 return retval;
2563 int srstDeasserted;
2564 srstDeasserted = prevSrstAsserted && !srstAsserted;
2566 static int64_t lastSrst;
2567 waitMore = lastSrst + 2000 > current;
2568 if (srstDeasserted && !waitMore) {
2569 runSrstDeasserted = 1;
2570 lastSrst = current;
2573 if (!prevSrstAsserted && srstAsserted)
2574 runSrstAsserted = 1;
2576 prevSrstAsserted = srstAsserted;
2577 prevPowerdropout = powerDropout;
2579 if (srstDeasserted || powerRestored) {
2580 /* Other than logging the event we can't do anything here.
2581 * Issuing a reset is a particularly bad idea as we might
2582 * be inside a reset already.
2586 return ERROR_OK;
2589 /* process target state changes */
2590 static int handle_target(void *priv)
2592 Jim_Interp *interp = (Jim_Interp *)priv;
2593 int retval = ERROR_OK;
2595 if (!is_jtag_poll_safe()) {
2596 /* polling is disabled currently */
2597 return ERROR_OK;
2600 /* we do not want to recurse here... */
2601 static int recursive;
2602 if (!recursive) {
2603 recursive = 1;
2604 sense_handler();
2605 /* danger! running these procedures can trigger srst assertions and power dropouts.
2606 * We need to avoid an infinite loop/recursion here and we do that by
2607 * clearing the flags after running these events.
2609 int did_something = 0;
2610 if (runSrstAsserted) {
2611 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2612 Jim_Eval(interp, "srst_asserted");
2613 did_something = 1;
2615 if (runSrstDeasserted) {
2616 Jim_Eval(interp, "srst_deasserted");
2617 did_something = 1;
2619 if (runPowerDropout) {
2620 LOG_INFO("Power dropout detected, running power_dropout proc.");
2621 Jim_Eval(interp, "power_dropout");
2622 did_something = 1;
2624 if (runPowerRestore) {
2625 Jim_Eval(interp, "power_restore");
2626 did_something = 1;
2629 if (did_something) {
2630 /* clear detect flags */
2631 sense_handler();
2634 /* clear action flags */
2636 runSrstAsserted = 0;
2637 runSrstDeasserted = 0;
2638 runPowerRestore = 0;
2639 runPowerDropout = 0;
2641 recursive = 0;
2644 /* Poll targets for state changes unless that's globally disabled.
2645 * Skip targets that are currently disabled.
2647 for (struct target *target = all_targets;
2648 is_jtag_poll_safe() && target;
2649 target = target->next) {
2651 if (!target_was_examined(target))
2652 continue;
2654 if (!target->tap->enabled)
2655 continue;
2657 if (target->backoff.times > target->backoff.count) {
2658 /* do not poll this time as we failed previously */
2659 target->backoff.count++;
2660 continue;
2662 target->backoff.count = 0;
2664 /* only poll target if we've got power and srst isn't asserted */
2665 if (!powerDropout && !srstAsserted) {
2666 /* polling may fail silently until the target has been examined */
2667 retval = target_poll(target);
2668 if (retval != ERROR_OK) {
2669 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2670 if (target->backoff.times * polling_interval < 5000) {
2671 target->backoff.times *= 2;
2672 target->backoff.times++;
2675 /* Tell GDB to halt the debugger. This allows the user to
2676 * run monitor commands to handle the situation.
2678 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2680 if (target->backoff.times > 0) {
2681 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2682 target_reset_examined(target);
2683 retval = target_examine_one(target);
2684 /* Target examination could have failed due to unstable connection,
2685 * but we set the examined flag anyway to repoll it later */
2686 if (retval != ERROR_OK) {
2687 target->examined = true;
2688 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2689 target->backoff.times * polling_interval);
2690 return retval;
2694 /* Since we succeeded, we reset backoff count */
2695 target->backoff.times = 0;
2699 return retval;
2702 COMMAND_HANDLER(handle_reg_command)
2704 struct target *target;
2705 struct reg *reg = NULL;
2706 unsigned count = 0;
2707 char *value;
2709 LOG_DEBUG("-");
2711 target = get_current_target(CMD_CTX);
2713 /* list all available registers for the current target */
2714 if (CMD_ARGC == 0) {
2715 struct reg_cache *cache = target->reg_cache;
2717 count = 0;
2718 while (cache) {
2719 unsigned i;
2721 command_print(CMD_CTX, "===== %s", cache->name);
2723 for (i = 0, reg = cache->reg_list;
2724 i < cache->num_regs;
2725 i++, reg++, count++) {
2726 /* only print cached values if they are valid */
2727 if (reg->valid) {
2728 value = buf_to_str(reg->value,
2729 reg->size, 16);
2730 command_print(CMD_CTX,
2731 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2732 count, reg->name,
2733 reg->size, value,
2734 reg->dirty
2735 ? " (dirty)"
2736 : "");
2737 free(value);
2738 } else {
2739 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2740 count, reg->name,
2741 reg->size) ;
2744 cache = cache->next;
2747 return ERROR_OK;
2750 /* access a single register by its ordinal number */
2751 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2752 unsigned num;
2753 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2755 struct reg_cache *cache = target->reg_cache;
2756 count = 0;
2757 while (cache) {
2758 unsigned i;
2759 for (i = 0; i < cache->num_regs; i++) {
2760 if (count++ == num) {
2761 reg = &cache->reg_list[i];
2762 break;
2765 if (reg)
2766 break;
2767 cache = cache->next;
2770 if (!reg) {
2771 command_print(CMD_CTX, "%i is out of bounds, the current target "
2772 "has only %i registers (0 - %i)", num, count, count - 1);
2773 return ERROR_OK;
2775 } else {
2776 /* access a single register by its name */
2777 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2779 if (!reg) {
2780 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2781 return ERROR_OK;
2785 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2787 /* display a register */
2788 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2789 && (CMD_ARGV[1][0] <= '9')))) {
2790 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2791 reg->valid = 0;
2793 if (reg->valid == 0)
2794 reg->type->get(reg);
2795 value = buf_to_str(reg->value, reg->size, 16);
2796 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2797 free(value);
2798 return ERROR_OK;
2801 /* set register value */
2802 if (CMD_ARGC == 2) {
2803 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2804 if (buf == NULL)
2805 return ERROR_FAIL;
2806 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2808 reg->type->set(reg, buf);
2810 value = buf_to_str(reg->value, reg->size, 16);
2811 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2812 free(value);
2814 free(buf);
2816 return ERROR_OK;
2819 return ERROR_COMMAND_SYNTAX_ERROR;
2822 COMMAND_HANDLER(handle_poll_command)
2824 int retval = ERROR_OK;
2825 struct target *target = get_current_target(CMD_CTX);
2827 if (CMD_ARGC == 0) {
2828 command_print(CMD_CTX, "background polling: %s",
2829 jtag_poll_get_enabled() ? "on" : "off");
2830 command_print(CMD_CTX, "TAP: %s (%s)",
2831 target->tap->dotted_name,
2832 target->tap->enabled ? "enabled" : "disabled");
2833 if (!target->tap->enabled)
2834 return ERROR_OK;
2835 retval = target_poll(target);
2836 if (retval != ERROR_OK)
2837 return retval;
2838 retval = target_arch_state(target);
2839 if (retval != ERROR_OK)
2840 return retval;
2841 } else if (CMD_ARGC == 1) {
2842 bool enable;
2843 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2844 jtag_poll_set_enabled(enable);
2845 } else
2846 return ERROR_COMMAND_SYNTAX_ERROR;
2848 return retval;
2851 COMMAND_HANDLER(handle_wait_halt_command)
2853 if (CMD_ARGC > 1)
2854 return ERROR_COMMAND_SYNTAX_ERROR;
2856 unsigned ms = DEFAULT_HALT_TIMEOUT;
2857 if (1 == CMD_ARGC) {
2858 int retval = parse_uint(CMD_ARGV[0], &ms);
2859 if (ERROR_OK != retval)
2860 return ERROR_COMMAND_SYNTAX_ERROR;
2863 struct target *target = get_current_target(CMD_CTX);
2864 return target_wait_state(target, TARGET_HALTED, ms);
2867 /* wait for target state to change. The trick here is to have a low
2868 * latency for short waits and not to suck up all the CPU time
2869 * on longer waits.
2871 * After 500ms, keep_alive() is invoked
2873 int target_wait_state(struct target *target, enum target_state state, int ms)
2875 int retval;
2876 int64_t then = 0, cur;
2877 bool once = true;
2879 for (;;) {
2880 retval = target_poll(target);
2881 if (retval != ERROR_OK)
2882 return retval;
2883 if (target->state == state)
2884 break;
2885 cur = timeval_ms();
2886 if (once) {
2887 once = false;
2888 then = timeval_ms();
2889 LOG_DEBUG("waiting for target %s...",
2890 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2893 if (cur-then > 500)
2894 keep_alive();
2896 if ((cur-then) > ms) {
2897 LOG_ERROR("timed out while waiting for target %s",
2898 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2899 return ERROR_FAIL;
2903 return ERROR_OK;
2906 COMMAND_HANDLER(handle_halt_command)
2908 LOG_DEBUG("-");
2910 struct target *target = get_current_target(CMD_CTX);
2911 int retval = target_halt(target);
2912 if (ERROR_OK != retval)
2913 return retval;
2915 if (CMD_ARGC == 1) {
2916 unsigned wait_local;
2917 retval = parse_uint(CMD_ARGV[0], &wait_local);
2918 if (ERROR_OK != retval)
2919 return ERROR_COMMAND_SYNTAX_ERROR;
2920 if (!wait_local)
2921 return ERROR_OK;
2924 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2927 COMMAND_HANDLER(handle_soft_reset_halt_command)
2929 struct target *target = get_current_target(CMD_CTX);
2931 LOG_USER("requesting target halt and executing a soft reset");
2933 target_soft_reset_halt(target);
2935 return ERROR_OK;
2938 COMMAND_HANDLER(handle_reset_command)
2940 if (CMD_ARGC > 1)
2941 return ERROR_COMMAND_SYNTAX_ERROR;
2943 enum target_reset_mode reset_mode = RESET_RUN;
2944 if (CMD_ARGC == 1) {
2945 const Jim_Nvp *n;
2946 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2947 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2948 return ERROR_COMMAND_SYNTAX_ERROR;
2949 reset_mode = n->value;
2952 /* reset *all* targets */
2953 return target_process_reset(CMD_CTX, reset_mode);
2957 COMMAND_HANDLER(handle_resume_command)
2959 int current = 1;
2960 if (CMD_ARGC > 1)
2961 return ERROR_COMMAND_SYNTAX_ERROR;
2963 struct target *target = get_current_target(CMD_CTX);
2965 /* with no CMD_ARGV, resume from current pc, addr = 0,
2966 * with one arguments, addr = CMD_ARGV[0],
2967 * handle breakpoints, not debugging */
2968 target_addr_t addr = 0;
2969 if (CMD_ARGC == 1) {
2970 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
2971 current = 0;
2974 return target_resume(target, current, addr, 1, 0);
2977 COMMAND_HANDLER(handle_step_command)
2979 if (CMD_ARGC > 1)
2980 return ERROR_COMMAND_SYNTAX_ERROR;
2982 LOG_DEBUG("-");
2984 /* with no CMD_ARGV, step from current pc, addr = 0,
2985 * with one argument addr = CMD_ARGV[0],
2986 * handle breakpoints, debugging */
2987 target_addr_t addr = 0;
2988 int current_pc = 1;
2989 if (CMD_ARGC == 1) {
2990 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
2991 current_pc = 0;
2994 struct target *target = get_current_target(CMD_CTX);
2996 return target->type->step(target, current_pc, addr, 1);
2999 static void handle_md_output(struct command_context *cmd_ctx,
3000 struct target *target, target_addr_t address, unsigned size,
3001 unsigned count, const uint8_t *buffer)
3003 const unsigned line_bytecnt = 32;
3004 unsigned line_modulo = line_bytecnt / size;
3006 char output[line_bytecnt * 4 + 1];
3007 unsigned output_len = 0;
3009 const char *value_fmt;
3010 switch (size) {
3011 case 8:
3012 value_fmt = "%16.16llx ";
3013 break;
3014 case 4:
3015 value_fmt = "%8.8x ";
3016 break;
3017 case 2:
3018 value_fmt = "%4.4x ";
3019 break;
3020 case 1:
3021 value_fmt = "%2.2x ";
3022 break;
3023 default:
3024 /* "can't happen", caller checked */
3025 LOG_ERROR("invalid memory read size: %u", size);
3026 return;
3029 for (unsigned i = 0; i < count; i++) {
3030 if (i % line_modulo == 0) {
3031 output_len += snprintf(output + output_len,
3032 sizeof(output) - output_len,
3033 TARGET_ADDR_FMT ": ",
3034 (address + (i * size)));
3037 uint64_t value = 0;
3038 const uint8_t *value_ptr = buffer + i * size;
3039 switch (size) {
3040 case 8:
3041 value = target_buffer_get_u64(target, value_ptr);
3042 break;
3043 case 4:
3044 value = target_buffer_get_u32(target, value_ptr);
3045 break;
3046 case 2:
3047 value = target_buffer_get_u16(target, value_ptr);
3048 break;
3049 case 1:
3050 value = *value_ptr;
3052 output_len += snprintf(output + output_len,
3053 sizeof(output) - output_len,
3054 value_fmt, value);
3056 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3057 command_print(cmd_ctx, "%s", output);
3058 output_len = 0;
3063 COMMAND_HANDLER(handle_md_command)
3065 if (CMD_ARGC < 1)
3066 return ERROR_COMMAND_SYNTAX_ERROR;
3068 unsigned size = 0;
3069 switch (CMD_NAME[2]) {
3070 case 'd':
3071 size = 8;
3072 break;
3073 case 'w':
3074 size = 4;
3075 break;
3076 case 'h':
3077 size = 2;
3078 break;
3079 case 'b':
3080 size = 1;
3081 break;
3082 default:
3083 return ERROR_COMMAND_SYNTAX_ERROR;
3086 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3087 int (*fn)(struct target *target,
3088 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3089 if (physical) {
3090 CMD_ARGC--;
3091 CMD_ARGV++;
3092 fn = target_read_phys_memory;
3093 } else
3094 fn = target_read_memory;
3095 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3096 return ERROR_COMMAND_SYNTAX_ERROR;
3098 target_addr_t address;
3099 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3101 unsigned count = 1;
3102 if (CMD_ARGC == 2)
3103 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3105 uint8_t *buffer = calloc(count, size);
3107 struct target *target = get_current_target(CMD_CTX);
3108 int retval = fn(target, address, size, count, buffer);
3109 if (ERROR_OK == retval)
3110 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3112 free(buffer);
3114 return retval;
3117 typedef int (*target_write_fn)(struct target *target,
3118 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3120 static int target_fill_mem(struct target *target,
3121 target_addr_t address,
3122 target_write_fn fn,
3123 unsigned data_size,
3124 /* value */
3125 uint64_t b,
3126 /* count */
3127 unsigned c)
3129 /* We have to write in reasonably large chunks to be able
3130 * to fill large memory areas with any sane speed */
3131 const unsigned chunk_size = 16384;
3132 uint8_t *target_buf = malloc(chunk_size * data_size);
3133 if (target_buf == NULL) {
3134 LOG_ERROR("Out of memory");
3135 return ERROR_FAIL;
3138 for (unsigned i = 0; i < chunk_size; i++) {
3139 switch (data_size) {
3140 case 8:
3141 target_buffer_set_u64(target, target_buf + i * data_size, b);
3142 break;
3143 case 4:
3144 target_buffer_set_u32(target, target_buf + i * data_size, b);
3145 break;
3146 case 2:
3147 target_buffer_set_u16(target, target_buf + i * data_size, b);
3148 break;
3149 case 1:
3150 target_buffer_set_u8(target, target_buf + i * data_size, b);
3151 break;
3152 default:
3153 exit(-1);
3157 int retval = ERROR_OK;
3159 for (unsigned x = 0; x < c; x += chunk_size) {
3160 unsigned current;
3161 current = c - x;
3162 if (current > chunk_size)
3163 current = chunk_size;
3164 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3165 if (retval != ERROR_OK)
3166 break;
3167 /* avoid GDB timeouts */
3168 keep_alive();
3170 free(target_buf);
3172 return retval;
3176 COMMAND_HANDLER(handle_mw_command)
3178 if (CMD_ARGC < 2)
3179 return ERROR_COMMAND_SYNTAX_ERROR;
3180 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3181 target_write_fn fn;
3182 if (physical) {
3183 CMD_ARGC--;
3184 CMD_ARGV++;
3185 fn = target_write_phys_memory;
3186 } else
3187 fn = target_write_memory;
3188 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3189 return ERROR_COMMAND_SYNTAX_ERROR;
3191 target_addr_t address;
3192 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3194 target_addr_t value;
3195 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3197 unsigned count = 1;
3198 if (CMD_ARGC == 3)
3199 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3201 struct target *target = get_current_target(CMD_CTX);
3202 unsigned wordsize;
3203 switch (CMD_NAME[2]) {
3204 case 'd':
3205 wordsize = 8;
3206 break;
3207 case 'w':
3208 wordsize = 4;
3209 break;
3210 case 'h':
3211 wordsize = 2;
3212 break;
3213 case 'b':
3214 wordsize = 1;
3215 break;
3216 default:
3217 return ERROR_COMMAND_SYNTAX_ERROR;
3220 return target_fill_mem(target, address, fn, wordsize, value, count);
3223 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3224 target_addr_t *min_address, target_addr_t *max_address)
3226 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3227 return ERROR_COMMAND_SYNTAX_ERROR;
3229 /* a base address isn't always necessary,
3230 * default to 0x0 (i.e. don't relocate) */
3231 if (CMD_ARGC >= 2) {
3232 target_addr_t addr;
3233 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3234 image->base_address = addr;
3235 image->base_address_set = 1;
3236 } else
3237 image->base_address_set = 0;
3239 image->start_address_set = 0;
3241 if (CMD_ARGC >= 4)
3242 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3243 if (CMD_ARGC == 5) {
3244 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3245 /* use size (given) to find max (required) */
3246 *max_address += *min_address;
3249 if (*min_address > *max_address)
3250 return ERROR_COMMAND_SYNTAX_ERROR;
3252 return ERROR_OK;
3255 COMMAND_HANDLER(handle_load_image_command)
3257 uint8_t *buffer;
3258 size_t buf_cnt;
3259 uint32_t image_size;
3260 target_addr_t min_address = 0;
3261 target_addr_t max_address = -1;
3262 int i;
3263 struct image image;
3265 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3266 &image, &min_address, &max_address);
3267 if (ERROR_OK != retval)
3268 return retval;
3270 struct target *target = get_current_target(CMD_CTX);
3272 struct duration bench;
3273 duration_start(&bench);
3275 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3276 return ERROR_FAIL;
3278 image_size = 0x0;
3279 retval = ERROR_OK;
3280 for (i = 0; i < image.num_sections; i++) {
3281 buffer = malloc(image.sections[i].size);
3282 if (buffer == NULL) {
3283 command_print(CMD_CTX,
3284 "error allocating buffer for section (%d bytes)",
3285 (int)(image.sections[i].size));
3286 retval = ERROR_FAIL;
3287 break;
3290 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3291 if (retval != ERROR_OK) {
3292 free(buffer);
3293 break;
3296 uint32_t offset = 0;
3297 uint32_t length = buf_cnt;
3299 /* DANGER!!! beware of unsigned comparision here!!! */
3301 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3302 (image.sections[i].base_address < max_address)) {
3304 if (image.sections[i].base_address < min_address) {
3305 /* clip addresses below */
3306 offset += min_address-image.sections[i].base_address;
3307 length -= offset;
3310 if (image.sections[i].base_address + buf_cnt > max_address)
3311 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3313 retval = target_write_buffer(target,
3314 image.sections[i].base_address + offset, length, buffer + offset);
3315 if (retval != ERROR_OK) {
3316 free(buffer);
3317 break;
3319 image_size += length;
3320 command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3321 (unsigned int)length,
3322 image.sections[i].base_address + offset);
3325 free(buffer);
3328 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3329 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3330 "in %fs (%0.3f KiB/s)", image_size,
3331 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3334 image_close(&image);
3336 return retval;
3340 COMMAND_HANDLER(handle_dump_image_command)
3342 struct fileio *fileio;
3343 uint8_t *buffer;
3344 int retval, retvaltemp;
3345 target_addr_t address, size;
3346 struct duration bench;
3347 struct target *target = get_current_target(CMD_CTX);
3349 if (CMD_ARGC != 3)
3350 return ERROR_COMMAND_SYNTAX_ERROR;
3352 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3353 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3355 uint32_t buf_size = (size > 4096) ? 4096 : size;
3356 buffer = malloc(buf_size);
3357 if (!buffer)
3358 return ERROR_FAIL;
3360 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3361 if (retval != ERROR_OK) {
3362 free(buffer);
3363 return retval;
3366 duration_start(&bench);
3368 while (size > 0) {
3369 size_t size_written;
3370 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3371 retval = target_read_buffer(target, address, this_run_size, buffer);
3372 if (retval != ERROR_OK)
3373 break;
3375 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3376 if (retval != ERROR_OK)
3377 break;
3379 size -= this_run_size;
3380 address += this_run_size;
3383 free(buffer);
3385 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3386 size_t filesize;
3387 retval = fileio_size(fileio, &filesize);
3388 if (retval != ERROR_OK)
3389 return retval;
3390 command_print(CMD_CTX,
3391 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3392 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3395 retvaltemp = fileio_close(fileio);
3396 if (retvaltemp != ERROR_OK)
3397 return retvaltemp;
3399 return retval;
3402 enum verify_mode {
3403 IMAGE_TEST = 0,
3404 IMAGE_VERIFY = 1,
3405 IMAGE_CHECKSUM_ONLY = 2
3408 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3410 uint8_t *buffer;
3411 size_t buf_cnt;
3412 uint32_t image_size;
3413 int i;
3414 int retval;
3415 uint32_t checksum = 0;
3416 uint32_t mem_checksum = 0;
3418 struct image image;
3420 struct target *target = get_current_target(CMD_CTX);
3422 if (CMD_ARGC < 1)
3423 return ERROR_COMMAND_SYNTAX_ERROR;
3425 if (!target) {
3426 LOG_ERROR("no target selected");
3427 return ERROR_FAIL;
3430 struct duration bench;
3431 duration_start(&bench);
3433 if (CMD_ARGC >= 2) {
3434 target_addr_t addr;
3435 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3436 image.base_address = addr;
3437 image.base_address_set = 1;
3438 } else {
3439 image.base_address_set = 0;
3440 image.base_address = 0x0;
3443 image.start_address_set = 0;
3445 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3446 if (retval != ERROR_OK)
3447 return retval;
3449 image_size = 0x0;
3450 int diffs = 0;
3451 retval = ERROR_OK;
3452 for (i = 0; i < image.num_sections; i++) {
3453 buffer = malloc(image.sections[i].size);
3454 if (buffer == NULL) {
3455 command_print(CMD_CTX,
3456 "error allocating buffer for section (%d bytes)",
3457 (int)(image.sections[i].size));
3458 break;
3460 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3461 if (retval != ERROR_OK) {
3462 free(buffer);
3463 break;
3466 if (verify >= IMAGE_VERIFY) {
3467 /* calculate checksum of image */
3468 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3469 if (retval != ERROR_OK) {
3470 free(buffer);
3471 break;
3474 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3475 if (retval != ERROR_OK) {
3476 free(buffer);
3477 break;
3479 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3480 LOG_ERROR("checksum mismatch");
3481 free(buffer);
3482 retval = ERROR_FAIL;
3483 goto done;
3485 if (checksum != mem_checksum) {
3486 /* failed crc checksum, fall back to a binary compare */
3487 uint8_t *data;
3489 if (diffs == 0)
3490 LOG_ERROR("checksum mismatch - attempting binary compare");
3492 data = malloc(buf_cnt);
3494 /* Can we use 32bit word accesses? */
3495 int size = 1;
3496 int count = buf_cnt;
3497 if ((count % 4) == 0) {
3498 size *= 4;
3499 count /= 4;
3501 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3502 if (retval == ERROR_OK) {
3503 uint32_t t;
3504 for (t = 0; t < buf_cnt; t++) {
3505 if (data[t] != buffer[t]) {
3506 command_print(CMD_CTX,
3507 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3508 diffs,
3509 (unsigned)(t + image.sections[i].base_address),
3510 data[t],
3511 buffer[t]);
3512 if (diffs++ >= 127) {
3513 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3514 free(data);
3515 free(buffer);
3516 goto done;
3519 keep_alive();
3522 free(data);
3524 } else {
3525 command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3526 image.sections[i].base_address,
3527 buf_cnt);
3530 free(buffer);
3531 image_size += buf_cnt;
3533 if (diffs > 0)
3534 command_print(CMD_CTX, "No more differences found.");
3535 done:
3536 if (diffs > 0)
3537 retval = ERROR_FAIL;
3538 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3539 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3540 "in %fs (%0.3f KiB/s)", image_size,
3541 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3544 image_close(&image);
3546 return retval;
3549 COMMAND_HANDLER(handle_verify_image_checksum_command)
3551 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3554 COMMAND_HANDLER(handle_verify_image_command)
3556 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3559 COMMAND_HANDLER(handle_test_image_command)
3561 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3564 static int handle_bp_command_list(struct command_context *cmd_ctx)
3566 struct target *target = get_current_target(cmd_ctx);
3567 struct breakpoint *breakpoint = target->breakpoints;
3568 while (breakpoint) {
3569 if (breakpoint->type == BKPT_SOFT) {
3570 char *buf = buf_to_str(breakpoint->orig_instr,
3571 breakpoint->length, 16);
3572 command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3573 breakpoint->address,
3574 breakpoint->length,
3575 breakpoint->set, buf);
3576 free(buf);
3577 } else {
3578 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3579 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3580 breakpoint->asid,
3581 breakpoint->length, breakpoint->set);
3582 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3583 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3584 breakpoint->address,
3585 breakpoint->length, breakpoint->set);
3586 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3587 breakpoint->asid);
3588 } else
3589 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3590 breakpoint->address,
3591 breakpoint->length, breakpoint->set);
3594 breakpoint = breakpoint->next;
3596 return ERROR_OK;
3599 static int handle_bp_command_set(struct command_context *cmd_ctx,
3600 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3602 struct target *target = get_current_target(cmd_ctx);
3603 int retval;
3605 if (asid == 0) {
3606 retval = breakpoint_add(target, addr, length, hw);
3607 if (ERROR_OK == retval)
3608 command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3609 else {
3610 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3611 return retval;
3613 } else if (addr == 0) {
3614 if (target->type->add_context_breakpoint == NULL) {
3615 LOG_WARNING("Context breakpoint not available");
3616 return ERROR_OK;
3618 retval = context_breakpoint_add(target, asid, length, hw);
3619 if (ERROR_OK == retval)
3620 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3621 else {
3622 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3623 return retval;
3625 } else {
3626 if (target->type->add_hybrid_breakpoint == NULL) {
3627 LOG_WARNING("Hybrid breakpoint not available");
3628 return ERROR_OK;
3630 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3631 if (ERROR_OK == retval)
3632 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3633 else {
3634 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3635 return retval;
3638 return ERROR_OK;
3641 COMMAND_HANDLER(handle_bp_command)
3643 target_addr_t addr;
3644 uint32_t asid;
3645 uint32_t length;
3646 int hw = BKPT_SOFT;
3648 switch (CMD_ARGC) {
3649 case 0:
3650 return handle_bp_command_list(CMD_CTX);
3652 case 2:
3653 asid = 0;
3654 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3655 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3656 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3658 case 3:
3659 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3660 hw = BKPT_HARD;
3661 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3662 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3663 asid = 0;
3664 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3665 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3666 hw = BKPT_HARD;
3667 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3668 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3669 addr = 0;
3670 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3673 case 4:
3674 hw = BKPT_HARD;
3675 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3676 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3677 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3678 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3680 default:
3681 return ERROR_COMMAND_SYNTAX_ERROR;
3685 COMMAND_HANDLER(handle_rbp_command)
3687 if (CMD_ARGC != 1)
3688 return ERROR_COMMAND_SYNTAX_ERROR;
3690 target_addr_t addr;
3691 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3693 struct target *target = get_current_target(CMD_CTX);
3694 breakpoint_remove(target, addr);
3696 return ERROR_OK;
3699 COMMAND_HANDLER(handle_wp_command)
3701 struct target *target = get_current_target(CMD_CTX);
3703 if (CMD_ARGC == 0) {
3704 struct watchpoint *watchpoint = target->watchpoints;
3706 while (watchpoint) {
3707 command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3708 ", len: 0x%8.8" PRIx32
3709 ", r/w/a: %i, value: 0x%8.8" PRIx32
3710 ", mask: 0x%8.8" PRIx32,
3711 watchpoint->address,
3712 watchpoint->length,
3713 (int)watchpoint->rw,
3714 watchpoint->value,
3715 watchpoint->mask);
3716 watchpoint = watchpoint->next;
3718 return ERROR_OK;
3721 enum watchpoint_rw type = WPT_ACCESS;
3722 uint32_t addr = 0;
3723 uint32_t length = 0;
3724 uint32_t data_value = 0x0;
3725 uint32_t data_mask = 0xffffffff;
3727 switch (CMD_ARGC) {
3728 case 5:
3729 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3730 /* fall through */
3731 case 4:
3732 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3733 /* fall through */
3734 case 3:
3735 switch (CMD_ARGV[2][0]) {
3736 case 'r':
3737 type = WPT_READ;
3738 break;
3739 case 'w':
3740 type = WPT_WRITE;
3741 break;
3742 case 'a':
3743 type = WPT_ACCESS;
3744 break;
3745 default:
3746 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3747 return ERROR_COMMAND_SYNTAX_ERROR;
3749 /* fall through */
3750 case 2:
3751 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3752 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3753 break;
3755 default:
3756 return ERROR_COMMAND_SYNTAX_ERROR;
3759 int retval = watchpoint_add(target, addr, length, type,
3760 data_value, data_mask);
3761 if (ERROR_OK != retval)
3762 LOG_ERROR("Failure setting watchpoints");
3764 return retval;
3767 COMMAND_HANDLER(handle_rwp_command)
3769 if (CMD_ARGC != 1)
3770 return ERROR_COMMAND_SYNTAX_ERROR;
3772 uint32_t addr;
3773 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3775 struct target *target = get_current_target(CMD_CTX);
3776 watchpoint_remove(target, addr);
3778 return ERROR_OK;
3782 * Translate a virtual address to a physical address.
3784 * The low-level target implementation must have logged a detailed error
3785 * which is forwarded to telnet/GDB session.
3787 COMMAND_HANDLER(handle_virt2phys_command)
3789 if (CMD_ARGC != 1)
3790 return ERROR_COMMAND_SYNTAX_ERROR;
3792 target_addr_t va;
3793 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3794 target_addr_t pa;
3796 struct target *target = get_current_target(CMD_CTX);
3797 int retval = target->type->virt2phys(target, va, &pa);
3798 if (retval == ERROR_OK)
3799 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3801 return retval;
3804 static void writeData(FILE *f, const void *data, size_t len)
3806 size_t written = fwrite(data, 1, len, f);
3807 if (written != len)
3808 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3811 static void writeLong(FILE *f, int l, struct target *target)
3813 uint8_t val[4];
3815 target_buffer_set_u32(target, val, l);
3816 writeData(f, val, 4);
3819 static void writeString(FILE *f, char *s)
3821 writeData(f, s, strlen(s));
3824 typedef unsigned char UNIT[2]; /* unit of profiling */
3826 /* Dump a gmon.out histogram file. */
3827 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3828 uint32_t start_address, uint32_t end_address, struct target *target)
3830 uint32_t i;
3831 FILE *f = fopen(filename, "w");
3832 if (f == NULL)
3833 return;
3834 writeString(f, "gmon");
3835 writeLong(f, 0x00000001, target); /* Version */
3836 writeLong(f, 0, target); /* padding */
3837 writeLong(f, 0, target); /* padding */
3838 writeLong(f, 0, target); /* padding */
3840 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3841 writeData(f, &zero, 1);
3843 /* figure out bucket size */
3844 uint32_t min;
3845 uint32_t max;
3846 if (with_range) {
3847 min = start_address;
3848 max = end_address;
3849 } else {
3850 min = samples[0];
3851 max = samples[0];
3852 for (i = 0; i < sampleNum; i++) {
3853 if (min > samples[i])
3854 min = samples[i];
3855 if (max < samples[i])
3856 max = samples[i];
3859 /* max should be (largest sample + 1)
3860 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3861 max++;
3864 int addressSpace = max - min;
3865 assert(addressSpace >= 2);
3867 /* FIXME: What is the reasonable number of buckets?
3868 * The profiling result will be more accurate if there are enough buckets. */
3869 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3870 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3871 if (numBuckets > maxBuckets)
3872 numBuckets = maxBuckets;
3873 int *buckets = malloc(sizeof(int) * numBuckets);
3874 if (buckets == NULL) {
3875 fclose(f);
3876 return;
3878 memset(buckets, 0, sizeof(int) * numBuckets);
3879 for (i = 0; i < sampleNum; i++) {
3880 uint32_t address = samples[i];
3882 if ((address < min) || (max <= address))
3883 continue;
3885 long long a = address - min;
3886 long long b = numBuckets;
3887 long long c = addressSpace;
3888 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3889 buckets[index_t]++;
3892 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3893 writeLong(f, min, target); /* low_pc */
3894 writeLong(f, max, target); /* high_pc */
3895 writeLong(f, numBuckets, target); /* # of buckets */
3896 writeLong(f, 100, target); /* KLUDGE! We lie, ca. 100Hz best case. */
3897 writeString(f, "seconds");
3898 for (i = 0; i < (15-strlen("seconds")); i++)
3899 writeData(f, &zero, 1);
3900 writeString(f, "s");
3902 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3904 char *data = malloc(2 * numBuckets);
3905 if (data != NULL) {
3906 for (i = 0; i < numBuckets; i++) {
3907 int val;
3908 val = buckets[i];
3909 if (val > 65535)
3910 val = 65535;
3911 data[i * 2] = val&0xff;
3912 data[i * 2 + 1] = (val >> 8) & 0xff;
3914 free(buckets);
3915 writeData(f, data, numBuckets * 2);
3916 free(data);
3917 } else
3918 free(buckets);
3920 fclose(f);
3923 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3924 * which will be used as a random sampling of PC */
3925 COMMAND_HANDLER(handle_profile_command)
3927 struct target *target = get_current_target(CMD_CTX);
3929 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3930 return ERROR_COMMAND_SYNTAX_ERROR;
3932 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3933 uint32_t offset;
3934 uint32_t num_of_samples;
3935 int retval = ERROR_OK;
3937 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3939 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3940 if (samples == NULL) {
3941 LOG_ERROR("No memory to store samples.");
3942 return ERROR_FAIL;
3946 * Some cores let us sample the PC without the
3947 * annoying halt/resume step; for example, ARMv7 PCSR.
3948 * Provide a way to use that more efficient mechanism.
3950 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3951 &num_of_samples, offset);
3952 if (retval != ERROR_OK) {
3953 free(samples);
3954 return retval;
3957 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3959 retval = target_poll(target);
3960 if (retval != ERROR_OK) {
3961 free(samples);
3962 return retval;
3964 if (target->state == TARGET_RUNNING) {
3965 retval = target_halt(target);
3966 if (retval != ERROR_OK) {
3967 free(samples);
3968 return retval;
3972 retval = target_poll(target);
3973 if (retval != ERROR_OK) {
3974 free(samples);
3975 return retval;
3978 uint32_t start_address = 0;
3979 uint32_t end_address = 0;
3980 bool with_range = false;
3981 if (CMD_ARGC == 4) {
3982 with_range = true;
3983 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3984 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3987 write_gmon(samples, num_of_samples, CMD_ARGV[1],
3988 with_range, start_address, end_address, target);
3989 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3991 free(samples);
3992 return retval;
3995 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3997 char *namebuf;
3998 Jim_Obj *nameObjPtr, *valObjPtr;
3999 int result;
4001 namebuf = alloc_printf("%s(%d)", varname, idx);
4002 if (!namebuf)
4003 return JIM_ERR;
4005 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4006 valObjPtr = Jim_NewIntObj(interp, val);
4007 if (!nameObjPtr || !valObjPtr) {
4008 free(namebuf);
4009 return JIM_ERR;
4012 Jim_IncrRefCount(nameObjPtr);
4013 Jim_IncrRefCount(valObjPtr);
4014 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4015 Jim_DecrRefCount(interp, nameObjPtr);
4016 Jim_DecrRefCount(interp, valObjPtr);
4017 free(namebuf);
4018 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4019 return result;
4022 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4024 struct command_context *context;
4025 struct target *target;
4027 context = current_command_context(interp);
4028 assert(context != NULL);
4030 target = get_current_target(context);
4031 if (target == NULL) {
4032 LOG_ERROR("mem2array: no current target");
4033 return JIM_ERR;
4036 return target_mem2array(interp, target, argc - 1, argv + 1);
4039 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4041 long l;
4042 uint32_t width;
4043 int len;
4044 uint32_t addr;
4045 uint32_t count;
4046 uint32_t v;
4047 const char *varname;
4048 const char *phys;
4049 bool is_phys;
4050 int n, e, retval;
4051 uint32_t i;
4053 /* argv[1] = name of array to receive the data
4054 * argv[2] = desired width
4055 * argv[3] = memory address
4056 * argv[4] = count of times to read
4058 if (argc < 4 || argc > 5) {
4059 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
4060 return JIM_ERR;
4062 varname = Jim_GetString(argv[0], &len);
4063 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4065 e = Jim_GetLong(interp, argv[1], &l);
4066 width = l;
4067 if (e != JIM_OK)
4068 return e;
4070 e = Jim_GetLong(interp, argv[2], &l);
4071 addr = l;
4072 if (e != JIM_OK)
4073 return e;
4074 e = Jim_GetLong(interp, argv[3], &l);
4075 len = l;
4076 if (e != JIM_OK)
4077 return e;
4078 is_phys = false;
4079 if (argc > 4) {
4080 phys = Jim_GetString(argv[4], &n);
4081 if (!strncmp(phys, "phys", n))
4082 is_phys = true;
4083 else
4084 return JIM_ERR;
4086 switch (width) {
4087 case 8:
4088 width = 1;
4089 break;
4090 case 16:
4091 width = 2;
4092 break;
4093 case 32:
4094 width = 4;
4095 break;
4096 default:
4097 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4098 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4099 return JIM_ERR;
4101 if (len == 0) {
4102 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4103 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4104 return JIM_ERR;
4106 if ((addr + (len * width)) < addr) {
4107 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4108 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4109 return JIM_ERR;
4111 /* absurd transfer size? */
4112 if (len > 65536) {
4113 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4114 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4115 return JIM_ERR;
4118 if ((width == 1) ||
4119 ((width == 2) && ((addr & 1) == 0)) ||
4120 ((width == 4) && ((addr & 3) == 0))) {
4121 /* all is well */
4122 } else {
4123 char buf[100];
4124 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4125 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4126 addr,
4127 width);
4128 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4129 return JIM_ERR;
4132 /* Transfer loop */
4134 /* index counter */
4135 n = 0;
4137 size_t buffersize = 4096;
4138 uint8_t *buffer = malloc(buffersize);
4139 if (buffer == NULL)
4140 return JIM_ERR;
4142 /* assume ok */
4143 e = JIM_OK;
4144 while (len) {
4145 /* Slurp... in buffer size chunks */
4147 count = len; /* in objects.. */
4148 if (count > (buffersize / width))
4149 count = (buffersize / width);
4151 if (is_phys)
4152 retval = target_read_phys_memory(target, addr, width, count, buffer);
4153 else
4154 retval = target_read_memory(target, addr, width, count, buffer);
4155 if (retval != ERROR_OK) {
4156 /* BOO !*/
4157 LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4158 addr,
4159 width,
4160 count);
4161 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4162 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4163 e = JIM_ERR;
4164 break;
4165 } else {
4166 v = 0; /* shut up gcc */
4167 for (i = 0; i < count ; i++, n++) {
4168 switch (width) {
4169 case 4:
4170 v = target_buffer_get_u32(target, &buffer[i*width]);
4171 break;
4172 case 2:
4173 v = target_buffer_get_u16(target, &buffer[i*width]);
4174 break;
4175 case 1:
4176 v = buffer[i] & 0x0ff;
4177 break;
4179 new_int_array_element(interp, varname, n, v);
4181 len -= count;
4182 addr += count * width;
4186 free(buffer);
4188 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4190 return e;
4193 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4195 char *namebuf;
4196 Jim_Obj *nameObjPtr, *valObjPtr;
4197 int result;
4198 long l;
4200 namebuf = alloc_printf("%s(%d)", varname, idx);
4201 if (!namebuf)
4202 return JIM_ERR;
4204 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4205 if (!nameObjPtr) {
4206 free(namebuf);
4207 return JIM_ERR;
4210 Jim_IncrRefCount(nameObjPtr);
4211 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4212 Jim_DecrRefCount(interp, nameObjPtr);
4213 free(namebuf);
4214 if (valObjPtr == NULL)
4215 return JIM_ERR;
4217 result = Jim_GetLong(interp, valObjPtr, &l);
4218 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4219 *val = l;
4220 return result;
4223 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4225 struct command_context *context;
4226 struct target *target;
4228 context = current_command_context(interp);
4229 assert(context != NULL);
4231 target = get_current_target(context);
4232 if (target == NULL) {
4233 LOG_ERROR("array2mem: no current target");
4234 return JIM_ERR;
4237 return target_array2mem(interp, target, argc-1, argv + 1);
4240 static int target_array2mem(Jim_Interp *interp, struct target *target,
4241 int argc, Jim_Obj *const *argv)
4243 long l;
4244 uint32_t width;
4245 int len;
4246 uint32_t addr;
4247 uint32_t count;
4248 uint32_t v;
4249 const char *varname;
4250 const char *phys;
4251 bool is_phys;
4252 int n, e, retval;
4253 uint32_t i;
4255 /* argv[1] = name of array to get the data
4256 * argv[2] = desired width
4257 * argv[3] = memory address
4258 * argv[4] = count to write
4260 if (argc < 4 || argc > 5) {
4261 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4262 return JIM_ERR;
4264 varname = Jim_GetString(argv[0], &len);
4265 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4267 e = Jim_GetLong(interp, argv[1], &l);
4268 width = l;
4269 if (e != JIM_OK)
4270 return e;
4272 e = Jim_GetLong(interp, argv[2], &l);
4273 addr = l;
4274 if (e != JIM_OK)
4275 return e;
4276 e = Jim_GetLong(interp, argv[3], &l);
4277 len = l;
4278 if (e != JIM_OK)
4279 return e;
4280 is_phys = false;
4281 if (argc > 4) {
4282 phys = Jim_GetString(argv[4], &n);
4283 if (!strncmp(phys, "phys", n))
4284 is_phys = true;
4285 else
4286 return JIM_ERR;
4288 switch (width) {
4289 case 8:
4290 width = 1;
4291 break;
4292 case 16:
4293 width = 2;
4294 break;
4295 case 32:
4296 width = 4;
4297 break;
4298 default:
4299 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4300 Jim_AppendStrings(interp, Jim_GetResult(interp),
4301 "Invalid width param, must be 8/16/32", NULL);
4302 return JIM_ERR;
4304 if (len == 0) {
4305 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4306 Jim_AppendStrings(interp, Jim_GetResult(interp),
4307 "array2mem: zero width read?", NULL);
4308 return JIM_ERR;
4310 if ((addr + (len * width)) < addr) {
4311 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4312 Jim_AppendStrings(interp, Jim_GetResult(interp),
4313 "array2mem: addr + len - wraps to zero?", NULL);
4314 return JIM_ERR;
4316 /* absurd transfer size? */
4317 if (len > 65536) {
4318 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4319 Jim_AppendStrings(interp, Jim_GetResult(interp),
4320 "array2mem: absurd > 64K item request", NULL);
4321 return JIM_ERR;
4324 if ((width == 1) ||
4325 ((width == 2) && ((addr & 1) == 0)) ||
4326 ((width == 4) && ((addr & 3) == 0))) {
4327 /* all is well */
4328 } else {
4329 char buf[100];
4330 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4331 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4332 addr,
4333 width);
4334 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4335 return JIM_ERR;
4338 /* Transfer loop */
4340 /* index counter */
4341 n = 0;
4342 /* assume ok */
4343 e = JIM_OK;
4345 size_t buffersize = 4096;
4346 uint8_t *buffer = malloc(buffersize);
4347 if (buffer == NULL)
4348 return JIM_ERR;
4350 while (len) {
4351 /* Slurp... in buffer size chunks */
4353 count = len; /* in objects.. */
4354 if (count > (buffersize / width))
4355 count = (buffersize / width);
4357 v = 0; /* shut up gcc */
4358 for (i = 0; i < count; i++, n++) {
4359 get_int_array_element(interp, varname, n, &v);
4360 switch (width) {
4361 case 4:
4362 target_buffer_set_u32(target, &buffer[i * width], v);
4363 break;
4364 case 2:
4365 target_buffer_set_u16(target, &buffer[i * width], v);
4366 break;
4367 case 1:
4368 buffer[i] = v & 0x0ff;
4369 break;
4372 len -= count;
4374 if (is_phys)
4375 retval = target_write_phys_memory(target, addr, width, count, buffer);
4376 else
4377 retval = target_write_memory(target, addr, width, count, buffer);
4378 if (retval != ERROR_OK) {
4379 /* BOO !*/
4380 LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4381 addr,
4382 width,
4383 count);
4384 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4385 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4386 e = JIM_ERR;
4387 break;
4389 addr += count * width;
4392 free(buffer);
4394 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4396 return e;
4399 /* FIX? should we propagate errors here rather than printing them
4400 * and continuing?
4402 void target_handle_event(struct target *target, enum target_event e)
4404 struct target_event_action *teap;
4406 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4407 if (teap->event == e) {
4408 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4409 target->target_number,
4410 target_name(target),
4411 target_type_name(target),
4413 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4414 Jim_GetString(teap->body, NULL));
4415 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4416 Jim_MakeErrorMessage(teap->interp);
4417 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4424 * Returns true only if the target has a handler for the specified event.
4426 bool target_has_event_action(struct target *target, enum target_event event)
4428 struct target_event_action *teap;
4430 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4431 if (teap->event == event)
4432 return true;
4434 return false;
4437 enum target_cfg_param {
4438 TCFG_TYPE,
4439 TCFG_EVENT,
4440 TCFG_WORK_AREA_VIRT,
4441 TCFG_WORK_AREA_PHYS,
4442 TCFG_WORK_AREA_SIZE,
4443 TCFG_WORK_AREA_BACKUP,
4444 TCFG_ENDIAN,
4445 TCFG_COREID,
4446 TCFG_CHAIN_POSITION,
4447 TCFG_DBGBASE,
4448 TCFG_CTIBASE,
4449 TCFG_RTOS,
4450 TCFG_DEFER_EXAMINE,
4453 static Jim_Nvp nvp_config_opts[] = {
4454 { .name = "-type", .value = TCFG_TYPE },
4455 { .name = "-event", .value = TCFG_EVENT },
4456 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4457 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4458 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4459 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4460 { .name = "-endian" , .value = TCFG_ENDIAN },
4461 { .name = "-coreid", .value = TCFG_COREID },
4462 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4463 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4464 { .name = "-ctibase", .value = TCFG_CTIBASE },
4465 { .name = "-rtos", .value = TCFG_RTOS },
4466 { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4467 { .name = NULL, .value = -1 }
4470 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4472 Jim_Nvp *n;
4473 Jim_Obj *o;
4474 jim_wide w;
4475 int e;
4477 /* parse config or cget options ... */
4478 while (goi->argc > 0) {
4479 Jim_SetEmptyResult(goi->interp);
4480 /* Jim_GetOpt_Debug(goi); */
4482 if (target->type->target_jim_configure) {
4483 /* target defines a configure function */
4484 /* target gets first dibs on parameters */
4485 e = (*(target->type->target_jim_configure))(target, goi);
4486 if (e == JIM_OK) {
4487 /* more? */
4488 continue;
4490 if (e == JIM_ERR) {
4491 /* An error */
4492 return e;
4494 /* otherwise we 'continue' below */
4496 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4497 if (e != JIM_OK) {
4498 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4499 return e;
4501 switch (n->value) {
4502 case TCFG_TYPE:
4503 /* not setable */
4504 if (goi->isconfigure) {
4505 Jim_SetResultFormatted(goi->interp,
4506 "not settable: %s", n->name);
4507 return JIM_ERR;
4508 } else {
4509 no_params:
4510 if (goi->argc != 0) {
4511 Jim_WrongNumArgs(goi->interp,
4512 goi->argc, goi->argv,
4513 "NO PARAMS");
4514 return JIM_ERR;
4517 Jim_SetResultString(goi->interp,
4518 target_type_name(target), -1);
4519 /* loop for more */
4520 break;
4521 case TCFG_EVENT:
4522 if (goi->argc == 0) {
4523 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4524 return JIM_ERR;
4527 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4528 if (e != JIM_OK) {
4529 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4530 return e;
4533 if (goi->isconfigure) {
4534 if (goi->argc != 1) {
4535 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4536 return JIM_ERR;
4538 } else {
4539 if (goi->argc != 0) {
4540 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4541 return JIM_ERR;
4546 struct target_event_action *teap;
4548 teap = target->event_action;
4549 /* replace existing? */
4550 while (teap) {
4551 if (teap->event == (enum target_event)n->value)
4552 break;
4553 teap = teap->next;
4556 if (goi->isconfigure) {
4557 bool replace = true;
4558 if (teap == NULL) {
4559 /* create new */
4560 teap = calloc(1, sizeof(*teap));
4561 replace = false;
4563 teap->event = n->value;
4564 teap->interp = goi->interp;
4565 Jim_GetOpt_Obj(goi, &o);
4566 if (teap->body)
4567 Jim_DecrRefCount(teap->interp, teap->body);
4568 teap->body = Jim_DuplicateObj(goi->interp, o);
4570 * FIXME:
4571 * Tcl/TK - "tk events" have a nice feature.
4572 * See the "BIND" command.
4573 * We should support that here.
4574 * You can specify %X and %Y in the event code.
4575 * The idea is: %T - target name.
4576 * The idea is: %N - target number
4577 * The idea is: %E - event name.
4579 Jim_IncrRefCount(teap->body);
4581 if (!replace) {
4582 /* add to head of event list */
4583 teap->next = target->event_action;
4584 target->event_action = teap;
4586 Jim_SetEmptyResult(goi->interp);
4587 } else {
4588 /* get */
4589 if (teap == NULL)
4590 Jim_SetEmptyResult(goi->interp);
4591 else
4592 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4595 /* loop for more */
4596 break;
4598 case TCFG_WORK_AREA_VIRT:
4599 if (goi->isconfigure) {
4600 target_free_all_working_areas(target);
4601 e = Jim_GetOpt_Wide(goi, &w);
4602 if (e != JIM_OK)
4603 return e;
4604 target->working_area_virt = w;
4605 target->working_area_virt_spec = true;
4606 } else {
4607 if (goi->argc != 0)
4608 goto no_params;
4610 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4611 /* loop for more */
4612 break;
4614 case TCFG_WORK_AREA_PHYS:
4615 if (goi->isconfigure) {
4616 target_free_all_working_areas(target);
4617 e = Jim_GetOpt_Wide(goi, &w);
4618 if (e != JIM_OK)
4619 return e;
4620 target->working_area_phys = w;
4621 target->working_area_phys_spec = true;
4622 } else {
4623 if (goi->argc != 0)
4624 goto no_params;
4626 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4627 /* loop for more */
4628 break;
4630 case TCFG_WORK_AREA_SIZE:
4631 if (goi->isconfigure) {
4632 target_free_all_working_areas(target);
4633 e = Jim_GetOpt_Wide(goi, &w);
4634 if (e != JIM_OK)
4635 return e;
4636 target->working_area_size = w;
4637 } else {
4638 if (goi->argc != 0)
4639 goto no_params;
4641 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4642 /* loop for more */
4643 break;
4645 case TCFG_WORK_AREA_BACKUP:
4646 if (goi->isconfigure) {
4647 target_free_all_working_areas(target);
4648 e = Jim_GetOpt_Wide(goi, &w);
4649 if (e != JIM_OK)
4650 return e;
4651 /* make this exactly 1 or 0 */
4652 target->backup_working_area = (!!w);
4653 } else {
4654 if (goi->argc != 0)
4655 goto no_params;
4657 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4658 /* loop for more e*/
4659 break;
4662 case TCFG_ENDIAN:
4663 if (goi->isconfigure) {
4664 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4665 if (e != JIM_OK) {
4666 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4667 return e;
4669 target->endianness = n->value;
4670 } else {
4671 if (goi->argc != 0)
4672 goto no_params;
4674 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4675 if (n->name == NULL) {
4676 target->endianness = TARGET_LITTLE_ENDIAN;
4677 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4679 Jim_SetResultString(goi->interp, n->name, -1);
4680 /* loop for more */
4681 break;
4683 case TCFG_COREID:
4684 if (goi->isconfigure) {
4685 e = Jim_GetOpt_Wide(goi, &w);
4686 if (e != JIM_OK)
4687 return e;
4688 target->coreid = (int32_t)w;
4689 } else {
4690 if (goi->argc != 0)
4691 goto no_params;
4693 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4694 /* loop for more */
4695 break;
4697 case TCFG_CHAIN_POSITION:
4698 if (goi->isconfigure) {
4699 Jim_Obj *o_t;
4700 struct jtag_tap *tap;
4701 target_free_all_working_areas(target);
4702 e = Jim_GetOpt_Obj(goi, &o_t);
4703 if (e != JIM_OK)
4704 return e;
4705 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4706 if (tap == NULL)
4707 return JIM_ERR;
4708 /* make this exactly 1 or 0 */
4709 target->tap = tap;
4710 } else {
4711 if (goi->argc != 0)
4712 goto no_params;
4714 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4715 /* loop for more e*/
4716 break;
4717 case TCFG_DBGBASE:
4718 if (goi->isconfigure) {
4719 e = Jim_GetOpt_Wide(goi, &w);
4720 if (e != JIM_OK)
4721 return e;
4722 target->dbgbase = (uint32_t)w;
4723 target->dbgbase_set = true;
4724 } else {
4725 if (goi->argc != 0)
4726 goto no_params;
4728 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4729 /* loop for more */
4730 break;
4731 case TCFG_CTIBASE:
4732 if (goi->isconfigure) {
4733 e = Jim_GetOpt_Wide(goi, &w);
4734 if (e != JIM_OK)
4735 return e;
4736 target->ctibase = (uint32_t)w;
4737 target->ctibase_set = true;
4738 } else {
4739 if (goi->argc != 0)
4740 goto no_params;
4742 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->ctibase));
4743 /* loop for more */
4744 break;
4745 case TCFG_RTOS:
4746 /* RTOS */
4748 int result = rtos_create(goi, target);
4749 if (result != JIM_OK)
4750 return result;
4752 /* loop for more */
4753 break;
4755 case TCFG_DEFER_EXAMINE:
4756 /* DEFER_EXAMINE */
4757 target->defer_examine = true;
4758 /* loop for more */
4759 break;
4762 } /* while (goi->argc) */
4765 /* done - we return */
4766 return JIM_OK;
4769 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4771 Jim_GetOptInfo goi;
4773 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4774 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4775 if (goi.argc < 1) {
4776 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4777 "missing: -option ...");
4778 return JIM_ERR;
4780 struct target *target = Jim_CmdPrivData(goi.interp);
4781 return target_configure(&goi, target);
4784 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4786 const char *cmd_name = Jim_GetString(argv[0], NULL);
4788 Jim_GetOptInfo goi;
4789 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4791 if (goi.argc < 2 || goi.argc > 4) {
4792 Jim_SetResultFormatted(goi.interp,
4793 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4794 return JIM_ERR;
4797 target_write_fn fn;
4798 fn = target_write_memory;
4800 int e;
4801 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4802 /* consume it */
4803 struct Jim_Obj *obj;
4804 e = Jim_GetOpt_Obj(&goi, &obj);
4805 if (e != JIM_OK)
4806 return e;
4808 fn = target_write_phys_memory;
4811 jim_wide a;
4812 e = Jim_GetOpt_Wide(&goi, &a);
4813 if (e != JIM_OK)
4814 return e;
4816 jim_wide b;
4817 e = Jim_GetOpt_Wide(&goi, &b);
4818 if (e != JIM_OK)
4819 return e;
4821 jim_wide c = 1;
4822 if (goi.argc == 1) {
4823 e = Jim_GetOpt_Wide(&goi, &c);
4824 if (e != JIM_OK)
4825 return e;
4828 /* all args must be consumed */
4829 if (goi.argc != 0)
4830 return JIM_ERR;
4832 struct target *target = Jim_CmdPrivData(goi.interp);
4833 unsigned data_size;
4834 if (strcasecmp(cmd_name, "mww") == 0)
4835 data_size = 4;
4836 else if (strcasecmp(cmd_name, "mwh") == 0)
4837 data_size = 2;
4838 else if (strcasecmp(cmd_name, "mwb") == 0)
4839 data_size = 1;
4840 else {
4841 LOG_ERROR("command '%s' unknown: ", cmd_name);
4842 return JIM_ERR;
4845 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4849 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4851 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4852 * mdh [phys] <address> [<count>] - for 16 bit reads
4853 * mdb [phys] <address> [<count>] - for 8 bit reads
4855 * Count defaults to 1.
4857 * Calls target_read_memory or target_read_phys_memory depending on
4858 * the presence of the "phys" argument
4859 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4860 * to int representation in base16.
4861 * Also outputs read data in a human readable form using command_print
4863 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4864 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4865 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4866 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4867 * on success, with [<count>] number of elements.
4869 * In case of little endian target:
4870 * Example1: "mdw 0x00000000" returns "10123456"
4871 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4872 * Example3: "mdb 0x00000000" returns "56"
4873 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4874 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4876 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4878 const char *cmd_name = Jim_GetString(argv[0], NULL);
4880 Jim_GetOptInfo goi;
4881 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4883 if ((goi.argc < 1) || (goi.argc > 3)) {
4884 Jim_SetResultFormatted(goi.interp,
4885 "usage: %s [phys] <address> [<count>]", cmd_name);
4886 return JIM_ERR;
4889 int (*fn)(struct target *target,
4890 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4891 fn = target_read_memory;
4893 int e;
4894 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4895 /* consume it */
4896 struct Jim_Obj *obj;
4897 e = Jim_GetOpt_Obj(&goi, &obj);
4898 if (e != JIM_OK)
4899 return e;
4901 fn = target_read_phys_memory;
4904 /* Read address parameter */
4905 jim_wide addr;
4906 e = Jim_GetOpt_Wide(&goi, &addr);
4907 if (e != JIM_OK)
4908 return JIM_ERR;
4910 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4911 jim_wide count;
4912 if (goi.argc == 1) {
4913 e = Jim_GetOpt_Wide(&goi, &count);
4914 if (e != JIM_OK)
4915 return JIM_ERR;
4916 } else
4917 count = 1;
4919 /* all args must be consumed */
4920 if (goi.argc != 0)
4921 return JIM_ERR;
4923 jim_wide dwidth = 1; /* shut up gcc */
4924 if (strcasecmp(cmd_name, "mdw") == 0)
4925 dwidth = 4;
4926 else if (strcasecmp(cmd_name, "mdh") == 0)
4927 dwidth = 2;
4928 else if (strcasecmp(cmd_name, "mdb") == 0)
4929 dwidth = 1;
4930 else {
4931 LOG_ERROR("command '%s' unknown: ", cmd_name);
4932 return JIM_ERR;
4935 /* convert count to "bytes" */
4936 int bytes = count * dwidth;
4938 struct target *target = Jim_CmdPrivData(goi.interp);
4939 uint8_t target_buf[32];
4940 jim_wide x, y, z;
4941 while (bytes > 0) {
4942 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4944 /* Try to read out next block */
4945 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4947 if (e != ERROR_OK) {
4948 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4949 return JIM_ERR;
4952 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4953 switch (dwidth) {
4954 case 4:
4955 for (x = 0; x < 16 && x < y; x += 4) {
4956 z = target_buffer_get_u32(target, &(target_buf[x]));
4957 command_print_sameline(NULL, "%08x ", (int)(z));
4959 for (; (x < 16) ; x += 4)
4960 command_print_sameline(NULL, " ");
4961 break;
4962 case 2:
4963 for (x = 0; x < 16 && x < y; x += 2) {
4964 z = target_buffer_get_u16(target, &(target_buf[x]));
4965 command_print_sameline(NULL, "%04x ", (int)(z));
4967 for (; (x < 16) ; x += 2)
4968 command_print_sameline(NULL, " ");
4969 break;
4970 case 1:
4971 default:
4972 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4973 z = target_buffer_get_u8(target, &(target_buf[x]));
4974 command_print_sameline(NULL, "%02x ", (int)(z));
4976 for (; (x < 16) ; x += 1)
4977 command_print_sameline(NULL, " ");
4978 break;
4980 /* ascii-ify the bytes */
4981 for (x = 0 ; x < y ; x++) {
4982 if ((target_buf[x] >= 0x20) &&
4983 (target_buf[x] <= 0x7e)) {
4984 /* good */
4985 } else {
4986 /* smack it */
4987 target_buf[x] = '.';
4990 /* space pad */
4991 while (x < 16) {
4992 target_buf[x] = ' ';
4993 x++;
4995 /* terminate */
4996 target_buf[16] = 0;
4997 /* print - with a newline */
4998 command_print_sameline(NULL, "%s\n", target_buf);
4999 /* NEXT... */
5000 bytes -= 16;
5001 addr += 16;
5003 return JIM_OK;
5006 static int jim_target_mem2array(Jim_Interp *interp,
5007 int argc, Jim_Obj *const *argv)
5009 struct target *target = Jim_CmdPrivData(interp);
5010 return target_mem2array(interp, target, argc - 1, argv + 1);
5013 static int jim_target_array2mem(Jim_Interp *interp,
5014 int argc, Jim_Obj *const *argv)
5016 struct target *target = Jim_CmdPrivData(interp);
5017 return target_array2mem(interp, target, argc - 1, argv + 1);
5020 static int jim_target_tap_disabled(Jim_Interp *interp)
5022 Jim_SetResultFormatted(interp, "[TAP is disabled]");
5023 return JIM_ERR;
5026 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5028 bool allow_defer = false;
5030 Jim_GetOptInfo goi;
5031 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5032 if (goi.argc > 1) {
5033 const char *cmd_name = Jim_GetString(argv[0], NULL);
5034 Jim_SetResultFormatted(goi.interp,
5035 "usage: %s ['allow-defer']", cmd_name);
5036 return JIM_ERR;
5038 if (goi.argc > 0 &&
5039 strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5040 /* consume it */
5041 struct Jim_Obj *obj;
5042 int e = Jim_GetOpt_Obj(&goi, &obj);
5043 if (e != JIM_OK)
5044 return e;
5045 allow_defer = true;
5048 struct target *target = Jim_CmdPrivData(interp);
5049 if (!target->tap->enabled)
5050 return jim_target_tap_disabled(interp);
5052 if (allow_defer && target->defer_examine) {
5053 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5054 LOG_INFO("Use arp_examine command to examine it manually!");
5055 return JIM_OK;
5058 int e = target->type->examine(target);
5059 if (e != ERROR_OK)
5060 return JIM_ERR;
5061 return JIM_OK;
5064 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5066 struct target *target = Jim_CmdPrivData(interp);
5068 Jim_SetResultBool(interp, target_was_examined(target));
5069 return JIM_OK;
5072 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5074 struct target *target = Jim_CmdPrivData(interp);
5076 Jim_SetResultBool(interp, target->defer_examine);
5077 return JIM_OK;
5080 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5082 if (argc != 1) {
5083 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5084 return JIM_ERR;
5086 struct target *target = Jim_CmdPrivData(interp);
5088 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5089 return JIM_ERR;
5091 return JIM_OK;
5094 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5096 if (argc != 1) {
5097 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5098 return JIM_ERR;
5100 struct target *target = Jim_CmdPrivData(interp);
5101 if (!target->tap->enabled)
5102 return jim_target_tap_disabled(interp);
5104 int e;
5105 if (!(target_was_examined(target)))
5106 e = ERROR_TARGET_NOT_EXAMINED;
5107 else
5108 e = target->type->poll(target);
5109 if (e != ERROR_OK)
5110 return JIM_ERR;
5111 return JIM_OK;
5114 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5116 Jim_GetOptInfo goi;
5117 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5119 if (goi.argc != 2) {
5120 Jim_WrongNumArgs(interp, 0, argv,
5121 "([tT]|[fF]|assert|deassert) BOOL");
5122 return JIM_ERR;
5125 Jim_Nvp *n;
5126 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5127 if (e != JIM_OK) {
5128 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5129 return e;
5131 /* the halt or not param */
5132 jim_wide a;
5133 e = Jim_GetOpt_Wide(&goi, &a);
5134 if (e != JIM_OK)
5135 return e;
5137 struct target *target = Jim_CmdPrivData(goi.interp);
5138 if (!target->tap->enabled)
5139 return jim_target_tap_disabled(interp);
5141 if (!target->type->assert_reset || !target->type->deassert_reset) {
5142 Jim_SetResultFormatted(interp,
5143 "No target-specific reset for %s",
5144 target_name(target));
5145 return JIM_ERR;
5148 if (target->defer_examine)
5149 target_reset_examined(target);
5151 /* determine if we should halt or not. */
5152 target->reset_halt = !!a;
5153 /* When this happens - all workareas are invalid. */
5154 target_free_all_working_areas_restore(target, 0);
5156 /* do the assert */
5157 if (n->value == NVP_ASSERT)
5158 e = target->type->assert_reset(target);
5159 else
5160 e = target->type->deassert_reset(target);
5161 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5164 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5166 if (argc != 1) {
5167 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5168 return JIM_ERR;
5170 struct target *target = Jim_CmdPrivData(interp);
5171 if (!target->tap->enabled)
5172 return jim_target_tap_disabled(interp);
5173 int e = target->type->halt(target);
5174 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5177 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5179 Jim_GetOptInfo goi;
5180 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5182 /* params: <name> statename timeoutmsecs */
5183 if (goi.argc != 2) {
5184 const char *cmd_name = Jim_GetString(argv[0], NULL);
5185 Jim_SetResultFormatted(goi.interp,
5186 "%s <state_name> <timeout_in_msec>", cmd_name);
5187 return JIM_ERR;
5190 Jim_Nvp *n;
5191 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5192 if (e != JIM_OK) {
5193 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5194 return e;
5196 jim_wide a;
5197 e = Jim_GetOpt_Wide(&goi, &a);
5198 if (e != JIM_OK)
5199 return e;
5200 struct target *target = Jim_CmdPrivData(interp);
5201 if (!target->tap->enabled)
5202 return jim_target_tap_disabled(interp);
5204 e = target_wait_state(target, n->value, a);
5205 if (e != ERROR_OK) {
5206 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5207 Jim_SetResultFormatted(goi.interp,
5208 "target: %s wait %s fails (%#s) %s",
5209 target_name(target), n->name,
5210 eObj, target_strerror_safe(e));
5211 Jim_FreeNewObj(interp, eObj);
5212 return JIM_ERR;
5214 return JIM_OK;
5216 /* List for human, Events defined for this target.
5217 * scripts/programs should use 'name cget -event NAME'
5219 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5221 struct command_context *cmd_ctx = current_command_context(interp);
5222 assert(cmd_ctx != NULL);
5224 struct target *target = Jim_CmdPrivData(interp);
5225 struct target_event_action *teap = target->event_action;
5226 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5227 target->target_number,
5228 target_name(target));
5229 command_print(cmd_ctx, "%-25s | Body", "Event");
5230 command_print(cmd_ctx, "------------------------- | "
5231 "----------------------------------------");
5232 while (teap) {
5233 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5234 command_print(cmd_ctx, "%-25s | %s",
5235 opt->name, Jim_GetString(teap->body, NULL));
5236 teap = teap->next;
5238 command_print(cmd_ctx, "***END***");
5239 return JIM_OK;
5241 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5243 if (argc != 1) {
5244 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5245 return JIM_ERR;
5247 struct target *target = Jim_CmdPrivData(interp);
5248 Jim_SetResultString(interp, target_state_name(target), -1);
5249 return JIM_OK;
5251 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5253 Jim_GetOptInfo goi;
5254 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5255 if (goi.argc != 1) {
5256 const char *cmd_name = Jim_GetString(argv[0], NULL);
5257 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5258 return JIM_ERR;
5260 Jim_Nvp *n;
5261 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5262 if (e != JIM_OK) {
5263 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5264 return e;
5266 struct target *target = Jim_CmdPrivData(interp);
5267 target_handle_event(target, n->value);
5268 return JIM_OK;
5271 static const struct command_registration target_instance_command_handlers[] = {
5273 .name = "configure",
5274 .mode = COMMAND_CONFIG,
5275 .jim_handler = jim_target_configure,
5276 .help = "configure a new target for use",
5277 .usage = "[target_attribute ...]",
5280 .name = "cget",
5281 .mode = COMMAND_ANY,
5282 .jim_handler = jim_target_configure,
5283 .help = "returns the specified target attribute",
5284 .usage = "target_attribute",
5287 .name = "mww",
5288 .mode = COMMAND_EXEC,
5289 .jim_handler = jim_target_mw,
5290 .help = "Write 32-bit word(s) to target memory",
5291 .usage = "address data [count]",
5294 .name = "mwh",
5295 .mode = COMMAND_EXEC,
5296 .jim_handler = jim_target_mw,
5297 .help = "Write 16-bit half-word(s) to target memory",
5298 .usage = "address data [count]",
5301 .name = "mwb",
5302 .mode = COMMAND_EXEC,
5303 .jim_handler = jim_target_mw,
5304 .help = "Write byte(s) to target memory",
5305 .usage = "address data [count]",
5308 .name = "mdw",
5309 .mode = COMMAND_EXEC,
5310 .jim_handler = jim_target_md,
5311 .help = "Display target memory as 32-bit words",
5312 .usage = "address [count]",
5315 .name = "mdh",
5316 .mode = COMMAND_EXEC,
5317 .jim_handler = jim_target_md,
5318 .help = "Display target memory as 16-bit half-words",
5319 .usage = "address [count]",
5322 .name = "mdb",
5323 .mode = COMMAND_EXEC,
5324 .jim_handler = jim_target_md,
5325 .help = "Display target memory as 8-bit bytes",
5326 .usage = "address [count]",
5329 .name = "array2mem",
5330 .mode = COMMAND_EXEC,
5331 .jim_handler = jim_target_array2mem,
5332 .help = "Writes Tcl array of 8/16/32 bit numbers "
5333 "to target memory",
5334 .usage = "arrayname bitwidth address count",
5337 .name = "mem2array",
5338 .mode = COMMAND_EXEC,
5339 .jim_handler = jim_target_mem2array,
5340 .help = "Loads Tcl array of 8/16/32 bit numbers "
5341 "from target memory",
5342 .usage = "arrayname bitwidth address count",
5345 .name = "eventlist",
5346 .mode = COMMAND_EXEC,
5347 .jim_handler = jim_target_event_list,
5348 .help = "displays a table of events defined for this target",
5351 .name = "curstate",
5352 .mode = COMMAND_EXEC,
5353 .jim_handler = jim_target_current_state,
5354 .help = "displays the current state of this target",
5357 .name = "arp_examine",
5358 .mode = COMMAND_EXEC,
5359 .jim_handler = jim_target_examine,
5360 .help = "used internally for reset processing",
5361 .usage = "arp_examine ['allow-defer']",
5364 .name = "was_examined",
5365 .mode = COMMAND_EXEC,
5366 .jim_handler = jim_target_was_examined,
5367 .help = "used internally for reset processing",
5368 .usage = "was_examined",
5371 .name = "examine_deferred",
5372 .mode = COMMAND_EXEC,
5373 .jim_handler = jim_target_examine_deferred,
5374 .help = "used internally for reset processing",
5375 .usage = "examine_deferred",
5378 .name = "arp_halt_gdb",
5379 .mode = COMMAND_EXEC,
5380 .jim_handler = jim_target_halt_gdb,
5381 .help = "used internally for reset processing to halt GDB",
5384 .name = "arp_poll",
5385 .mode = COMMAND_EXEC,
5386 .jim_handler = jim_target_poll,
5387 .help = "used internally for reset processing",
5390 .name = "arp_reset",
5391 .mode = COMMAND_EXEC,
5392 .jim_handler = jim_target_reset,
5393 .help = "used internally for reset processing",
5396 .name = "arp_halt",
5397 .mode = COMMAND_EXEC,
5398 .jim_handler = jim_target_halt,
5399 .help = "used internally for reset processing",
5402 .name = "arp_waitstate",
5403 .mode = COMMAND_EXEC,
5404 .jim_handler = jim_target_wait_state,
5405 .help = "used internally for reset processing",
5408 .name = "invoke-event",
5409 .mode = COMMAND_EXEC,
5410 .jim_handler = jim_target_invoke_event,
5411 .help = "invoke handler for specified event",
5412 .usage = "event_name",
5414 COMMAND_REGISTRATION_DONE
5417 static int target_create(Jim_GetOptInfo *goi)
5419 Jim_Obj *new_cmd;
5420 Jim_Cmd *cmd;
5421 const char *cp;
5422 int e;
5423 int x;
5424 struct target *target;
5425 struct command_context *cmd_ctx;
5427 cmd_ctx = current_command_context(goi->interp);
5428 assert(cmd_ctx != NULL);
5430 if (goi->argc < 3) {
5431 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5432 return JIM_ERR;
5435 /* COMMAND */
5436 Jim_GetOpt_Obj(goi, &new_cmd);
5437 /* does this command exist? */
5438 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5439 if (cmd) {
5440 cp = Jim_GetString(new_cmd, NULL);
5441 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5442 return JIM_ERR;
5445 /* TYPE */
5446 e = Jim_GetOpt_String(goi, &cp, NULL);
5447 if (e != JIM_OK)
5448 return e;
5449 struct transport *tr = get_current_transport();
5450 if (tr->override_target) {
5451 e = tr->override_target(&cp);
5452 if (e != ERROR_OK) {
5453 LOG_ERROR("The selected transport doesn't support this target");
5454 return JIM_ERR;
5456 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5458 /* now does target type exist */
5459 for (x = 0 ; target_types[x] ; x++) {
5460 if (0 == strcmp(cp, target_types[x]->name)) {
5461 /* found */
5462 break;
5465 /* check for deprecated name */
5466 if (target_types[x]->deprecated_name) {
5467 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5468 /* found */
5469 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5470 break;
5474 if (target_types[x] == NULL) {
5475 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5476 for (x = 0 ; target_types[x] ; x++) {
5477 if (target_types[x + 1]) {
5478 Jim_AppendStrings(goi->interp,
5479 Jim_GetResult(goi->interp),
5480 target_types[x]->name,
5481 ", ", NULL);
5482 } else {
5483 Jim_AppendStrings(goi->interp,
5484 Jim_GetResult(goi->interp),
5485 " or ",
5486 target_types[x]->name, NULL);
5489 return JIM_ERR;
5492 /* Create it */
5493 target = calloc(1, sizeof(struct target));
5494 /* set target number */
5495 target->target_number = new_target_number();
5496 cmd_ctx->current_target = target->target_number;
5498 /* allocate memory for each unique target type */
5499 target->type = calloc(1, sizeof(struct target_type));
5501 memcpy(target->type, target_types[x], sizeof(struct target_type));
5503 /* will be set by "-endian" */
5504 target->endianness = TARGET_ENDIAN_UNKNOWN;
5506 /* default to first core, override with -coreid */
5507 target->coreid = 0;
5509 target->working_area = 0x0;
5510 target->working_area_size = 0x0;
5511 target->working_areas = NULL;
5512 target->backup_working_area = 0;
5514 target->state = TARGET_UNKNOWN;
5515 target->debug_reason = DBG_REASON_UNDEFINED;
5516 target->reg_cache = NULL;
5517 target->breakpoints = NULL;
5518 target->watchpoints = NULL;
5519 target->next = NULL;
5520 target->arch_info = NULL;
5522 target->display = 1;
5524 target->halt_issued = false;
5526 /* initialize trace information */
5527 target->trace_info = calloc(1, sizeof(struct trace));
5529 target->dbgmsg = NULL;
5530 target->dbg_msg_enabled = 0;
5532 target->endianness = TARGET_ENDIAN_UNKNOWN;
5534 target->rtos = NULL;
5535 target->rtos_auto_detect = false;
5537 /* Do the rest as "configure" options */
5538 goi->isconfigure = 1;
5539 e = target_configure(goi, target);
5541 if (target->tap == NULL) {
5542 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5543 e = JIM_ERR;
5546 if (e != JIM_OK) {
5547 free(target->type);
5548 free(target);
5549 return e;
5552 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5553 /* default endian to little if not specified */
5554 target->endianness = TARGET_LITTLE_ENDIAN;
5557 cp = Jim_GetString(new_cmd, NULL);
5558 target->cmd_name = strdup(cp);
5560 /* create the target specific commands */
5561 if (target->type->commands) {
5562 e = register_commands(cmd_ctx, NULL, target->type->commands);
5563 if (ERROR_OK != e)
5564 LOG_ERROR("unable to register '%s' commands", cp);
5566 if (target->type->target_create)
5567 (*(target->type->target_create))(target, goi->interp);
5569 /* append to end of list */
5571 struct target **tpp;
5572 tpp = &(all_targets);
5573 while (*tpp)
5574 tpp = &((*tpp)->next);
5575 *tpp = target;
5578 /* now - create the new target name command */
5579 const struct command_registration target_subcommands[] = {
5581 .chain = target_instance_command_handlers,
5584 .chain = target->type->commands,
5586 COMMAND_REGISTRATION_DONE
5588 const struct command_registration target_commands[] = {
5590 .name = cp,
5591 .mode = COMMAND_ANY,
5592 .help = "target command group",
5593 .usage = "",
5594 .chain = target_subcommands,
5596 COMMAND_REGISTRATION_DONE
5598 e = register_commands(cmd_ctx, NULL, target_commands);
5599 if (ERROR_OK != e)
5600 return JIM_ERR;
5602 struct command *c = command_find_in_context(cmd_ctx, cp);
5603 assert(c);
5604 command_set_handler_data(c, target);
5606 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5609 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5611 if (argc != 1) {
5612 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5613 return JIM_ERR;
5615 struct command_context *cmd_ctx = current_command_context(interp);
5616 assert(cmd_ctx != NULL);
5618 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5619 return JIM_OK;
5622 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5624 if (argc != 1) {
5625 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5626 return JIM_ERR;
5628 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5629 for (unsigned x = 0; NULL != target_types[x]; x++) {
5630 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5631 Jim_NewStringObj(interp, target_types[x]->name, -1));
5633 return JIM_OK;
5636 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5638 if (argc != 1) {
5639 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5640 return JIM_ERR;
5642 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5643 struct target *target = all_targets;
5644 while (target) {
5645 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5646 Jim_NewStringObj(interp, target_name(target), -1));
5647 target = target->next;
5649 return JIM_OK;
5652 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5654 int i;
5655 const char *targetname;
5656 int retval, len;
5657 struct target *target = (struct target *) NULL;
5658 struct target_list *head, *curr, *new;
5659 curr = (struct target_list *) NULL;
5660 head = (struct target_list *) NULL;
5662 retval = 0;
5663 LOG_DEBUG("%d", argc);
5664 /* argv[1] = target to associate in smp
5665 * argv[2] = target to assoicate in smp
5666 * argv[3] ...
5669 for (i = 1; i < argc; i++) {
5671 targetname = Jim_GetString(argv[i], &len);
5672 target = get_target(targetname);
5673 LOG_DEBUG("%s ", targetname);
5674 if (target) {
5675 new = malloc(sizeof(struct target_list));
5676 new->target = target;
5677 new->next = (struct target_list *)NULL;
5678 if (head == (struct target_list *)NULL) {
5679 head = new;
5680 curr = head;
5681 } else {
5682 curr->next = new;
5683 curr = new;
5687 /* now parse the list of cpu and put the target in smp mode*/
5688 curr = head;
5690 while (curr != (struct target_list *)NULL) {
5691 target = curr->target;
5692 target->smp = 1;
5693 target->head = head;
5694 curr = curr->next;
5697 if (target && target->rtos)
5698 retval = rtos_smp_init(head->target);
5700 return retval;
5704 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5706 Jim_GetOptInfo goi;
5707 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5708 if (goi.argc < 3) {
5709 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5710 "<name> <target_type> [<target_options> ...]");
5711 return JIM_ERR;
5713 return target_create(&goi);
5716 static const struct command_registration target_subcommand_handlers[] = {
5718 .name = "init",
5719 .mode = COMMAND_CONFIG,
5720 .handler = handle_target_init_command,
5721 .help = "initialize targets",
5724 .name = "create",
5725 /* REVISIT this should be COMMAND_CONFIG ... */
5726 .mode = COMMAND_ANY,
5727 .jim_handler = jim_target_create,
5728 .usage = "name type '-chain-position' name [options ...]",
5729 .help = "Creates and selects a new target",
5732 .name = "current",
5733 .mode = COMMAND_ANY,
5734 .jim_handler = jim_target_current,
5735 .help = "Returns the currently selected target",
5738 .name = "types",
5739 .mode = COMMAND_ANY,
5740 .jim_handler = jim_target_types,
5741 .help = "Returns the available target types as "
5742 "a list of strings",
5745 .name = "names",
5746 .mode = COMMAND_ANY,
5747 .jim_handler = jim_target_names,
5748 .help = "Returns the names of all targets as a list of strings",
5751 .name = "smp",
5752 .mode = COMMAND_ANY,
5753 .jim_handler = jim_target_smp,
5754 .usage = "targetname1 targetname2 ...",
5755 .help = "gather several target in a smp list"
5758 COMMAND_REGISTRATION_DONE
5761 struct FastLoad {
5762 target_addr_t address;
5763 uint8_t *data;
5764 int length;
5768 static int fastload_num;
5769 static struct FastLoad *fastload;
5771 static void free_fastload(void)
5773 if (fastload != NULL) {
5774 int i;
5775 for (i = 0; i < fastload_num; i++) {
5776 if (fastload[i].data)
5777 free(fastload[i].data);
5779 free(fastload);
5780 fastload = NULL;
5784 COMMAND_HANDLER(handle_fast_load_image_command)
5786 uint8_t *buffer;
5787 size_t buf_cnt;
5788 uint32_t image_size;
5789 target_addr_t min_address = 0;
5790 target_addr_t max_address = -1;
5791 int i;
5793 struct image image;
5795 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5796 &image, &min_address, &max_address);
5797 if (ERROR_OK != retval)
5798 return retval;
5800 struct duration bench;
5801 duration_start(&bench);
5803 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5804 if (retval != ERROR_OK)
5805 return retval;
5807 image_size = 0x0;
5808 retval = ERROR_OK;
5809 fastload_num = image.num_sections;
5810 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5811 if (fastload == NULL) {
5812 command_print(CMD_CTX, "out of memory");
5813 image_close(&image);
5814 return ERROR_FAIL;
5816 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5817 for (i = 0; i < image.num_sections; i++) {
5818 buffer = malloc(image.sections[i].size);
5819 if (buffer == NULL) {
5820 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5821 (int)(image.sections[i].size));
5822 retval = ERROR_FAIL;
5823 break;
5826 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5827 if (retval != ERROR_OK) {
5828 free(buffer);
5829 break;
5832 uint32_t offset = 0;
5833 uint32_t length = buf_cnt;
5835 /* DANGER!!! beware of unsigned comparision here!!! */
5837 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5838 (image.sections[i].base_address < max_address)) {
5839 if (image.sections[i].base_address < min_address) {
5840 /* clip addresses below */
5841 offset += min_address-image.sections[i].base_address;
5842 length -= offset;
5845 if (image.sections[i].base_address + buf_cnt > max_address)
5846 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5848 fastload[i].address = image.sections[i].base_address + offset;
5849 fastload[i].data = malloc(length);
5850 if (fastload[i].data == NULL) {
5851 free(buffer);
5852 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5853 length);
5854 retval = ERROR_FAIL;
5855 break;
5857 memcpy(fastload[i].data, buffer + offset, length);
5858 fastload[i].length = length;
5860 image_size += length;
5861 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5862 (unsigned int)length,
5863 ((unsigned int)(image.sections[i].base_address + offset)));
5866 free(buffer);
5869 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5870 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5871 "in %fs (%0.3f KiB/s)", image_size,
5872 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5874 command_print(CMD_CTX,
5875 "WARNING: image has not been loaded to target!"
5876 "You can issue a 'fast_load' to finish loading.");
5879 image_close(&image);
5881 if (retval != ERROR_OK)
5882 free_fastload();
5884 return retval;
5887 COMMAND_HANDLER(handle_fast_load_command)
5889 if (CMD_ARGC > 0)
5890 return ERROR_COMMAND_SYNTAX_ERROR;
5891 if (fastload == NULL) {
5892 LOG_ERROR("No image in memory");
5893 return ERROR_FAIL;
5895 int i;
5896 int64_t ms = timeval_ms();
5897 int size = 0;
5898 int retval = ERROR_OK;
5899 for (i = 0; i < fastload_num; i++) {
5900 struct target *target = get_current_target(CMD_CTX);
5901 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5902 (unsigned int)(fastload[i].address),
5903 (unsigned int)(fastload[i].length));
5904 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5905 if (retval != ERROR_OK)
5906 break;
5907 size += fastload[i].length;
5909 if (retval == ERROR_OK) {
5910 int64_t after = timeval_ms();
5911 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5913 return retval;
5916 static const struct command_registration target_command_handlers[] = {
5918 .name = "targets",
5919 .handler = handle_targets_command,
5920 .mode = COMMAND_ANY,
5921 .help = "change current default target (one parameter) "
5922 "or prints table of all targets (no parameters)",
5923 .usage = "[target]",
5926 .name = "target",
5927 .mode = COMMAND_CONFIG,
5928 .help = "configure target",
5930 .chain = target_subcommand_handlers,
5932 COMMAND_REGISTRATION_DONE
5935 int target_register_commands(struct command_context *cmd_ctx)
5937 return register_commands(cmd_ctx, NULL, target_command_handlers);
5940 static bool target_reset_nag = true;
5942 bool get_target_reset_nag(void)
5944 return target_reset_nag;
5947 COMMAND_HANDLER(handle_target_reset_nag)
5949 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5950 &target_reset_nag, "Nag after each reset about options to improve "
5951 "performance");
5954 COMMAND_HANDLER(handle_ps_command)
5956 struct target *target = get_current_target(CMD_CTX);
5957 char *display;
5958 if (target->state != TARGET_HALTED) {
5959 LOG_INFO("target not halted !!");
5960 return ERROR_OK;
5963 if ((target->rtos) && (target->rtos->type)
5964 && (target->rtos->type->ps_command)) {
5965 display = target->rtos->type->ps_command(target);
5966 command_print(CMD_CTX, "%s", display);
5967 free(display);
5968 return ERROR_OK;
5969 } else {
5970 LOG_INFO("failed");
5971 return ERROR_TARGET_FAILURE;
5975 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5977 if (text != NULL)
5978 command_print_sameline(cmd_ctx, "%s", text);
5979 for (int i = 0; i < size; i++)
5980 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5981 command_print(cmd_ctx, " ");
5984 COMMAND_HANDLER(handle_test_mem_access_command)
5986 struct target *target = get_current_target(CMD_CTX);
5987 uint32_t test_size;
5988 int retval = ERROR_OK;
5990 if (target->state != TARGET_HALTED) {
5991 LOG_INFO("target not halted !!");
5992 return ERROR_FAIL;
5995 if (CMD_ARGC != 1)
5996 return ERROR_COMMAND_SYNTAX_ERROR;
5998 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6000 /* Test reads */
6001 size_t num_bytes = test_size + 4;
6003 struct working_area *wa = NULL;
6004 retval = target_alloc_working_area(target, num_bytes, &wa);
6005 if (retval != ERROR_OK) {
6006 LOG_ERROR("Not enough working area");
6007 return ERROR_FAIL;
6010 uint8_t *test_pattern = malloc(num_bytes);
6012 for (size_t i = 0; i < num_bytes; i++)
6013 test_pattern[i] = rand();
6015 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6016 if (retval != ERROR_OK) {
6017 LOG_ERROR("Test pattern write failed");
6018 goto out;
6021 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6022 for (int size = 1; size <= 4; size *= 2) {
6023 for (int offset = 0; offset < 4; offset++) {
6024 uint32_t count = test_size / size;
6025 size_t host_bufsiz = (count + 2) * size + host_offset;
6026 uint8_t *read_ref = malloc(host_bufsiz);
6027 uint8_t *read_buf = malloc(host_bufsiz);
6029 for (size_t i = 0; i < host_bufsiz; i++) {
6030 read_ref[i] = rand();
6031 read_buf[i] = read_ref[i];
6033 command_print_sameline(CMD_CTX,
6034 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6035 size, offset, host_offset ? "un" : "");
6037 struct duration bench;
6038 duration_start(&bench);
6040 retval = target_read_memory(target, wa->address + offset, size, count,
6041 read_buf + size + host_offset);
6043 duration_measure(&bench);
6045 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6046 command_print(CMD_CTX, "Unsupported alignment");
6047 goto next;
6048 } else if (retval != ERROR_OK) {
6049 command_print(CMD_CTX, "Memory read failed");
6050 goto next;
6053 /* replay on host */
6054 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6056 /* check result */
6057 int result = memcmp(read_ref, read_buf, host_bufsiz);
6058 if (result == 0) {
6059 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6060 duration_elapsed(&bench),
6061 duration_kbps(&bench, count * size));
6062 } else {
6063 command_print(CMD_CTX, "Compare failed");
6064 binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6065 binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6067 next:
6068 free(read_ref);
6069 free(read_buf);
6074 out:
6075 free(test_pattern);
6077 if (wa != NULL)
6078 target_free_working_area(target, wa);
6080 /* Test writes */
6081 num_bytes = test_size + 4 + 4 + 4;
6083 retval = target_alloc_working_area(target, num_bytes, &wa);
6084 if (retval != ERROR_OK) {
6085 LOG_ERROR("Not enough working area");
6086 return ERROR_FAIL;
6089 test_pattern = malloc(num_bytes);
6091 for (size_t i = 0; i < num_bytes; i++)
6092 test_pattern[i] = rand();
6094 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6095 for (int size = 1; size <= 4; size *= 2) {
6096 for (int offset = 0; offset < 4; offset++) {
6097 uint32_t count = test_size / size;
6098 size_t host_bufsiz = count * size + host_offset;
6099 uint8_t *read_ref = malloc(num_bytes);
6100 uint8_t *read_buf = malloc(num_bytes);
6101 uint8_t *write_buf = malloc(host_bufsiz);
6103 for (size_t i = 0; i < host_bufsiz; i++)
6104 write_buf[i] = rand();
6105 command_print_sameline(CMD_CTX,
6106 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6107 size, offset, host_offset ? "un" : "");
6109 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6110 if (retval != ERROR_OK) {
6111 command_print(CMD_CTX, "Test pattern write failed");
6112 goto nextw;
6115 /* replay on host */
6116 memcpy(read_ref, test_pattern, num_bytes);
6117 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6119 struct duration bench;
6120 duration_start(&bench);
6122 retval = target_write_memory(target, wa->address + size + offset, size, count,
6123 write_buf + host_offset);
6125 duration_measure(&bench);
6127 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6128 command_print(CMD_CTX, "Unsupported alignment");
6129 goto nextw;
6130 } else if (retval != ERROR_OK) {
6131 command_print(CMD_CTX, "Memory write failed");
6132 goto nextw;
6135 /* read back */
6136 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6137 if (retval != ERROR_OK) {
6138 command_print(CMD_CTX, "Test pattern write failed");
6139 goto nextw;
6142 /* check result */
6143 int result = memcmp(read_ref, read_buf, num_bytes);
6144 if (result == 0) {
6145 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6146 duration_elapsed(&bench),
6147 duration_kbps(&bench, count * size));
6148 } else {
6149 command_print(CMD_CTX, "Compare failed");
6150 binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6151 binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6153 nextw:
6154 free(read_ref);
6155 free(read_buf);
6160 free(test_pattern);
6162 if (wa != NULL)
6163 target_free_working_area(target, wa);
6164 return retval;
6167 static const struct command_registration target_exec_command_handlers[] = {
6169 .name = "fast_load_image",
6170 .handler = handle_fast_load_image_command,
6171 .mode = COMMAND_ANY,
6172 .help = "Load image into server memory for later use by "
6173 "fast_load; primarily for profiling",
6174 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6175 "[min_address [max_length]]",
6178 .name = "fast_load",
6179 .handler = handle_fast_load_command,
6180 .mode = COMMAND_EXEC,
6181 .help = "loads active fast load image to current target "
6182 "- mainly for profiling purposes",
6183 .usage = "",
6186 .name = "profile",
6187 .handler = handle_profile_command,
6188 .mode = COMMAND_EXEC,
6189 .usage = "seconds filename [start end]",
6190 .help = "profiling samples the CPU PC",
6192 /** @todo don't register virt2phys() unless target supports it */
6194 .name = "virt2phys",
6195 .handler = handle_virt2phys_command,
6196 .mode = COMMAND_ANY,
6197 .help = "translate a virtual address into a physical address",
6198 .usage = "virtual_address",
6201 .name = "reg",
6202 .handler = handle_reg_command,
6203 .mode = COMMAND_EXEC,
6204 .help = "display (reread from target with \"force\") or set a register; "
6205 "with no arguments, displays all registers and their values",
6206 .usage = "[(register_number|register_name) [(value|'force')]]",
6209 .name = "poll",
6210 .handler = handle_poll_command,
6211 .mode = COMMAND_EXEC,
6212 .help = "poll target state; or reconfigure background polling",
6213 .usage = "['on'|'off']",
6216 .name = "wait_halt",
6217 .handler = handle_wait_halt_command,
6218 .mode = COMMAND_EXEC,
6219 .help = "wait up to the specified number of milliseconds "
6220 "(default 5000) for a previously requested halt",
6221 .usage = "[milliseconds]",
6224 .name = "halt",
6225 .handler = handle_halt_command,
6226 .mode = COMMAND_EXEC,
6227 .help = "request target to halt, then wait up to the specified"
6228 "number of milliseconds (default 5000) for it to complete",
6229 .usage = "[milliseconds]",
6232 .name = "resume",
6233 .handler = handle_resume_command,
6234 .mode = COMMAND_EXEC,
6235 .help = "resume target execution from current PC or address",
6236 .usage = "[address]",
6239 .name = "reset",
6240 .handler = handle_reset_command,
6241 .mode = COMMAND_EXEC,
6242 .usage = "[run|halt|init]",
6243 .help = "Reset all targets into the specified mode."
6244 "Default reset mode is run, if not given.",
6247 .name = "soft_reset_halt",
6248 .handler = handle_soft_reset_halt_command,
6249 .mode = COMMAND_EXEC,
6250 .usage = "",
6251 .help = "halt the target and do a soft reset",
6254 .name = "step",
6255 .handler = handle_step_command,
6256 .mode = COMMAND_EXEC,
6257 .help = "step one instruction from current PC or address",
6258 .usage = "[address]",
6261 .name = "mdd",
6262 .handler = handle_md_command,
6263 .mode = COMMAND_EXEC,
6264 .help = "display memory words",
6265 .usage = "['phys'] address [count]",
6268 .name = "mdw",
6269 .handler = handle_md_command,
6270 .mode = COMMAND_EXEC,
6271 .help = "display memory words",
6272 .usage = "['phys'] address [count]",
6275 .name = "mdh",
6276 .handler = handle_md_command,
6277 .mode = COMMAND_EXEC,
6278 .help = "display memory half-words",
6279 .usage = "['phys'] address [count]",
6282 .name = "mdb",
6283 .handler = handle_md_command,
6284 .mode = COMMAND_EXEC,
6285 .help = "display memory bytes",
6286 .usage = "['phys'] address [count]",
6289 .name = "mwd",
6290 .handler = handle_mw_command,
6291 .mode = COMMAND_EXEC,
6292 .help = "write memory word",
6293 .usage = "['phys'] address value [count]",
6296 .name = "mww",
6297 .handler = handle_mw_command,
6298 .mode = COMMAND_EXEC,
6299 .help = "write memory word",
6300 .usage = "['phys'] address value [count]",
6303 .name = "mwh",
6304 .handler = handle_mw_command,
6305 .mode = COMMAND_EXEC,
6306 .help = "write memory half-word",
6307 .usage = "['phys'] address value [count]",
6310 .name = "mwb",
6311 .handler = handle_mw_command,
6312 .mode = COMMAND_EXEC,
6313 .help = "write memory byte",
6314 .usage = "['phys'] address value [count]",
6317 .name = "bp",
6318 .handler = handle_bp_command,
6319 .mode = COMMAND_EXEC,
6320 .help = "list or set hardware or software breakpoint",
6321 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6324 .name = "rbp",
6325 .handler = handle_rbp_command,
6326 .mode = COMMAND_EXEC,
6327 .help = "remove breakpoint",
6328 .usage = "address",
6331 .name = "wp",
6332 .handler = handle_wp_command,
6333 .mode = COMMAND_EXEC,
6334 .help = "list (no params) or create watchpoints",
6335 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6338 .name = "rwp",
6339 .handler = handle_rwp_command,
6340 .mode = COMMAND_EXEC,
6341 .help = "remove watchpoint",
6342 .usage = "address",
6345 .name = "load_image",
6346 .handler = handle_load_image_command,
6347 .mode = COMMAND_EXEC,
6348 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6349 "[min_address] [max_length]",
6352 .name = "dump_image",
6353 .handler = handle_dump_image_command,
6354 .mode = COMMAND_EXEC,
6355 .usage = "filename address size",
6358 .name = "verify_image_checksum",
6359 .handler = handle_verify_image_checksum_command,
6360 .mode = COMMAND_EXEC,
6361 .usage = "filename [offset [type]]",
6364 .name = "verify_image",
6365 .handler = handle_verify_image_command,
6366 .mode = COMMAND_EXEC,
6367 .usage = "filename [offset [type]]",
6370 .name = "test_image",
6371 .handler = handle_test_image_command,
6372 .mode = COMMAND_EXEC,
6373 .usage = "filename [offset [type]]",
6376 .name = "mem2array",
6377 .mode = COMMAND_EXEC,
6378 .jim_handler = jim_mem2array,
6379 .help = "read 8/16/32 bit memory and return as a TCL array "
6380 "for script processing",
6381 .usage = "arrayname bitwidth address count",
6384 .name = "array2mem",
6385 .mode = COMMAND_EXEC,
6386 .jim_handler = jim_array2mem,
6387 .help = "convert a TCL array to memory locations "
6388 "and write the 8/16/32 bit values",
6389 .usage = "arrayname bitwidth address count",
6392 .name = "reset_nag",
6393 .handler = handle_target_reset_nag,
6394 .mode = COMMAND_ANY,
6395 .help = "Nag after each reset about options that could have been "
6396 "enabled to improve performance. ",
6397 .usage = "['enable'|'disable']",
6400 .name = "ps",
6401 .handler = handle_ps_command,
6402 .mode = COMMAND_EXEC,
6403 .help = "list all tasks ",
6404 .usage = " ",
6407 .name = "test_mem_access",
6408 .handler = handle_test_mem_access_command,
6409 .mode = COMMAND_EXEC,
6410 .help = "Test the target's memory access functions",
6411 .usage = "size",
6414 COMMAND_REGISTRATION_DONE
6416 static int target_register_user_commands(struct command_context *cmd_ctx)
6418 int retval = ERROR_OK;
6419 retval = target_request_register_commands(cmd_ctx);
6420 if (retval != ERROR_OK)
6421 return retval;
6423 retval = trace_register_commands(cmd_ctx);
6424 if (retval != ERROR_OK)
6425 return retval;
6428 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);