tcl: add ASUS RT-N66U config
[openocd.git] / src / target / target.c
blob87b3d1cbc981222ca39c7b7c329851627040318a
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa8_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104 extern struct target_type or1k_target;
105 extern struct target_type quark_x10xx_target;
107 static struct target_type *target_types[] = {
108 &arm7tdmi_target,
109 &arm9tdmi_target,
110 &arm920t_target,
111 &arm720t_target,
112 &arm966e_target,
113 &arm946e_target,
114 &arm926ejs_target,
115 &fa526_target,
116 &feroceon_target,
117 &dragonite_target,
118 &xscale_target,
119 &cortexm_target,
120 &cortexa8_target,
121 &cortexr4_target,
122 &arm11_target,
123 &mips_m4k_target,
124 &avr_target,
125 &dsp563xx_target,
126 &dsp5680xx_target,
127 &testee_target,
128 &avr32_ap7k_target,
129 &hla_target,
130 &nds32_v2_target,
131 &nds32_v3_target,
132 &nds32_v3m_target,
133 &or1k_target,
134 &quark_x10xx_target,
135 NULL,
138 struct target *all_targets;
139 static struct target_event_callback *target_event_callbacks;
140 static struct target_timer_callback *target_timer_callbacks;
141 static const int polling_interval = 100;
143 static const Jim_Nvp nvp_assert[] = {
144 { .name = "assert", NVP_ASSERT },
145 { .name = "deassert", NVP_DEASSERT },
146 { .name = "T", NVP_ASSERT },
147 { .name = "F", NVP_DEASSERT },
148 { .name = "t", NVP_ASSERT },
149 { .name = "f", NVP_DEASSERT },
150 { .name = NULL, .value = -1 }
153 static const Jim_Nvp nvp_error_target[] = {
154 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
155 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
156 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
157 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
158 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
159 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
160 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
161 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
162 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
163 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
164 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
165 { .value = -1, .name = NULL }
168 static const char *target_strerror_safe(int err)
170 const Jim_Nvp *n;
172 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
173 if (n->name == NULL)
174 return "unknown";
175 else
176 return n->name;
179 static const Jim_Nvp nvp_target_event[] = {
181 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
182 { .value = TARGET_EVENT_HALTED, .name = "halted" },
183 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
184 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
185 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
187 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
188 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
190 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
191 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
192 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
193 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
194 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
195 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
196 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
197 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
198 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
199 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
200 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
201 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
203 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
204 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
206 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
207 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
209 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
210 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
212 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
213 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
215 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
216 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
218 { .name = NULL, .value = -1 }
221 static const Jim_Nvp nvp_target_state[] = {
222 { .name = "unknown", .value = TARGET_UNKNOWN },
223 { .name = "running", .value = TARGET_RUNNING },
224 { .name = "halted", .value = TARGET_HALTED },
225 { .name = "reset", .value = TARGET_RESET },
226 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
227 { .name = NULL, .value = -1 },
230 static const Jim_Nvp nvp_target_debug_reason[] = {
231 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
232 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
233 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
234 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
235 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
236 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
237 { .name = "program-exit" , .value = DBG_REASON_EXIT },
238 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
239 { .name = NULL, .value = -1 },
242 static const Jim_Nvp nvp_target_endian[] = {
243 { .name = "big", .value = TARGET_BIG_ENDIAN },
244 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
245 { .name = "be", .value = TARGET_BIG_ENDIAN },
246 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
247 { .name = NULL, .value = -1 },
250 static const Jim_Nvp nvp_reset_modes[] = {
251 { .name = "unknown", .value = RESET_UNKNOWN },
252 { .name = "run" , .value = RESET_RUN },
253 { .name = "halt" , .value = RESET_HALT },
254 { .name = "init" , .value = RESET_INIT },
255 { .name = NULL , .value = -1 },
258 const char *debug_reason_name(struct target *t)
260 const char *cp;
262 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
263 t->debug_reason)->name;
264 if (!cp) {
265 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
266 cp = "(*BUG*unknown*BUG*)";
268 return cp;
271 const char *target_state_name(struct target *t)
273 const char *cp;
274 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
275 if (!cp) {
276 LOG_ERROR("Invalid target state: %d", (int)(t->state));
277 cp = "(*BUG*unknown*BUG*)";
279 return cp;
282 /* determine the number of the new target */
283 static int new_target_number(void)
285 struct target *t;
286 int x;
288 /* number is 0 based */
289 x = -1;
290 t = all_targets;
291 while (t) {
292 if (x < t->target_number)
293 x = t->target_number;
294 t = t->next;
296 return x + 1;
299 /* read a uint64_t from a buffer in target memory endianness */
300 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
302 if (target->endianness == TARGET_LITTLE_ENDIAN)
303 return le_to_h_u64(buffer);
304 else
305 return be_to_h_u64(buffer);
308 /* read a uint32_t from a buffer in target memory endianness */
309 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
311 if (target->endianness == TARGET_LITTLE_ENDIAN)
312 return le_to_h_u32(buffer);
313 else
314 return be_to_h_u32(buffer);
317 /* read a uint24_t from a buffer in target memory endianness */
318 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
320 if (target->endianness == TARGET_LITTLE_ENDIAN)
321 return le_to_h_u24(buffer);
322 else
323 return be_to_h_u24(buffer);
326 /* read a uint16_t from a buffer in target memory endianness */
327 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
329 if (target->endianness == TARGET_LITTLE_ENDIAN)
330 return le_to_h_u16(buffer);
331 else
332 return be_to_h_u16(buffer);
335 /* read a uint8_t from a buffer in target memory endianness */
336 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
338 return *buffer & 0x0ff;
341 /* write a uint64_t to a buffer in target memory endianness */
342 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
344 if (target->endianness == TARGET_LITTLE_ENDIAN)
345 h_u64_to_le(buffer, value);
346 else
347 h_u64_to_be(buffer, value);
350 /* write a uint32_t to a buffer in target memory endianness */
351 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
353 if (target->endianness == TARGET_LITTLE_ENDIAN)
354 h_u32_to_le(buffer, value);
355 else
356 h_u32_to_be(buffer, value);
359 /* write a uint24_t to a buffer in target memory endianness */
360 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
362 if (target->endianness == TARGET_LITTLE_ENDIAN)
363 h_u24_to_le(buffer, value);
364 else
365 h_u24_to_be(buffer, value);
368 /* write a uint16_t to a buffer in target memory endianness */
369 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
371 if (target->endianness == TARGET_LITTLE_ENDIAN)
372 h_u16_to_le(buffer, value);
373 else
374 h_u16_to_be(buffer, value);
377 /* write a uint8_t to a buffer in target memory endianness */
378 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
380 *buffer = value;
383 /* write a uint64_t array to a buffer in target memory endianness */
384 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
386 uint32_t i;
387 for (i = 0; i < count; i++)
388 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
391 /* write a uint32_t array to a buffer in target memory endianness */
392 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
394 uint32_t i;
395 for (i = 0; i < count; i++)
396 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
399 /* write a uint16_t array to a buffer in target memory endianness */
400 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
402 uint32_t i;
403 for (i = 0; i < count; i++)
404 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
407 /* write a uint64_t array to a buffer in target memory endianness */
408 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
410 uint32_t i;
411 for (i = 0; i < count; i++)
412 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
415 /* write a uint32_t array to a buffer in target memory endianness */
416 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
418 uint32_t i;
419 for (i = 0; i < count; i++)
420 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
423 /* write a uint16_t array to a buffer in target memory endianness */
424 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
426 uint32_t i;
427 for (i = 0; i < count; i++)
428 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
431 /* return a pointer to a configured target; id is name or number */
432 struct target *get_target(const char *id)
434 struct target *target;
436 /* try as tcltarget name */
437 for (target = all_targets; target; target = target->next) {
438 if (target_name(target) == NULL)
439 continue;
440 if (strcmp(id, target_name(target)) == 0)
441 return target;
444 /* It's OK to remove this fallback sometime after August 2010 or so */
446 /* no match, try as number */
447 unsigned num;
448 if (parse_uint(id, &num) != ERROR_OK)
449 return NULL;
451 for (target = all_targets; target; target = target->next) {
452 if (target->target_number == (int)num) {
453 LOG_WARNING("use '%s' as target identifier, not '%u'",
454 target_name(target), num);
455 return target;
459 return NULL;
462 /* returns a pointer to the n-th configured target */
463 static struct target *get_target_by_num(int num)
465 struct target *target = all_targets;
467 while (target) {
468 if (target->target_number == num)
469 return target;
470 target = target->next;
473 return NULL;
476 struct target *get_current_target(struct command_context *cmd_ctx)
478 struct target *target = get_target_by_num(cmd_ctx->current_target);
480 if (target == NULL) {
481 LOG_ERROR("BUG: current_target out of bounds");
482 exit(-1);
485 return target;
488 int target_poll(struct target *target)
490 int retval;
492 /* We can't poll until after examine */
493 if (!target_was_examined(target)) {
494 /* Fail silently lest we pollute the log */
495 return ERROR_FAIL;
498 retval = target->type->poll(target);
499 if (retval != ERROR_OK)
500 return retval;
502 if (target->halt_issued) {
503 if (target->state == TARGET_HALTED)
504 target->halt_issued = false;
505 else {
506 long long t = timeval_ms() - target->halt_issued_time;
507 if (t > DEFAULT_HALT_TIMEOUT) {
508 target->halt_issued = false;
509 LOG_INFO("Halt timed out, wake up GDB.");
510 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
515 return ERROR_OK;
518 int target_halt(struct target *target)
520 int retval;
521 /* We can't poll until after examine */
522 if (!target_was_examined(target)) {
523 LOG_ERROR("Target not examined yet");
524 return ERROR_FAIL;
527 retval = target->type->halt(target);
528 if (retval != ERROR_OK)
529 return retval;
531 target->halt_issued = true;
532 target->halt_issued_time = timeval_ms();
534 return ERROR_OK;
538 * Make the target (re)start executing using its saved execution
539 * context (possibly with some modifications).
541 * @param target Which target should start executing.
542 * @param current True to use the target's saved program counter instead
543 * of the address parameter
544 * @param address Optionally used as the program counter.
545 * @param handle_breakpoints True iff breakpoints at the resumption PC
546 * should be skipped. (For example, maybe execution was stopped by
547 * such a breakpoint, in which case it would be counterprodutive to
548 * let it re-trigger.
549 * @param debug_execution False if all working areas allocated by OpenOCD
550 * should be released and/or restored to their original contents.
551 * (This would for example be true to run some downloaded "helper"
552 * algorithm code, which resides in one such working buffer and uses
553 * another for data storage.)
555 * @todo Resolve the ambiguity about what the "debug_execution" flag
556 * signifies. For example, Target implementations don't agree on how
557 * it relates to invalidation of the register cache, or to whether
558 * breakpoints and watchpoints should be enabled. (It would seem wrong
559 * to enable breakpoints when running downloaded "helper" algorithms
560 * (debug_execution true), since the breakpoints would be set to match
561 * target firmware being debugged, not the helper algorithm.... and
562 * enabling them could cause such helpers to malfunction (for example,
563 * by overwriting data with a breakpoint instruction. On the other
564 * hand the infrastructure for running such helpers might use this
565 * procedure but rely on hardware breakpoint to detect termination.)
567 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
569 int retval;
571 /* We can't poll until after examine */
572 if (!target_was_examined(target)) {
573 LOG_ERROR("Target not examined yet");
574 return ERROR_FAIL;
577 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
579 /* note that resume *must* be asynchronous. The CPU can halt before
580 * we poll. The CPU can even halt at the current PC as a result of
581 * a software breakpoint being inserted by (a bug?) the application.
583 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
584 if (retval != ERROR_OK)
585 return retval;
587 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
589 return retval;
592 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
594 char buf[100];
595 int retval;
596 Jim_Nvp *n;
597 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
598 if (n->name == NULL) {
599 LOG_ERROR("invalid reset mode");
600 return ERROR_FAIL;
603 /* disable polling during reset to make reset event scripts
604 * more predictable, i.e. dr/irscan & pathmove in events will
605 * not have JTAG operations injected into the middle of a sequence.
607 bool save_poll = jtag_poll_get_enabled();
609 jtag_poll_set_enabled(false);
611 sprintf(buf, "ocd_process_reset %s", n->name);
612 retval = Jim_Eval(cmd_ctx->interp, buf);
614 jtag_poll_set_enabled(save_poll);
616 if (retval != JIM_OK) {
617 Jim_MakeErrorMessage(cmd_ctx->interp);
618 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
619 return ERROR_FAIL;
622 /* We want any events to be processed before the prompt */
623 retval = target_call_timer_callbacks_now();
625 struct target *target;
626 for (target = all_targets; target; target = target->next) {
627 target->type->check_reset(target);
628 target->running_alg = false;
631 return retval;
634 static int identity_virt2phys(struct target *target,
635 uint32_t virtual, uint32_t *physical)
637 *physical = virtual;
638 return ERROR_OK;
641 static int no_mmu(struct target *target, int *enabled)
643 *enabled = 0;
644 return ERROR_OK;
647 static int default_examine(struct target *target)
649 target_set_examined(target);
650 return ERROR_OK;
653 /* no check by default */
654 static int default_check_reset(struct target *target)
656 return ERROR_OK;
659 int target_examine_one(struct target *target)
661 return target->type->examine(target);
664 static int jtag_enable_callback(enum jtag_event event, void *priv)
666 struct target *target = priv;
668 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
669 return ERROR_OK;
671 jtag_unregister_event_callback(jtag_enable_callback, target);
673 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
675 int retval = target_examine_one(target);
676 if (retval != ERROR_OK)
677 return retval;
679 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
681 return retval;
684 /* Targets that correctly implement init + examine, i.e.
685 * no communication with target during init:
687 * XScale
689 int target_examine(void)
691 int retval = ERROR_OK;
692 struct target *target;
694 for (target = all_targets; target; target = target->next) {
695 /* defer examination, but don't skip it */
696 if (!target->tap->enabled) {
697 jtag_register_event_callback(jtag_enable_callback,
698 target);
699 continue;
702 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
704 retval = target_examine_one(target);
705 if (retval != ERROR_OK)
706 return retval;
708 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
710 return retval;
713 const char *target_type_name(struct target *target)
715 return target->type->name;
718 static int target_soft_reset_halt(struct target *target)
720 if (!target_was_examined(target)) {
721 LOG_ERROR("Target not examined yet");
722 return ERROR_FAIL;
724 if (!target->type->soft_reset_halt) {
725 LOG_ERROR("Target %s does not support soft_reset_halt",
726 target_name(target));
727 return ERROR_FAIL;
729 return target->type->soft_reset_halt(target);
733 * Downloads a target-specific native code algorithm to the target,
734 * and executes it. * Note that some targets may need to set up, enable,
735 * and tear down a breakpoint (hard or * soft) to detect algorithm
736 * termination, while others may support lower overhead schemes where
737 * soft breakpoints embedded in the algorithm automatically terminate the
738 * algorithm.
740 * @param target used to run the algorithm
741 * @param arch_info target-specific description of the algorithm.
743 int target_run_algorithm(struct target *target,
744 int num_mem_params, struct mem_param *mem_params,
745 int num_reg_params, struct reg_param *reg_param,
746 uint32_t entry_point, uint32_t exit_point,
747 int timeout_ms, void *arch_info)
749 int retval = ERROR_FAIL;
751 if (!target_was_examined(target)) {
752 LOG_ERROR("Target not examined yet");
753 goto done;
755 if (!target->type->run_algorithm) {
756 LOG_ERROR("Target type '%s' does not support %s",
757 target_type_name(target), __func__);
758 goto done;
761 target->running_alg = true;
762 retval = target->type->run_algorithm(target,
763 num_mem_params, mem_params,
764 num_reg_params, reg_param,
765 entry_point, exit_point, timeout_ms, arch_info);
766 target->running_alg = false;
768 done:
769 return retval;
773 * Downloads a target-specific native code algorithm to the target,
774 * executes and leaves it running.
776 * @param target used to run the algorithm
777 * @param arch_info target-specific description of the algorithm.
779 int target_start_algorithm(struct target *target,
780 int num_mem_params, struct mem_param *mem_params,
781 int num_reg_params, struct reg_param *reg_params,
782 uint32_t entry_point, uint32_t exit_point,
783 void *arch_info)
785 int retval = ERROR_FAIL;
787 if (!target_was_examined(target)) {
788 LOG_ERROR("Target not examined yet");
789 goto done;
791 if (!target->type->start_algorithm) {
792 LOG_ERROR("Target type '%s' does not support %s",
793 target_type_name(target), __func__);
794 goto done;
796 if (target->running_alg) {
797 LOG_ERROR("Target is already running an algorithm");
798 goto done;
801 target->running_alg = true;
802 retval = target->type->start_algorithm(target,
803 num_mem_params, mem_params,
804 num_reg_params, reg_params,
805 entry_point, exit_point, arch_info);
807 done:
808 return retval;
812 * Waits for an algorithm started with target_start_algorithm() to complete.
814 * @param target used to run the algorithm
815 * @param arch_info target-specific description of the algorithm.
817 int target_wait_algorithm(struct target *target,
818 int num_mem_params, struct mem_param *mem_params,
819 int num_reg_params, struct reg_param *reg_params,
820 uint32_t exit_point, int timeout_ms,
821 void *arch_info)
823 int retval = ERROR_FAIL;
825 if (!target->type->wait_algorithm) {
826 LOG_ERROR("Target type '%s' does not support %s",
827 target_type_name(target), __func__);
828 goto done;
830 if (!target->running_alg) {
831 LOG_ERROR("Target is not running an algorithm");
832 goto done;
835 retval = target->type->wait_algorithm(target,
836 num_mem_params, mem_params,
837 num_reg_params, reg_params,
838 exit_point, timeout_ms, arch_info);
839 if (retval != ERROR_TARGET_TIMEOUT)
840 target->running_alg = false;
842 done:
843 return retval;
847 * Executes a target-specific native code algorithm in the target.
848 * It differs from target_run_algorithm in that the algorithm is asynchronous.
849 * Because of this it requires an compliant algorithm:
850 * see contrib/loaders/flash/stm32f1x.S for example.
852 * @param target used to run the algorithm
855 int target_run_flash_async_algorithm(struct target *target,
856 const uint8_t *buffer, uint32_t count, int block_size,
857 int num_mem_params, struct mem_param *mem_params,
858 int num_reg_params, struct reg_param *reg_params,
859 uint32_t buffer_start, uint32_t buffer_size,
860 uint32_t entry_point, uint32_t exit_point, void *arch_info)
862 int retval;
863 int timeout = 0;
865 /* Set up working area. First word is write pointer, second word is read pointer,
866 * rest is fifo data area. */
867 uint32_t wp_addr = buffer_start;
868 uint32_t rp_addr = buffer_start + 4;
869 uint32_t fifo_start_addr = buffer_start + 8;
870 uint32_t fifo_end_addr = buffer_start + buffer_size;
872 uint32_t wp = fifo_start_addr;
873 uint32_t rp = fifo_start_addr;
875 /* validate block_size is 2^n */
876 assert(!block_size || !(block_size & (block_size - 1)));
878 retval = target_write_u32(target, wp_addr, wp);
879 if (retval != ERROR_OK)
880 return retval;
881 retval = target_write_u32(target, rp_addr, rp);
882 if (retval != ERROR_OK)
883 return retval;
885 /* Start up algorithm on target and let it idle while writing the first chunk */
886 retval = target_start_algorithm(target, num_mem_params, mem_params,
887 num_reg_params, reg_params,
888 entry_point,
889 exit_point,
890 arch_info);
892 if (retval != ERROR_OK) {
893 LOG_ERROR("error starting target flash write algorithm");
894 return retval;
897 while (count > 0) {
899 retval = target_read_u32(target, rp_addr, &rp);
900 if (retval != ERROR_OK) {
901 LOG_ERROR("failed to get read pointer");
902 break;
905 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
907 if (rp == 0) {
908 LOG_ERROR("flash write algorithm aborted by target");
909 retval = ERROR_FLASH_OPERATION_FAILED;
910 break;
913 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
914 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
915 break;
918 /* Count the number of bytes available in the fifo without
919 * crossing the wrap around. Make sure to not fill it completely,
920 * because that would make wp == rp and that's the empty condition. */
921 uint32_t thisrun_bytes;
922 if (rp > wp)
923 thisrun_bytes = rp - wp - block_size;
924 else if (rp > fifo_start_addr)
925 thisrun_bytes = fifo_end_addr - wp;
926 else
927 thisrun_bytes = fifo_end_addr - wp - block_size;
929 if (thisrun_bytes == 0) {
930 /* Throttle polling a bit if transfer is (much) faster than flash
931 * programming. The exact delay shouldn't matter as long as it's
932 * less than buffer size / flash speed. This is very unlikely to
933 * run when using high latency connections such as USB. */
934 alive_sleep(10);
936 /* to stop an infinite loop on some targets check and increment a timeout
937 * this issue was observed on a stellaris using the new ICDI interface */
938 if (timeout++ >= 500) {
939 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
940 return ERROR_FLASH_OPERATION_FAILED;
942 continue;
945 /* reset our timeout */
946 timeout = 0;
948 /* Limit to the amount of data we actually want to write */
949 if (thisrun_bytes > count * block_size)
950 thisrun_bytes = count * block_size;
952 /* Write data to fifo */
953 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
954 if (retval != ERROR_OK)
955 break;
957 /* Update counters and wrap write pointer */
958 buffer += thisrun_bytes;
959 count -= thisrun_bytes / block_size;
960 wp += thisrun_bytes;
961 if (wp >= fifo_end_addr)
962 wp = fifo_start_addr;
964 /* Store updated write pointer to target */
965 retval = target_write_u32(target, wp_addr, wp);
966 if (retval != ERROR_OK)
967 break;
970 if (retval != ERROR_OK) {
971 /* abort flash write algorithm on target */
972 target_write_u32(target, wp_addr, 0);
975 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
976 num_reg_params, reg_params,
977 exit_point,
978 10000,
979 arch_info);
981 if (retval2 != ERROR_OK) {
982 LOG_ERROR("error waiting for target flash write algorithm");
983 retval = retval2;
986 return retval;
989 int target_read_memory(struct target *target,
990 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
992 if (!target_was_examined(target)) {
993 LOG_ERROR("Target not examined yet");
994 return ERROR_FAIL;
996 return target->type->read_memory(target, address, size, count, buffer);
999 int target_read_phys_memory(struct target *target,
1000 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1002 if (!target_was_examined(target)) {
1003 LOG_ERROR("Target not examined yet");
1004 return ERROR_FAIL;
1006 return target->type->read_phys_memory(target, address, size, count, buffer);
1009 int target_write_memory(struct target *target,
1010 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1012 if (!target_was_examined(target)) {
1013 LOG_ERROR("Target not examined yet");
1014 return ERROR_FAIL;
1016 return target->type->write_memory(target, address, size, count, buffer);
1019 int target_write_phys_memory(struct target *target,
1020 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1022 if (!target_was_examined(target)) {
1023 LOG_ERROR("Target not examined yet");
1024 return ERROR_FAIL;
1026 return target->type->write_phys_memory(target, address, size, count, buffer);
1029 int target_add_breakpoint(struct target *target,
1030 struct breakpoint *breakpoint)
1032 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1033 LOG_WARNING("target %s is not halted", target_name(target));
1034 return ERROR_TARGET_NOT_HALTED;
1036 return target->type->add_breakpoint(target, breakpoint);
1039 int target_add_context_breakpoint(struct target *target,
1040 struct breakpoint *breakpoint)
1042 if (target->state != TARGET_HALTED) {
1043 LOG_WARNING("target %s is not halted", target_name(target));
1044 return ERROR_TARGET_NOT_HALTED;
1046 return target->type->add_context_breakpoint(target, breakpoint);
1049 int target_add_hybrid_breakpoint(struct target *target,
1050 struct breakpoint *breakpoint)
1052 if (target->state != TARGET_HALTED) {
1053 LOG_WARNING("target %s is not halted", target_name(target));
1054 return ERROR_TARGET_NOT_HALTED;
1056 return target->type->add_hybrid_breakpoint(target, breakpoint);
1059 int target_remove_breakpoint(struct target *target,
1060 struct breakpoint *breakpoint)
1062 return target->type->remove_breakpoint(target, breakpoint);
1065 int target_add_watchpoint(struct target *target,
1066 struct watchpoint *watchpoint)
1068 if (target->state != TARGET_HALTED) {
1069 LOG_WARNING("target %s is not halted", target_name(target));
1070 return ERROR_TARGET_NOT_HALTED;
1072 return target->type->add_watchpoint(target, watchpoint);
1074 int target_remove_watchpoint(struct target *target,
1075 struct watchpoint *watchpoint)
1077 return target->type->remove_watchpoint(target, watchpoint);
1079 int target_hit_watchpoint(struct target *target,
1080 struct watchpoint **hit_watchpoint)
1082 if (target->state != TARGET_HALTED) {
1083 LOG_WARNING("target %s is not halted", target->cmd_name);
1084 return ERROR_TARGET_NOT_HALTED;
1087 if (target->type->hit_watchpoint == NULL) {
1088 /* For backward compatible, if hit_watchpoint is not implemented,
1089 * return ERROR_FAIL such that gdb_server will not take the nonsense
1090 * information. */
1091 return ERROR_FAIL;
1094 return target->type->hit_watchpoint(target, hit_watchpoint);
1097 int target_get_gdb_reg_list(struct target *target,
1098 struct reg **reg_list[], int *reg_list_size,
1099 enum target_register_class reg_class)
1101 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1103 int target_step(struct target *target,
1104 int current, uint32_t address, int handle_breakpoints)
1106 return target->type->step(target, current, address, handle_breakpoints);
1109 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1111 if (target->state != TARGET_HALTED) {
1112 LOG_WARNING("target %s is not halted", target->cmd_name);
1113 return ERROR_TARGET_NOT_HALTED;
1115 return target->type->get_gdb_fileio_info(target, fileio_info);
1118 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1120 if (target->state != TARGET_HALTED) {
1121 LOG_WARNING("target %s is not halted", target->cmd_name);
1122 return ERROR_TARGET_NOT_HALTED;
1124 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1127 int target_profiling(struct target *target, uint32_t *samples,
1128 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1130 if (target->state != TARGET_HALTED) {
1131 LOG_WARNING("target %s is not halted", target->cmd_name);
1132 return ERROR_TARGET_NOT_HALTED;
1134 return target->type->profiling(target, samples, max_num_samples,
1135 num_samples, seconds);
1139 * Reset the @c examined flag for the given target.
1140 * Pure paranoia -- targets are zeroed on allocation.
1142 static void target_reset_examined(struct target *target)
1144 target->examined = false;
1147 static int err_read_phys_memory(struct target *target, uint32_t address,
1148 uint32_t size, uint32_t count, uint8_t *buffer)
1150 LOG_ERROR("Not implemented: %s", __func__);
1151 return ERROR_FAIL;
1154 static int err_write_phys_memory(struct target *target, uint32_t address,
1155 uint32_t size, uint32_t count, const uint8_t *buffer)
1157 LOG_ERROR("Not implemented: %s", __func__);
1158 return ERROR_FAIL;
1161 static int handle_target(void *priv);
1163 static int target_init_one(struct command_context *cmd_ctx,
1164 struct target *target)
1166 target_reset_examined(target);
1168 struct target_type *type = target->type;
1169 if (type->examine == NULL)
1170 type->examine = default_examine;
1172 if (type->check_reset == NULL)
1173 type->check_reset = default_check_reset;
1175 assert(type->init_target != NULL);
1177 int retval = type->init_target(cmd_ctx, target);
1178 if (ERROR_OK != retval) {
1179 LOG_ERROR("target '%s' init failed", target_name(target));
1180 return retval;
1183 /* Sanity-check MMU support ... stub in what we must, to help
1184 * implement it in stages, but warn if we need to do so.
1186 if (type->mmu) {
1187 if (type->write_phys_memory == NULL) {
1188 LOG_ERROR("type '%s' is missing write_phys_memory",
1189 type->name);
1190 type->write_phys_memory = err_write_phys_memory;
1192 if (type->read_phys_memory == NULL) {
1193 LOG_ERROR("type '%s' is missing read_phys_memory",
1194 type->name);
1195 type->read_phys_memory = err_read_phys_memory;
1197 if (type->virt2phys == NULL) {
1198 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1199 type->virt2phys = identity_virt2phys;
1201 } else {
1202 /* Make sure no-MMU targets all behave the same: make no
1203 * distinction between physical and virtual addresses, and
1204 * ensure that virt2phys() is always an identity mapping.
1206 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1207 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1209 type->mmu = no_mmu;
1210 type->write_phys_memory = type->write_memory;
1211 type->read_phys_memory = type->read_memory;
1212 type->virt2phys = identity_virt2phys;
1215 if (target->type->read_buffer == NULL)
1216 target->type->read_buffer = target_read_buffer_default;
1218 if (target->type->write_buffer == NULL)
1219 target->type->write_buffer = target_write_buffer_default;
1221 if (target->type->get_gdb_fileio_info == NULL)
1222 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1224 if (target->type->gdb_fileio_end == NULL)
1225 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1227 if (target->type->profiling == NULL)
1228 target->type->profiling = target_profiling_default;
1230 return ERROR_OK;
1233 static int target_init(struct command_context *cmd_ctx)
1235 struct target *target;
1236 int retval;
1238 for (target = all_targets; target; target = target->next) {
1239 retval = target_init_one(cmd_ctx, target);
1240 if (ERROR_OK != retval)
1241 return retval;
1244 if (!all_targets)
1245 return ERROR_OK;
1247 retval = target_register_user_commands(cmd_ctx);
1248 if (ERROR_OK != retval)
1249 return retval;
1251 retval = target_register_timer_callback(&handle_target,
1252 polling_interval, 1, cmd_ctx->interp);
1253 if (ERROR_OK != retval)
1254 return retval;
1256 return ERROR_OK;
1259 COMMAND_HANDLER(handle_target_init_command)
1261 int retval;
1263 if (CMD_ARGC != 0)
1264 return ERROR_COMMAND_SYNTAX_ERROR;
1266 static bool target_initialized;
1267 if (target_initialized) {
1268 LOG_INFO("'target init' has already been called");
1269 return ERROR_OK;
1271 target_initialized = true;
1273 retval = command_run_line(CMD_CTX, "init_targets");
1274 if (ERROR_OK != retval)
1275 return retval;
1277 retval = command_run_line(CMD_CTX, "init_target_events");
1278 if (ERROR_OK != retval)
1279 return retval;
1281 retval = command_run_line(CMD_CTX, "init_board");
1282 if (ERROR_OK != retval)
1283 return retval;
1285 LOG_DEBUG("Initializing targets...");
1286 return target_init(CMD_CTX);
1289 int target_register_event_callback(int (*callback)(struct target *target,
1290 enum target_event event, void *priv), void *priv)
1292 struct target_event_callback **callbacks_p = &target_event_callbacks;
1294 if (callback == NULL)
1295 return ERROR_COMMAND_SYNTAX_ERROR;
1297 if (*callbacks_p) {
1298 while ((*callbacks_p)->next)
1299 callbacks_p = &((*callbacks_p)->next);
1300 callbacks_p = &((*callbacks_p)->next);
1303 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1304 (*callbacks_p)->callback = callback;
1305 (*callbacks_p)->priv = priv;
1306 (*callbacks_p)->next = NULL;
1308 return ERROR_OK;
1311 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1313 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1314 struct timeval now;
1316 if (callback == NULL)
1317 return ERROR_COMMAND_SYNTAX_ERROR;
1319 if (*callbacks_p) {
1320 while ((*callbacks_p)->next)
1321 callbacks_p = &((*callbacks_p)->next);
1322 callbacks_p = &((*callbacks_p)->next);
1325 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1326 (*callbacks_p)->callback = callback;
1327 (*callbacks_p)->periodic = periodic;
1328 (*callbacks_p)->time_ms = time_ms;
1330 gettimeofday(&now, NULL);
1331 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1332 time_ms -= (time_ms % 1000);
1333 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1334 if ((*callbacks_p)->when.tv_usec > 1000000) {
1335 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1336 (*callbacks_p)->when.tv_sec += 1;
1339 (*callbacks_p)->priv = priv;
1340 (*callbacks_p)->next = NULL;
1342 return ERROR_OK;
1345 int target_unregister_event_callback(int (*callback)(struct target *target,
1346 enum target_event event, void *priv), void *priv)
1348 struct target_event_callback **p = &target_event_callbacks;
1349 struct target_event_callback *c = target_event_callbacks;
1351 if (callback == NULL)
1352 return ERROR_COMMAND_SYNTAX_ERROR;
1354 while (c) {
1355 struct target_event_callback *next = c->next;
1356 if ((c->callback == callback) && (c->priv == priv)) {
1357 *p = next;
1358 free(c);
1359 return ERROR_OK;
1360 } else
1361 p = &(c->next);
1362 c = next;
1365 return ERROR_OK;
1368 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1370 struct target_timer_callback **p = &target_timer_callbacks;
1371 struct target_timer_callback *c = target_timer_callbacks;
1373 if (callback == NULL)
1374 return ERROR_COMMAND_SYNTAX_ERROR;
1376 while (c) {
1377 struct target_timer_callback *next = c->next;
1378 if ((c->callback == callback) && (c->priv == priv)) {
1379 *p = next;
1380 free(c);
1381 return ERROR_OK;
1382 } else
1383 p = &(c->next);
1384 c = next;
1387 return ERROR_OK;
1390 int target_call_event_callbacks(struct target *target, enum target_event event)
1392 struct target_event_callback *callback = target_event_callbacks;
1393 struct target_event_callback *next_callback;
1395 if (event == TARGET_EVENT_HALTED) {
1396 /* execute early halted first */
1397 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1400 LOG_DEBUG("target event %i (%s)", event,
1401 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1403 target_handle_event(target, event);
1405 while (callback) {
1406 next_callback = callback->next;
1407 callback->callback(target, event, callback->priv);
1408 callback = next_callback;
1411 return ERROR_OK;
1414 static int target_timer_callback_periodic_restart(
1415 struct target_timer_callback *cb, struct timeval *now)
1417 int time_ms = cb->time_ms;
1418 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1419 time_ms -= (time_ms % 1000);
1420 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1421 if (cb->when.tv_usec > 1000000) {
1422 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1423 cb->when.tv_sec += 1;
1425 return ERROR_OK;
1428 static int target_call_timer_callback(struct target_timer_callback *cb,
1429 struct timeval *now)
1431 cb->callback(cb->priv);
1433 if (cb->periodic)
1434 return target_timer_callback_periodic_restart(cb, now);
1436 return target_unregister_timer_callback(cb->callback, cb->priv);
1439 static int target_call_timer_callbacks_check_time(int checktime)
1441 keep_alive();
1443 struct timeval now;
1444 gettimeofday(&now, NULL);
1446 struct target_timer_callback *callback = target_timer_callbacks;
1447 while (callback) {
1448 /* cleaning up may unregister and free this callback */
1449 struct target_timer_callback *next_callback = callback->next;
1451 bool call_it = callback->callback &&
1452 ((!checktime && callback->periodic) ||
1453 now.tv_sec > callback->when.tv_sec ||
1454 (now.tv_sec == callback->when.tv_sec &&
1455 now.tv_usec >= callback->when.tv_usec));
1457 if (call_it) {
1458 int retval = target_call_timer_callback(callback, &now);
1459 if (retval != ERROR_OK)
1460 return retval;
1463 callback = next_callback;
1466 return ERROR_OK;
1469 int target_call_timer_callbacks(void)
1471 return target_call_timer_callbacks_check_time(1);
1474 /* invoke periodic callbacks immediately */
1475 int target_call_timer_callbacks_now(void)
1477 return target_call_timer_callbacks_check_time(0);
1480 /* Prints the working area layout for debug purposes */
1481 static void print_wa_layout(struct target *target)
1483 struct working_area *c = target->working_areas;
1485 while (c) {
1486 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1487 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1488 c->address, c->address + c->size - 1, c->size);
1489 c = c->next;
1493 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1494 static void target_split_working_area(struct working_area *area, uint32_t size)
1496 assert(area->free); /* Shouldn't split an allocated area */
1497 assert(size <= area->size); /* Caller should guarantee this */
1499 /* Split only if not already the right size */
1500 if (size < area->size) {
1501 struct working_area *new_wa = malloc(sizeof(*new_wa));
1503 if (new_wa == NULL)
1504 return;
1506 new_wa->next = area->next;
1507 new_wa->size = area->size - size;
1508 new_wa->address = area->address + size;
1509 new_wa->backup = NULL;
1510 new_wa->user = NULL;
1511 new_wa->free = true;
1513 area->next = new_wa;
1514 area->size = size;
1516 /* If backup memory was allocated to this area, it has the wrong size
1517 * now so free it and it will be reallocated if/when needed */
1518 if (area->backup) {
1519 free(area->backup);
1520 area->backup = NULL;
1525 /* Merge all adjacent free areas into one */
1526 static void target_merge_working_areas(struct target *target)
1528 struct working_area *c = target->working_areas;
1530 while (c && c->next) {
1531 assert(c->next->address == c->address + c->size); /* This is an invariant */
1533 /* Find two adjacent free areas */
1534 if (c->free && c->next->free) {
1535 /* Merge the last into the first */
1536 c->size += c->next->size;
1538 /* Remove the last */
1539 struct working_area *to_be_freed = c->next;
1540 c->next = c->next->next;
1541 if (to_be_freed->backup)
1542 free(to_be_freed->backup);
1543 free(to_be_freed);
1545 /* If backup memory was allocated to the remaining area, it's has
1546 * the wrong size now */
1547 if (c->backup) {
1548 free(c->backup);
1549 c->backup = NULL;
1551 } else {
1552 c = c->next;
1557 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1559 /* Reevaluate working area address based on MMU state*/
1560 if (target->working_areas == NULL) {
1561 int retval;
1562 int enabled;
1564 retval = target->type->mmu(target, &enabled);
1565 if (retval != ERROR_OK)
1566 return retval;
1568 if (!enabled) {
1569 if (target->working_area_phys_spec) {
1570 LOG_DEBUG("MMU disabled, using physical "
1571 "address for working memory 0x%08"PRIx32,
1572 target->working_area_phys);
1573 target->working_area = target->working_area_phys;
1574 } else {
1575 LOG_ERROR("No working memory available. "
1576 "Specify -work-area-phys to target.");
1577 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1579 } else {
1580 if (target->working_area_virt_spec) {
1581 LOG_DEBUG("MMU enabled, using virtual "
1582 "address for working memory 0x%08"PRIx32,
1583 target->working_area_virt);
1584 target->working_area = target->working_area_virt;
1585 } else {
1586 LOG_ERROR("No working memory available. "
1587 "Specify -work-area-virt to target.");
1588 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1592 /* Set up initial working area on first call */
1593 struct working_area *new_wa = malloc(sizeof(*new_wa));
1594 if (new_wa) {
1595 new_wa->next = NULL;
1596 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1597 new_wa->address = target->working_area;
1598 new_wa->backup = NULL;
1599 new_wa->user = NULL;
1600 new_wa->free = true;
1603 target->working_areas = new_wa;
1606 /* only allocate multiples of 4 byte */
1607 if (size % 4)
1608 size = (size + 3) & (~3UL);
1610 struct working_area *c = target->working_areas;
1612 /* Find the first large enough working area */
1613 while (c) {
1614 if (c->free && c->size >= size)
1615 break;
1616 c = c->next;
1619 if (c == NULL)
1620 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1622 /* Split the working area into the requested size */
1623 target_split_working_area(c, size);
1625 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1627 if (target->backup_working_area) {
1628 if (c->backup == NULL) {
1629 c->backup = malloc(c->size);
1630 if (c->backup == NULL)
1631 return ERROR_FAIL;
1634 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1635 if (retval != ERROR_OK)
1636 return retval;
1639 /* mark as used, and return the new (reused) area */
1640 c->free = false;
1641 *area = c;
1643 /* user pointer */
1644 c->user = area;
1646 print_wa_layout(target);
1648 return ERROR_OK;
1651 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1653 int retval;
1655 retval = target_alloc_working_area_try(target, size, area);
1656 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1657 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1658 return retval;
1662 static int target_restore_working_area(struct target *target, struct working_area *area)
1664 int retval = ERROR_OK;
1666 if (target->backup_working_area && area->backup != NULL) {
1667 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1668 if (retval != ERROR_OK)
1669 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1670 area->size, area->address);
1673 return retval;
1676 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1677 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1679 int retval = ERROR_OK;
1681 if (area->free)
1682 return retval;
1684 if (restore) {
1685 retval = target_restore_working_area(target, area);
1686 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1687 if (retval != ERROR_OK)
1688 return retval;
1691 area->free = true;
1693 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1694 area->size, area->address);
1696 /* mark user pointer invalid */
1697 /* TODO: Is this really safe? It points to some previous caller's memory.
1698 * How could we know that the area pointer is still in that place and not
1699 * some other vital data? What's the purpose of this, anyway? */
1700 *area->user = NULL;
1701 area->user = NULL;
1703 target_merge_working_areas(target);
1705 print_wa_layout(target);
1707 return retval;
1710 int target_free_working_area(struct target *target, struct working_area *area)
1712 return target_free_working_area_restore(target, area, 1);
1715 /* free resources and restore memory, if restoring memory fails,
1716 * free up resources anyway
1718 static void target_free_all_working_areas_restore(struct target *target, int restore)
1720 struct working_area *c = target->working_areas;
1722 LOG_DEBUG("freeing all working areas");
1724 /* Loop through all areas, restoring the allocated ones and marking them as free */
1725 while (c) {
1726 if (!c->free) {
1727 if (restore)
1728 target_restore_working_area(target, c);
1729 c->free = true;
1730 *c->user = NULL; /* Same as above */
1731 c->user = NULL;
1733 c = c->next;
1736 /* Run a merge pass to combine all areas into one */
1737 target_merge_working_areas(target);
1739 print_wa_layout(target);
1742 void target_free_all_working_areas(struct target *target)
1744 target_free_all_working_areas_restore(target, 1);
1747 /* Find the largest number of bytes that can be allocated */
1748 uint32_t target_get_working_area_avail(struct target *target)
1750 struct working_area *c = target->working_areas;
1751 uint32_t max_size = 0;
1753 if (c == NULL)
1754 return target->working_area_size;
1756 while (c) {
1757 if (c->free && max_size < c->size)
1758 max_size = c->size;
1760 c = c->next;
1763 return max_size;
1766 int target_arch_state(struct target *target)
1768 int retval;
1769 if (target == NULL) {
1770 LOG_USER("No target has been configured");
1771 return ERROR_OK;
1774 LOG_USER("target state: %s", target_state_name(target));
1776 if (target->state != TARGET_HALTED)
1777 return ERROR_OK;
1779 retval = target->type->arch_state(target);
1780 return retval;
1783 static int target_get_gdb_fileio_info_default(struct target *target,
1784 struct gdb_fileio_info *fileio_info)
1786 /* If target does not support semi-hosting function, target
1787 has no need to provide .get_gdb_fileio_info callback.
1788 It just return ERROR_FAIL and gdb_server will return "Txx"
1789 as target halted every time. */
1790 return ERROR_FAIL;
1793 static int target_gdb_fileio_end_default(struct target *target,
1794 int retcode, int fileio_errno, bool ctrl_c)
1796 return ERROR_OK;
1799 static int target_profiling_default(struct target *target, uint32_t *samples,
1800 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1802 struct timeval timeout, now;
1804 gettimeofday(&timeout, NULL);
1805 timeval_add_time(&timeout, seconds, 0);
1807 LOG_INFO("Starting profiling. Halting and resuming the"
1808 " target as often as we can...");
1810 uint32_t sample_count = 0;
1811 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1812 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1814 int retval = ERROR_OK;
1815 for (;;) {
1816 target_poll(target);
1817 if (target->state == TARGET_HALTED) {
1818 uint32_t t = *((uint32_t *)reg->value);
1819 samples[sample_count++] = t;
1820 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1821 retval = target_resume(target, 1, 0, 0, 0);
1822 target_poll(target);
1823 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1824 } else if (target->state == TARGET_RUNNING) {
1825 /* We want to quickly sample the PC. */
1826 retval = target_halt(target);
1827 } else {
1828 LOG_INFO("Target not halted or running");
1829 retval = ERROR_OK;
1830 break;
1833 if (retval != ERROR_OK)
1834 break;
1836 gettimeofday(&now, NULL);
1837 if ((sample_count >= max_num_samples) ||
1838 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1839 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1840 break;
1844 *num_samples = sample_count;
1845 return retval;
1848 /* Single aligned words are guaranteed to use 16 or 32 bit access
1849 * mode respectively, otherwise data is handled as quickly as
1850 * possible
1852 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1854 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1855 (int)size, (unsigned)address);
1857 if (!target_was_examined(target)) {
1858 LOG_ERROR("Target not examined yet");
1859 return ERROR_FAIL;
1862 if (size == 0)
1863 return ERROR_OK;
1865 if ((address + size - 1) < address) {
1866 /* GDB can request this when e.g. PC is 0xfffffffc*/
1867 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1868 (unsigned)address,
1869 (unsigned)size);
1870 return ERROR_FAIL;
1873 return target->type->write_buffer(target, address, size, buffer);
1876 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1878 uint32_t size;
1880 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1881 * will have something to do with the size we leave to it. */
1882 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1883 if (address & size) {
1884 int retval = target_write_memory(target, address, size, 1, buffer);
1885 if (retval != ERROR_OK)
1886 return retval;
1887 address += size;
1888 count -= size;
1889 buffer += size;
1893 /* Write the data with as large access size as possible. */
1894 for (; size > 0; size /= 2) {
1895 uint32_t aligned = count - count % size;
1896 if (aligned > 0) {
1897 int retval = target_write_memory(target, address, size, aligned / size, buffer);
1898 if (retval != ERROR_OK)
1899 return retval;
1900 address += aligned;
1901 count -= aligned;
1902 buffer += aligned;
1906 return ERROR_OK;
1909 /* Single aligned words are guaranteed to use 16 or 32 bit access
1910 * mode respectively, otherwise data is handled as quickly as
1911 * possible
1913 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1915 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1916 (int)size, (unsigned)address);
1918 if (!target_was_examined(target)) {
1919 LOG_ERROR("Target not examined yet");
1920 return ERROR_FAIL;
1923 if (size == 0)
1924 return ERROR_OK;
1926 if ((address + size - 1) < address) {
1927 /* GDB can request this when e.g. PC is 0xfffffffc*/
1928 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1929 address,
1930 size);
1931 return ERROR_FAIL;
1934 return target->type->read_buffer(target, address, size, buffer);
1937 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1939 uint32_t size;
1941 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1942 * will have something to do with the size we leave to it. */
1943 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1944 if (address & size) {
1945 int retval = target_read_memory(target, address, size, 1, buffer);
1946 if (retval != ERROR_OK)
1947 return retval;
1948 address += size;
1949 count -= size;
1950 buffer += size;
1954 /* Read the data with as large access size as possible. */
1955 for (; size > 0; size /= 2) {
1956 uint32_t aligned = count - count % size;
1957 if (aligned > 0) {
1958 int retval = target_read_memory(target, address, size, aligned / size, buffer);
1959 if (retval != ERROR_OK)
1960 return retval;
1961 address += aligned;
1962 count -= aligned;
1963 buffer += aligned;
1967 return ERROR_OK;
1970 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1972 uint8_t *buffer;
1973 int retval;
1974 uint32_t i;
1975 uint32_t checksum = 0;
1976 if (!target_was_examined(target)) {
1977 LOG_ERROR("Target not examined yet");
1978 return ERROR_FAIL;
1981 retval = target->type->checksum_memory(target, address, size, &checksum);
1982 if (retval != ERROR_OK) {
1983 buffer = malloc(size);
1984 if (buffer == NULL) {
1985 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1986 return ERROR_COMMAND_SYNTAX_ERROR;
1988 retval = target_read_buffer(target, address, size, buffer);
1989 if (retval != ERROR_OK) {
1990 free(buffer);
1991 return retval;
1994 /* convert to target endianness */
1995 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1996 uint32_t target_data;
1997 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1998 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2001 retval = image_calculate_checksum(buffer, size, &checksum);
2002 free(buffer);
2005 *crc = checksum;
2007 return retval;
2010 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2012 int retval;
2013 if (!target_was_examined(target)) {
2014 LOG_ERROR("Target not examined yet");
2015 return ERROR_FAIL;
2018 if (target->type->blank_check_memory == 0)
2019 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2021 retval = target->type->blank_check_memory(target, address, size, blank);
2023 return retval;
2026 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2028 uint8_t value_buf[8];
2029 if (!target_was_examined(target)) {
2030 LOG_ERROR("Target not examined yet");
2031 return ERROR_FAIL;
2034 int retval = target_read_memory(target, address, 8, 1, value_buf);
2036 if (retval == ERROR_OK) {
2037 *value = target_buffer_get_u64(target, value_buf);
2038 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2039 address,
2040 *value);
2041 } else {
2042 *value = 0x0;
2043 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2044 address);
2047 return retval;
2050 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2052 uint8_t value_buf[4];
2053 if (!target_was_examined(target)) {
2054 LOG_ERROR("Target not examined yet");
2055 return ERROR_FAIL;
2058 int retval = target_read_memory(target, address, 4, 1, value_buf);
2060 if (retval == ERROR_OK) {
2061 *value = target_buffer_get_u32(target, value_buf);
2062 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2063 address,
2064 *value);
2065 } else {
2066 *value = 0x0;
2067 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2068 address);
2071 return retval;
2074 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2076 uint8_t value_buf[2];
2077 if (!target_was_examined(target)) {
2078 LOG_ERROR("Target not examined yet");
2079 return ERROR_FAIL;
2082 int retval = target_read_memory(target, address, 2, 1, value_buf);
2084 if (retval == ERROR_OK) {
2085 *value = target_buffer_get_u16(target, value_buf);
2086 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2087 address,
2088 *value);
2089 } else {
2090 *value = 0x0;
2091 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2092 address);
2095 return retval;
2098 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2100 if (!target_was_examined(target)) {
2101 LOG_ERROR("Target not examined yet");
2102 return ERROR_FAIL;
2105 int retval = target_read_memory(target, address, 1, 1, value);
2107 if (retval == ERROR_OK) {
2108 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2109 address,
2110 *value);
2111 } else {
2112 *value = 0x0;
2113 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2114 address);
2117 return retval;
2120 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2122 int retval;
2123 uint8_t value_buf[8];
2124 if (!target_was_examined(target)) {
2125 LOG_ERROR("Target not examined yet");
2126 return ERROR_FAIL;
2129 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2130 address,
2131 value);
2133 target_buffer_set_u64(target, value_buf, value);
2134 retval = target_write_memory(target, address, 8, 1, value_buf);
2135 if (retval != ERROR_OK)
2136 LOG_DEBUG("failed: %i", retval);
2138 return retval;
2141 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2143 int retval;
2144 uint8_t value_buf[4];
2145 if (!target_was_examined(target)) {
2146 LOG_ERROR("Target not examined yet");
2147 return ERROR_FAIL;
2150 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2151 address,
2152 value);
2154 target_buffer_set_u32(target, value_buf, value);
2155 retval = target_write_memory(target, address, 4, 1, value_buf);
2156 if (retval != ERROR_OK)
2157 LOG_DEBUG("failed: %i", retval);
2159 return retval;
2162 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2164 int retval;
2165 uint8_t value_buf[2];
2166 if (!target_was_examined(target)) {
2167 LOG_ERROR("Target not examined yet");
2168 return ERROR_FAIL;
2171 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2172 address,
2173 value);
2175 target_buffer_set_u16(target, value_buf, value);
2176 retval = target_write_memory(target, address, 2, 1, value_buf);
2177 if (retval != ERROR_OK)
2178 LOG_DEBUG("failed: %i", retval);
2180 return retval;
2183 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2185 int retval;
2186 if (!target_was_examined(target)) {
2187 LOG_ERROR("Target not examined yet");
2188 return ERROR_FAIL;
2191 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2192 address, value);
2194 retval = target_write_memory(target, address, 1, 1, &value);
2195 if (retval != ERROR_OK)
2196 LOG_DEBUG("failed: %i", retval);
2198 return retval;
2201 static int find_target(struct command_context *cmd_ctx, const char *name)
2203 struct target *target = get_target(name);
2204 if (target == NULL) {
2205 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2206 return ERROR_FAIL;
2208 if (!target->tap->enabled) {
2209 LOG_USER("Target: TAP %s is disabled, "
2210 "can't be the current target\n",
2211 target->tap->dotted_name);
2212 return ERROR_FAIL;
2215 cmd_ctx->current_target = target->target_number;
2216 return ERROR_OK;
2220 COMMAND_HANDLER(handle_targets_command)
2222 int retval = ERROR_OK;
2223 if (CMD_ARGC == 1) {
2224 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2225 if (retval == ERROR_OK) {
2226 /* we're done! */
2227 return retval;
2231 struct target *target = all_targets;
2232 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2233 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2234 while (target) {
2235 const char *state;
2236 char marker = ' ';
2238 if (target->tap->enabled)
2239 state = target_state_name(target);
2240 else
2241 state = "tap-disabled";
2243 if (CMD_CTX->current_target == target->target_number)
2244 marker = '*';
2246 /* keep columns lined up to match the headers above */
2247 command_print(CMD_CTX,
2248 "%2d%c %-18s %-10s %-6s %-18s %s",
2249 target->target_number,
2250 marker,
2251 target_name(target),
2252 target_type_name(target),
2253 Jim_Nvp_value2name_simple(nvp_target_endian,
2254 target->endianness)->name,
2255 target->tap->dotted_name,
2256 state);
2257 target = target->next;
2260 return retval;
2263 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2265 static int powerDropout;
2266 static int srstAsserted;
2268 static int runPowerRestore;
2269 static int runPowerDropout;
2270 static int runSrstAsserted;
2271 static int runSrstDeasserted;
2273 static int sense_handler(void)
2275 static int prevSrstAsserted;
2276 static int prevPowerdropout;
2278 int retval = jtag_power_dropout(&powerDropout);
2279 if (retval != ERROR_OK)
2280 return retval;
2282 int powerRestored;
2283 powerRestored = prevPowerdropout && !powerDropout;
2284 if (powerRestored)
2285 runPowerRestore = 1;
2287 long long current = timeval_ms();
2288 static long long lastPower;
2289 int waitMore = lastPower + 2000 > current;
2290 if (powerDropout && !waitMore) {
2291 runPowerDropout = 1;
2292 lastPower = current;
2295 retval = jtag_srst_asserted(&srstAsserted);
2296 if (retval != ERROR_OK)
2297 return retval;
2299 int srstDeasserted;
2300 srstDeasserted = prevSrstAsserted && !srstAsserted;
2302 static long long lastSrst;
2303 waitMore = lastSrst + 2000 > current;
2304 if (srstDeasserted && !waitMore) {
2305 runSrstDeasserted = 1;
2306 lastSrst = current;
2309 if (!prevSrstAsserted && srstAsserted)
2310 runSrstAsserted = 1;
2312 prevSrstAsserted = srstAsserted;
2313 prevPowerdropout = powerDropout;
2315 if (srstDeasserted || powerRestored) {
2316 /* Other than logging the event we can't do anything here.
2317 * Issuing a reset is a particularly bad idea as we might
2318 * be inside a reset already.
2322 return ERROR_OK;
2325 /* process target state changes */
2326 static int handle_target(void *priv)
2328 Jim_Interp *interp = (Jim_Interp *)priv;
2329 int retval = ERROR_OK;
2331 if (!is_jtag_poll_safe()) {
2332 /* polling is disabled currently */
2333 return ERROR_OK;
2336 /* we do not want to recurse here... */
2337 static int recursive;
2338 if (!recursive) {
2339 recursive = 1;
2340 sense_handler();
2341 /* danger! running these procedures can trigger srst assertions and power dropouts.
2342 * We need to avoid an infinite loop/recursion here and we do that by
2343 * clearing the flags after running these events.
2345 int did_something = 0;
2346 if (runSrstAsserted) {
2347 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2348 Jim_Eval(interp, "srst_asserted");
2349 did_something = 1;
2351 if (runSrstDeasserted) {
2352 Jim_Eval(interp, "srst_deasserted");
2353 did_something = 1;
2355 if (runPowerDropout) {
2356 LOG_INFO("Power dropout detected, running power_dropout proc.");
2357 Jim_Eval(interp, "power_dropout");
2358 did_something = 1;
2360 if (runPowerRestore) {
2361 Jim_Eval(interp, "power_restore");
2362 did_something = 1;
2365 if (did_something) {
2366 /* clear detect flags */
2367 sense_handler();
2370 /* clear action flags */
2372 runSrstAsserted = 0;
2373 runSrstDeasserted = 0;
2374 runPowerRestore = 0;
2375 runPowerDropout = 0;
2377 recursive = 0;
2380 /* Poll targets for state changes unless that's globally disabled.
2381 * Skip targets that are currently disabled.
2383 for (struct target *target = all_targets;
2384 is_jtag_poll_safe() && target;
2385 target = target->next) {
2387 if (!target_was_examined(target))
2388 continue;
2390 if (!target->tap->enabled)
2391 continue;
2393 if (target->backoff.times > target->backoff.count) {
2394 /* do not poll this time as we failed previously */
2395 target->backoff.count++;
2396 continue;
2398 target->backoff.count = 0;
2400 /* only poll target if we've got power and srst isn't asserted */
2401 if (!powerDropout && !srstAsserted) {
2402 /* polling may fail silently until the target has been examined */
2403 retval = target_poll(target);
2404 if (retval != ERROR_OK) {
2405 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2406 if (target->backoff.times * polling_interval < 5000) {
2407 target->backoff.times *= 2;
2408 target->backoff.times++;
2410 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2411 target_name(target),
2412 target->backoff.times * polling_interval);
2414 /* Tell GDB to halt the debugger. This allows the user to
2415 * run monitor commands to handle the situation.
2417 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2418 return retval;
2420 /* Since we succeeded, we reset backoff count */
2421 if (target->backoff.times > 0) {
2422 LOG_USER("Polling target %s succeeded again, trying to reexamine", target_name(target));
2423 target_reset_examined(target);
2424 target_examine_one(target);
2427 target->backoff.times = 0;
2431 return retval;
2434 COMMAND_HANDLER(handle_reg_command)
2436 struct target *target;
2437 struct reg *reg = NULL;
2438 unsigned count = 0;
2439 char *value;
2441 LOG_DEBUG("-");
2443 target = get_current_target(CMD_CTX);
2445 /* list all available registers for the current target */
2446 if (CMD_ARGC == 0) {
2447 struct reg_cache *cache = target->reg_cache;
2449 count = 0;
2450 while (cache) {
2451 unsigned i;
2453 command_print(CMD_CTX, "===== %s", cache->name);
2455 for (i = 0, reg = cache->reg_list;
2456 i < cache->num_regs;
2457 i++, reg++, count++) {
2458 /* only print cached values if they are valid */
2459 if (reg->valid) {
2460 value = buf_to_str(reg->value,
2461 reg->size, 16);
2462 command_print(CMD_CTX,
2463 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2464 count, reg->name,
2465 reg->size, value,
2466 reg->dirty
2467 ? " (dirty)"
2468 : "");
2469 free(value);
2470 } else {
2471 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2472 count, reg->name,
2473 reg->size) ;
2476 cache = cache->next;
2479 return ERROR_OK;
2482 /* access a single register by its ordinal number */
2483 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2484 unsigned num;
2485 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2487 struct reg_cache *cache = target->reg_cache;
2488 count = 0;
2489 while (cache) {
2490 unsigned i;
2491 for (i = 0; i < cache->num_regs; i++) {
2492 if (count++ == num) {
2493 reg = &cache->reg_list[i];
2494 break;
2497 if (reg)
2498 break;
2499 cache = cache->next;
2502 if (!reg) {
2503 command_print(CMD_CTX, "%i is out of bounds, the current target "
2504 "has only %i registers (0 - %i)", num, count, count - 1);
2505 return ERROR_OK;
2507 } else {
2508 /* access a single register by its name */
2509 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2511 if (!reg) {
2512 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2513 return ERROR_OK;
2517 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2519 /* display a register */
2520 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2521 && (CMD_ARGV[1][0] <= '9')))) {
2522 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2523 reg->valid = 0;
2525 if (reg->valid == 0)
2526 reg->type->get(reg);
2527 value = buf_to_str(reg->value, reg->size, 16);
2528 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2529 free(value);
2530 return ERROR_OK;
2533 /* set register value */
2534 if (CMD_ARGC == 2) {
2535 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2536 if (buf == NULL)
2537 return ERROR_FAIL;
2538 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2540 reg->type->set(reg, buf);
2542 value = buf_to_str(reg->value, reg->size, 16);
2543 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2544 free(value);
2546 free(buf);
2548 return ERROR_OK;
2551 return ERROR_COMMAND_SYNTAX_ERROR;
2554 COMMAND_HANDLER(handle_poll_command)
2556 int retval = ERROR_OK;
2557 struct target *target = get_current_target(CMD_CTX);
2559 if (CMD_ARGC == 0) {
2560 command_print(CMD_CTX, "background polling: %s",
2561 jtag_poll_get_enabled() ? "on" : "off");
2562 command_print(CMD_CTX, "TAP: %s (%s)",
2563 target->tap->dotted_name,
2564 target->tap->enabled ? "enabled" : "disabled");
2565 if (!target->tap->enabled)
2566 return ERROR_OK;
2567 retval = target_poll(target);
2568 if (retval != ERROR_OK)
2569 return retval;
2570 retval = target_arch_state(target);
2571 if (retval != ERROR_OK)
2572 return retval;
2573 } else if (CMD_ARGC == 1) {
2574 bool enable;
2575 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2576 jtag_poll_set_enabled(enable);
2577 } else
2578 return ERROR_COMMAND_SYNTAX_ERROR;
2580 return retval;
2583 COMMAND_HANDLER(handle_wait_halt_command)
2585 if (CMD_ARGC > 1)
2586 return ERROR_COMMAND_SYNTAX_ERROR;
2588 unsigned ms = DEFAULT_HALT_TIMEOUT;
2589 if (1 == CMD_ARGC) {
2590 int retval = parse_uint(CMD_ARGV[0], &ms);
2591 if (ERROR_OK != retval)
2592 return ERROR_COMMAND_SYNTAX_ERROR;
2595 struct target *target = get_current_target(CMD_CTX);
2596 return target_wait_state(target, TARGET_HALTED, ms);
2599 /* wait for target state to change. The trick here is to have a low
2600 * latency for short waits and not to suck up all the CPU time
2601 * on longer waits.
2603 * After 500ms, keep_alive() is invoked
2605 int target_wait_state(struct target *target, enum target_state state, int ms)
2607 int retval;
2608 long long then = 0, cur;
2609 int once = 1;
2611 for (;;) {
2612 retval = target_poll(target);
2613 if (retval != ERROR_OK)
2614 return retval;
2615 if (target->state == state)
2616 break;
2617 cur = timeval_ms();
2618 if (once) {
2619 once = 0;
2620 then = timeval_ms();
2621 LOG_DEBUG("waiting for target %s...",
2622 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2625 if (cur-then > 500)
2626 keep_alive();
2628 if ((cur-then) > ms) {
2629 LOG_ERROR("timed out while waiting for target %s",
2630 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2631 return ERROR_FAIL;
2635 return ERROR_OK;
2638 COMMAND_HANDLER(handle_halt_command)
2640 LOG_DEBUG("-");
2642 struct target *target = get_current_target(CMD_CTX);
2643 int retval = target_halt(target);
2644 if (ERROR_OK != retval)
2645 return retval;
2647 if (CMD_ARGC == 1) {
2648 unsigned wait_local;
2649 retval = parse_uint(CMD_ARGV[0], &wait_local);
2650 if (ERROR_OK != retval)
2651 return ERROR_COMMAND_SYNTAX_ERROR;
2652 if (!wait_local)
2653 return ERROR_OK;
2656 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2659 COMMAND_HANDLER(handle_soft_reset_halt_command)
2661 struct target *target = get_current_target(CMD_CTX);
2663 LOG_USER("requesting target halt and executing a soft reset");
2665 target_soft_reset_halt(target);
2667 return ERROR_OK;
2670 COMMAND_HANDLER(handle_reset_command)
2672 if (CMD_ARGC > 1)
2673 return ERROR_COMMAND_SYNTAX_ERROR;
2675 enum target_reset_mode reset_mode = RESET_RUN;
2676 if (CMD_ARGC == 1) {
2677 const Jim_Nvp *n;
2678 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2679 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2680 return ERROR_COMMAND_SYNTAX_ERROR;
2681 reset_mode = n->value;
2684 /* reset *all* targets */
2685 return target_process_reset(CMD_CTX, reset_mode);
2689 COMMAND_HANDLER(handle_resume_command)
2691 int current = 1;
2692 if (CMD_ARGC > 1)
2693 return ERROR_COMMAND_SYNTAX_ERROR;
2695 struct target *target = get_current_target(CMD_CTX);
2697 /* with no CMD_ARGV, resume from current pc, addr = 0,
2698 * with one arguments, addr = CMD_ARGV[0],
2699 * handle breakpoints, not debugging */
2700 uint32_t addr = 0;
2701 if (CMD_ARGC == 1) {
2702 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2703 current = 0;
2706 return target_resume(target, current, addr, 1, 0);
2709 COMMAND_HANDLER(handle_step_command)
2711 if (CMD_ARGC > 1)
2712 return ERROR_COMMAND_SYNTAX_ERROR;
2714 LOG_DEBUG("-");
2716 /* with no CMD_ARGV, step from current pc, addr = 0,
2717 * with one argument addr = CMD_ARGV[0],
2718 * handle breakpoints, debugging */
2719 uint32_t addr = 0;
2720 int current_pc = 1;
2721 if (CMD_ARGC == 1) {
2722 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2723 current_pc = 0;
2726 struct target *target = get_current_target(CMD_CTX);
2728 return target->type->step(target, current_pc, addr, 1);
2731 static void handle_md_output(struct command_context *cmd_ctx,
2732 struct target *target, uint32_t address, unsigned size,
2733 unsigned count, const uint8_t *buffer)
2735 const unsigned line_bytecnt = 32;
2736 unsigned line_modulo = line_bytecnt / size;
2738 char output[line_bytecnt * 4 + 1];
2739 unsigned output_len = 0;
2741 const char *value_fmt;
2742 switch (size) {
2743 case 4:
2744 value_fmt = "%8.8x ";
2745 break;
2746 case 2:
2747 value_fmt = "%4.4x ";
2748 break;
2749 case 1:
2750 value_fmt = "%2.2x ";
2751 break;
2752 default:
2753 /* "can't happen", caller checked */
2754 LOG_ERROR("invalid memory read size: %u", size);
2755 return;
2758 for (unsigned i = 0; i < count; i++) {
2759 if (i % line_modulo == 0) {
2760 output_len += snprintf(output + output_len,
2761 sizeof(output) - output_len,
2762 "0x%8.8x: ",
2763 (unsigned)(address + (i*size)));
2766 uint32_t value = 0;
2767 const uint8_t *value_ptr = buffer + i * size;
2768 switch (size) {
2769 case 4:
2770 value = target_buffer_get_u32(target, value_ptr);
2771 break;
2772 case 2:
2773 value = target_buffer_get_u16(target, value_ptr);
2774 break;
2775 case 1:
2776 value = *value_ptr;
2778 output_len += snprintf(output + output_len,
2779 sizeof(output) - output_len,
2780 value_fmt, value);
2782 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2783 command_print(cmd_ctx, "%s", output);
2784 output_len = 0;
2789 COMMAND_HANDLER(handle_md_command)
2791 if (CMD_ARGC < 1)
2792 return ERROR_COMMAND_SYNTAX_ERROR;
2794 unsigned size = 0;
2795 switch (CMD_NAME[2]) {
2796 case 'w':
2797 size = 4;
2798 break;
2799 case 'h':
2800 size = 2;
2801 break;
2802 case 'b':
2803 size = 1;
2804 break;
2805 default:
2806 return ERROR_COMMAND_SYNTAX_ERROR;
2809 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2810 int (*fn)(struct target *target,
2811 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2812 if (physical) {
2813 CMD_ARGC--;
2814 CMD_ARGV++;
2815 fn = target_read_phys_memory;
2816 } else
2817 fn = target_read_memory;
2818 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2819 return ERROR_COMMAND_SYNTAX_ERROR;
2821 uint32_t address;
2822 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2824 unsigned count = 1;
2825 if (CMD_ARGC == 2)
2826 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2828 uint8_t *buffer = calloc(count, size);
2830 struct target *target = get_current_target(CMD_CTX);
2831 int retval = fn(target, address, size, count, buffer);
2832 if (ERROR_OK == retval)
2833 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2835 free(buffer);
2837 return retval;
2840 typedef int (*target_write_fn)(struct target *target,
2841 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2843 static int target_fill_mem(struct target *target,
2844 uint32_t address,
2845 target_write_fn fn,
2846 unsigned data_size,
2847 /* value */
2848 uint32_t b,
2849 /* count */
2850 unsigned c)
2852 /* We have to write in reasonably large chunks to be able
2853 * to fill large memory areas with any sane speed */
2854 const unsigned chunk_size = 16384;
2855 uint8_t *target_buf = malloc(chunk_size * data_size);
2856 if (target_buf == NULL) {
2857 LOG_ERROR("Out of memory");
2858 return ERROR_FAIL;
2861 for (unsigned i = 0; i < chunk_size; i++) {
2862 switch (data_size) {
2863 case 4:
2864 target_buffer_set_u32(target, target_buf + i * data_size, b);
2865 break;
2866 case 2:
2867 target_buffer_set_u16(target, target_buf + i * data_size, b);
2868 break;
2869 case 1:
2870 target_buffer_set_u8(target, target_buf + i * data_size, b);
2871 break;
2872 default:
2873 exit(-1);
2877 int retval = ERROR_OK;
2879 for (unsigned x = 0; x < c; x += chunk_size) {
2880 unsigned current;
2881 current = c - x;
2882 if (current > chunk_size)
2883 current = chunk_size;
2884 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2885 if (retval != ERROR_OK)
2886 break;
2887 /* avoid GDB timeouts */
2888 keep_alive();
2890 free(target_buf);
2892 return retval;
2896 COMMAND_HANDLER(handle_mw_command)
2898 if (CMD_ARGC < 2)
2899 return ERROR_COMMAND_SYNTAX_ERROR;
2900 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2901 target_write_fn fn;
2902 if (physical) {
2903 CMD_ARGC--;
2904 CMD_ARGV++;
2905 fn = target_write_phys_memory;
2906 } else
2907 fn = target_write_memory;
2908 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2909 return ERROR_COMMAND_SYNTAX_ERROR;
2911 uint32_t address;
2912 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2914 uint32_t value;
2915 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2917 unsigned count = 1;
2918 if (CMD_ARGC == 3)
2919 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2921 struct target *target = get_current_target(CMD_CTX);
2922 unsigned wordsize;
2923 switch (CMD_NAME[2]) {
2924 case 'w':
2925 wordsize = 4;
2926 break;
2927 case 'h':
2928 wordsize = 2;
2929 break;
2930 case 'b':
2931 wordsize = 1;
2932 break;
2933 default:
2934 return ERROR_COMMAND_SYNTAX_ERROR;
2937 return target_fill_mem(target, address, fn, wordsize, value, count);
2940 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2941 uint32_t *min_address, uint32_t *max_address)
2943 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2944 return ERROR_COMMAND_SYNTAX_ERROR;
2946 /* a base address isn't always necessary,
2947 * default to 0x0 (i.e. don't relocate) */
2948 if (CMD_ARGC >= 2) {
2949 uint32_t addr;
2950 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2951 image->base_address = addr;
2952 image->base_address_set = 1;
2953 } else
2954 image->base_address_set = 0;
2956 image->start_address_set = 0;
2958 if (CMD_ARGC >= 4)
2959 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2960 if (CMD_ARGC == 5) {
2961 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2962 /* use size (given) to find max (required) */
2963 *max_address += *min_address;
2966 if (*min_address > *max_address)
2967 return ERROR_COMMAND_SYNTAX_ERROR;
2969 return ERROR_OK;
2972 COMMAND_HANDLER(handle_load_image_command)
2974 uint8_t *buffer;
2975 size_t buf_cnt;
2976 uint32_t image_size;
2977 uint32_t min_address = 0;
2978 uint32_t max_address = 0xffffffff;
2979 int i;
2980 struct image image;
2982 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2983 &image, &min_address, &max_address);
2984 if (ERROR_OK != retval)
2985 return retval;
2987 struct target *target = get_current_target(CMD_CTX);
2989 struct duration bench;
2990 duration_start(&bench);
2992 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2993 return ERROR_OK;
2995 image_size = 0x0;
2996 retval = ERROR_OK;
2997 for (i = 0; i < image.num_sections; i++) {
2998 buffer = malloc(image.sections[i].size);
2999 if (buffer == NULL) {
3000 command_print(CMD_CTX,
3001 "error allocating buffer for section (%d bytes)",
3002 (int)(image.sections[i].size));
3003 break;
3006 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3007 if (retval != ERROR_OK) {
3008 free(buffer);
3009 break;
3012 uint32_t offset = 0;
3013 uint32_t length = buf_cnt;
3015 /* DANGER!!! beware of unsigned comparision here!!! */
3017 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3018 (image.sections[i].base_address < max_address)) {
3020 if (image.sections[i].base_address < min_address) {
3021 /* clip addresses below */
3022 offset += min_address-image.sections[i].base_address;
3023 length -= offset;
3026 if (image.sections[i].base_address + buf_cnt > max_address)
3027 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3029 retval = target_write_buffer(target,
3030 image.sections[i].base_address + offset, length, buffer + offset);
3031 if (retval != ERROR_OK) {
3032 free(buffer);
3033 break;
3035 image_size += length;
3036 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3037 (unsigned int)length,
3038 image.sections[i].base_address + offset);
3041 free(buffer);
3044 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3045 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3046 "in %fs (%0.3f KiB/s)", image_size,
3047 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3050 image_close(&image);
3052 return retval;
3056 COMMAND_HANDLER(handle_dump_image_command)
3058 struct fileio fileio;
3059 uint8_t *buffer;
3060 int retval, retvaltemp;
3061 uint32_t address, size;
3062 struct duration bench;
3063 struct target *target = get_current_target(CMD_CTX);
3065 if (CMD_ARGC != 3)
3066 return ERROR_COMMAND_SYNTAX_ERROR;
3068 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3069 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3071 uint32_t buf_size = (size > 4096) ? 4096 : size;
3072 buffer = malloc(buf_size);
3073 if (!buffer)
3074 return ERROR_FAIL;
3076 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3077 if (retval != ERROR_OK) {
3078 free(buffer);
3079 return retval;
3082 duration_start(&bench);
3084 while (size > 0) {
3085 size_t size_written;
3086 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3087 retval = target_read_buffer(target, address, this_run_size, buffer);
3088 if (retval != ERROR_OK)
3089 break;
3091 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3092 if (retval != ERROR_OK)
3093 break;
3095 size -= this_run_size;
3096 address += this_run_size;
3099 free(buffer);
3101 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3102 int filesize;
3103 retval = fileio_size(&fileio, &filesize);
3104 if (retval != ERROR_OK)
3105 return retval;
3106 command_print(CMD_CTX,
3107 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3108 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3111 retvaltemp = fileio_close(&fileio);
3112 if (retvaltemp != ERROR_OK)
3113 return retvaltemp;
3115 return retval;
3118 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3120 uint8_t *buffer;
3121 size_t buf_cnt;
3122 uint32_t image_size;
3123 int i;
3124 int retval;
3125 uint32_t checksum = 0;
3126 uint32_t mem_checksum = 0;
3128 struct image image;
3130 struct target *target = get_current_target(CMD_CTX);
3132 if (CMD_ARGC < 1)
3133 return ERROR_COMMAND_SYNTAX_ERROR;
3135 if (!target) {
3136 LOG_ERROR("no target selected");
3137 return ERROR_FAIL;
3140 struct duration bench;
3141 duration_start(&bench);
3143 if (CMD_ARGC >= 2) {
3144 uint32_t addr;
3145 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3146 image.base_address = addr;
3147 image.base_address_set = 1;
3148 } else {
3149 image.base_address_set = 0;
3150 image.base_address = 0x0;
3153 image.start_address_set = 0;
3155 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3156 if (retval != ERROR_OK)
3157 return retval;
3159 image_size = 0x0;
3160 int diffs = 0;
3161 retval = ERROR_OK;
3162 for (i = 0; i < image.num_sections; i++) {
3163 buffer = malloc(image.sections[i].size);
3164 if (buffer == NULL) {
3165 command_print(CMD_CTX,
3166 "error allocating buffer for section (%d bytes)",
3167 (int)(image.sections[i].size));
3168 break;
3170 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3171 if (retval != ERROR_OK) {
3172 free(buffer);
3173 break;
3176 if (verify) {
3177 /* calculate checksum of image */
3178 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3179 if (retval != ERROR_OK) {
3180 free(buffer);
3181 break;
3184 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3185 if (retval != ERROR_OK) {
3186 free(buffer);
3187 break;
3190 if (checksum != mem_checksum) {
3191 /* failed crc checksum, fall back to a binary compare */
3192 uint8_t *data;
3194 if (diffs == 0)
3195 LOG_ERROR("checksum mismatch - attempting binary compare");
3197 data = malloc(buf_cnt);
3199 /* Can we use 32bit word accesses? */
3200 int size = 1;
3201 int count = buf_cnt;
3202 if ((count % 4) == 0) {
3203 size *= 4;
3204 count /= 4;
3206 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3207 if (retval == ERROR_OK) {
3208 uint32_t t;
3209 for (t = 0; t < buf_cnt; t++) {
3210 if (data[t] != buffer[t]) {
3211 command_print(CMD_CTX,
3212 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3213 diffs,
3214 (unsigned)(t + image.sections[i].base_address),
3215 data[t],
3216 buffer[t]);
3217 if (diffs++ >= 127) {
3218 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3219 free(data);
3220 free(buffer);
3221 goto done;
3224 keep_alive();
3227 free(data);
3229 } else {
3230 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3231 image.sections[i].base_address,
3232 buf_cnt);
3235 free(buffer);
3236 image_size += buf_cnt;
3238 if (diffs > 0)
3239 command_print(CMD_CTX, "No more differences found.");
3240 done:
3241 if (diffs > 0)
3242 retval = ERROR_FAIL;
3243 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3244 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3245 "in %fs (%0.3f KiB/s)", image_size,
3246 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3249 image_close(&image);
3251 return retval;
3254 COMMAND_HANDLER(handle_verify_image_command)
3256 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3259 COMMAND_HANDLER(handle_test_image_command)
3261 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3264 static int handle_bp_command_list(struct command_context *cmd_ctx)
3266 struct target *target = get_current_target(cmd_ctx);
3267 struct breakpoint *breakpoint = target->breakpoints;
3268 while (breakpoint) {
3269 if (breakpoint->type == BKPT_SOFT) {
3270 char *buf = buf_to_str(breakpoint->orig_instr,
3271 breakpoint->length, 16);
3272 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3273 breakpoint->address,
3274 breakpoint->length,
3275 breakpoint->set, buf);
3276 free(buf);
3277 } else {
3278 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3279 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3280 breakpoint->asid,
3281 breakpoint->length, breakpoint->set);
3282 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3283 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3284 breakpoint->address,
3285 breakpoint->length, breakpoint->set);
3286 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3287 breakpoint->asid);
3288 } else
3289 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3290 breakpoint->address,
3291 breakpoint->length, breakpoint->set);
3294 breakpoint = breakpoint->next;
3296 return ERROR_OK;
3299 static int handle_bp_command_set(struct command_context *cmd_ctx,
3300 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3302 struct target *target = get_current_target(cmd_ctx);
3304 if (asid == 0) {
3305 int retval = breakpoint_add(target, addr, length, hw);
3306 if (ERROR_OK == retval)
3307 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3308 else {
3309 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3310 return retval;
3312 } else if (addr == 0) {
3313 int retval = context_breakpoint_add(target, asid, length, hw);
3314 if (ERROR_OK == retval)
3315 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3316 else {
3317 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3318 return retval;
3320 } else {
3321 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3322 if (ERROR_OK == retval)
3323 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3324 else {
3325 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3326 return retval;
3329 return ERROR_OK;
3332 COMMAND_HANDLER(handle_bp_command)
3334 uint32_t addr;
3335 uint32_t asid;
3336 uint32_t length;
3337 int hw = BKPT_SOFT;
3339 switch (CMD_ARGC) {
3340 case 0:
3341 return handle_bp_command_list(CMD_CTX);
3343 case 2:
3344 asid = 0;
3345 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3346 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3347 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3349 case 3:
3350 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3351 hw = BKPT_HARD;
3352 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3354 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3356 asid = 0;
3357 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3358 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3359 hw = BKPT_HARD;
3360 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3361 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3362 addr = 0;
3363 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3366 case 4:
3367 hw = BKPT_HARD;
3368 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3369 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3370 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3371 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3373 default:
3374 return ERROR_COMMAND_SYNTAX_ERROR;
3378 COMMAND_HANDLER(handle_rbp_command)
3380 if (CMD_ARGC != 1)
3381 return ERROR_COMMAND_SYNTAX_ERROR;
3383 uint32_t addr;
3384 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3386 struct target *target = get_current_target(CMD_CTX);
3387 breakpoint_remove(target, addr);
3389 return ERROR_OK;
3392 COMMAND_HANDLER(handle_wp_command)
3394 struct target *target = get_current_target(CMD_CTX);
3396 if (CMD_ARGC == 0) {
3397 struct watchpoint *watchpoint = target->watchpoints;
3399 while (watchpoint) {
3400 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3401 ", len: 0x%8.8" PRIx32
3402 ", r/w/a: %i, value: 0x%8.8" PRIx32
3403 ", mask: 0x%8.8" PRIx32,
3404 watchpoint->address,
3405 watchpoint->length,
3406 (int)watchpoint->rw,
3407 watchpoint->value,
3408 watchpoint->mask);
3409 watchpoint = watchpoint->next;
3411 return ERROR_OK;
3414 enum watchpoint_rw type = WPT_ACCESS;
3415 uint32_t addr = 0;
3416 uint32_t length = 0;
3417 uint32_t data_value = 0x0;
3418 uint32_t data_mask = 0xffffffff;
3420 switch (CMD_ARGC) {
3421 case 5:
3422 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3423 /* fall through */
3424 case 4:
3425 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3426 /* fall through */
3427 case 3:
3428 switch (CMD_ARGV[2][0]) {
3429 case 'r':
3430 type = WPT_READ;
3431 break;
3432 case 'w':
3433 type = WPT_WRITE;
3434 break;
3435 case 'a':
3436 type = WPT_ACCESS;
3437 break;
3438 default:
3439 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3440 return ERROR_COMMAND_SYNTAX_ERROR;
3442 /* fall through */
3443 case 2:
3444 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3445 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3446 break;
3448 default:
3449 return ERROR_COMMAND_SYNTAX_ERROR;
3452 int retval = watchpoint_add(target, addr, length, type,
3453 data_value, data_mask);
3454 if (ERROR_OK != retval)
3455 LOG_ERROR("Failure setting watchpoints");
3457 return retval;
3460 COMMAND_HANDLER(handle_rwp_command)
3462 if (CMD_ARGC != 1)
3463 return ERROR_COMMAND_SYNTAX_ERROR;
3465 uint32_t addr;
3466 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3468 struct target *target = get_current_target(CMD_CTX);
3469 watchpoint_remove(target, addr);
3471 return ERROR_OK;
3475 * Translate a virtual address to a physical address.
3477 * The low-level target implementation must have logged a detailed error
3478 * which is forwarded to telnet/GDB session.
3480 COMMAND_HANDLER(handle_virt2phys_command)
3482 if (CMD_ARGC != 1)
3483 return ERROR_COMMAND_SYNTAX_ERROR;
3485 uint32_t va;
3486 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3487 uint32_t pa;
3489 struct target *target = get_current_target(CMD_CTX);
3490 int retval = target->type->virt2phys(target, va, &pa);
3491 if (retval == ERROR_OK)
3492 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3494 return retval;
3497 static void writeData(FILE *f, const void *data, size_t len)
3499 size_t written = fwrite(data, 1, len, f);
3500 if (written != len)
3501 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3504 static void writeLong(FILE *f, int l)
3506 int i;
3507 for (i = 0; i < 4; i++) {
3508 char c = (l >> (i*8))&0xff;
3509 writeData(f, &c, 1);
3514 static void writeString(FILE *f, char *s)
3516 writeData(f, s, strlen(s));
3519 typedef unsigned char UNIT[2]; /* unit of profiling */
3521 /* Dump a gmon.out histogram file. */
3522 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename,
3523 bool with_range, uint32_t start_address, uint32_t end_address)
3525 uint32_t i;
3526 FILE *f = fopen(filename, "w");
3527 if (f == NULL)
3528 return;
3529 writeString(f, "gmon");
3530 writeLong(f, 0x00000001); /* Version */
3531 writeLong(f, 0); /* padding */
3532 writeLong(f, 0); /* padding */
3533 writeLong(f, 0); /* padding */
3535 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3536 writeData(f, &zero, 1);
3538 /* figure out bucket size */
3539 uint32_t min;
3540 uint32_t max;
3541 if (with_range) {
3542 min = start_address;
3543 max = end_address;
3544 } else {
3545 min = samples[0];
3546 max = samples[0];
3547 for (i = 0; i < sampleNum; i++) {
3548 if (min > samples[i])
3549 min = samples[i];
3550 if (max < samples[i])
3551 max = samples[i];
3554 /* max should be (largest sample + 1)
3555 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3556 max++;
3559 int addressSpace = max - min;
3560 assert(addressSpace >= 2);
3562 /* FIXME: What is the reasonable number of buckets?
3563 * The profiling result will be more accurate if there are enough buckets. */
3564 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3565 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3566 if (numBuckets > maxBuckets)
3567 numBuckets = maxBuckets;
3568 int *buckets = malloc(sizeof(int) * numBuckets);
3569 if (buckets == NULL) {
3570 fclose(f);
3571 return;
3573 memset(buckets, 0, sizeof(int) * numBuckets);
3574 for (i = 0; i < sampleNum; i++) {
3575 uint32_t address = samples[i];
3577 if ((address < min) || (max <= address))
3578 continue;
3580 long long a = address - min;
3581 long long b = numBuckets;
3582 long long c = addressSpace;
3583 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3584 buckets[index_t]++;
3587 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3588 writeLong(f, min); /* low_pc */
3589 writeLong(f, max); /* high_pc */
3590 writeLong(f, numBuckets); /* # of buckets */
3591 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3592 writeString(f, "seconds");
3593 for (i = 0; i < (15-strlen("seconds")); i++)
3594 writeData(f, &zero, 1);
3595 writeString(f, "s");
3597 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3599 char *data = malloc(2 * numBuckets);
3600 if (data != NULL) {
3601 for (i = 0; i < numBuckets; i++) {
3602 int val;
3603 val = buckets[i];
3604 if (val > 65535)
3605 val = 65535;
3606 data[i * 2] = val&0xff;
3607 data[i * 2 + 1] = (val >> 8) & 0xff;
3609 free(buckets);
3610 writeData(f, data, numBuckets * 2);
3611 free(data);
3612 } else
3613 free(buckets);
3615 fclose(f);
3618 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3619 * which will be used as a random sampling of PC */
3620 COMMAND_HANDLER(handle_profile_command)
3622 struct target *target = get_current_target(CMD_CTX);
3624 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3625 return ERROR_COMMAND_SYNTAX_ERROR;
3627 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3628 uint32_t offset;
3629 uint32_t num_of_samples;
3630 int retval = ERROR_OK;
3632 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3634 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3635 if (samples == NULL) {
3636 LOG_ERROR("No memory to store samples.");
3637 return ERROR_FAIL;
3641 * Some cores let us sample the PC without the
3642 * annoying halt/resume step; for example, ARMv7 PCSR.
3643 * Provide a way to use that more efficient mechanism.
3645 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3646 &num_of_samples, offset);
3647 if (retval != ERROR_OK) {
3648 free(samples);
3649 return retval;
3652 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3654 retval = target_poll(target);
3655 if (retval != ERROR_OK) {
3656 free(samples);
3657 return retval;
3659 if (target->state == TARGET_RUNNING) {
3660 retval = target_halt(target);
3661 if (retval != ERROR_OK) {
3662 free(samples);
3663 return retval;
3667 retval = target_poll(target);
3668 if (retval != ERROR_OK) {
3669 free(samples);
3670 return retval;
3673 uint32_t start_address = 0;
3674 uint32_t end_address = 0;
3675 bool with_range = false;
3676 if (CMD_ARGC == 4) {
3677 with_range = true;
3678 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3679 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3682 write_gmon(samples, num_of_samples, CMD_ARGV[1],
3683 with_range, start_address, end_address);
3684 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3686 free(samples);
3687 return retval;
3690 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3692 char *namebuf;
3693 Jim_Obj *nameObjPtr, *valObjPtr;
3694 int result;
3696 namebuf = alloc_printf("%s(%d)", varname, idx);
3697 if (!namebuf)
3698 return JIM_ERR;
3700 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3701 valObjPtr = Jim_NewIntObj(interp, val);
3702 if (!nameObjPtr || !valObjPtr) {
3703 free(namebuf);
3704 return JIM_ERR;
3707 Jim_IncrRefCount(nameObjPtr);
3708 Jim_IncrRefCount(valObjPtr);
3709 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3710 Jim_DecrRefCount(interp, nameObjPtr);
3711 Jim_DecrRefCount(interp, valObjPtr);
3712 free(namebuf);
3713 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3714 return result;
3717 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3719 struct command_context *context;
3720 struct target *target;
3722 context = current_command_context(interp);
3723 assert(context != NULL);
3725 target = get_current_target(context);
3726 if (target == NULL) {
3727 LOG_ERROR("mem2array: no current target");
3728 return JIM_ERR;
3731 return target_mem2array(interp, target, argc - 1, argv + 1);
3734 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3736 long l;
3737 uint32_t width;
3738 int len;
3739 uint32_t addr;
3740 uint32_t count;
3741 uint32_t v;
3742 const char *varname;
3743 int n, e, retval;
3744 uint32_t i;
3746 /* argv[1] = name of array to receive the data
3747 * argv[2] = desired width
3748 * argv[3] = memory address
3749 * argv[4] = count of times to read
3751 if (argc != 4) {
3752 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3753 return JIM_ERR;
3755 varname = Jim_GetString(argv[0], &len);
3756 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3758 e = Jim_GetLong(interp, argv[1], &l);
3759 width = l;
3760 if (e != JIM_OK)
3761 return e;
3763 e = Jim_GetLong(interp, argv[2], &l);
3764 addr = l;
3765 if (e != JIM_OK)
3766 return e;
3767 e = Jim_GetLong(interp, argv[3], &l);
3768 len = l;
3769 if (e != JIM_OK)
3770 return e;
3771 switch (width) {
3772 case 8:
3773 width = 1;
3774 break;
3775 case 16:
3776 width = 2;
3777 break;
3778 case 32:
3779 width = 4;
3780 break;
3781 default:
3782 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3783 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3784 return JIM_ERR;
3786 if (len == 0) {
3787 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3788 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3789 return JIM_ERR;
3791 if ((addr + (len * width)) < addr) {
3792 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3793 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3794 return JIM_ERR;
3796 /* absurd transfer size? */
3797 if (len > 65536) {
3798 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3799 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3800 return JIM_ERR;
3803 if ((width == 1) ||
3804 ((width == 2) && ((addr & 1) == 0)) ||
3805 ((width == 4) && ((addr & 3) == 0))) {
3806 /* all is well */
3807 } else {
3808 char buf[100];
3809 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3810 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3811 addr,
3812 width);
3813 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3814 return JIM_ERR;
3817 /* Transfer loop */
3819 /* index counter */
3820 n = 0;
3822 size_t buffersize = 4096;
3823 uint8_t *buffer = malloc(buffersize);
3824 if (buffer == NULL)
3825 return JIM_ERR;
3827 /* assume ok */
3828 e = JIM_OK;
3829 while (len) {
3830 /* Slurp... in buffer size chunks */
3832 count = len; /* in objects.. */
3833 if (count > (buffersize / width))
3834 count = (buffersize / width);
3836 retval = target_read_memory(target, addr, width, count, buffer);
3837 if (retval != ERROR_OK) {
3838 /* BOO !*/
3839 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3840 (unsigned int)addr,
3841 (int)width,
3842 (int)count);
3843 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3844 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3845 e = JIM_ERR;
3846 break;
3847 } else {
3848 v = 0; /* shut up gcc */
3849 for (i = 0; i < count ; i++, n++) {
3850 switch (width) {
3851 case 4:
3852 v = target_buffer_get_u32(target, &buffer[i*width]);
3853 break;
3854 case 2:
3855 v = target_buffer_get_u16(target, &buffer[i*width]);
3856 break;
3857 case 1:
3858 v = buffer[i] & 0x0ff;
3859 break;
3861 new_int_array_element(interp, varname, n, v);
3863 len -= count;
3864 addr += count * width;
3868 free(buffer);
3870 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3872 return e;
3875 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3877 char *namebuf;
3878 Jim_Obj *nameObjPtr, *valObjPtr;
3879 int result;
3880 long l;
3882 namebuf = alloc_printf("%s(%d)", varname, idx);
3883 if (!namebuf)
3884 return JIM_ERR;
3886 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3887 if (!nameObjPtr) {
3888 free(namebuf);
3889 return JIM_ERR;
3892 Jim_IncrRefCount(nameObjPtr);
3893 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3894 Jim_DecrRefCount(interp, nameObjPtr);
3895 free(namebuf);
3896 if (valObjPtr == NULL)
3897 return JIM_ERR;
3899 result = Jim_GetLong(interp, valObjPtr, &l);
3900 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3901 *val = l;
3902 return result;
3905 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3907 struct command_context *context;
3908 struct target *target;
3910 context = current_command_context(interp);
3911 assert(context != NULL);
3913 target = get_current_target(context);
3914 if (target == NULL) {
3915 LOG_ERROR("array2mem: no current target");
3916 return JIM_ERR;
3919 return target_array2mem(interp, target, argc-1, argv + 1);
3922 static int target_array2mem(Jim_Interp *interp, struct target *target,
3923 int argc, Jim_Obj *const *argv)
3925 long l;
3926 uint32_t width;
3927 int len;
3928 uint32_t addr;
3929 uint32_t count;
3930 uint32_t v;
3931 const char *varname;
3932 int n, e, retval;
3933 uint32_t i;
3935 /* argv[1] = name of array to get the data
3936 * argv[2] = desired width
3937 * argv[3] = memory address
3938 * argv[4] = count to write
3940 if (argc != 4) {
3941 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3942 return JIM_ERR;
3944 varname = Jim_GetString(argv[0], &len);
3945 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3947 e = Jim_GetLong(interp, argv[1], &l);
3948 width = l;
3949 if (e != JIM_OK)
3950 return e;
3952 e = Jim_GetLong(interp, argv[2], &l);
3953 addr = l;
3954 if (e != JIM_OK)
3955 return e;
3956 e = Jim_GetLong(interp, argv[3], &l);
3957 len = l;
3958 if (e != JIM_OK)
3959 return e;
3960 switch (width) {
3961 case 8:
3962 width = 1;
3963 break;
3964 case 16:
3965 width = 2;
3966 break;
3967 case 32:
3968 width = 4;
3969 break;
3970 default:
3971 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3972 Jim_AppendStrings(interp, Jim_GetResult(interp),
3973 "Invalid width param, must be 8/16/32", NULL);
3974 return JIM_ERR;
3976 if (len == 0) {
3977 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3978 Jim_AppendStrings(interp, Jim_GetResult(interp),
3979 "array2mem: zero width read?", NULL);
3980 return JIM_ERR;
3982 if ((addr + (len * width)) < addr) {
3983 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3984 Jim_AppendStrings(interp, Jim_GetResult(interp),
3985 "array2mem: addr + len - wraps to zero?", NULL);
3986 return JIM_ERR;
3988 /* absurd transfer size? */
3989 if (len > 65536) {
3990 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3991 Jim_AppendStrings(interp, Jim_GetResult(interp),
3992 "array2mem: absurd > 64K item request", NULL);
3993 return JIM_ERR;
3996 if ((width == 1) ||
3997 ((width == 2) && ((addr & 1) == 0)) ||
3998 ((width == 4) && ((addr & 3) == 0))) {
3999 /* all is well */
4000 } else {
4001 char buf[100];
4002 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4003 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
4004 (unsigned int)addr,
4005 (int)width);
4006 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
4007 return JIM_ERR;
4010 /* Transfer loop */
4012 /* index counter */
4013 n = 0;
4014 /* assume ok */
4015 e = JIM_OK;
4017 size_t buffersize = 4096;
4018 uint8_t *buffer = malloc(buffersize);
4019 if (buffer == NULL)
4020 return JIM_ERR;
4022 while (len) {
4023 /* Slurp... in buffer size chunks */
4025 count = len; /* in objects.. */
4026 if (count > (buffersize / width))
4027 count = (buffersize / width);
4029 v = 0; /* shut up gcc */
4030 for (i = 0; i < count; i++, n++) {
4031 get_int_array_element(interp, varname, n, &v);
4032 switch (width) {
4033 case 4:
4034 target_buffer_set_u32(target, &buffer[i * width], v);
4035 break;
4036 case 2:
4037 target_buffer_set_u16(target, &buffer[i * width], v);
4038 break;
4039 case 1:
4040 buffer[i] = v & 0x0ff;
4041 break;
4044 len -= count;
4046 retval = target_write_memory(target, addr, width, count, buffer);
4047 if (retval != ERROR_OK) {
4048 /* BOO !*/
4049 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
4050 (unsigned int)addr,
4051 (int)width,
4052 (int)count);
4053 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4054 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4055 e = JIM_ERR;
4056 break;
4058 addr += count * width;
4061 free(buffer);
4063 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4065 return e;
4068 /* FIX? should we propagate errors here rather than printing them
4069 * and continuing?
4071 void target_handle_event(struct target *target, enum target_event e)
4073 struct target_event_action *teap;
4075 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4076 if (teap->event == e) {
4077 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4078 target->target_number,
4079 target_name(target),
4080 target_type_name(target),
4082 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4083 Jim_GetString(teap->body, NULL));
4084 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4085 Jim_MakeErrorMessage(teap->interp);
4086 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4093 * Returns true only if the target has a handler for the specified event.
4095 bool target_has_event_action(struct target *target, enum target_event event)
4097 struct target_event_action *teap;
4099 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4100 if (teap->event == event)
4101 return true;
4103 return false;
4106 enum target_cfg_param {
4107 TCFG_TYPE,
4108 TCFG_EVENT,
4109 TCFG_WORK_AREA_VIRT,
4110 TCFG_WORK_AREA_PHYS,
4111 TCFG_WORK_AREA_SIZE,
4112 TCFG_WORK_AREA_BACKUP,
4113 TCFG_ENDIAN,
4114 TCFG_VARIANT,
4115 TCFG_COREID,
4116 TCFG_CHAIN_POSITION,
4117 TCFG_DBGBASE,
4118 TCFG_RTOS,
4121 static Jim_Nvp nvp_config_opts[] = {
4122 { .name = "-type", .value = TCFG_TYPE },
4123 { .name = "-event", .value = TCFG_EVENT },
4124 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4125 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4126 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4127 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4128 { .name = "-endian" , .value = TCFG_ENDIAN },
4129 { .name = "-variant", .value = TCFG_VARIANT },
4130 { .name = "-coreid", .value = TCFG_COREID },
4131 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4132 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4133 { .name = "-rtos", .value = TCFG_RTOS },
4134 { .name = NULL, .value = -1 }
4137 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4139 Jim_Nvp *n;
4140 Jim_Obj *o;
4141 jim_wide w;
4142 char *cp;
4143 int e;
4145 /* parse config or cget options ... */
4146 while (goi->argc > 0) {
4147 Jim_SetEmptyResult(goi->interp);
4148 /* Jim_GetOpt_Debug(goi); */
4150 if (target->type->target_jim_configure) {
4151 /* target defines a configure function */
4152 /* target gets first dibs on parameters */
4153 e = (*(target->type->target_jim_configure))(target, goi);
4154 if (e == JIM_OK) {
4155 /* more? */
4156 continue;
4158 if (e == JIM_ERR) {
4159 /* An error */
4160 return e;
4162 /* otherwise we 'continue' below */
4164 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4165 if (e != JIM_OK) {
4166 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4167 return e;
4169 switch (n->value) {
4170 case TCFG_TYPE:
4171 /* not setable */
4172 if (goi->isconfigure) {
4173 Jim_SetResultFormatted(goi->interp,
4174 "not settable: %s", n->name);
4175 return JIM_ERR;
4176 } else {
4177 no_params:
4178 if (goi->argc != 0) {
4179 Jim_WrongNumArgs(goi->interp,
4180 goi->argc, goi->argv,
4181 "NO PARAMS");
4182 return JIM_ERR;
4185 Jim_SetResultString(goi->interp,
4186 target_type_name(target), -1);
4187 /* loop for more */
4188 break;
4189 case TCFG_EVENT:
4190 if (goi->argc == 0) {
4191 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4192 return JIM_ERR;
4195 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4196 if (e != JIM_OK) {
4197 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4198 return e;
4201 if (goi->isconfigure) {
4202 if (goi->argc != 1) {
4203 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4204 return JIM_ERR;
4206 } else {
4207 if (goi->argc != 0) {
4208 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4209 return JIM_ERR;
4214 struct target_event_action *teap;
4216 teap = target->event_action;
4217 /* replace existing? */
4218 while (teap) {
4219 if (teap->event == (enum target_event)n->value)
4220 break;
4221 teap = teap->next;
4224 if (goi->isconfigure) {
4225 bool replace = true;
4226 if (teap == NULL) {
4227 /* create new */
4228 teap = calloc(1, sizeof(*teap));
4229 replace = false;
4231 teap->event = n->value;
4232 teap->interp = goi->interp;
4233 Jim_GetOpt_Obj(goi, &o);
4234 if (teap->body)
4235 Jim_DecrRefCount(teap->interp, teap->body);
4236 teap->body = Jim_DuplicateObj(goi->interp, o);
4238 * FIXME:
4239 * Tcl/TK - "tk events" have a nice feature.
4240 * See the "BIND" command.
4241 * We should support that here.
4242 * You can specify %X and %Y in the event code.
4243 * The idea is: %T - target name.
4244 * The idea is: %N - target number
4245 * The idea is: %E - event name.
4247 Jim_IncrRefCount(teap->body);
4249 if (!replace) {
4250 /* add to head of event list */
4251 teap->next = target->event_action;
4252 target->event_action = teap;
4254 Jim_SetEmptyResult(goi->interp);
4255 } else {
4256 /* get */
4257 if (teap == NULL)
4258 Jim_SetEmptyResult(goi->interp);
4259 else
4260 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4263 /* loop for more */
4264 break;
4266 case TCFG_WORK_AREA_VIRT:
4267 if (goi->isconfigure) {
4268 target_free_all_working_areas(target);
4269 e = Jim_GetOpt_Wide(goi, &w);
4270 if (e != JIM_OK)
4271 return e;
4272 target->working_area_virt = w;
4273 target->working_area_virt_spec = true;
4274 } else {
4275 if (goi->argc != 0)
4276 goto no_params;
4278 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4279 /* loop for more */
4280 break;
4282 case TCFG_WORK_AREA_PHYS:
4283 if (goi->isconfigure) {
4284 target_free_all_working_areas(target);
4285 e = Jim_GetOpt_Wide(goi, &w);
4286 if (e != JIM_OK)
4287 return e;
4288 target->working_area_phys = w;
4289 target->working_area_phys_spec = true;
4290 } else {
4291 if (goi->argc != 0)
4292 goto no_params;
4294 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4295 /* loop for more */
4296 break;
4298 case TCFG_WORK_AREA_SIZE:
4299 if (goi->isconfigure) {
4300 target_free_all_working_areas(target);
4301 e = Jim_GetOpt_Wide(goi, &w);
4302 if (e != JIM_OK)
4303 return e;
4304 target->working_area_size = w;
4305 } else {
4306 if (goi->argc != 0)
4307 goto no_params;
4309 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4310 /* loop for more */
4311 break;
4313 case TCFG_WORK_AREA_BACKUP:
4314 if (goi->isconfigure) {
4315 target_free_all_working_areas(target);
4316 e = Jim_GetOpt_Wide(goi, &w);
4317 if (e != JIM_OK)
4318 return e;
4319 /* make this exactly 1 or 0 */
4320 target->backup_working_area = (!!w);
4321 } else {
4322 if (goi->argc != 0)
4323 goto no_params;
4325 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4326 /* loop for more e*/
4327 break;
4330 case TCFG_ENDIAN:
4331 if (goi->isconfigure) {
4332 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4333 if (e != JIM_OK) {
4334 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4335 return e;
4337 target->endianness = n->value;
4338 } else {
4339 if (goi->argc != 0)
4340 goto no_params;
4342 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4343 if (n->name == NULL) {
4344 target->endianness = TARGET_LITTLE_ENDIAN;
4345 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4347 Jim_SetResultString(goi->interp, n->name, -1);
4348 /* loop for more */
4349 break;
4351 case TCFG_VARIANT:
4352 if (goi->isconfigure) {
4353 if (goi->argc < 1) {
4354 Jim_SetResultFormatted(goi->interp,
4355 "%s ?STRING?",
4356 n->name);
4357 return JIM_ERR;
4359 e = Jim_GetOpt_String(goi, &cp, NULL);
4360 if (e != JIM_OK)
4361 return e;
4362 free(target->variant);
4363 target->variant = strdup(cp);
4364 } else {
4365 if (goi->argc != 0)
4366 goto no_params;
4368 Jim_SetResultString(goi->interp, target->variant, -1);
4369 /* loop for more */
4370 break;
4372 case TCFG_COREID:
4373 if (goi->isconfigure) {
4374 e = Jim_GetOpt_Wide(goi, &w);
4375 if (e != JIM_OK)
4376 return e;
4377 target->coreid = (int32_t)w;
4378 } else {
4379 if (goi->argc != 0)
4380 goto no_params;
4382 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4383 /* loop for more */
4384 break;
4386 case TCFG_CHAIN_POSITION:
4387 if (goi->isconfigure) {
4388 Jim_Obj *o_t;
4389 struct jtag_tap *tap;
4390 target_free_all_working_areas(target);
4391 e = Jim_GetOpt_Obj(goi, &o_t);
4392 if (e != JIM_OK)
4393 return e;
4394 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4395 if (tap == NULL)
4396 return JIM_ERR;
4397 /* make this exactly 1 or 0 */
4398 target->tap = tap;
4399 } else {
4400 if (goi->argc != 0)
4401 goto no_params;
4403 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4404 /* loop for more e*/
4405 break;
4406 case TCFG_DBGBASE:
4407 if (goi->isconfigure) {
4408 e = Jim_GetOpt_Wide(goi, &w);
4409 if (e != JIM_OK)
4410 return e;
4411 target->dbgbase = (uint32_t)w;
4412 target->dbgbase_set = true;
4413 } else {
4414 if (goi->argc != 0)
4415 goto no_params;
4417 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4418 /* loop for more */
4419 break;
4421 case TCFG_RTOS:
4422 /* RTOS */
4424 int result = rtos_create(goi, target);
4425 if (result != JIM_OK)
4426 return result;
4428 /* loop for more */
4429 break;
4431 } /* while (goi->argc) */
4434 /* done - we return */
4435 return JIM_OK;
4438 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4440 Jim_GetOptInfo goi;
4442 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4443 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4444 int need_args = 1 + goi.isconfigure;
4445 if (goi.argc < need_args) {
4446 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4447 goi.isconfigure
4448 ? "missing: -option VALUE ..."
4449 : "missing: -option ...");
4450 return JIM_ERR;
4452 struct target *target = Jim_CmdPrivData(goi.interp);
4453 return target_configure(&goi, target);
4456 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4458 const char *cmd_name = Jim_GetString(argv[0], NULL);
4460 Jim_GetOptInfo goi;
4461 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4463 if (goi.argc < 2 || goi.argc > 4) {
4464 Jim_SetResultFormatted(goi.interp,
4465 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4466 return JIM_ERR;
4469 target_write_fn fn;
4470 fn = target_write_memory;
4472 int e;
4473 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4474 /* consume it */
4475 struct Jim_Obj *obj;
4476 e = Jim_GetOpt_Obj(&goi, &obj);
4477 if (e != JIM_OK)
4478 return e;
4480 fn = target_write_phys_memory;
4483 jim_wide a;
4484 e = Jim_GetOpt_Wide(&goi, &a);
4485 if (e != JIM_OK)
4486 return e;
4488 jim_wide b;
4489 e = Jim_GetOpt_Wide(&goi, &b);
4490 if (e != JIM_OK)
4491 return e;
4493 jim_wide c = 1;
4494 if (goi.argc == 1) {
4495 e = Jim_GetOpt_Wide(&goi, &c);
4496 if (e != JIM_OK)
4497 return e;
4500 /* all args must be consumed */
4501 if (goi.argc != 0)
4502 return JIM_ERR;
4504 struct target *target = Jim_CmdPrivData(goi.interp);
4505 unsigned data_size;
4506 if (strcasecmp(cmd_name, "mww") == 0)
4507 data_size = 4;
4508 else if (strcasecmp(cmd_name, "mwh") == 0)
4509 data_size = 2;
4510 else if (strcasecmp(cmd_name, "mwb") == 0)
4511 data_size = 1;
4512 else {
4513 LOG_ERROR("command '%s' unknown: ", cmd_name);
4514 return JIM_ERR;
4517 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4521 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4523 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4524 * mdh [phys] <address> [<count>] - for 16 bit reads
4525 * mdb [phys] <address> [<count>] - for 8 bit reads
4527 * Count defaults to 1.
4529 * Calls target_read_memory or target_read_phys_memory depending on
4530 * the presence of the "phys" argument
4531 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4532 * to int representation in base16.
4533 * Also outputs read data in a human readable form using command_print
4535 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4536 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4537 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4538 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4539 * on success, with [<count>] number of elements.
4541 * In case of little endian target:
4542 * Example1: "mdw 0x00000000" returns "10123456"
4543 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4544 * Example3: "mdb 0x00000000" returns "56"
4545 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4546 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4548 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4550 const char *cmd_name = Jim_GetString(argv[0], NULL);
4552 Jim_GetOptInfo goi;
4553 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4555 if ((goi.argc < 1) || (goi.argc > 3)) {
4556 Jim_SetResultFormatted(goi.interp,
4557 "usage: %s [phys] <address> [<count>]", cmd_name);
4558 return JIM_ERR;
4561 int (*fn)(struct target *target,
4562 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4563 fn = target_read_memory;
4565 int e;
4566 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4567 /* consume it */
4568 struct Jim_Obj *obj;
4569 e = Jim_GetOpt_Obj(&goi, &obj);
4570 if (e != JIM_OK)
4571 return e;
4573 fn = target_read_phys_memory;
4576 /* Read address parameter */
4577 jim_wide addr;
4578 e = Jim_GetOpt_Wide(&goi, &addr);
4579 if (e != JIM_OK)
4580 return JIM_ERR;
4582 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4583 jim_wide count;
4584 if (goi.argc == 1) {
4585 e = Jim_GetOpt_Wide(&goi, &count);
4586 if (e != JIM_OK)
4587 return JIM_ERR;
4588 } else
4589 count = 1;
4591 /* all args must be consumed */
4592 if (goi.argc != 0)
4593 return JIM_ERR;
4595 jim_wide dwidth = 1; /* shut up gcc */
4596 if (strcasecmp(cmd_name, "mdw") == 0)
4597 dwidth = 4;
4598 else if (strcasecmp(cmd_name, "mdh") == 0)
4599 dwidth = 2;
4600 else if (strcasecmp(cmd_name, "mdb") == 0)
4601 dwidth = 1;
4602 else {
4603 LOG_ERROR("command '%s' unknown: ", cmd_name);
4604 return JIM_ERR;
4607 /* convert count to "bytes" */
4608 int bytes = count * dwidth;
4610 struct target *target = Jim_CmdPrivData(goi.interp);
4611 uint8_t target_buf[32];
4612 jim_wide x, y, z;
4613 while (bytes > 0) {
4614 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4616 /* Try to read out next block */
4617 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4619 if (e != ERROR_OK) {
4620 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4621 return JIM_ERR;
4624 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4625 switch (dwidth) {
4626 case 4:
4627 for (x = 0; x < 16 && x < y; x += 4) {
4628 z = target_buffer_get_u32(target, &(target_buf[x]));
4629 command_print_sameline(NULL, "%08x ", (int)(z));
4631 for (; (x < 16) ; x += 4)
4632 command_print_sameline(NULL, " ");
4633 break;
4634 case 2:
4635 for (x = 0; x < 16 && x < y; x += 2) {
4636 z = target_buffer_get_u16(target, &(target_buf[x]));
4637 command_print_sameline(NULL, "%04x ", (int)(z));
4639 for (; (x < 16) ; x += 2)
4640 command_print_sameline(NULL, " ");
4641 break;
4642 case 1:
4643 default:
4644 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4645 z = target_buffer_get_u8(target, &(target_buf[x]));
4646 command_print_sameline(NULL, "%02x ", (int)(z));
4648 for (; (x < 16) ; x += 1)
4649 command_print_sameline(NULL, " ");
4650 break;
4652 /* ascii-ify the bytes */
4653 for (x = 0 ; x < y ; x++) {
4654 if ((target_buf[x] >= 0x20) &&
4655 (target_buf[x] <= 0x7e)) {
4656 /* good */
4657 } else {
4658 /* smack it */
4659 target_buf[x] = '.';
4662 /* space pad */
4663 while (x < 16) {
4664 target_buf[x] = ' ';
4665 x++;
4667 /* terminate */
4668 target_buf[16] = 0;
4669 /* print - with a newline */
4670 command_print_sameline(NULL, "%s\n", target_buf);
4671 /* NEXT... */
4672 bytes -= 16;
4673 addr += 16;
4675 return JIM_OK;
4678 static int jim_target_mem2array(Jim_Interp *interp,
4679 int argc, Jim_Obj *const *argv)
4681 struct target *target = Jim_CmdPrivData(interp);
4682 return target_mem2array(interp, target, argc - 1, argv + 1);
4685 static int jim_target_array2mem(Jim_Interp *interp,
4686 int argc, Jim_Obj *const *argv)
4688 struct target *target = Jim_CmdPrivData(interp);
4689 return target_array2mem(interp, target, argc - 1, argv + 1);
4692 static int jim_target_tap_disabled(Jim_Interp *interp)
4694 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4695 return JIM_ERR;
4698 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4700 if (argc != 1) {
4701 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4702 return JIM_ERR;
4704 struct target *target = Jim_CmdPrivData(interp);
4705 if (!target->tap->enabled)
4706 return jim_target_tap_disabled(interp);
4708 int e = target->type->examine(target);
4709 if (e != ERROR_OK)
4710 return JIM_ERR;
4711 return JIM_OK;
4714 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4716 if (argc != 1) {
4717 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4718 return JIM_ERR;
4720 struct target *target = Jim_CmdPrivData(interp);
4722 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4723 return JIM_ERR;
4725 return JIM_OK;
4728 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4730 if (argc != 1) {
4731 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4732 return JIM_ERR;
4734 struct target *target = Jim_CmdPrivData(interp);
4735 if (!target->tap->enabled)
4736 return jim_target_tap_disabled(interp);
4738 int e;
4739 if (!(target_was_examined(target)))
4740 e = ERROR_TARGET_NOT_EXAMINED;
4741 else
4742 e = target->type->poll(target);
4743 if (e != ERROR_OK)
4744 return JIM_ERR;
4745 return JIM_OK;
4748 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4750 Jim_GetOptInfo goi;
4751 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4753 if (goi.argc != 2) {
4754 Jim_WrongNumArgs(interp, 0, argv,
4755 "([tT]|[fF]|assert|deassert) BOOL");
4756 return JIM_ERR;
4759 Jim_Nvp *n;
4760 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4761 if (e != JIM_OK) {
4762 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4763 return e;
4765 /* the halt or not param */
4766 jim_wide a;
4767 e = Jim_GetOpt_Wide(&goi, &a);
4768 if (e != JIM_OK)
4769 return e;
4771 struct target *target = Jim_CmdPrivData(goi.interp);
4772 if (!target->tap->enabled)
4773 return jim_target_tap_disabled(interp);
4774 if (!(target_was_examined(target))) {
4775 LOG_ERROR("Target not examined yet");
4776 return ERROR_TARGET_NOT_EXAMINED;
4778 if (!target->type->assert_reset || !target->type->deassert_reset) {
4779 Jim_SetResultFormatted(interp,
4780 "No target-specific reset for %s",
4781 target_name(target));
4782 return JIM_ERR;
4784 /* determine if we should halt or not. */
4785 target->reset_halt = !!a;
4786 /* When this happens - all workareas are invalid. */
4787 target_free_all_working_areas_restore(target, 0);
4789 /* do the assert */
4790 if (n->value == NVP_ASSERT)
4791 e = target->type->assert_reset(target);
4792 else
4793 e = target->type->deassert_reset(target);
4794 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4797 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4799 if (argc != 1) {
4800 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4801 return JIM_ERR;
4803 struct target *target = Jim_CmdPrivData(interp);
4804 if (!target->tap->enabled)
4805 return jim_target_tap_disabled(interp);
4806 int e = target->type->halt(target);
4807 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4810 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4812 Jim_GetOptInfo goi;
4813 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4815 /* params: <name> statename timeoutmsecs */
4816 if (goi.argc != 2) {
4817 const char *cmd_name = Jim_GetString(argv[0], NULL);
4818 Jim_SetResultFormatted(goi.interp,
4819 "%s <state_name> <timeout_in_msec>", cmd_name);
4820 return JIM_ERR;
4823 Jim_Nvp *n;
4824 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4825 if (e != JIM_OK) {
4826 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4827 return e;
4829 jim_wide a;
4830 e = Jim_GetOpt_Wide(&goi, &a);
4831 if (e != JIM_OK)
4832 return e;
4833 struct target *target = Jim_CmdPrivData(interp);
4834 if (!target->tap->enabled)
4835 return jim_target_tap_disabled(interp);
4837 e = target_wait_state(target, n->value, a);
4838 if (e != ERROR_OK) {
4839 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4840 Jim_SetResultFormatted(goi.interp,
4841 "target: %s wait %s fails (%#s) %s",
4842 target_name(target), n->name,
4843 eObj, target_strerror_safe(e));
4844 Jim_FreeNewObj(interp, eObj);
4845 return JIM_ERR;
4847 return JIM_OK;
4849 /* List for human, Events defined for this target.
4850 * scripts/programs should use 'name cget -event NAME'
4852 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4854 struct command_context *cmd_ctx = current_command_context(interp);
4855 assert(cmd_ctx != NULL);
4857 struct target *target = Jim_CmdPrivData(interp);
4858 struct target_event_action *teap = target->event_action;
4859 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4860 target->target_number,
4861 target_name(target));
4862 command_print(cmd_ctx, "%-25s | Body", "Event");
4863 command_print(cmd_ctx, "------------------------- | "
4864 "----------------------------------------");
4865 while (teap) {
4866 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4867 command_print(cmd_ctx, "%-25s | %s",
4868 opt->name, Jim_GetString(teap->body, NULL));
4869 teap = teap->next;
4871 command_print(cmd_ctx, "***END***");
4872 return JIM_OK;
4874 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4876 if (argc != 1) {
4877 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4878 return JIM_ERR;
4880 struct target *target = Jim_CmdPrivData(interp);
4881 Jim_SetResultString(interp, target_state_name(target), -1);
4882 return JIM_OK;
4884 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4886 Jim_GetOptInfo goi;
4887 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4888 if (goi.argc != 1) {
4889 const char *cmd_name = Jim_GetString(argv[0], NULL);
4890 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4891 return JIM_ERR;
4893 Jim_Nvp *n;
4894 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4895 if (e != JIM_OK) {
4896 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4897 return e;
4899 struct target *target = Jim_CmdPrivData(interp);
4900 target_handle_event(target, n->value);
4901 return JIM_OK;
4904 static const struct command_registration target_instance_command_handlers[] = {
4906 .name = "configure",
4907 .mode = COMMAND_CONFIG,
4908 .jim_handler = jim_target_configure,
4909 .help = "configure a new target for use",
4910 .usage = "[target_attribute ...]",
4913 .name = "cget",
4914 .mode = COMMAND_ANY,
4915 .jim_handler = jim_target_configure,
4916 .help = "returns the specified target attribute",
4917 .usage = "target_attribute",
4920 .name = "mww",
4921 .mode = COMMAND_EXEC,
4922 .jim_handler = jim_target_mw,
4923 .help = "Write 32-bit word(s) to target memory",
4924 .usage = "address data [count]",
4927 .name = "mwh",
4928 .mode = COMMAND_EXEC,
4929 .jim_handler = jim_target_mw,
4930 .help = "Write 16-bit half-word(s) to target memory",
4931 .usage = "address data [count]",
4934 .name = "mwb",
4935 .mode = COMMAND_EXEC,
4936 .jim_handler = jim_target_mw,
4937 .help = "Write byte(s) to target memory",
4938 .usage = "address data [count]",
4941 .name = "mdw",
4942 .mode = COMMAND_EXEC,
4943 .jim_handler = jim_target_md,
4944 .help = "Display target memory as 32-bit words",
4945 .usage = "address [count]",
4948 .name = "mdh",
4949 .mode = COMMAND_EXEC,
4950 .jim_handler = jim_target_md,
4951 .help = "Display target memory as 16-bit half-words",
4952 .usage = "address [count]",
4955 .name = "mdb",
4956 .mode = COMMAND_EXEC,
4957 .jim_handler = jim_target_md,
4958 .help = "Display target memory as 8-bit bytes",
4959 .usage = "address [count]",
4962 .name = "array2mem",
4963 .mode = COMMAND_EXEC,
4964 .jim_handler = jim_target_array2mem,
4965 .help = "Writes Tcl array of 8/16/32 bit numbers "
4966 "to target memory",
4967 .usage = "arrayname bitwidth address count",
4970 .name = "mem2array",
4971 .mode = COMMAND_EXEC,
4972 .jim_handler = jim_target_mem2array,
4973 .help = "Loads Tcl array of 8/16/32 bit numbers "
4974 "from target memory",
4975 .usage = "arrayname bitwidth address count",
4978 .name = "eventlist",
4979 .mode = COMMAND_EXEC,
4980 .jim_handler = jim_target_event_list,
4981 .help = "displays a table of events defined for this target",
4984 .name = "curstate",
4985 .mode = COMMAND_EXEC,
4986 .jim_handler = jim_target_current_state,
4987 .help = "displays the current state of this target",
4990 .name = "arp_examine",
4991 .mode = COMMAND_EXEC,
4992 .jim_handler = jim_target_examine,
4993 .help = "used internally for reset processing",
4996 .name = "arp_halt_gdb",
4997 .mode = COMMAND_EXEC,
4998 .jim_handler = jim_target_halt_gdb,
4999 .help = "used internally for reset processing to halt GDB",
5002 .name = "arp_poll",
5003 .mode = COMMAND_EXEC,
5004 .jim_handler = jim_target_poll,
5005 .help = "used internally for reset processing",
5008 .name = "arp_reset",
5009 .mode = COMMAND_EXEC,
5010 .jim_handler = jim_target_reset,
5011 .help = "used internally for reset processing",
5014 .name = "arp_halt",
5015 .mode = COMMAND_EXEC,
5016 .jim_handler = jim_target_halt,
5017 .help = "used internally for reset processing",
5020 .name = "arp_waitstate",
5021 .mode = COMMAND_EXEC,
5022 .jim_handler = jim_target_wait_state,
5023 .help = "used internally for reset processing",
5026 .name = "invoke-event",
5027 .mode = COMMAND_EXEC,
5028 .jim_handler = jim_target_invoke_event,
5029 .help = "invoke handler for specified event",
5030 .usage = "event_name",
5032 COMMAND_REGISTRATION_DONE
5035 static int target_create(Jim_GetOptInfo *goi)
5037 Jim_Obj *new_cmd;
5038 Jim_Cmd *cmd;
5039 const char *cp;
5040 char *cp2;
5041 int e;
5042 int x;
5043 struct target *target;
5044 struct command_context *cmd_ctx;
5046 cmd_ctx = current_command_context(goi->interp);
5047 assert(cmd_ctx != NULL);
5049 if (goi->argc < 3) {
5050 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5051 return JIM_ERR;
5054 /* COMMAND */
5055 Jim_GetOpt_Obj(goi, &new_cmd);
5056 /* does this command exist? */
5057 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5058 if (cmd) {
5059 cp = Jim_GetString(new_cmd, NULL);
5060 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5061 return JIM_ERR;
5064 /* TYPE */
5065 e = Jim_GetOpt_String(goi, &cp2, NULL);
5066 if (e != JIM_OK)
5067 return e;
5068 cp = cp2;
5069 /* now does target type exist */
5070 for (x = 0 ; target_types[x] ; x++) {
5071 if (0 == strcmp(cp, target_types[x]->name)) {
5072 /* found */
5073 break;
5076 /* check for deprecated name */
5077 if (target_types[x]->deprecated_name) {
5078 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5079 /* found */
5080 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5081 break;
5085 if (target_types[x] == NULL) {
5086 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5087 for (x = 0 ; target_types[x] ; x++) {
5088 if (target_types[x + 1]) {
5089 Jim_AppendStrings(goi->interp,
5090 Jim_GetResult(goi->interp),
5091 target_types[x]->name,
5092 ", ", NULL);
5093 } else {
5094 Jim_AppendStrings(goi->interp,
5095 Jim_GetResult(goi->interp),
5096 " or ",
5097 target_types[x]->name, NULL);
5100 return JIM_ERR;
5103 /* Create it */
5104 target = calloc(1, sizeof(struct target));
5105 /* set target number */
5106 target->target_number = new_target_number();
5107 cmd_ctx->current_target = target->target_number;
5109 /* allocate memory for each unique target type */
5110 target->type = calloc(1, sizeof(struct target_type));
5112 memcpy(target->type, target_types[x], sizeof(struct target_type));
5114 /* will be set by "-endian" */
5115 target->endianness = TARGET_ENDIAN_UNKNOWN;
5117 /* default to first core, override with -coreid */
5118 target->coreid = 0;
5120 target->working_area = 0x0;
5121 target->working_area_size = 0x0;
5122 target->working_areas = NULL;
5123 target->backup_working_area = 0;
5125 target->state = TARGET_UNKNOWN;
5126 target->debug_reason = DBG_REASON_UNDEFINED;
5127 target->reg_cache = NULL;
5128 target->breakpoints = NULL;
5129 target->watchpoints = NULL;
5130 target->next = NULL;
5131 target->arch_info = NULL;
5133 target->display = 1;
5135 target->halt_issued = false;
5137 /* initialize trace information */
5138 target->trace_info = malloc(sizeof(struct trace));
5139 target->trace_info->num_trace_points = 0;
5140 target->trace_info->trace_points_size = 0;
5141 target->trace_info->trace_points = NULL;
5142 target->trace_info->trace_history_size = 0;
5143 target->trace_info->trace_history = NULL;
5144 target->trace_info->trace_history_pos = 0;
5145 target->trace_info->trace_history_overflowed = 0;
5147 target->dbgmsg = NULL;
5148 target->dbg_msg_enabled = 0;
5150 target->endianness = TARGET_ENDIAN_UNKNOWN;
5152 target->rtos = NULL;
5153 target->rtos_auto_detect = false;
5155 /* Do the rest as "configure" options */
5156 goi->isconfigure = 1;
5157 e = target_configure(goi, target);
5159 if (target->tap == NULL) {
5160 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5161 e = JIM_ERR;
5164 if (e != JIM_OK) {
5165 free(target->type);
5166 free(target);
5167 return e;
5170 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5171 /* default endian to little if not specified */
5172 target->endianness = TARGET_LITTLE_ENDIAN;
5175 /* incase variant is not set */
5176 if (!target->variant)
5177 target->variant = strdup("");
5179 cp = Jim_GetString(new_cmd, NULL);
5180 target->cmd_name = strdup(cp);
5182 /* create the target specific commands */
5183 if (target->type->commands) {
5184 e = register_commands(cmd_ctx, NULL, target->type->commands);
5185 if (ERROR_OK != e)
5186 LOG_ERROR("unable to register '%s' commands", cp);
5188 if (target->type->target_create)
5189 (*(target->type->target_create))(target, goi->interp);
5191 /* append to end of list */
5193 struct target **tpp;
5194 tpp = &(all_targets);
5195 while (*tpp)
5196 tpp = &((*tpp)->next);
5197 *tpp = target;
5200 /* now - create the new target name command */
5201 const struct command_registration target_subcommands[] = {
5203 .chain = target_instance_command_handlers,
5206 .chain = target->type->commands,
5208 COMMAND_REGISTRATION_DONE
5210 const struct command_registration target_commands[] = {
5212 .name = cp,
5213 .mode = COMMAND_ANY,
5214 .help = "target command group",
5215 .usage = "",
5216 .chain = target_subcommands,
5218 COMMAND_REGISTRATION_DONE
5220 e = register_commands(cmd_ctx, NULL, target_commands);
5221 if (ERROR_OK != e)
5222 return JIM_ERR;
5224 struct command *c = command_find_in_context(cmd_ctx, cp);
5225 assert(c);
5226 command_set_handler_data(c, target);
5228 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5231 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5233 if (argc != 1) {
5234 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5235 return JIM_ERR;
5237 struct command_context *cmd_ctx = current_command_context(interp);
5238 assert(cmd_ctx != NULL);
5240 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5241 return JIM_OK;
5244 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5246 if (argc != 1) {
5247 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5248 return JIM_ERR;
5250 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5251 for (unsigned x = 0; NULL != target_types[x]; x++) {
5252 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5253 Jim_NewStringObj(interp, target_types[x]->name, -1));
5255 return JIM_OK;
5258 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5260 if (argc != 1) {
5261 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5262 return JIM_ERR;
5264 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5265 struct target *target = all_targets;
5266 while (target) {
5267 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5268 Jim_NewStringObj(interp, target_name(target), -1));
5269 target = target->next;
5271 return JIM_OK;
5274 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5276 int i;
5277 const char *targetname;
5278 int retval, len;
5279 struct target *target = (struct target *) NULL;
5280 struct target_list *head, *curr, *new;
5281 curr = (struct target_list *) NULL;
5282 head = (struct target_list *) NULL;
5284 retval = 0;
5285 LOG_DEBUG("%d", argc);
5286 /* argv[1] = target to associate in smp
5287 * argv[2] = target to assoicate in smp
5288 * argv[3] ...
5291 for (i = 1; i < argc; i++) {
5293 targetname = Jim_GetString(argv[i], &len);
5294 target = get_target(targetname);
5295 LOG_DEBUG("%s ", targetname);
5296 if (target) {
5297 new = malloc(sizeof(struct target_list));
5298 new->target = target;
5299 new->next = (struct target_list *)NULL;
5300 if (head == (struct target_list *)NULL) {
5301 head = new;
5302 curr = head;
5303 } else {
5304 curr->next = new;
5305 curr = new;
5309 /* now parse the list of cpu and put the target in smp mode*/
5310 curr = head;
5312 while (curr != (struct target_list *)NULL) {
5313 target = curr->target;
5314 target->smp = 1;
5315 target->head = head;
5316 curr = curr->next;
5319 if (target && target->rtos)
5320 retval = rtos_smp_init(head->target);
5322 return retval;
5326 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5328 Jim_GetOptInfo goi;
5329 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5330 if (goi.argc < 3) {
5331 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5332 "<name> <target_type> [<target_options> ...]");
5333 return JIM_ERR;
5335 return target_create(&goi);
5338 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5340 Jim_GetOptInfo goi;
5341 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5343 /* It's OK to remove this mechanism sometime after August 2010 or so */
5344 LOG_WARNING("don't use numbers as target identifiers; use names");
5345 if (goi.argc != 1) {
5346 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5347 return JIM_ERR;
5349 jim_wide w;
5350 int e = Jim_GetOpt_Wide(&goi, &w);
5351 if (e != JIM_OK)
5352 return JIM_ERR;
5354 struct target *target;
5355 for (target = all_targets; NULL != target; target = target->next) {
5356 if (target->target_number != w)
5357 continue;
5359 Jim_SetResultString(goi.interp, target_name(target), -1);
5360 return JIM_OK;
5363 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5364 Jim_SetResultFormatted(goi.interp,
5365 "Target: number %#s does not exist", wObj);
5366 Jim_FreeNewObj(interp, wObj);
5368 return JIM_ERR;
5371 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5373 if (argc != 1) {
5374 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5375 return JIM_ERR;
5377 unsigned count = 0;
5378 struct target *target = all_targets;
5379 while (NULL != target) {
5380 target = target->next;
5381 count++;
5383 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5384 return JIM_OK;
5387 static const struct command_registration target_subcommand_handlers[] = {
5389 .name = "init",
5390 .mode = COMMAND_CONFIG,
5391 .handler = handle_target_init_command,
5392 .help = "initialize targets",
5395 .name = "create",
5396 /* REVISIT this should be COMMAND_CONFIG ... */
5397 .mode = COMMAND_ANY,
5398 .jim_handler = jim_target_create,
5399 .usage = "name type '-chain-position' name [options ...]",
5400 .help = "Creates and selects a new target",
5403 .name = "current",
5404 .mode = COMMAND_ANY,
5405 .jim_handler = jim_target_current,
5406 .help = "Returns the currently selected target",
5409 .name = "types",
5410 .mode = COMMAND_ANY,
5411 .jim_handler = jim_target_types,
5412 .help = "Returns the available target types as "
5413 "a list of strings",
5416 .name = "names",
5417 .mode = COMMAND_ANY,
5418 .jim_handler = jim_target_names,
5419 .help = "Returns the names of all targets as a list of strings",
5422 .name = "number",
5423 .mode = COMMAND_ANY,
5424 .jim_handler = jim_target_number,
5425 .usage = "number",
5426 .help = "Returns the name of the numbered target "
5427 "(DEPRECATED)",
5430 .name = "count",
5431 .mode = COMMAND_ANY,
5432 .jim_handler = jim_target_count,
5433 .help = "Returns the number of targets as an integer "
5434 "(DEPRECATED)",
5437 .name = "smp",
5438 .mode = COMMAND_ANY,
5439 .jim_handler = jim_target_smp,
5440 .usage = "targetname1 targetname2 ...",
5441 .help = "gather several target in a smp list"
5444 COMMAND_REGISTRATION_DONE
5447 struct FastLoad {
5448 uint32_t address;
5449 uint8_t *data;
5450 int length;
5454 static int fastload_num;
5455 static struct FastLoad *fastload;
5457 static void free_fastload(void)
5459 if (fastload != NULL) {
5460 int i;
5461 for (i = 0; i < fastload_num; i++) {
5462 if (fastload[i].data)
5463 free(fastload[i].data);
5465 free(fastload);
5466 fastload = NULL;
5470 COMMAND_HANDLER(handle_fast_load_image_command)
5472 uint8_t *buffer;
5473 size_t buf_cnt;
5474 uint32_t image_size;
5475 uint32_t min_address = 0;
5476 uint32_t max_address = 0xffffffff;
5477 int i;
5479 struct image image;
5481 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5482 &image, &min_address, &max_address);
5483 if (ERROR_OK != retval)
5484 return retval;
5486 struct duration bench;
5487 duration_start(&bench);
5489 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5490 if (retval != ERROR_OK)
5491 return retval;
5493 image_size = 0x0;
5494 retval = ERROR_OK;
5495 fastload_num = image.num_sections;
5496 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5497 if (fastload == NULL) {
5498 command_print(CMD_CTX, "out of memory");
5499 image_close(&image);
5500 return ERROR_FAIL;
5502 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5503 for (i = 0; i < image.num_sections; i++) {
5504 buffer = malloc(image.sections[i].size);
5505 if (buffer == NULL) {
5506 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5507 (int)(image.sections[i].size));
5508 retval = ERROR_FAIL;
5509 break;
5512 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5513 if (retval != ERROR_OK) {
5514 free(buffer);
5515 break;
5518 uint32_t offset = 0;
5519 uint32_t length = buf_cnt;
5521 /* DANGER!!! beware of unsigned comparision here!!! */
5523 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5524 (image.sections[i].base_address < max_address)) {
5525 if (image.sections[i].base_address < min_address) {
5526 /* clip addresses below */
5527 offset += min_address-image.sections[i].base_address;
5528 length -= offset;
5531 if (image.sections[i].base_address + buf_cnt > max_address)
5532 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5534 fastload[i].address = image.sections[i].base_address + offset;
5535 fastload[i].data = malloc(length);
5536 if (fastload[i].data == NULL) {
5537 free(buffer);
5538 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5539 length);
5540 retval = ERROR_FAIL;
5541 break;
5543 memcpy(fastload[i].data, buffer + offset, length);
5544 fastload[i].length = length;
5546 image_size += length;
5547 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5548 (unsigned int)length,
5549 ((unsigned int)(image.sections[i].base_address + offset)));
5552 free(buffer);
5555 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5556 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5557 "in %fs (%0.3f KiB/s)", image_size,
5558 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5560 command_print(CMD_CTX,
5561 "WARNING: image has not been loaded to target!"
5562 "You can issue a 'fast_load' to finish loading.");
5565 image_close(&image);
5567 if (retval != ERROR_OK)
5568 free_fastload();
5570 return retval;
5573 COMMAND_HANDLER(handle_fast_load_command)
5575 if (CMD_ARGC > 0)
5576 return ERROR_COMMAND_SYNTAX_ERROR;
5577 if (fastload == NULL) {
5578 LOG_ERROR("No image in memory");
5579 return ERROR_FAIL;
5581 int i;
5582 int ms = timeval_ms();
5583 int size = 0;
5584 int retval = ERROR_OK;
5585 for (i = 0; i < fastload_num; i++) {
5586 struct target *target = get_current_target(CMD_CTX);
5587 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5588 (unsigned int)(fastload[i].address),
5589 (unsigned int)(fastload[i].length));
5590 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5591 if (retval != ERROR_OK)
5592 break;
5593 size += fastload[i].length;
5595 if (retval == ERROR_OK) {
5596 int after = timeval_ms();
5597 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5599 return retval;
5602 static const struct command_registration target_command_handlers[] = {
5604 .name = "targets",
5605 .handler = handle_targets_command,
5606 .mode = COMMAND_ANY,
5607 .help = "change current default target (one parameter) "
5608 "or prints table of all targets (no parameters)",
5609 .usage = "[target]",
5612 .name = "target",
5613 .mode = COMMAND_CONFIG,
5614 .help = "configure target",
5616 .chain = target_subcommand_handlers,
5618 COMMAND_REGISTRATION_DONE
5621 int target_register_commands(struct command_context *cmd_ctx)
5623 return register_commands(cmd_ctx, NULL, target_command_handlers);
5626 static bool target_reset_nag = true;
5628 bool get_target_reset_nag(void)
5630 return target_reset_nag;
5633 COMMAND_HANDLER(handle_target_reset_nag)
5635 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5636 &target_reset_nag, "Nag after each reset about options to improve "
5637 "performance");
5640 COMMAND_HANDLER(handle_ps_command)
5642 struct target *target = get_current_target(CMD_CTX);
5643 char *display;
5644 if (target->state != TARGET_HALTED) {
5645 LOG_INFO("target not halted !!");
5646 return ERROR_OK;
5649 if ((target->rtos) && (target->rtos->type)
5650 && (target->rtos->type->ps_command)) {
5651 display = target->rtos->type->ps_command(target);
5652 command_print(CMD_CTX, "%s", display);
5653 free(display);
5654 return ERROR_OK;
5655 } else {
5656 LOG_INFO("failed");
5657 return ERROR_TARGET_FAILURE;
5661 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5663 if (text != NULL)
5664 command_print_sameline(cmd_ctx, "%s", text);
5665 for (int i = 0; i < size; i++)
5666 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5667 command_print(cmd_ctx, " ");
5670 COMMAND_HANDLER(handle_test_mem_access_command)
5672 struct target *target = get_current_target(CMD_CTX);
5673 uint32_t test_size;
5674 int retval = ERROR_OK;
5676 if (target->state != TARGET_HALTED) {
5677 LOG_INFO("target not halted !!");
5678 return ERROR_FAIL;
5681 if (CMD_ARGC != 1)
5682 return ERROR_COMMAND_SYNTAX_ERROR;
5684 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5686 /* Test reads */
5687 size_t num_bytes = test_size + 4;
5689 struct working_area *wa = NULL;
5690 retval = target_alloc_working_area(target, num_bytes, &wa);
5691 if (retval != ERROR_OK) {
5692 LOG_ERROR("Not enough working area");
5693 return ERROR_FAIL;
5696 uint8_t *test_pattern = malloc(num_bytes);
5698 for (size_t i = 0; i < num_bytes; i++)
5699 test_pattern[i] = rand();
5701 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5702 if (retval != ERROR_OK) {
5703 LOG_ERROR("Test pattern write failed");
5704 goto out;
5707 for (int host_offset = 0; host_offset <= 1; host_offset++) {
5708 for (int size = 1; size <= 4; size *= 2) {
5709 for (int offset = 0; offset < 4; offset++) {
5710 uint32_t count = test_size / size;
5711 size_t host_bufsiz = (count + 2) * size + host_offset;
5712 uint8_t *read_ref = malloc(host_bufsiz);
5713 uint8_t *read_buf = malloc(host_bufsiz);
5715 for (size_t i = 0; i < host_bufsiz; i++) {
5716 read_ref[i] = rand();
5717 read_buf[i] = read_ref[i];
5719 command_print_sameline(CMD_CTX,
5720 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
5721 size, offset, host_offset ? "un" : "");
5723 struct duration bench;
5724 duration_start(&bench);
5726 retval = target_read_memory(target, wa->address + offset, size, count,
5727 read_buf + size + host_offset);
5729 duration_measure(&bench);
5731 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5732 command_print(CMD_CTX, "Unsupported alignment");
5733 goto next;
5734 } else if (retval != ERROR_OK) {
5735 command_print(CMD_CTX, "Memory read failed");
5736 goto next;
5739 /* replay on host */
5740 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5742 /* check result */
5743 int result = memcmp(read_ref, read_buf, host_bufsiz);
5744 if (result == 0) {
5745 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5746 duration_elapsed(&bench),
5747 duration_kbps(&bench, count * size));
5748 } else {
5749 command_print(CMD_CTX, "Compare failed");
5750 binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5751 binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5753 next:
5754 free(read_ref);
5755 free(read_buf);
5760 out:
5761 free(test_pattern);
5763 if (wa != NULL)
5764 target_free_working_area(target, wa);
5766 /* Test writes */
5767 num_bytes = test_size + 4 + 4 + 4;
5769 retval = target_alloc_working_area(target, num_bytes, &wa);
5770 if (retval != ERROR_OK) {
5771 LOG_ERROR("Not enough working area");
5772 return ERROR_FAIL;
5775 test_pattern = malloc(num_bytes);
5777 for (size_t i = 0; i < num_bytes; i++)
5778 test_pattern[i] = rand();
5780 for (int host_offset = 0; host_offset <= 1; host_offset++) {
5781 for (int size = 1; size <= 4; size *= 2) {
5782 for (int offset = 0; offset < 4; offset++) {
5783 uint32_t count = test_size / size;
5784 size_t host_bufsiz = count * size + host_offset;
5785 uint8_t *read_ref = malloc(num_bytes);
5786 uint8_t *read_buf = malloc(num_bytes);
5787 uint8_t *write_buf = malloc(host_bufsiz);
5789 for (size_t i = 0; i < host_bufsiz; i++)
5790 write_buf[i] = rand();
5791 command_print_sameline(CMD_CTX,
5792 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
5793 size, offset, host_offset ? "un" : "");
5795 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5796 if (retval != ERROR_OK) {
5797 command_print(CMD_CTX, "Test pattern write failed");
5798 goto nextw;
5801 /* replay on host */
5802 memcpy(read_ref, test_pattern, num_bytes);
5803 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
5805 struct duration bench;
5806 duration_start(&bench);
5808 retval = target_write_memory(target, wa->address + size + offset, size, count,
5809 write_buf + host_offset);
5811 duration_measure(&bench);
5813 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5814 command_print(CMD_CTX, "Unsupported alignment");
5815 goto nextw;
5816 } else if (retval != ERROR_OK) {
5817 command_print(CMD_CTX, "Memory write failed");
5818 goto nextw;
5821 /* read back */
5822 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
5823 if (retval != ERROR_OK) {
5824 command_print(CMD_CTX, "Test pattern write failed");
5825 goto nextw;
5828 /* check result */
5829 int result = memcmp(read_ref, read_buf, num_bytes);
5830 if (result == 0) {
5831 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5832 duration_elapsed(&bench),
5833 duration_kbps(&bench, count * size));
5834 } else {
5835 command_print(CMD_CTX, "Compare failed");
5836 binprint(CMD_CTX, "ref:", read_ref, num_bytes);
5837 binprint(CMD_CTX, "buf:", read_buf, num_bytes);
5839 nextw:
5840 free(read_ref);
5841 free(read_buf);
5846 free(test_pattern);
5848 if (wa != NULL)
5849 target_free_working_area(target, wa);
5850 return retval;
5853 static const struct command_registration target_exec_command_handlers[] = {
5855 .name = "fast_load_image",
5856 .handler = handle_fast_load_image_command,
5857 .mode = COMMAND_ANY,
5858 .help = "Load image into server memory for later use by "
5859 "fast_load; primarily for profiling",
5860 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5861 "[min_address [max_length]]",
5864 .name = "fast_load",
5865 .handler = handle_fast_load_command,
5866 .mode = COMMAND_EXEC,
5867 .help = "loads active fast load image to current target "
5868 "- mainly for profiling purposes",
5869 .usage = "",
5872 .name = "profile",
5873 .handler = handle_profile_command,
5874 .mode = COMMAND_EXEC,
5875 .usage = "seconds filename [start end]",
5876 .help = "profiling samples the CPU PC",
5878 /** @todo don't register virt2phys() unless target supports it */
5880 .name = "virt2phys",
5881 .handler = handle_virt2phys_command,
5882 .mode = COMMAND_ANY,
5883 .help = "translate a virtual address into a physical address",
5884 .usage = "virtual_address",
5887 .name = "reg",
5888 .handler = handle_reg_command,
5889 .mode = COMMAND_EXEC,
5890 .help = "display (reread from target with \"force\") or set a register; "
5891 "with no arguments, displays all registers and their values",
5892 .usage = "[(register_number|register_name) [(value|'force')]]",
5895 .name = "poll",
5896 .handler = handle_poll_command,
5897 .mode = COMMAND_EXEC,
5898 .help = "poll target state; or reconfigure background polling",
5899 .usage = "['on'|'off']",
5902 .name = "wait_halt",
5903 .handler = handle_wait_halt_command,
5904 .mode = COMMAND_EXEC,
5905 .help = "wait up to the specified number of milliseconds "
5906 "(default 5000) for a previously requested halt",
5907 .usage = "[milliseconds]",
5910 .name = "halt",
5911 .handler = handle_halt_command,
5912 .mode = COMMAND_EXEC,
5913 .help = "request target to halt, then wait up to the specified"
5914 "number of milliseconds (default 5000) for it to complete",
5915 .usage = "[milliseconds]",
5918 .name = "resume",
5919 .handler = handle_resume_command,
5920 .mode = COMMAND_EXEC,
5921 .help = "resume target execution from current PC or address",
5922 .usage = "[address]",
5925 .name = "reset",
5926 .handler = handle_reset_command,
5927 .mode = COMMAND_EXEC,
5928 .usage = "[run|halt|init]",
5929 .help = "Reset all targets into the specified mode."
5930 "Default reset mode is run, if not given.",
5933 .name = "soft_reset_halt",
5934 .handler = handle_soft_reset_halt_command,
5935 .mode = COMMAND_EXEC,
5936 .usage = "",
5937 .help = "halt the target and do a soft reset",
5940 .name = "step",
5941 .handler = handle_step_command,
5942 .mode = COMMAND_EXEC,
5943 .help = "step one instruction from current PC or address",
5944 .usage = "[address]",
5947 .name = "mdw",
5948 .handler = handle_md_command,
5949 .mode = COMMAND_EXEC,
5950 .help = "display memory words",
5951 .usage = "['phys'] address [count]",
5954 .name = "mdh",
5955 .handler = handle_md_command,
5956 .mode = COMMAND_EXEC,
5957 .help = "display memory half-words",
5958 .usage = "['phys'] address [count]",
5961 .name = "mdb",
5962 .handler = handle_md_command,
5963 .mode = COMMAND_EXEC,
5964 .help = "display memory bytes",
5965 .usage = "['phys'] address [count]",
5968 .name = "mww",
5969 .handler = handle_mw_command,
5970 .mode = COMMAND_EXEC,
5971 .help = "write memory word",
5972 .usage = "['phys'] address value [count]",
5975 .name = "mwh",
5976 .handler = handle_mw_command,
5977 .mode = COMMAND_EXEC,
5978 .help = "write memory half-word",
5979 .usage = "['phys'] address value [count]",
5982 .name = "mwb",
5983 .handler = handle_mw_command,
5984 .mode = COMMAND_EXEC,
5985 .help = "write memory byte",
5986 .usage = "['phys'] address value [count]",
5989 .name = "bp",
5990 .handler = handle_bp_command,
5991 .mode = COMMAND_EXEC,
5992 .help = "list or set hardware or software breakpoint",
5993 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5996 .name = "rbp",
5997 .handler = handle_rbp_command,
5998 .mode = COMMAND_EXEC,
5999 .help = "remove breakpoint",
6000 .usage = "address",
6003 .name = "wp",
6004 .handler = handle_wp_command,
6005 .mode = COMMAND_EXEC,
6006 .help = "list (no params) or create watchpoints",
6007 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6010 .name = "rwp",
6011 .handler = handle_rwp_command,
6012 .mode = COMMAND_EXEC,
6013 .help = "remove watchpoint",
6014 .usage = "address",
6017 .name = "load_image",
6018 .handler = handle_load_image_command,
6019 .mode = COMMAND_EXEC,
6020 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6021 "[min_address] [max_length]",
6024 .name = "dump_image",
6025 .handler = handle_dump_image_command,
6026 .mode = COMMAND_EXEC,
6027 .usage = "filename address size",
6030 .name = "verify_image",
6031 .handler = handle_verify_image_command,
6032 .mode = COMMAND_EXEC,
6033 .usage = "filename [offset [type]]",
6036 .name = "test_image",
6037 .handler = handle_test_image_command,
6038 .mode = COMMAND_EXEC,
6039 .usage = "filename [offset [type]]",
6042 .name = "mem2array",
6043 .mode = COMMAND_EXEC,
6044 .jim_handler = jim_mem2array,
6045 .help = "read 8/16/32 bit memory and return as a TCL array "
6046 "for script processing",
6047 .usage = "arrayname bitwidth address count",
6050 .name = "array2mem",
6051 .mode = COMMAND_EXEC,
6052 .jim_handler = jim_array2mem,
6053 .help = "convert a TCL array to memory locations "
6054 "and write the 8/16/32 bit values",
6055 .usage = "arrayname bitwidth address count",
6058 .name = "reset_nag",
6059 .handler = handle_target_reset_nag,
6060 .mode = COMMAND_ANY,
6061 .help = "Nag after each reset about options that could have been "
6062 "enabled to improve performance. ",
6063 .usage = "['enable'|'disable']",
6066 .name = "ps",
6067 .handler = handle_ps_command,
6068 .mode = COMMAND_EXEC,
6069 .help = "list all tasks ",
6070 .usage = " ",
6073 .name = "test_mem_access",
6074 .handler = handle_test_mem_access_command,
6075 .mode = COMMAND_EXEC,
6076 .help = "Test the target's memory access functions",
6077 .usage = "size",
6080 COMMAND_REGISTRATION_DONE
6082 static int target_register_user_commands(struct command_context *cmd_ctx)
6084 int retval = ERROR_OK;
6085 retval = target_request_register_commands(cmd_ctx);
6086 if (retval != ERROR_OK)
6087 return retval;
6089 retval = trace_register_commands(cmd_ctx);
6090 if (retval != ERROR_OK)
6091 return retval;
6094 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);