minimum address and maximum length argument to load_image. Used in lieu of reset...
[openocd.git] / src / target / target.c
blob3d0c4afdad9f300be50b36218e435702e97f109e
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
27 #include "replacements.h"
28 #include "target.h"
29 #include "target_request.h"
31 #include "log.h"
32 #include "configuration.h"
33 #include "binarybuffer.h"
34 #include "jtag.h"
36 #include <string.h>
37 #include <stdlib.h>
38 #include <inttypes.h>
40 #include <sys/types.h>
41 #include <sys/stat.h>
42 #include <unistd.h>
43 #include <errno.h>
45 #include <sys/time.h>
46 #include <time.h>
48 #include <time_support.h>
50 #include <fileio.h>
51 #include <image.h>
53 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
55 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
79 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
80 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
81 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
84 /* targets */
85 extern target_type_t arm7tdmi_target;
86 extern target_type_t arm720t_target;
87 extern target_type_t arm9tdmi_target;
88 extern target_type_t arm920t_target;
89 extern target_type_t arm966e_target;
90 extern target_type_t arm926ejs_target;
91 extern target_type_t feroceon_target;
92 extern target_type_t xscale_target;
93 extern target_type_t cortexm3_target;
94 extern target_type_t arm11_target;
96 target_type_t *target_types[] =
98 &arm7tdmi_target,
99 &arm9tdmi_target,
100 &arm920t_target,
101 &arm720t_target,
102 &arm966e_target,
103 &arm926ejs_target,
104 &feroceon_target,
105 &xscale_target,
106 &cortexm3_target,
107 &arm11_target,
108 NULL,
111 target_t *targets = NULL;
112 target_event_callback_t *target_event_callbacks = NULL;
113 target_timer_callback_t *target_timer_callbacks = NULL;
115 char *target_state_strings[] =
117 "unknown",
118 "running",
119 "halted",
120 "reset",
121 "debug_running",
124 char *target_debug_reason_strings[] =
126 "debug request", "breakpoint", "watchpoint",
127 "watchpoint and breakpoint", "single step",
128 "target not halted", "undefined"
131 char *target_endianess_strings[] =
133 "big endian",
134 "little endian",
137 static int target_continous_poll = 1;
139 /* read a u32 from a buffer in target memory endianness */
140 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
142 if (target->endianness == TARGET_LITTLE_ENDIAN)
143 return le_to_h_u32(buffer);
144 else
145 return be_to_h_u32(buffer);
148 /* read a u16 from a buffer in target memory endianness */
149 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
151 if (target->endianness == TARGET_LITTLE_ENDIAN)
152 return le_to_h_u16(buffer);
153 else
154 return be_to_h_u16(buffer);
157 /* write a u32 to a buffer in target memory endianness */
158 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
160 if (target->endianness == TARGET_LITTLE_ENDIAN)
161 h_u32_to_le(buffer, value);
162 else
163 h_u32_to_be(buffer, value);
166 /* write a u16 to a buffer in target memory endianness */
167 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
169 if (target->endianness == TARGET_LITTLE_ENDIAN)
170 h_u16_to_le(buffer, value);
171 else
172 h_u16_to_be(buffer, value);
175 /* returns a pointer to the n-th configured target */
176 target_t* get_target_by_num(int num)
178 target_t *target = targets;
179 int i = 0;
181 while (target)
183 if (num == i)
184 return target;
185 target = target->next;
186 i++;
189 return NULL;
192 int get_num_by_target(target_t *query_target)
194 target_t *target = targets;
195 int i = 0;
197 while (target)
199 if (target == query_target)
200 return i;
201 target = target->next;
202 i++;
205 return -1;
208 target_t* get_current_target(command_context_t *cmd_ctx)
210 target_t *target = get_target_by_num(cmd_ctx->current_target);
212 if (target == NULL)
214 LOG_ERROR("BUG: current_target out of bounds");
215 exit(-1);
218 return target;
221 /* Process target initialization, when target entered debug out of reset
222 * the handler is unregistered at the end of this function, so it's only called once
224 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
226 struct command_context_s *cmd_ctx = priv;
228 if (event == TARGET_EVENT_HALTED)
230 target_unregister_event_callback(target_init_handler, priv);
231 target_invoke_script(cmd_ctx, target, "post_reset");
232 jtag_execute_queue();
235 return ERROR_OK;
238 int target_run_and_halt_handler(void *priv)
240 target_t *target = priv;
242 target_halt(target);
244 return ERROR_OK;
247 int target_poll(struct target_s *target)
249 /* We can't poll until after examine */
250 if (!target->type->examined)
252 /* Fail silently lest we pollute the log */
253 return ERROR_FAIL;
255 return target->type->poll(target);
258 int target_halt(struct target_s *target)
260 /* We can't poll until after examine */
261 if (!target->type->examined)
263 LOG_ERROR("Target not examined yet");
264 return ERROR_FAIL;
266 return target->type->halt(target);
269 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
271 int retval;
273 /* We can't poll until after examine */
274 if (!target->type->examined)
276 LOG_ERROR("Target not examined yet");
277 return ERROR_FAIL;
280 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
281 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
282 * the application.
284 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
285 return retval;
287 return retval;
290 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
292 int retval = ERROR_OK;
293 target_t *target;
294 struct timeval timeout, now;
296 target = targets;
297 while (target)
299 target_invoke_script(cmd_ctx, target, "pre_reset");
300 target = target->next;
303 if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
304 return retval;
306 keep_alive(); /* we might be running on a very slow JTAG clk */
308 /* First time this is executed after launching OpenOCD, it will read out
309 * the type of CPU, etc. and init Embedded ICE registers in host
310 * memory.
312 * It will also set up ICE registers in the target.
314 * However, if we assert TRST later, we need to set up the registers again.
316 * For the "reset halt/init" case we must only set up the registers here.
318 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
319 return retval;
321 keep_alive(); /* we might be running on a very slow JTAG clk */
323 target = targets;
324 while (target)
326 /* we have no idea what state the target is in, so we
327 * have to drop working areas
329 target_free_all_working_areas_restore(target, 0);
330 target->reset_halt=((reset_mode==RESET_HALT)||(reset_mode==RESET_INIT));
331 target->type->assert_reset(target);
332 target = target->next;
334 if ((retval = jtag_execute_queue()) != ERROR_OK)
336 LOG_WARNING("JTAG communication failed asserting reset.");
337 retval = ERROR_OK;
340 /* request target halt if necessary, and schedule further action */
341 target = targets;
342 while (target)
344 switch (reset_mode)
346 case RESET_RUN:
347 /* nothing to do if target just wants to be run */
348 break;
349 case RESET_RUN_AND_HALT:
350 /* schedule halt */
351 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
352 break;
353 case RESET_RUN_AND_INIT:
354 /* schedule halt */
355 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
356 target_register_event_callback(target_init_handler, cmd_ctx);
357 break;
358 case RESET_HALT:
359 if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
360 target_halt(target);
361 break;
362 case RESET_INIT:
363 if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
364 target_halt(target);
365 target_register_event_callback(target_init_handler, cmd_ctx);
366 break;
367 default:
368 LOG_ERROR("BUG: unknown target->reset_mode");
370 target = target->next;
373 if ((retval = jtag_execute_queue()) != ERROR_OK)
375 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
376 retval = ERROR_OK;
379 target = targets;
380 while (target)
382 target->type->deassert_reset(target);
383 /* We can fail to bring the target into the halted state */
384 target_poll(target);
385 if (target->reset_halt&&((target->state != TARGET_HALTED)))
387 LOG_WARNING("Failed to reset target into halted mode - issuing halt");
388 target->type->halt(target);
391 target = target->next;
394 if ((retval = jtag_execute_queue()) != ERROR_OK)
396 LOG_WARNING("JTAG communication failed while deasserting reset.");
397 retval = ERROR_OK;
400 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
402 /* If TRST was asserted we need to set up registers again */
403 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
404 return retval;
407 LOG_DEBUG("Waiting for halted stated as appropriate");
409 /* Wait for reset to complete, maximum 5 seconds. */
410 gettimeofday(&timeout, NULL);
411 timeval_add_time(&timeout, 5, 0);
412 for(;;)
414 gettimeofday(&now, NULL);
416 target_call_timer_callbacks_now();
418 target = targets;
419 while (target)
421 LOG_DEBUG("Polling target");
422 target_poll(target);
423 if ((reset_mode == RESET_RUN_AND_INIT) ||
424 (reset_mode == RESET_RUN_AND_HALT) ||
425 (reset_mode == RESET_HALT) ||
426 (reset_mode == RESET_INIT))
428 if (target->state != TARGET_HALTED)
430 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
432 LOG_USER("Timed out waiting for halt after reset");
433 goto done;
435 /* this will send alive messages on e.g. GDB remote protocol. */
436 usleep(500*1000);
437 LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/
438 goto again;
441 target = target->next;
443 /* All targets we're waiting for are halted */
444 break;
446 again:;
448 done:
451 /* We want any events to be processed before the prompt */
452 target_call_timer_callbacks_now();
454 /* if we timed out we need to unregister these handlers */
455 target = targets;
456 while (target)
458 target_unregister_timer_callback(target_run_and_halt_handler, target);
459 target = target->next;
461 target_unregister_event_callback(target_init_handler, cmd_ctx);
463 return retval;
466 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
468 *physical = virtual;
469 return ERROR_OK;
472 static int default_mmu(struct target_s *target, int *enabled)
474 *enabled = 0;
475 return ERROR_OK;
478 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
480 target->type->examined = 1;
481 return ERROR_OK;
485 /* Targets that correctly implement init+examine, i.e.
486 * no communication with target during init:
488 * XScale
490 int target_examine(struct command_context_s *cmd_ctx)
492 int retval = ERROR_OK;
493 target_t *target = targets;
494 while (target)
496 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
497 return retval;
498 target = target->next;
500 return retval;
503 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
505 if (!target->type->examined)
507 LOG_ERROR("Target not examined yet");
508 return ERROR_FAIL;
510 return target->type->write_memory_imp(target, address, size, count, buffer);
513 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
515 if (!target->type->examined)
517 LOG_ERROR("Target not examined yet");
518 return ERROR_FAIL;
520 return target->type->read_memory_imp(target, address, size, count, buffer);
523 static int target_soft_reset_halt_imp(struct target_s *target)
525 if (!target->type->examined)
527 LOG_ERROR("Target not examined yet");
528 return ERROR_FAIL;
530 return target->type->soft_reset_halt_imp(target);
533 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
535 if (!target->type->examined)
537 LOG_ERROR("Target not examined yet");
538 return ERROR_FAIL;
540 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
543 int target_init(struct command_context_s *cmd_ctx)
545 target_t *target = targets;
547 while (target)
549 target->type->examined = 0;
550 if (target->type->examine == NULL)
552 target->type->examine = default_examine;
555 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
557 LOG_ERROR("target '%s' init failed", target->type->name);
558 exit(-1);
561 /* Set up default functions if none are provided by target */
562 if (target->type->virt2phys == NULL)
564 target->type->virt2phys = default_virt2phys;
566 target->type->virt2phys = default_virt2phys;
567 /* a non-invasive way(in terms of patches) to add some code that
568 * runs before the type->write/read_memory implementation
570 target->type->write_memory_imp = target->type->write_memory;
571 target->type->write_memory = target_write_memory_imp;
572 target->type->read_memory_imp = target->type->read_memory;
573 target->type->read_memory = target_read_memory_imp;
574 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
575 target->type->soft_reset_halt = target_soft_reset_halt_imp;
576 target->type->run_algorithm_imp = target->type->run_algorithm;
577 target->type->run_algorithm = target_run_algorithm_imp;
580 if (target->type->mmu == NULL)
582 target->type->mmu = default_mmu;
584 target = target->next;
587 if (targets)
589 target_register_user_commands(cmd_ctx);
590 target_register_timer_callback(handle_target, 100, 1, NULL);
593 return ERROR_OK;
596 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
598 target_event_callback_t **callbacks_p = &target_event_callbacks;
600 if (callback == NULL)
602 return ERROR_INVALID_ARGUMENTS;
605 if (*callbacks_p)
607 while ((*callbacks_p)->next)
608 callbacks_p = &((*callbacks_p)->next);
609 callbacks_p = &((*callbacks_p)->next);
612 (*callbacks_p) = malloc(sizeof(target_event_callback_t));
613 (*callbacks_p)->callback = callback;
614 (*callbacks_p)->priv = priv;
615 (*callbacks_p)->next = NULL;
617 return ERROR_OK;
620 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
622 target_timer_callback_t **callbacks_p = &target_timer_callbacks;
623 struct timeval now;
625 if (callback == NULL)
627 return ERROR_INVALID_ARGUMENTS;
630 if (*callbacks_p)
632 while ((*callbacks_p)->next)
633 callbacks_p = &((*callbacks_p)->next);
634 callbacks_p = &((*callbacks_p)->next);
637 (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
638 (*callbacks_p)->callback = callback;
639 (*callbacks_p)->periodic = periodic;
640 (*callbacks_p)->time_ms = time_ms;
642 gettimeofday(&now, NULL);
643 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
644 time_ms -= (time_ms % 1000);
645 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
646 if ((*callbacks_p)->when.tv_usec > 1000000)
648 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
649 (*callbacks_p)->when.tv_sec += 1;
652 (*callbacks_p)->priv = priv;
653 (*callbacks_p)->next = NULL;
655 return ERROR_OK;
658 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
660 target_event_callback_t **p = &target_event_callbacks;
661 target_event_callback_t *c = target_event_callbacks;
663 if (callback == NULL)
665 return ERROR_INVALID_ARGUMENTS;
668 while (c)
670 target_event_callback_t *next = c->next;
671 if ((c->callback == callback) && (c->priv == priv))
673 *p = next;
674 free(c);
675 return ERROR_OK;
677 else
678 p = &(c->next);
679 c = next;
682 return ERROR_OK;
685 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
687 target_timer_callback_t **p = &target_timer_callbacks;
688 target_timer_callback_t *c = target_timer_callbacks;
690 if (callback == NULL)
692 return ERROR_INVALID_ARGUMENTS;
695 while (c)
697 target_timer_callback_t *next = c->next;
698 if ((c->callback == callback) && (c->priv == priv))
700 *p = next;
701 free(c);
702 return ERROR_OK;
704 else
705 p = &(c->next);
706 c = next;
709 return ERROR_OK;
712 int target_call_event_callbacks(target_t *target, enum target_event event)
714 target_event_callback_t *callback = target_event_callbacks;
715 target_event_callback_t *next_callback;
717 LOG_DEBUG("target event %i", event);
719 while (callback)
721 next_callback = callback->next;
722 callback->callback(target, event, callback->priv);
723 callback = next_callback;
726 return ERROR_OK;
729 static int target_call_timer_callbacks_check_time(int checktime)
731 target_timer_callback_t *callback = target_timer_callbacks;
732 target_timer_callback_t *next_callback;
733 struct timeval now;
735 keep_alive();
737 gettimeofday(&now, NULL);
739 while (callback)
741 next_callback = callback->next;
743 if ((!checktime&&callback->periodic)||
744 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
745 || (now.tv_sec > callback->when.tv_sec)))
747 if(callback->callback != NULL)
749 callback->callback(callback->priv);
750 if (callback->periodic)
752 int time_ms = callback->time_ms;
753 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
754 time_ms -= (time_ms % 1000);
755 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
756 if (callback->when.tv_usec > 1000000)
758 callback->when.tv_usec = callback->when.tv_usec - 1000000;
759 callback->when.tv_sec += 1;
762 else
763 target_unregister_timer_callback(callback->callback, callback->priv);
767 callback = next_callback;
770 return ERROR_OK;
773 int target_call_timer_callbacks()
775 return target_call_timer_callbacks_check_time(1);
778 /* invoke periodic callbacks immediately */
779 int target_call_timer_callbacks_now()
781 return target_call_timer_callbacks(0);
784 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
786 working_area_t *c = target->working_areas;
787 working_area_t *new_wa = NULL;
789 /* Reevaluate working area address based on MMU state*/
790 if (target->working_areas == NULL)
792 int retval;
793 int enabled;
794 retval = target->type->mmu(target, &enabled);
795 if (retval != ERROR_OK)
797 return retval;
799 if (enabled)
801 target->working_area = target->working_area_virt;
803 else
805 target->working_area = target->working_area_phys;
809 /* only allocate multiples of 4 byte */
810 if (size % 4)
812 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
813 size = CEIL(size, 4);
816 /* see if there's already a matching working area */
817 while (c)
819 if ((c->free) && (c->size == size))
821 new_wa = c;
822 break;
824 c = c->next;
827 /* if not, allocate a new one */
828 if (!new_wa)
830 working_area_t **p = &target->working_areas;
831 u32 first_free = target->working_area;
832 u32 free_size = target->working_area_size;
834 LOG_DEBUG("allocating new working area");
836 c = target->working_areas;
837 while (c)
839 first_free += c->size;
840 free_size -= c->size;
841 p = &c->next;
842 c = c->next;
845 if (free_size < size)
847 LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
848 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
851 new_wa = malloc(sizeof(working_area_t));
852 new_wa->next = NULL;
853 new_wa->size = size;
854 new_wa->address = first_free;
856 if (target->backup_working_area)
858 new_wa->backup = malloc(new_wa->size);
859 target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
861 else
863 new_wa->backup = NULL;
866 /* put new entry in list */
867 *p = new_wa;
870 /* mark as used, and return the new (reused) area */
871 new_wa->free = 0;
872 *area = new_wa;
874 /* user pointer */
875 new_wa->user = area;
877 return ERROR_OK;
880 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
882 if (area->free)
883 return ERROR_OK;
885 if (restore&&target->backup_working_area)
886 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
888 area->free = 1;
890 /* mark user pointer invalid */
891 *area->user = NULL;
892 area->user = NULL;
894 return ERROR_OK;
897 int target_free_working_area(struct target_s *target, working_area_t *area)
899 return target_free_working_area_restore(target, area, 1);
902 int target_free_all_working_areas_restore(struct target_s *target, int restore)
904 working_area_t *c = target->working_areas;
906 while (c)
908 working_area_t *next = c->next;
909 target_free_working_area_restore(target, c, restore);
911 if (c->backup)
912 free(c->backup);
914 free(c);
916 c = next;
919 target->working_areas = NULL;
921 return ERROR_OK;
924 int target_free_all_working_areas(struct target_s *target)
926 return target_free_all_working_areas_restore(target, 1);
929 int target_register_commands(struct command_context_s *cmd_ctx)
931 register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
932 register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
933 register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
934 register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
935 register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
936 register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
939 /* script procedures */
940 register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing");
941 register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values");
942 return ERROR_OK;
945 int target_arch_state(struct target_s *target)
947 int retval;
948 if (target==NULL)
950 LOG_USER("No target has been configured");
951 return ERROR_OK;
954 LOG_USER("target state: %s", target_state_strings[target->state]);
956 if (target->state!=TARGET_HALTED)
957 return ERROR_OK;
959 retval=target->type->arch_state(target);
960 return retval;
963 /* Single aligned words are guaranteed to use 16 or 32 bit access
964 * mode respectively, otherwise data is handled as quickly as
965 * possible
967 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
969 int retval;
970 if (!target->type->examined)
972 LOG_ERROR("Target not examined yet");
973 return ERROR_FAIL;
976 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
978 if (((address % 2) == 0) && (size == 2))
980 return target->type->write_memory(target, address, 2, 1, buffer);
983 /* handle unaligned head bytes */
984 if (address % 4)
986 int unaligned = 4 - (address % 4);
988 if (unaligned > size)
989 unaligned = size;
991 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
992 return retval;
994 buffer += unaligned;
995 address += unaligned;
996 size -= unaligned;
999 /* handle aligned words */
1000 if (size >= 4)
1002 int aligned = size - (size % 4);
1004 /* use bulk writes above a certain limit. This may have to be changed */
1005 if (aligned > 128)
1007 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1008 return retval;
1010 else
1012 if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1013 return retval;
1016 buffer += aligned;
1017 address += aligned;
1018 size -= aligned;
1021 /* handle tail writes of less than 4 bytes */
1022 if (size > 0)
1024 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1025 return retval;
1028 return ERROR_OK;
1032 /* Single aligned words are guaranteed to use 16 or 32 bit access
1033 * mode respectively, otherwise data is handled as quickly as
1034 * possible
1036 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1038 int retval;
1039 if (!target->type->examined)
1041 LOG_ERROR("Target not examined yet");
1042 return ERROR_FAIL;
1045 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1047 if (((address % 2) == 0) && (size == 2))
1049 return target->type->read_memory(target, address, 2, 1, buffer);
1052 /* handle unaligned head bytes */
1053 if (address % 4)
1055 int unaligned = 4 - (address % 4);
1057 if (unaligned > size)
1058 unaligned = size;
1060 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1061 return retval;
1063 buffer += unaligned;
1064 address += unaligned;
1065 size -= unaligned;
1068 /* handle aligned words */
1069 if (size >= 4)
1071 int aligned = size - (size % 4);
1073 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1074 return retval;
1076 buffer += aligned;
1077 address += aligned;
1078 size -= aligned;
1081 /* handle tail writes of less than 4 bytes */
1082 if (size > 0)
1084 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1085 return retval;
1088 return ERROR_OK;
1091 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1093 u8 *buffer;
1094 int retval;
1095 int i;
1096 u32 checksum = 0;
1097 if (!target->type->examined)
1099 LOG_ERROR("Target not examined yet");
1100 return ERROR_FAIL;
1103 if ((retval = target->type->checksum_memory(target, address,
1104 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1106 buffer = malloc(size);
1107 if (buffer == NULL)
1109 LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1110 return ERROR_INVALID_ARGUMENTS;
1112 retval = target_read_buffer(target, address, size, buffer);
1113 if (retval != ERROR_OK)
1115 free(buffer);
1116 return retval;
1119 /* convert to target endianess */
1120 for (i = 0; i < (size/sizeof(u32)); i++)
1122 u32 target_data;
1123 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1124 target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1127 retval = image_calculate_checksum( buffer, size, &checksum );
1128 free(buffer);
1131 *crc = checksum;
1133 return retval;
1136 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1138 int retval;
1139 if (!target->type->examined)
1141 LOG_ERROR("Target not examined yet");
1142 return ERROR_FAIL;
1145 if (target->type->blank_check_memory == 0)
1146 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1148 retval = target->type->blank_check_memory(target, address, size, blank);
1150 return retval;
1153 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1155 u8 value_buf[4];
1156 if (!target->type->examined)
1158 LOG_ERROR("Target not examined yet");
1159 return ERROR_FAIL;
1162 int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1164 if (retval == ERROR_OK)
1166 *value = target_buffer_get_u32(target, value_buf);
1167 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1169 else
1171 *value = 0x0;
1172 LOG_DEBUG("address: 0x%8.8x failed", address);
1175 return retval;
1178 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1180 u8 value_buf[2];
1181 if (!target->type->examined)
1183 LOG_ERROR("Target not examined yet");
1184 return ERROR_FAIL;
1187 int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1189 if (retval == ERROR_OK)
1191 *value = target_buffer_get_u16(target, value_buf);
1192 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1194 else
1196 *value = 0x0;
1197 LOG_DEBUG("address: 0x%8.8x failed", address);
1200 return retval;
1203 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1205 int retval = target->type->read_memory(target, address, 1, 1, value);
1206 if (!target->type->examined)
1208 LOG_ERROR("Target not examined yet");
1209 return ERROR_FAIL;
1212 if (retval == ERROR_OK)
1214 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1216 else
1218 *value = 0x0;
1219 LOG_DEBUG("address: 0x%8.8x failed", address);
1222 return retval;
1225 int target_write_u32(struct target_s *target, u32 address, u32 value)
1227 int retval;
1228 u8 value_buf[4];
1229 if (!target->type->examined)
1231 LOG_ERROR("Target not examined yet");
1232 return ERROR_FAIL;
1235 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1237 target_buffer_set_u32(target, value_buf, value);
1238 if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1240 LOG_DEBUG("failed: %i", retval);
1243 return retval;
1246 int target_write_u16(struct target_s *target, u32 address, u16 value)
1248 int retval;
1249 u8 value_buf[2];
1250 if (!target->type->examined)
1252 LOG_ERROR("Target not examined yet");
1253 return ERROR_FAIL;
1256 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1258 target_buffer_set_u16(target, value_buf, value);
1259 if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1261 LOG_DEBUG("failed: %i", retval);
1264 return retval;
1267 int target_write_u8(struct target_s *target, u32 address, u8 value)
1269 int retval;
1270 if (!target->type->examined)
1272 LOG_ERROR("Target not examined yet");
1273 return ERROR_FAIL;
1276 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1278 if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1280 LOG_DEBUG("failed: %i", retval);
1283 return retval;
1286 int target_register_user_commands(struct command_context_s *cmd_ctx)
1288 register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1289 register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1290 register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1291 register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1292 register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1293 register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1294 register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1295 register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1297 register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1298 register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1299 register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1301 register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1302 register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1303 register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1305 register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1306 register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1307 register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1308 register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1310 register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1311 register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1312 register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1314 target_request_register_commands(cmd_ctx);
1315 trace_register_commands(cmd_ctx);
1317 return ERROR_OK;
1320 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1322 target_t *target = targets;
1323 int count = 0;
1325 if (argc == 1)
1327 int num = strtoul(args[0], NULL, 0);
1329 while (target)
1331 count++;
1332 target = target->next;
1335 if (num < count)
1336 cmd_ctx->current_target = num;
1337 else
1338 command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1340 return ERROR_OK;
1343 while (target)
1345 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1346 target = target->next;
1349 return ERROR_OK;
1352 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1354 int i;
1355 int found = 0;
1357 if (argc < 3)
1359 return ERROR_COMMAND_SYNTAX_ERROR;
1362 /* search for the specified target */
1363 if (args[0] && (args[0][0] != 0))
1365 for (i = 0; target_types[i]; i++)
1367 if (strcmp(args[0], target_types[i]->name) == 0)
1369 target_t **last_target_p = &targets;
1371 /* register target specific commands */
1372 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1374 LOG_ERROR("couldn't register '%s' commands", args[0]);
1375 exit(-1);
1378 if (*last_target_p)
1380 while ((*last_target_p)->next)
1381 last_target_p = &((*last_target_p)->next);
1382 last_target_p = &((*last_target_p)->next);
1385 *last_target_p = malloc(sizeof(target_t));
1387 /* allocate memory for each unique target type */
1388 (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
1389 *((*last_target_p)->type) = *target_types[i];
1391 if (strcmp(args[1], "big") == 0)
1392 (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1393 else if (strcmp(args[1], "little") == 0)
1394 (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1395 else
1397 LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1398 return ERROR_COMMAND_SYNTAX_ERROR;
1401 if (strcmp(args[2], "reset_halt") == 0)
1403 LOG_WARNING("reset_mode argument is obsolete.");
1404 return ERROR_COMMAND_SYNTAX_ERROR;
1406 else if (strcmp(args[2], "reset_run") == 0)
1408 LOG_WARNING("reset_mode argument is obsolete.");
1409 return ERROR_COMMAND_SYNTAX_ERROR;
1411 else if (strcmp(args[2], "reset_init") == 0)
1413 LOG_WARNING("reset_mode argument is obsolete.");
1414 return ERROR_COMMAND_SYNTAX_ERROR;
1416 else if (strcmp(args[2], "run_and_halt") == 0)
1418 LOG_WARNING("reset_mode argument is obsolete.");
1419 return ERROR_COMMAND_SYNTAX_ERROR;
1421 else if (strcmp(args[2], "run_and_init") == 0)
1423 LOG_WARNING("reset_mode argument is obsolete.");
1424 return ERROR_COMMAND_SYNTAX_ERROR;
1426 else
1428 /* Kludge! we want to make this reset arg optional while remaining compatible! */
1429 args--;
1430 argc++;
1432 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1434 (*last_target_p)->working_area = 0x0;
1435 (*last_target_p)->working_area_size = 0x0;
1436 (*last_target_p)->working_areas = NULL;
1437 (*last_target_p)->backup_working_area = 0;
1439 (*last_target_p)->state = TARGET_UNKNOWN;
1440 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1441 (*last_target_p)->reg_cache = NULL;
1442 (*last_target_p)->breakpoints = NULL;
1443 (*last_target_p)->watchpoints = NULL;
1444 (*last_target_p)->next = NULL;
1445 (*last_target_p)->arch_info = NULL;
1447 /* initialize trace information */
1448 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1449 (*last_target_p)->trace_info->num_trace_points = 0;
1450 (*last_target_p)->trace_info->trace_points_size = 0;
1451 (*last_target_p)->trace_info->trace_points = NULL;
1452 (*last_target_p)->trace_info->trace_history_size = 0;
1453 (*last_target_p)->trace_info->trace_history = NULL;
1454 (*last_target_p)->trace_info->trace_history_pos = 0;
1455 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1457 (*last_target_p)->dbgmsg = NULL;
1458 (*last_target_p)->dbg_msg_enabled = 0;
1460 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1462 found = 1;
1463 break;
1468 /* no matching target found */
1469 if (!found)
1471 LOG_ERROR("target '%s' not found", args[0]);
1472 return ERROR_COMMAND_SYNTAX_ERROR;
1475 return ERROR_OK;
1478 int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
1480 return command_run_linef(cmd_ctx, " if {[catch {info body target_%d_%s} t]==0} {target_%d_%s}",
1481 get_num_by_target(target), name,
1482 get_num_by_target(target), name);
1485 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1487 target_t *target = NULL;
1489 if (argc < 2)
1491 return ERROR_COMMAND_SYNTAX_ERROR;
1494 target = get_target_by_num(strtoul(args[0], NULL, 0));
1495 if (!target)
1497 return ERROR_COMMAND_SYNTAX_ERROR;
1500 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1502 return ERROR_OK;
1505 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1507 target_t *target = NULL;
1509 if ((argc < 4) || (argc > 5))
1511 return ERROR_COMMAND_SYNTAX_ERROR;
1514 target = get_target_by_num(strtoul(args[0], NULL, 0));
1515 if (!target)
1517 return ERROR_COMMAND_SYNTAX_ERROR;
1519 target_free_all_working_areas(target);
1521 target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1522 if (argc == 5)
1524 target->working_area_virt = strtoul(args[4], NULL, 0);
1526 target->working_area_size = strtoul(args[2], NULL, 0);
1528 if (strcmp(args[3], "backup") == 0)
1530 target->backup_working_area = 1;
1532 else if (strcmp(args[3], "nobackup") == 0)
1534 target->backup_working_area = 0;
1536 else
1538 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1539 return ERROR_COMMAND_SYNTAX_ERROR;
1542 return ERROR_OK;
1546 /* process target state changes */
1547 int handle_target(void *priv)
1549 target_t *target = targets;
1551 while (target)
1553 if (target_continous_poll)
1555 /* polling may fail silently until the target has been examined */
1556 target_poll(target);
1559 target = target->next;
1562 return ERROR_OK;
1565 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1567 target_t *target;
1568 reg_t *reg = NULL;
1569 int count = 0;
1570 char *value;
1572 LOG_DEBUG("-");
1574 target = get_current_target(cmd_ctx);
1576 /* list all available registers for the current target */
1577 if (argc == 0)
1579 reg_cache_t *cache = target->reg_cache;
1581 count = 0;
1582 while(cache)
1584 int i;
1585 for (i = 0; i < cache->num_regs; i++)
1587 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1588 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1589 free(value);
1591 cache = cache->next;
1594 return ERROR_OK;
1597 /* access a single register by its ordinal number */
1598 if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1600 int num = strtoul(args[0], NULL, 0);
1601 reg_cache_t *cache = target->reg_cache;
1603 count = 0;
1604 while(cache)
1606 int i;
1607 for (i = 0; i < cache->num_regs; i++)
1609 if (count++ == num)
1611 reg = &cache->reg_list[i];
1612 break;
1615 if (reg)
1616 break;
1617 cache = cache->next;
1620 if (!reg)
1622 command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1623 return ERROR_OK;
1625 } else /* access a single register by its name */
1627 reg = register_get_by_name(target->reg_cache, args[0], 1);
1629 if (!reg)
1631 command_print(cmd_ctx, "register %s not found in current target", args[0]);
1632 return ERROR_OK;
1636 /* display a register */
1637 if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1639 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1640 reg->valid = 0;
1642 if (reg->valid == 0)
1644 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1645 if (arch_type == NULL)
1647 LOG_ERROR("BUG: encountered unregistered arch type");
1648 return ERROR_OK;
1650 arch_type->get(reg);
1652 value = buf_to_str(reg->value, reg->size, 16);
1653 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1654 free(value);
1655 return ERROR_OK;
1658 /* set register value */
1659 if (argc == 2)
1661 u8 *buf = malloc(CEIL(reg->size, 8));
1662 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1664 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1665 if (arch_type == NULL)
1667 LOG_ERROR("BUG: encountered unregistered arch type");
1668 return ERROR_OK;
1671 arch_type->set(reg, buf);
1673 value = buf_to_str(reg->value, reg->size, 16);
1674 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1675 free(value);
1677 free(buf);
1679 return ERROR_OK;
1682 command_print(cmd_ctx, "usage: reg <#|name> [value]");
1684 return ERROR_OK;
1688 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1690 target_t *target = get_current_target(cmd_ctx);
1692 if (argc == 0)
1694 target_poll(target);
1695 target_arch_state(target);
1697 else
1699 if (strcmp(args[0], "on") == 0)
1701 target_continous_poll = 1;
1703 else if (strcmp(args[0], "off") == 0)
1705 target_continous_poll = 0;
1707 else
1709 command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1714 return ERROR_OK;
1717 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1719 int ms = 5000;
1721 if (argc > 0)
1723 char *end;
1725 ms = strtoul(args[0], &end, 0) * 1000;
1726 if (*end)
1728 command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1729 return ERROR_OK;
1732 target_t *target = get_current_target(cmd_ctx);
1734 return target_wait_state(target, TARGET_HALTED, ms);
1737 int target_wait_state(target_t *target, enum target_state state, int ms)
1739 int retval;
1740 struct timeval timeout, now;
1741 int once=1;
1742 gettimeofday(&timeout, NULL);
1743 timeval_add_time(&timeout, 0, ms * 1000);
1745 for (;;)
1747 if ((retval=target_poll(target))!=ERROR_OK)
1748 return retval;
1749 target_call_timer_callbacks_now();
1750 if (target->state == state)
1752 break;
1754 if (once)
1756 once=0;
1757 LOG_USER("waiting for target %s...", target_state_strings[state]);
1760 gettimeofday(&now, NULL);
1761 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1763 LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1764 break;
1768 return ERROR_OK;
1771 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1773 int retval;
1774 target_t *target = get_current_target(cmd_ctx);
1776 LOG_DEBUG("-");
1778 if ((retval = target_halt(target)) != ERROR_OK)
1780 return retval;
1783 return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1786 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1788 target_t *target = get_current_target(cmd_ctx);
1790 LOG_USER("requesting target halt and executing a soft reset");
1792 target->type->soft_reset_halt(target);
1794 return ERROR_OK;
1797 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1799 target_t *target = get_current_target(cmd_ctx);
1800 enum target_reset_mode reset_mode = RESET_RUN;
1802 LOG_DEBUG("-");
1804 if (argc >= 1)
1806 if (strcmp("run", args[0]) == 0)
1807 reset_mode = RESET_RUN;
1808 else if (strcmp("halt", args[0]) == 0)
1809 reset_mode = RESET_HALT;
1810 else if (strcmp("init", args[0]) == 0)
1811 reset_mode = RESET_INIT;
1812 else if (strcmp("run_and_halt", args[0]) == 0)
1814 reset_mode = RESET_RUN_AND_HALT;
1815 if (argc >= 2)
1817 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1820 else if (strcmp("run_and_init", args[0]) == 0)
1822 reset_mode = RESET_RUN_AND_INIT;
1823 if (argc >= 2)
1825 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1828 else
1830 command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1831 return ERROR_OK;
1835 /* reset *all* targets */
1836 target_process_reset(cmd_ctx, reset_mode);
1838 return ERROR_OK;
1841 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1843 int retval;
1844 target_t *target = get_current_target(cmd_ctx);
1846 target_invoke_script(cmd_ctx, target, "pre_resume");
1848 if (argc == 0)
1849 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1850 else if (argc == 1)
1851 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1852 else
1854 return ERROR_COMMAND_SYNTAX_ERROR;
1857 return retval;
1860 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1862 target_t *target = get_current_target(cmd_ctx);
1864 LOG_DEBUG("-");
1866 if (argc == 0)
1867 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1869 if (argc == 1)
1870 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1872 return ERROR_OK;
1875 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1877 const int line_bytecnt = 32;
1878 int count = 1;
1879 int size = 4;
1880 u32 address = 0;
1881 int line_modulo;
1882 int i;
1884 char output[128];
1885 int output_len;
1887 int retval;
1889 u8 *buffer;
1890 target_t *target = get_current_target(cmd_ctx);
1892 if (argc < 1)
1893 return ERROR_OK;
1895 if (argc == 2)
1896 count = strtoul(args[1], NULL, 0);
1898 address = strtoul(args[0], NULL, 0);
1901 switch (cmd[2])
1903 case 'w':
1904 size = 4; line_modulo = line_bytecnt / 4;
1905 break;
1906 case 'h':
1907 size = 2; line_modulo = line_bytecnt / 2;
1908 break;
1909 case 'b':
1910 size = 1; line_modulo = line_bytecnt / 1;
1911 break;
1912 default:
1913 return ERROR_OK;
1916 buffer = calloc(count, size);
1917 retval = target->type->read_memory(target, address, size, count, buffer);
1918 if (retval == ERROR_OK)
1920 output_len = 0;
1922 for (i = 0; i < count; i++)
1924 if (i%line_modulo == 0)
1925 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1927 switch (size)
1929 case 4:
1930 output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1931 break;
1932 case 2:
1933 output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1934 break;
1935 case 1:
1936 output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1937 break;
1940 if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1942 command_print(cmd_ctx, output);
1943 output_len = 0;
1948 free(buffer);
1950 return retval;
1953 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1955 u32 address = 0;
1956 u32 value = 0;
1957 int count = 1;
1958 int i;
1959 int wordsize;
1960 target_t *target = get_current_target(cmd_ctx);
1961 u8 value_buf[4];
1963 if ((argc < 2) || (argc > 3))
1964 return ERROR_COMMAND_SYNTAX_ERROR;
1966 address = strtoul(args[0], NULL, 0);
1967 value = strtoul(args[1], NULL, 0);
1968 if (argc == 3)
1969 count = strtoul(args[2], NULL, 0);
1971 switch (cmd[2])
1973 case 'w':
1974 wordsize = 4;
1975 target_buffer_set_u32(target, value_buf, value);
1976 break;
1977 case 'h':
1978 wordsize = 2;
1979 target_buffer_set_u16(target, value_buf, value);
1980 break;
1981 case 'b':
1982 wordsize = 1;
1983 value_buf[0] = value;
1984 break;
1985 default:
1986 return ERROR_COMMAND_SYNTAX_ERROR;
1988 for (i=0; i<count; i++)
1990 int retval;
1991 switch (wordsize)
1993 case 4:
1994 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
1995 break;
1996 case 2:
1997 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
1998 break;
1999 case 1:
2000 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2001 break;
2002 default:
2003 return ERROR_OK;
2005 if (retval!=ERROR_OK)
2007 return retval;
2011 return ERROR_OK;
2015 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2017 u8 *buffer;
2018 u32 buf_cnt;
2019 u32 image_size;
2020 u32 min_address=0;
2021 u32 max_address=0xffffffff;
2022 int i;
2023 int retval;
2025 image_t image;
2027 duration_t duration;
2028 char *duration_text;
2030 target_t *target = get_current_target(cmd_ctx);
2032 if ((argc < 1)||(argc > 5))
2034 return ERROR_COMMAND_SYNTAX_ERROR;
2037 /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2038 if (argc >= 2)
2040 image.base_address_set = 1;
2041 image.base_address = strtoul(args[1], NULL, 0);
2043 else
2045 image.base_address_set = 0;
2049 image.start_address_set = 0;
2051 if (argc>=4)
2053 min_address=strtoul(args[3], NULL, 0);
2055 if (argc>=5)
2057 max_address=strtoul(args[4], NULL, 0)+min_address;
2060 if (min_address>max_address)
2062 return ERROR_COMMAND_SYNTAX_ERROR;
2066 duration_start_measure(&duration);
2068 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2070 return ERROR_OK;
2073 image_size = 0x0;
2074 retval = ERROR_OK;
2075 for (i = 0; i < image.num_sections; i++)
2077 buffer = malloc(image.sections[i].size);
2078 if (buffer == NULL)
2080 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2081 break;
2084 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2086 free(buffer);
2087 break;
2090 u32 offset=0;
2091 u32 length=buf_cnt;
2094 /* DANGER!!! beware of unsigned comparision here!!! */
2096 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2097 (image.sections[i].base_address<max_address))
2099 if (image.sections[i].base_address<min_address)
2101 /* clip addresses below */
2102 offset+=min_address-image.sections[i].base_address;
2103 length-=offset;
2106 if (image.sections[i].base_address+buf_cnt>max_address)
2108 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2111 if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2113 free(buffer);
2114 break;
2116 image_size += length;
2117 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2120 free(buffer);
2123 duration_stop_measure(&duration, &duration_text);
2124 if (retval==ERROR_OK)
2126 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2128 free(duration_text);
2130 image_close(&image);
2132 return retval;
2136 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2138 fileio_t fileio;
2140 u32 address;
2141 u32 size;
2142 u8 buffer[560];
2143 int retval=ERROR_OK;
2145 duration_t duration;
2146 char *duration_text;
2148 target_t *target = get_current_target(cmd_ctx);
2150 if (argc != 3)
2152 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2153 return ERROR_OK;
2156 address = strtoul(args[1], NULL, 0);
2157 size = strtoul(args[2], NULL, 0);
2159 if ((address & 3) || (size & 3))
2161 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2162 return ERROR_OK;
2165 if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2167 return ERROR_OK;
2170 duration_start_measure(&duration);
2172 while (size > 0)
2174 u32 size_written;
2175 u32 this_run_size = (size > 560) ? 560 : size;
2177 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2178 if (retval != ERROR_OK)
2180 break;
2183 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2184 if (retval != ERROR_OK)
2186 break;
2189 size -= this_run_size;
2190 address += this_run_size;
2193 fileio_close(&fileio);
2195 duration_stop_measure(&duration, &duration_text);
2196 if (retval==ERROR_OK)
2198 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2200 free(duration_text);
2202 return ERROR_OK;
2205 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2207 u8 *buffer;
2208 u32 buf_cnt;
2209 u32 image_size;
2210 int i;
2211 int retval;
2212 u32 checksum = 0;
2213 u32 mem_checksum = 0;
2215 image_t image;
2217 duration_t duration;
2218 char *duration_text;
2220 target_t *target = get_current_target(cmd_ctx);
2222 if (argc < 1)
2224 return ERROR_COMMAND_SYNTAX_ERROR;
2227 if (!target)
2229 LOG_ERROR("no target selected");
2230 return ERROR_FAIL;
2233 duration_start_measure(&duration);
2235 if (argc >= 2)
2237 image.base_address_set = 1;
2238 image.base_address = strtoul(args[1], NULL, 0);
2240 else
2242 image.base_address_set = 0;
2243 image.base_address = 0x0;
2246 image.start_address_set = 0;
2248 if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2250 return retval;
2253 image_size = 0x0;
2254 retval=ERROR_OK;
2255 for (i = 0; i < image.num_sections; i++)
2257 buffer = malloc(image.sections[i].size);
2258 if (buffer == NULL)
2260 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2261 break;
2263 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2265 free(buffer);
2266 break;
2269 /* calculate checksum of image */
2270 image_calculate_checksum( buffer, buf_cnt, &checksum );
2272 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2273 if( retval != ERROR_OK )
2275 free(buffer);
2276 break;
2279 if( checksum != mem_checksum )
2281 /* failed crc checksum, fall back to a binary compare */
2282 u8 *data;
2284 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2286 data = (u8*)malloc(buf_cnt);
2288 /* Can we use 32bit word accesses? */
2289 int size = 1;
2290 int count = buf_cnt;
2291 if ((count % 4) == 0)
2293 size *= 4;
2294 count /= 4;
2296 retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2297 if (retval == ERROR_OK)
2299 int t;
2300 for (t = 0; t < buf_cnt; t++)
2302 if (data[t] != buffer[t])
2304 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2305 free(data);
2306 free(buffer);
2307 retval=ERROR_FAIL;
2308 goto done;
2313 free(data);
2316 free(buffer);
2317 image_size += buf_cnt;
2319 done:
2320 duration_stop_measure(&duration, &duration_text);
2321 if (retval==ERROR_OK)
2323 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2325 free(duration_text);
2327 image_close(&image);
2329 return retval;
2332 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2334 int retval;
2335 target_t *target = get_current_target(cmd_ctx);
2337 if (argc == 0)
2339 breakpoint_t *breakpoint = target->breakpoints;
2341 while (breakpoint)
2343 if (breakpoint->type == BKPT_SOFT)
2345 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2346 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2347 free(buf);
2349 else
2351 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2353 breakpoint = breakpoint->next;
2356 else if (argc >= 2)
2358 int hw = BKPT_SOFT;
2359 u32 length = 0;
2361 length = strtoul(args[1], NULL, 0);
2363 if (argc >= 3)
2364 if (strcmp(args[2], "hw") == 0)
2365 hw = BKPT_HARD;
2367 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2369 LOG_ERROR("Failure setting breakpoints");
2371 else
2373 command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2376 else
2378 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2381 return ERROR_OK;
2384 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2386 target_t *target = get_current_target(cmd_ctx);
2388 if (argc > 0)
2389 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2391 return ERROR_OK;
2394 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2396 target_t *target = get_current_target(cmd_ctx);
2397 int retval;
2399 if (argc == 0)
2401 watchpoint_t *watchpoint = target->watchpoints;
2403 while (watchpoint)
2405 command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2406 watchpoint = watchpoint->next;
2409 else if (argc >= 2)
2411 enum watchpoint_rw type = WPT_ACCESS;
2412 u32 data_value = 0x0;
2413 u32 data_mask = 0xffffffff;
2415 if (argc >= 3)
2417 switch(args[2][0])
2419 case 'r':
2420 type = WPT_READ;
2421 break;
2422 case 'w':
2423 type = WPT_WRITE;
2424 break;
2425 case 'a':
2426 type = WPT_ACCESS;
2427 break;
2428 default:
2429 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2430 return ERROR_OK;
2433 if (argc >= 4)
2435 data_value = strtoul(args[3], NULL, 0);
2437 if (argc >= 5)
2439 data_mask = strtoul(args[4], NULL, 0);
2442 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2443 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2445 LOG_ERROR("Failure setting breakpoints");
2448 else
2450 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2453 return ERROR_OK;
2456 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2458 target_t *target = get_current_target(cmd_ctx);
2460 if (argc > 0)
2461 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2463 return ERROR_OK;
2466 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2468 int retval;
2469 target_t *target = get_current_target(cmd_ctx);
2470 u32 va;
2471 u32 pa;
2473 if (argc != 1)
2475 return ERROR_COMMAND_SYNTAX_ERROR;
2477 va = strtoul(args[0], NULL, 0);
2479 retval = target->type->virt2phys(target, va, &pa);
2480 if (retval == ERROR_OK)
2482 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2484 else
2486 /* lower levels will have logged a detailed error which is
2487 * forwarded to telnet/GDB session.
2490 return retval;
2492 static void writeLong(FILE *f, int l)
2494 int i;
2495 for (i=0; i<4; i++)
2497 char c=(l>>(i*8))&0xff;
2498 fwrite(&c, 1, 1, f);
2502 static void writeString(FILE *f, char *s)
2504 fwrite(s, 1, strlen(s), f);
2509 // Dump a gmon.out histogram file.
2510 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2512 int i;
2513 FILE *f=fopen(filename, "w");
2514 if (f==NULL)
2515 return;
2516 fwrite("gmon", 1, 4, f);
2517 writeLong(f, 0x00000001); // Version
2518 writeLong(f, 0); // padding
2519 writeLong(f, 0); // padding
2520 writeLong(f, 0); // padding
2522 fwrite("", 1, 1, f); // GMON_TAG_TIME_HIST
2524 // figure out bucket size
2525 u32 min=samples[0];
2526 u32 max=samples[0];
2527 for (i=0; i<sampleNum; i++)
2529 if (min>samples[i])
2531 min=samples[i];
2533 if (max<samples[i])
2535 max=samples[i];
2539 int addressSpace=(max-min+1);
2541 static int const maxBuckets=256*1024; // maximum buckets.
2542 int length=addressSpace;
2543 if (length > maxBuckets)
2545 length=maxBuckets;
2547 int *buckets=malloc(sizeof(int)*length);
2548 if (buckets==NULL)
2550 fclose(f);
2551 return;
2553 memset(buckets, 0, sizeof(int)*length);
2554 for (i=0; i<sampleNum;i++)
2556 u32 address=samples[i];
2557 long long a=address-min;
2558 long long b=length-1;
2559 long long c=addressSpace-1;
2560 int index=(a*b)/c; // danger!!!! int32 overflows
2561 buckets[index]++;
2564 // append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2565 writeLong(f, min); // low_pc
2566 writeLong(f, max); // high_pc
2567 writeLong(f, length); // # of samples
2568 writeLong(f, 64000000); // 64MHz
2569 writeString(f, "seconds");
2570 for (i=0; i<(15-strlen("seconds")); i++)
2572 fwrite("", 1, 1, f); // padding
2574 writeString(f, "s");
2576 // append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2578 char *data=malloc(2*length);
2579 if (data!=NULL)
2581 for (i=0; i<length;i++)
2583 int val;
2584 val=buckets[i];
2585 if (val>65535)
2587 val=65535;
2589 data[i*2]=val&0xff;
2590 data[i*2+1]=(val>>8)&0xff;
2592 free(buckets);
2593 fwrite(data, 1, length*2, f);
2594 free(data);
2595 } else
2597 free(buckets);
2600 fclose(f);
2603 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2604 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2606 target_t *target = get_current_target(cmd_ctx);
2607 struct timeval timeout, now;
2609 gettimeofday(&timeout, NULL);
2610 if (argc!=2)
2612 return ERROR_COMMAND_SYNTAX_ERROR;
2614 char *end;
2615 timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2616 if (*end)
2618 return ERROR_OK;
2621 command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2623 static const int maxSample=10000;
2624 u32 *samples=malloc(sizeof(u32)*maxSample);
2625 if (samples==NULL)
2626 return ERROR_OK;
2628 int numSamples=0;
2629 int retval=ERROR_OK;
2630 // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2631 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2633 for (;;)
2635 target_poll(target);
2636 if (target->state == TARGET_HALTED)
2638 u32 t=*((u32 *)reg->value);
2639 samples[numSamples++]=t;
2640 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2641 target_poll(target);
2642 usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2643 } else if (target->state == TARGET_RUNNING)
2645 // We want to quickly sample the PC.
2646 target_halt(target);
2647 } else
2649 command_print(cmd_ctx, "Target not halted or running");
2650 retval=ERROR_OK;
2651 break;
2653 if (retval!=ERROR_OK)
2655 break;
2658 gettimeofday(&now, NULL);
2659 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2661 command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2662 target_poll(target);
2663 if (target->state == TARGET_HALTED)
2665 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2667 target_poll(target);
2668 writeGmon(samples, numSamples, args[1]);
2669 command_print(cmd_ctx, "Wrote %s", args[1]);
2670 break;
2673 free(samples);
2675 return ERROR_OK;
2678 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2680 char *namebuf;
2681 Jim_Obj *nameObjPtr, *valObjPtr;
2682 int result;
2684 namebuf = alloc_printf("%s(%d)", varname, idx);
2685 if (!namebuf)
2686 return JIM_ERR;
2688 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2689 valObjPtr = Jim_NewIntObj(interp, val);
2690 if (!nameObjPtr || !valObjPtr)
2692 free(namebuf);
2693 return JIM_ERR;
2696 Jim_IncrRefCount(nameObjPtr);
2697 Jim_IncrRefCount(valObjPtr);
2698 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2699 Jim_DecrRefCount(interp, nameObjPtr);
2700 Jim_DecrRefCount(interp, valObjPtr);
2701 free(namebuf);
2702 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2703 return result;
2706 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2708 target_t *target;
2709 command_context_t *context;
2710 long l;
2711 u32 width;
2712 u32 len;
2713 u32 addr;
2714 u32 count;
2715 u32 v;
2716 const char *varname;
2717 u8 buffer[4096];
2718 int i, n, e, retval;
2720 /* argv[1] = name of array to receive the data
2721 * argv[2] = desired width
2722 * argv[3] = memory address
2723 * argv[4] = count of times to read
2725 if (argc != 5) {
2726 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2727 return JIM_ERR;
2729 varname = Jim_GetString(argv[1], &len);
2730 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2732 e = Jim_GetLong(interp, argv[2], &l);
2733 width = l;
2734 if (e != JIM_OK) {
2735 return e;
2738 e = Jim_GetLong(interp, argv[3], &l);
2739 addr = l;
2740 if (e != JIM_OK) {
2741 return e;
2743 e = Jim_GetLong(interp, argv[4], &l);
2744 len = l;
2745 if (e != JIM_OK) {
2746 return e;
2748 switch (width) {
2749 case 8:
2750 width = 1;
2751 break;
2752 case 16:
2753 width = 2;
2754 break;
2755 case 32:
2756 width = 4;
2757 break;
2758 default:
2759 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2760 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2761 return JIM_ERR;
2763 if (len == 0) {
2764 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2765 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2766 return JIM_ERR;
2768 if ((addr + (len * width)) < addr) {
2769 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2770 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2771 return JIM_ERR;
2773 /* absurd transfer size? */
2774 if (len > 65536) {
2775 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2776 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2777 return JIM_ERR;
2780 if ((width == 1) ||
2781 ((width == 2) && ((addr & 1) == 0)) ||
2782 ((width == 4) && ((addr & 3) == 0))) {
2783 /* all is well */
2784 } else {
2785 char buf[100];
2786 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2787 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2788 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2789 return JIM_ERR;
2792 context = Jim_GetAssocData(interp, "context");
2793 if (context == NULL)
2795 LOG_ERROR("mem2array: no command context");
2796 return JIM_ERR;
2798 target = get_current_target(context);
2799 if (target == NULL)
2801 LOG_ERROR("mem2array: no current target");
2802 return JIM_ERR;
2805 /* Transfer loop */
2807 /* index counter */
2808 n = 0;
2809 /* assume ok */
2810 e = JIM_OK;
2811 while (len) {
2812 /* Slurp... in buffer size chunks */
2814 count = len; /* in objects.. */
2815 if (count > (sizeof(buffer)/width)) {
2816 count = (sizeof(buffer)/width);
2819 retval = target->type->read_memory( target, addr, width, count, buffer );
2820 if (retval != ERROR_OK) {
2821 /* BOO !*/
2822 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2823 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2824 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2825 e = JIM_ERR;
2826 len = 0;
2827 } else {
2828 v = 0; /* shut up gcc */
2829 for (i = 0 ;i < count ;i++, n++) {
2830 switch (width) {
2831 case 4:
2832 v = target_buffer_get_u32(target, &buffer[i*width]);
2833 break;
2834 case 2:
2835 v = target_buffer_get_u16(target, &buffer[i*width]);
2836 break;
2837 case 1:
2838 v = buffer[i] & 0x0ff;
2839 break;
2841 new_int_array_element(interp, varname, n, v);
2843 len -= count;
2847 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2849 return JIM_OK;
2852 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2854 char *namebuf;
2855 Jim_Obj *nameObjPtr, *valObjPtr;
2856 int result;
2857 long l;
2859 namebuf = alloc_printf("%s(%d)", varname, idx);
2860 if (!namebuf)
2861 return JIM_ERR;
2863 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2864 if (!nameObjPtr)
2866 free(namebuf);
2867 return JIM_ERR;
2870 Jim_IncrRefCount(nameObjPtr);
2871 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2872 Jim_DecrRefCount(interp, nameObjPtr);
2873 free(namebuf);
2874 if (valObjPtr == NULL)
2875 return JIM_ERR;
2877 result = Jim_GetLong(interp, valObjPtr, &l);
2878 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2879 *val = l;
2880 return result;
2883 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2885 target_t *target;
2886 command_context_t *context;
2887 long l;
2888 u32 width;
2889 u32 len;
2890 u32 addr;
2891 u32 count;
2892 u32 v;
2893 const char *varname;
2894 u8 buffer[4096];
2895 int i, n, e, retval;
2897 /* argv[1] = name of array to get the data
2898 * argv[2] = desired width
2899 * argv[3] = memory address
2900 * argv[4] = count to write
2902 if (argc != 5) {
2903 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2904 return JIM_ERR;
2906 varname = Jim_GetString(argv[1], &len);
2907 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2909 e = Jim_GetLong(interp, argv[2], &l);
2910 width = l;
2911 if (e != JIM_OK) {
2912 return e;
2915 e = Jim_GetLong(interp, argv[3], &l);
2916 addr = l;
2917 if (e != JIM_OK) {
2918 return e;
2920 e = Jim_GetLong(interp, argv[4], &l);
2921 len = l;
2922 if (e != JIM_OK) {
2923 return e;
2925 switch (width) {
2926 case 8:
2927 width = 1;
2928 break;
2929 case 16:
2930 width = 2;
2931 break;
2932 case 32:
2933 width = 4;
2934 break;
2935 default:
2936 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2937 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2938 return JIM_ERR;
2940 if (len == 0) {
2941 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2942 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2943 return JIM_ERR;
2945 if ((addr + (len * width)) < addr) {
2946 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2947 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
2948 return JIM_ERR;
2950 /* absurd transfer size? */
2951 if (len > 65536) {
2952 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2953 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
2954 return JIM_ERR;
2957 if ((width == 1) ||
2958 ((width == 2) && ((addr & 1) == 0)) ||
2959 ((width == 4) && ((addr & 3) == 0))) {
2960 /* all is well */
2961 } else {
2962 char buf[100];
2963 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2964 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
2965 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2966 return JIM_ERR;
2969 context = Jim_GetAssocData(interp, "context");
2970 if (context == NULL)
2972 LOG_ERROR("array2mem: no command context");
2973 return JIM_ERR;
2975 target = get_current_target(context);
2976 if (target == NULL)
2978 LOG_ERROR("array2mem: no current target");
2979 return JIM_ERR;
2982 /* Transfer loop */
2984 /* index counter */
2985 n = 0;
2986 /* assume ok */
2987 e = JIM_OK;
2988 while (len) {
2989 /* Slurp... in buffer size chunks */
2991 count = len; /* in objects.. */
2992 if (count > (sizeof(buffer)/width)) {
2993 count = (sizeof(buffer)/width);
2996 v = 0; /* shut up gcc */
2997 for (i = 0 ;i < count ;i++, n++) {
2998 get_int_array_element(interp, varname, n, &v);
2999 switch (width) {
3000 case 4:
3001 target_buffer_set_u32(target, &buffer[i*width], v);
3002 break;
3003 case 2:
3004 target_buffer_set_u16(target, &buffer[i*width], v);
3005 break;
3006 case 1:
3007 buffer[i] = v & 0x0ff;
3008 break;
3011 len -= count;
3013 retval = target->type->write_memory(target, addr, width, count, buffer);
3014 if (retval != ERROR_OK) {
3015 /* BOO !*/
3016 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3017 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3018 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3019 e = JIM_ERR;
3020 len = 0;
3024 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3026 return JIM_OK;