jtag/core, target: unregister JTAG events
[openocd.git] / src / target / target.c
blobac2e1d030abed103e52c9de79e20aafb945ddd6e
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
111 static struct target_type *target_types[] = {
112 &arm7tdmi_target,
113 &arm9tdmi_target,
114 &arm920t_target,
115 &arm720t_target,
116 &arm966e_target,
117 &arm946e_target,
118 &arm926ejs_target,
119 &fa526_target,
120 &feroceon_target,
121 &dragonite_target,
122 &xscale_target,
123 &cortexm_target,
124 &cortexa_target,
125 &cortexr4_target,
126 &arm11_target,
127 &ls1_sap_target,
128 &mips_m4k_target,
129 &avr_target,
130 &dsp563xx_target,
131 &dsp5680xx_target,
132 &testee_target,
133 &avr32_ap7k_target,
134 &hla_target,
135 &nds32_v2_target,
136 &nds32_v3_target,
137 &nds32_v3m_target,
138 &or1k_target,
139 &quark_x10xx_target,
140 &quark_d20xx_target,
141 &stm8_target,
142 #if BUILD_TARGET64
143 &aarch64_target,
144 #endif
145 NULL,
148 struct target *all_targets;
149 static struct target_event_callback *target_event_callbacks;
150 static struct target_timer_callback *target_timer_callbacks;
151 LIST_HEAD(target_reset_callback_list);
152 LIST_HEAD(target_trace_callback_list);
153 static const int polling_interval = 100;
155 static const Jim_Nvp nvp_assert[] = {
156 { .name = "assert", NVP_ASSERT },
157 { .name = "deassert", NVP_DEASSERT },
158 { .name = "T", NVP_ASSERT },
159 { .name = "F", NVP_DEASSERT },
160 { .name = "t", NVP_ASSERT },
161 { .name = "f", NVP_DEASSERT },
162 { .name = NULL, .value = -1 }
165 static const Jim_Nvp nvp_error_target[] = {
166 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
167 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
168 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
169 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
170 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
171 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
172 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
173 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
174 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
175 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
176 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
177 { .value = -1, .name = NULL }
180 static const char *target_strerror_safe(int err)
182 const Jim_Nvp *n;
184 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
185 if (n->name == NULL)
186 return "unknown";
187 else
188 return n->name;
191 static const Jim_Nvp nvp_target_event[] = {
193 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
194 { .value = TARGET_EVENT_HALTED, .name = "halted" },
195 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
196 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
199 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
200 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
202 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
203 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
204 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
205 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
206 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
207 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
208 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
209 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
211 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
212 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
214 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
215 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
217 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
218 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
220 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
221 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
223 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
224 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
226 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
228 { .name = NULL, .value = -1 }
231 static const Jim_Nvp nvp_target_state[] = {
232 { .name = "unknown", .value = TARGET_UNKNOWN },
233 { .name = "running", .value = TARGET_RUNNING },
234 { .name = "halted", .value = TARGET_HALTED },
235 { .name = "reset", .value = TARGET_RESET },
236 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
237 { .name = NULL, .value = -1 },
240 static const Jim_Nvp nvp_target_debug_reason[] = {
241 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
242 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
243 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
244 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
245 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
246 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
247 { .name = "program-exit" , .value = DBG_REASON_EXIT },
248 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
249 { .name = NULL, .value = -1 },
252 static const Jim_Nvp nvp_target_endian[] = {
253 { .name = "big", .value = TARGET_BIG_ENDIAN },
254 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
255 { .name = "be", .value = TARGET_BIG_ENDIAN },
256 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
257 { .name = NULL, .value = -1 },
260 static const Jim_Nvp nvp_reset_modes[] = {
261 { .name = "unknown", .value = RESET_UNKNOWN },
262 { .name = "run" , .value = RESET_RUN },
263 { .name = "halt" , .value = RESET_HALT },
264 { .name = "init" , .value = RESET_INIT },
265 { .name = NULL , .value = -1 },
268 const char *debug_reason_name(struct target *t)
270 const char *cp;
272 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
273 t->debug_reason)->name;
274 if (!cp) {
275 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
276 cp = "(*BUG*unknown*BUG*)";
278 return cp;
281 const char *target_state_name(struct target *t)
283 const char *cp;
284 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
285 if (!cp) {
286 LOG_ERROR("Invalid target state: %d", (int)(t->state));
287 cp = "(*BUG*unknown*BUG*)";
290 if (!target_was_examined(t) && t->defer_examine)
291 cp = "examine deferred";
293 return cp;
296 const char *target_event_name(enum target_event event)
298 const char *cp;
299 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
300 if (!cp) {
301 LOG_ERROR("Invalid target event: %d", (int)(event));
302 cp = "(*BUG*unknown*BUG*)";
304 return cp;
307 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
309 const char *cp;
310 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
311 if (!cp) {
312 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
313 cp = "(*BUG*unknown*BUG*)";
315 return cp;
318 /* determine the number of the new target */
319 static int new_target_number(void)
321 struct target *t;
322 int x;
324 /* number is 0 based */
325 x = -1;
326 t = all_targets;
327 while (t) {
328 if (x < t->target_number)
329 x = t->target_number;
330 t = t->next;
332 return x + 1;
335 /* read a uint64_t from a buffer in target memory endianness */
336 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
338 if (target->endianness == TARGET_LITTLE_ENDIAN)
339 return le_to_h_u64(buffer);
340 else
341 return be_to_h_u64(buffer);
344 /* read a uint32_t from a buffer in target memory endianness */
345 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
347 if (target->endianness == TARGET_LITTLE_ENDIAN)
348 return le_to_h_u32(buffer);
349 else
350 return be_to_h_u32(buffer);
353 /* read a uint24_t from a buffer in target memory endianness */
354 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
356 if (target->endianness == TARGET_LITTLE_ENDIAN)
357 return le_to_h_u24(buffer);
358 else
359 return be_to_h_u24(buffer);
362 /* read a uint16_t from a buffer in target memory endianness */
363 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
365 if (target->endianness == TARGET_LITTLE_ENDIAN)
366 return le_to_h_u16(buffer);
367 else
368 return be_to_h_u16(buffer);
371 /* read a uint8_t from a buffer in target memory endianness */
372 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
374 return *buffer & 0x0ff;
377 /* write a uint64_t to a buffer in target memory endianness */
378 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
380 if (target->endianness == TARGET_LITTLE_ENDIAN)
381 h_u64_to_le(buffer, value);
382 else
383 h_u64_to_be(buffer, value);
386 /* write a uint32_t to a buffer in target memory endianness */
387 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
389 if (target->endianness == TARGET_LITTLE_ENDIAN)
390 h_u32_to_le(buffer, value);
391 else
392 h_u32_to_be(buffer, value);
395 /* write a uint24_t to a buffer in target memory endianness */
396 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
398 if (target->endianness == TARGET_LITTLE_ENDIAN)
399 h_u24_to_le(buffer, value);
400 else
401 h_u24_to_be(buffer, value);
404 /* write a uint16_t to a buffer in target memory endianness */
405 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
407 if (target->endianness == TARGET_LITTLE_ENDIAN)
408 h_u16_to_le(buffer, value);
409 else
410 h_u16_to_be(buffer, value);
413 /* write a uint8_t to a buffer in target memory endianness */
414 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
416 *buffer = value;
419 /* write a uint64_t array to a buffer in target memory endianness */
420 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
422 uint32_t i;
423 for (i = 0; i < count; i++)
424 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
427 /* write a uint32_t array to a buffer in target memory endianness */
428 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
430 uint32_t i;
431 for (i = 0; i < count; i++)
432 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
435 /* write a uint16_t array to a buffer in target memory endianness */
436 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
438 uint32_t i;
439 for (i = 0; i < count; i++)
440 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
443 /* write a uint64_t array to a buffer in target memory endianness */
444 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
446 uint32_t i;
447 for (i = 0; i < count; i++)
448 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
451 /* write a uint32_t array to a buffer in target memory endianness */
452 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
454 uint32_t i;
455 for (i = 0; i < count; i++)
456 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
459 /* write a uint16_t array to a buffer in target memory endianness */
460 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
462 uint32_t i;
463 for (i = 0; i < count; i++)
464 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
467 /* return a pointer to a configured target; id is name or number */
468 struct target *get_target(const char *id)
470 struct target *target;
472 /* try as tcltarget name */
473 for (target = all_targets; target; target = target->next) {
474 if (target_name(target) == NULL)
475 continue;
476 if (strcmp(id, target_name(target)) == 0)
477 return target;
480 /* It's OK to remove this fallback sometime after August 2010 or so */
482 /* no match, try as number */
483 unsigned num;
484 if (parse_uint(id, &num) != ERROR_OK)
485 return NULL;
487 for (target = all_targets; target; target = target->next) {
488 if (target->target_number == (int)num) {
489 LOG_WARNING("use '%s' as target identifier, not '%u'",
490 target_name(target), num);
491 return target;
495 return NULL;
498 /* returns a pointer to the n-th configured target */
499 struct target *get_target_by_num(int num)
501 struct target *target = all_targets;
503 while (target) {
504 if (target->target_number == num)
505 return target;
506 target = target->next;
509 return NULL;
512 struct target *get_current_target(struct command_context *cmd_ctx)
514 struct target *target = cmd_ctx->current_target_override
515 ? cmd_ctx->current_target_override
516 : cmd_ctx->current_target;
518 if (target == NULL) {
519 LOG_ERROR("BUG: current_target out of bounds");
520 exit(-1);
523 return target;
526 int target_poll(struct target *target)
528 int retval;
530 /* We can't poll until after examine */
531 if (!target_was_examined(target)) {
532 /* Fail silently lest we pollute the log */
533 return ERROR_FAIL;
536 retval = target->type->poll(target);
537 if (retval != ERROR_OK)
538 return retval;
540 if (target->halt_issued) {
541 if (target->state == TARGET_HALTED)
542 target->halt_issued = false;
543 else {
544 int64_t t = timeval_ms() - target->halt_issued_time;
545 if (t > DEFAULT_HALT_TIMEOUT) {
546 target->halt_issued = false;
547 LOG_INFO("Halt timed out, wake up GDB.");
548 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
553 return ERROR_OK;
556 int target_halt(struct target *target)
558 int retval;
559 /* We can't poll until after examine */
560 if (!target_was_examined(target)) {
561 LOG_ERROR("Target not examined yet");
562 return ERROR_FAIL;
565 retval = target->type->halt(target);
566 if (retval != ERROR_OK)
567 return retval;
569 target->halt_issued = true;
570 target->halt_issued_time = timeval_ms();
572 return ERROR_OK;
576 * Make the target (re)start executing using its saved execution
577 * context (possibly with some modifications).
579 * @param target Which target should start executing.
580 * @param current True to use the target's saved program counter instead
581 * of the address parameter
582 * @param address Optionally used as the program counter.
583 * @param handle_breakpoints True iff breakpoints at the resumption PC
584 * should be skipped. (For example, maybe execution was stopped by
585 * such a breakpoint, in which case it would be counterprodutive to
586 * let it re-trigger.
587 * @param debug_execution False if all working areas allocated by OpenOCD
588 * should be released and/or restored to their original contents.
589 * (This would for example be true to run some downloaded "helper"
590 * algorithm code, which resides in one such working buffer and uses
591 * another for data storage.)
593 * @todo Resolve the ambiguity about what the "debug_execution" flag
594 * signifies. For example, Target implementations don't agree on how
595 * it relates to invalidation of the register cache, or to whether
596 * breakpoints and watchpoints should be enabled. (It would seem wrong
597 * to enable breakpoints when running downloaded "helper" algorithms
598 * (debug_execution true), since the breakpoints would be set to match
599 * target firmware being debugged, not the helper algorithm.... and
600 * enabling them could cause such helpers to malfunction (for example,
601 * by overwriting data with a breakpoint instruction. On the other
602 * hand the infrastructure for running such helpers might use this
603 * procedure but rely on hardware breakpoint to detect termination.)
605 int target_resume(struct target *target, int current, target_addr_t address,
606 int handle_breakpoints, int debug_execution)
608 int retval;
610 /* We can't poll until after examine */
611 if (!target_was_examined(target)) {
612 LOG_ERROR("Target not examined yet");
613 return ERROR_FAIL;
616 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
618 /* note that resume *must* be asynchronous. The CPU can halt before
619 * we poll. The CPU can even halt at the current PC as a result of
620 * a software breakpoint being inserted by (a bug?) the application.
622 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
623 if (retval != ERROR_OK)
624 return retval;
626 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
628 return retval;
631 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
633 char buf[100];
634 int retval;
635 Jim_Nvp *n;
636 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
637 if (n->name == NULL) {
638 LOG_ERROR("invalid reset mode");
639 return ERROR_FAIL;
642 struct target *target;
643 for (target = all_targets; target; target = target->next)
644 target_call_reset_callbacks(target, reset_mode);
646 /* disable polling during reset to make reset event scripts
647 * more predictable, i.e. dr/irscan & pathmove in events will
648 * not have JTAG operations injected into the middle of a sequence.
650 bool save_poll = jtag_poll_get_enabled();
652 jtag_poll_set_enabled(false);
654 sprintf(buf, "ocd_process_reset %s", n->name);
655 retval = Jim_Eval(cmd_ctx->interp, buf);
657 jtag_poll_set_enabled(save_poll);
659 if (retval != JIM_OK) {
660 Jim_MakeErrorMessage(cmd_ctx->interp);
661 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
662 return ERROR_FAIL;
665 /* We want any events to be processed before the prompt */
666 retval = target_call_timer_callbacks_now();
668 for (target = all_targets; target; target = target->next) {
669 target->type->check_reset(target);
670 target->running_alg = false;
673 return retval;
676 static int identity_virt2phys(struct target *target,
677 target_addr_t virtual, target_addr_t *physical)
679 *physical = virtual;
680 return ERROR_OK;
683 static int no_mmu(struct target *target, int *enabled)
685 *enabled = 0;
686 return ERROR_OK;
689 static int default_examine(struct target *target)
691 target_set_examined(target);
692 return ERROR_OK;
695 /* no check by default */
696 static int default_check_reset(struct target *target)
698 return ERROR_OK;
701 int target_examine_one(struct target *target)
703 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
705 int retval = target->type->examine(target);
706 if (retval != ERROR_OK)
707 return retval;
709 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
711 return ERROR_OK;
714 static int jtag_enable_callback(enum jtag_event event, void *priv)
716 struct target *target = priv;
718 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
719 return ERROR_OK;
721 jtag_unregister_event_callback(jtag_enable_callback, target);
723 return target_examine_one(target);
726 /* Targets that correctly implement init + examine, i.e.
727 * no communication with target during init:
729 * XScale
731 int target_examine(void)
733 int retval = ERROR_OK;
734 struct target *target;
736 for (target = all_targets; target; target = target->next) {
737 /* defer examination, but don't skip it */
738 if (!target->tap->enabled) {
739 jtag_register_event_callback(jtag_enable_callback,
740 target);
741 continue;
744 if (target->defer_examine)
745 continue;
747 retval = target_examine_one(target);
748 if (retval != ERROR_OK)
749 return retval;
751 return retval;
754 const char *target_type_name(struct target *target)
756 return target->type->name;
759 static int target_soft_reset_halt(struct target *target)
761 if (!target_was_examined(target)) {
762 LOG_ERROR("Target not examined yet");
763 return ERROR_FAIL;
765 if (!target->type->soft_reset_halt) {
766 LOG_ERROR("Target %s does not support soft_reset_halt",
767 target_name(target));
768 return ERROR_FAIL;
770 return target->type->soft_reset_halt(target);
774 * Downloads a target-specific native code algorithm to the target,
775 * and executes it. * Note that some targets may need to set up, enable,
776 * and tear down a breakpoint (hard or * soft) to detect algorithm
777 * termination, while others may support lower overhead schemes where
778 * soft breakpoints embedded in the algorithm automatically terminate the
779 * algorithm.
781 * @param target used to run the algorithm
782 * @param arch_info target-specific description of the algorithm.
784 int target_run_algorithm(struct target *target,
785 int num_mem_params, struct mem_param *mem_params,
786 int num_reg_params, struct reg_param *reg_param,
787 uint32_t entry_point, uint32_t exit_point,
788 int timeout_ms, void *arch_info)
790 int retval = ERROR_FAIL;
792 if (!target_was_examined(target)) {
793 LOG_ERROR("Target not examined yet");
794 goto done;
796 if (!target->type->run_algorithm) {
797 LOG_ERROR("Target type '%s' does not support %s",
798 target_type_name(target), __func__);
799 goto done;
802 target->running_alg = true;
803 retval = target->type->run_algorithm(target,
804 num_mem_params, mem_params,
805 num_reg_params, reg_param,
806 entry_point, exit_point, timeout_ms, arch_info);
807 target->running_alg = false;
809 done:
810 return retval;
814 * Executes a target-specific native code algorithm and leaves it running.
816 * @param target used to run the algorithm
817 * @param arch_info target-specific description of the algorithm.
819 int target_start_algorithm(struct target *target,
820 int num_mem_params, struct mem_param *mem_params,
821 int num_reg_params, struct reg_param *reg_params,
822 uint32_t entry_point, uint32_t exit_point,
823 void *arch_info)
825 int retval = ERROR_FAIL;
827 if (!target_was_examined(target)) {
828 LOG_ERROR("Target not examined yet");
829 goto done;
831 if (!target->type->start_algorithm) {
832 LOG_ERROR("Target type '%s' does not support %s",
833 target_type_name(target), __func__);
834 goto done;
836 if (target->running_alg) {
837 LOG_ERROR("Target is already running an algorithm");
838 goto done;
841 target->running_alg = true;
842 retval = target->type->start_algorithm(target,
843 num_mem_params, mem_params,
844 num_reg_params, reg_params,
845 entry_point, exit_point, arch_info);
847 done:
848 return retval;
852 * Waits for an algorithm started with target_start_algorithm() to complete.
854 * @param target used to run the algorithm
855 * @param arch_info target-specific description of the algorithm.
857 int target_wait_algorithm(struct target *target,
858 int num_mem_params, struct mem_param *mem_params,
859 int num_reg_params, struct reg_param *reg_params,
860 uint32_t exit_point, int timeout_ms,
861 void *arch_info)
863 int retval = ERROR_FAIL;
865 if (!target->type->wait_algorithm) {
866 LOG_ERROR("Target type '%s' does not support %s",
867 target_type_name(target), __func__);
868 goto done;
870 if (!target->running_alg) {
871 LOG_ERROR("Target is not running an algorithm");
872 goto done;
875 retval = target->type->wait_algorithm(target,
876 num_mem_params, mem_params,
877 num_reg_params, reg_params,
878 exit_point, timeout_ms, arch_info);
879 if (retval != ERROR_TARGET_TIMEOUT)
880 target->running_alg = false;
882 done:
883 return retval;
887 * Streams data to a circular buffer on target intended for consumption by code
888 * running asynchronously on target.
890 * This is intended for applications where target-specific native code runs
891 * on the target, receives data from the circular buffer, does something with
892 * it (most likely writing it to a flash memory), and advances the circular
893 * buffer pointer.
895 * This assumes that the helper algorithm has already been loaded to the target,
896 * but has not been started yet. Given memory and register parameters are passed
897 * to the algorithm.
899 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
900 * following format:
902 * [buffer_start + 0, buffer_start + 4):
903 * Write Pointer address (aka head). Written and updated by this
904 * routine when new data is written to the circular buffer.
905 * [buffer_start + 4, buffer_start + 8):
906 * Read Pointer address (aka tail). Updated by code running on the
907 * target after it consumes data.
908 * [buffer_start + 8, buffer_start + buffer_size):
909 * Circular buffer contents.
911 * See contrib/loaders/flash/stm32f1x.S for an example.
913 * @param target used to run the algorithm
914 * @param buffer address on the host where data to be sent is located
915 * @param count number of blocks to send
916 * @param block_size size in bytes of each block
917 * @param num_mem_params count of memory-based params to pass to algorithm
918 * @param mem_params memory-based params to pass to algorithm
919 * @param num_reg_params count of register-based params to pass to algorithm
920 * @param reg_params memory-based params to pass to algorithm
921 * @param buffer_start address on the target of the circular buffer structure
922 * @param buffer_size size of the circular buffer structure
923 * @param entry_point address on the target to execute to start the algorithm
924 * @param exit_point address at which to set a breakpoint to catch the
925 * end of the algorithm; can be 0 if target triggers a breakpoint itself
928 int target_run_flash_async_algorithm(struct target *target,
929 const uint8_t *buffer, uint32_t count, int block_size,
930 int num_mem_params, struct mem_param *mem_params,
931 int num_reg_params, struct reg_param *reg_params,
932 uint32_t buffer_start, uint32_t buffer_size,
933 uint32_t entry_point, uint32_t exit_point, void *arch_info)
935 int retval;
936 int timeout = 0;
938 const uint8_t *buffer_orig = buffer;
940 /* Set up working area. First word is write pointer, second word is read pointer,
941 * rest is fifo data area. */
942 uint32_t wp_addr = buffer_start;
943 uint32_t rp_addr = buffer_start + 4;
944 uint32_t fifo_start_addr = buffer_start + 8;
945 uint32_t fifo_end_addr = buffer_start + buffer_size;
947 uint32_t wp = fifo_start_addr;
948 uint32_t rp = fifo_start_addr;
950 /* validate block_size is 2^n */
951 assert(!block_size || !(block_size & (block_size - 1)));
953 retval = target_write_u32(target, wp_addr, wp);
954 if (retval != ERROR_OK)
955 return retval;
956 retval = target_write_u32(target, rp_addr, rp);
957 if (retval != ERROR_OK)
958 return retval;
960 /* Start up algorithm on target and let it idle while writing the first chunk */
961 retval = target_start_algorithm(target, num_mem_params, mem_params,
962 num_reg_params, reg_params,
963 entry_point,
964 exit_point,
965 arch_info);
967 if (retval != ERROR_OK) {
968 LOG_ERROR("error starting target flash write algorithm");
969 return retval;
972 while (count > 0) {
974 retval = target_read_u32(target, rp_addr, &rp);
975 if (retval != ERROR_OK) {
976 LOG_ERROR("failed to get read pointer");
977 break;
980 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
981 (size_t) (buffer - buffer_orig), count, wp, rp);
983 if (rp == 0) {
984 LOG_ERROR("flash write algorithm aborted by target");
985 retval = ERROR_FLASH_OPERATION_FAILED;
986 break;
989 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
990 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
991 break;
994 /* Count the number of bytes available in the fifo without
995 * crossing the wrap around. Make sure to not fill it completely,
996 * because that would make wp == rp and that's the empty condition. */
997 uint32_t thisrun_bytes;
998 if (rp > wp)
999 thisrun_bytes = rp - wp - block_size;
1000 else if (rp > fifo_start_addr)
1001 thisrun_bytes = fifo_end_addr - wp;
1002 else
1003 thisrun_bytes = fifo_end_addr - wp - block_size;
1005 if (thisrun_bytes == 0) {
1006 /* Throttle polling a bit if transfer is (much) faster than flash
1007 * programming. The exact delay shouldn't matter as long as it's
1008 * less than buffer size / flash speed. This is very unlikely to
1009 * run when using high latency connections such as USB. */
1010 alive_sleep(10);
1012 /* to stop an infinite loop on some targets check and increment a timeout
1013 * this issue was observed on a stellaris using the new ICDI interface */
1014 if (timeout++ >= 500) {
1015 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1016 return ERROR_FLASH_OPERATION_FAILED;
1018 continue;
1021 /* reset our timeout */
1022 timeout = 0;
1024 /* Limit to the amount of data we actually want to write */
1025 if (thisrun_bytes > count * block_size)
1026 thisrun_bytes = count * block_size;
1028 /* Write data to fifo */
1029 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1030 if (retval != ERROR_OK)
1031 break;
1033 /* Update counters and wrap write pointer */
1034 buffer += thisrun_bytes;
1035 count -= thisrun_bytes / block_size;
1036 wp += thisrun_bytes;
1037 if (wp >= fifo_end_addr)
1038 wp = fifo_start_addr;
1040 /* Store updated write pointer to target */
1041 retval = target_write_u32(target, wp_addr, wp);
1042 if (retval != ERROR_OK)
1043 break;
1046 if (retval != ERROR_OK) {
1047 /* abort flash write algorithm on target */
1048 target_write_u32(target, wp_addr, 0);
1051 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1052 num_reg_params, reg_params,
1053 exit_point,
1054 10000,
1055 arch_info);
1057 if (retval2 != ERROR_OK) {
1058 LOG_ERROR("error waiting for target flash write algorithm");
1059 retval = retval2;
1062 if (retval == ERROR_OK) {
1063 /* check if algorithm set rp = 0 after fifo writer loop finished */
1064 retval = target_read_u32(target, rp_addr, &rp);
1065 if (retval == ERROR_OK && rp == 0) {
1066 LOG_ERROR("flash write algorithm aborted by target");
1067 retval = ERROR_FLASH_OPERATION_FAILED;
1071 return retval;
1074 int target_read_memory(struct target *target,
1075 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1077 if (!target_was_examined(target)) {
1078 LOG_ERROR("Target not examined yet");
1079 return ERROR_FAIL;
1081 if (!target->type->read_memory) {
1082 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1083 return ERROR_FAIL;
1085 return target->type->read_memory(target, address, size, count, buffer);
1088 int target_read_phys_memory(struct target *target,
1089 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1091 if (!target_was_examined(target)) {
1092 LOG_ERROR("Target not examined yet");
1093 return ERROR_FAIL;
1095 if (!target->type->read_phys_memory) {
1096 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1097 return ERROR_FAIL;
1099 return target->type->read_phys_memory(target, address, size, count, buffer);
1102 int target_write_memory(struct target *target,
1103 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1105 if (!target_was_examined(target)) {
1106 LOG_ERROR("Target not examined yet");
1107 return ERROR_FAIL;
1109 if (!target->type->write_memory) {
1110 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1111 return ERROR_FAIL;
1113 return target->type->write_memory(target, address, size, count, buffer);
1116 int target_write_phys_memory(struct target *target,
1117 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1119 if (!target_was_examined(target)) {
1120 LOG_ERROR("Target not examined yet");
1121 return ERROR_FAIL;
1123 if (!target->type->write_phys_memory) {
1124 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1125 return ERROR_FAIL;
1127 return target->type->write_phys_memory(target, address, size, count, buffer);
1130 int target_add_breakpoint(struct target *target,
1131 struct breakpoint *breakpoint)
1133 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1134 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1135 return ERROR_TARGET_NOT_HALTED;
1137 return target->type->add_breakpoint(target, breakpoint);
1140 int target_add_context_breakpoint(struct target *target,
1141 struct breakpoint *breakpoint)
1143 if (target->state != TARGET_HALTED) {
1144 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1145 return ERROR_TARGET_NOT_HALTED;
1147 return target->type->add_context_breakpoint(target, breakpoint);
1150 int target_add_hybrid_breakpoint(struct target *target,
1151 struct breakpoint *breakpoint)
1153 if (target->state != TARGET_HALTED) {
1154 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1155 return ERROR_TARGET_NOT_HALTED;
1157 return target->type->add_hybrid_breakpoint(target, breakpoint);
1160 int target_remove_breakpoint(struct target *target,
1161 struct breakpoint *breakpoint)
1163 return target->type->remove_breakpoint(target, breakpoint);
1166 int target_add_watchpoint(struct target *target,
1167 struct watchpoint *watchpoint)
1169 if (target->state != TARGET_HALTED) {
1170 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1171 return ERROR_TARGET_NOT_HALTED;
1173 return target->type->add_watchpoint(target, watchpoint);
1175 int target_remove_watchpoint(struct target *target,
1176 struct watchpoint *watchpoint)
1178 return target->type->remove_watchpoint(target, watchpoint);
1180 int target_hit_watchpoint(struct target *target,
1181 struct watchpoint **hit_watchpoint)
1183 if (target->state != TARGET_HALTED) {
1184 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1185 return ERROR_TARGET_NOT_HALTED;
1188 if (target->type->hit_watchpoint == NULL) {
1189 /* For backward compatible, if hit_watchpoint is not implemented,
1190 * return ERROR_FAIL such that gdb_server will not take the nonsense
1191 * information. */
1192 return ERROR_FAIL;
1195 return target->type->hit_watchpoint(target, hit_watchpoint);
1198 int target_get_gdb_reg_list(struct target *target,
1199 struct reg **reg_list[], int *reg_list_size,
1200 enum target_register_class reg_class)
1202 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1204 int target_step(struct target *target,
1205 int current, target_addr_t address, int handle_breakpoints)
1207 return target->type->step(target, current, address, handle_breakpoints);
1210 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1212 if (target->state != TARGET_HALTED) {
1213 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1214 return ERROR_TARGET_NOT_HALTED;
1216 return target->type->get_gdb_fileio_info(target, fileio_info);
1219 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1221 if (target->state != TARGET_HALTED) {
1222 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1223 return ERROR_TARGET_NOT_HALTED;
1225 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1228 int target_profiling(struct target *target, uint32_t *samples,
1229 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1231 if (target->state != TARGET_HALTED) {
1232 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1233 return ERROR_TARGET_NOT_HALTED;
1235 return target->type->profiling(target, samples, max_num_samples,
1236 num_samples, seconds);
1240 * Reset the @c examined flag for the given target.
1241 * Pure paranoia -- targets are zeroed on allocation.
1243 static void target_reset_examined(struct target *target)
1245 target->examined = false;
1248 static int handle_target(void *priv);
1250 static int target_init_one(struct command_context *cmd_ctx,
1251 struct target *target)
1253 target_reset_examined(target);
1255 struct target_type *type = target->type;
1256 if (type->examine == NULL)
1257 type->examine = default_examine;
1259 if (type->check_reset == NULL)
1260 type->check_reset = default_check_reset;
1262 assert(type->init_target != NULL);
1264 int retval = type->init_target(cmd_ctx, target);
1265 if (ERROR_OK != retval) {
1266 LOG_ERROR("target '%s' init failed", target_name(target));
1267 return retval;
1270 /* Sanity-check MMU support ... stub in what we must, to help
1271 * implement it in stages, but warn if we need to do so.
1273 if (type->mmu) {
1274 if (type->virt2phys == NULL) {
1275 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1276 type->virt2phys = identity_virt2phys;
1278 } else {
1279 /* Make sure no-MMU targets all behave the same: make no
1280 * distinction between physical and virtual addresses, and
1281 * ensure that virt2phys() is always an identity mapping.
1283 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1284 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1286 type->mmu = no_mmu;
1287 type->write_phys_memory = type->write_memory;
1288 type->read_phys_memory = type->read_memory;
1289 type->virt2phys = identity_virt2phys;
1292 if (target->type->read_buffer == NULL)
1293 target->type->read_buffer = target_read_buffer_default;
1295 if (target->type->write_buffer == NULL)
1296 target->type->write_buffer = target_write_buffer_default;
1298 if (target->type->get_gdb_fileio_info == NULL)
1299 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1301 if (target->type->gdb_fileio_end == NULL)
1302 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1304 if (target->type->profiling == NULL)
1305 target->type->profiling = target_profiling_default;
1307 return ERROR_OK;
1310 static int target_init(struct command_context *cmd_ctx)
1312 struct target *target;
1313 int retval;
1315 for (target = all_targets; target; target = target->next) {
1316 retval = target_init_one(cmd_ctx, target);
1317 if (ERROR_OK != retval)
1318 return retval;
1321 if (!all_targets)
1322 return ERROR_OK;
1324 retval = target_register_user_commands(cmd_ctx);
1325 if (ERROR_OK != retval)
1326 return retval;
1328 retval = target_register_timer_callback(&handle_target,
1329 polling_interval, 1, cmd_ctx->interp);
1330 if (ERROR_OK != retval)
1331 return retval;
1333 return ERROR_OK;
1336 COMMAND_HANDLER(handle_target_init_command)
1338 int retval;
1340 if (CMD_ARGC != 0)
1341 return ERROR_COMMAND_SYNTAX_ERROR;
1343 static bool target_initialized;
1344 if (target_initialized) {
1345 LOG_INFO("'target init' has already been called");
1346 return ERROR_OK;
1348 target_initialized = true;
1350 retval = command_run_line(CMD_CTX, "init_targets");
1351 if (ERROR_OK != retval)
1352 return retval;
1354 retval = command_run_line(CMD_CTX, "init_target_events");
1355 if (ERROR_OK != retval)
1356 return retval;
1358 retval = command_run_line(CMD_CTX, "init_board");
1359 if (ERROR_OK != retval)
1360 return retval;
1362 LOG_DEBUG("Initializing targets...");
1363 return target_init(CMD_CTX);
1366 int target_register_event_callback(int (*callback)(struct target *target,
1367 enum target_event event, void *priv), void *priv)
1369 struct target_event_callback **callbacks_p = &target_event_callbacks;
1371 if (callback == NULL)
1372 return ERROR_COMMAND_SYNTAX_ERROR;
1374 if (*callbacks_p) {
1375 while ((*callbacks_p)->next)
1376 callbacks_p = &((*callbacks_p)->next);
1377 callbacks_p = &((*callbacks_p)->next);
1380 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1381 (*callbacks_p)->callback = callback;
1382 (*callbacks_p)->priv = priv;
1383 (*callbacks_p)->next = NULL;
1385 return ERROR_OK;
1388 int target_register_reset_callback(int (*callback)(struct target *target,
1389 enum target_reset_mode reset_mode, void *priv), void *priv)
1391 struct target_reset_callback *entry;
1393 if (callback == NULL)
1394 return ERROR_COMMAND_SYNTAX_ERROR;
1396 entry = malloc(sizeof(struct target_reset_callback));
1397 if (entry == NULL) {
1398 LOG_ERROR("error allocating buffer for reset callback entry");
1399 return ERROR_COMMAND_SYNTAX_ERROR;
1402 entry->callback = callback;
1403 entry->priv = priv;
1404 list_add(&entry->list, &target_reset_callback_list);
1407 return ERROR_OK;
1410 int target_register_trace_callback(int (*callback)(struct target *target,
1411 size_t len, uint8_t *data, void *priv), void *priv)
1413 struct target_trace_callback *entry;
1415 if (callback == NULL)
1416 return ERROR_COMMAND_SYNTAX_ERROR;
1418 entry = malloc(sizeof(struct target_trace_callback));
1419 if (entry == NULL) {
1420 LOG_ERROR("error allocating buffer for trace callback entry");
1421 return ERROR_COMMAND_SYNTAX_ERROR;
1424 entry->callback = callback;
1425 entry->priv = priv;
1426 list_add(&entry->list, &target_trace_callback_list);
1429 return ERROR_OK;
1432 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1434 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1436 if (callback == NULL)
1437 return ERROR_COMMAND_SYNTAX_ERROR;
1439 if (*callbacks_p) {
1440 while ((*callbacks_p)->next)
1441 callbacks_p = &((*callbacks_p)->next);
1442 callbacks_p = &((*callbacks_p)->next);
1445 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1446 (*callbacks_p)->callback = callback;
1447 (*callbacks_p)->periodic = periodic;
1448 (*callbacks_p)->time_ms = time_ms;
1449 (*callbacks_p)->removed = false;
1451 gettimeofday(&(*callbacks_p)->when, NULL);
1452 timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1454 (*callbacks_p)->priv = priv;
1455 (*callbacks_p)->next = NULL;
1457 return ERROR_OK;
1460 int target_unregister_event_callback(int (*callback)(struct target *target,
1461 enum target_event event, void *priv), void *priv)
1463 struct target_event_callback **p = &target_event_callbacks;
1464 struct target_event_callback *c = target_event_callbacks;
1466 if (callback == NULL)
1467 return ERROR_COMMAND_SYNTAX_ERROR;
1469 while (c) {
1470 struct target_event_callback *next = c->next;
1471 if ((c->callback == callback) && (c->priv == priv)) {
1472 *p = next;
1473 free(c);
1474 return ERROR_OK;
1475 } else
1476 p = &(c->next);
1477 c = next;
1480 return ERROR_OK;
1483 int target_unregister_reset_callback(int (*callback)(struct target *target,
1484 enum target_reset_mode reset_mode, void *priv), void *priv)
1486 struct target_reset_callback *entry;
1488 if (callback == NULL)
1489 return ERROR_COMMAND_SYNTAX_ERROR;
1491 list_for_each_entry(entry, &target_reset_callback_list, list) {
1492 if (entry->callback == callback && entry->priv == priv) {
1493 list_del(&entry->list);
1494 free(entry);
1495 break;
1499 return ERROR_OK;
1502 int target_unregister_trace_callback(int (*callback)(struct target *target,
1503 size_t len, uint8_t *data, void *priv), void *priv)
1505 struct target_trace_callback *entry;
1507 if (callback == NULL)
1508 return ERROR_COMMAND_SYNTAX_ERROR;
1510 list_for_each_entry(entry, &target_trace_callback_list, list) {
1511 if (entry->callback == callback && entry->priv == priv) {
1512 list_del(&entry->list);
1513 free(entry);
1514 break;
1518 return ERROR_OK;
1521 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1523 if (callback == NULL)
1524 return ERROR_COMMAND_SYNTAX_ERROR;
1526 for (struct target_timer_callback *c = target_timer_callbacks;
1527 c; c = c->next) {
1528 if ((c->callback == callback) && (c->priv == priv)) {
1529 c->removed = true;
1530 return ERROR_OK;
1534 return ERROR_FAIL;
1537 int target_call_event_callbacks(struct target *target, enum target_event event)
1539 struct target_event_callback *callback = target_event_callbacks;
1540 struct target_event_callback *next_callback;
1542 if (event == TARGET_EVENT_HALTED) {
1543 /* execute early halted first */
1544 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1547 LOG_DEBUG("target event %i (%s)", event,
1548 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1550 target_handle_event(target, event);
1552 while (callback) {
1553 next_callback = callback->next;
1554 callback->callback(target, event, callback->priv);
1555 callback = next_callback;
1558 return ERROR_OK;
1561 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1563 struct target_reset_callback *callback;
1565 LOG_DEBUG("target reset %i (%s)", reset_mode,
1566 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1568 list_for_each_entry(callback, &target_reset_callback_list, list)
1569 callback->callback(target, reset_mode, callback->priv);
1571 return ERROR_OK;
1574 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1576 struct target_trace_callback *callback;
1578 list_for_each_entry(callback, &target_trace_callback_list, list)
1579 callback->callback(target, len, data, callback->priv);
1581 return ERROR_OK;
1584 static int target_timer_callback_periodic_restart(
1585 struct target_timer_callback *cb, struct timeval *now)
1587 cb->when = *now;
1588 timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1589 return ERROR_OK;
1592 static int target_call_timer_callback(struct target_timer_callback *cb,
1593 struct timeval *now)
1595 cb->callback(cb->priv);
1597 if (cb->periodic)
1598 return target_timer_callback_periodic_restart(cb, now);
1600 return target_unregister_timer_callback(cb->callback, cb->priv);
1603 static int target_call_timer_callbacks_check_time(int checktime)
1605 static bool callback_processing;
1607 /* Do not allow nesting */
1608 if (callback_processing)
1609 return ERROR_OK;
1611 callback_processing = true;
1613 keep_alive();
1615 struct timeval now;
1616 gettimeofday(&now, NULL);
1618 /* Store an address of the place containing a pointer to the
1619 * next item; initially, that's a standalone "root of the
1620 * list" variable. */
1621 struct target_timer_callback **callback = &target_timer_callbacks;
1622 while (*callback) {
1623 if ((*callback)->removed) {
1624 struct target_timer_callback *p = *callback;
1625 *callback = (*callback)->next;
1626 free(p);
1627 continue;
1630 bool call_it = (*callback)->callback &&
1631 ((!checktime && (*callback)->periodic) ||
1632 timeval_compare(&now, &(*callback)->when) >= 0);
1634 if (call_it)
1635 target_call_timer_callback(*callback, &now);
1637 callback = &(*callback)->next;
1640 callback_processing = false;
1641 return ERROR_OK;
1644 int target_call_timer_callbacks(void)
1646 return target_call_timer_callbacks_check_time(1);
1649 /* invoke periodic callbacks immediately */
1650 int target_call_timer_callbacks_now(void)
1652 return target_call_timer_callbacks_check_time(0);
1655 /* Prints the working area layout for debug purposes */
1656 static void print_wa_layout(struct target *target)
1658 struct working_area *c = target->working_areas;
1660 while (c) {
1661 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1662 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1663 c->address, c->address + c->size - 1, c->size);
1664 c = c->next;
1668 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1669 static void target_split_working_area(struct working_area *area, uint32_t size)
1671 assert(area->free); /* Shouldn't split an allocated area */
1672 assert(size <= area->size); /* Caller should guarantee this */
1674 /* Split only if not already the right size */
1675 if (size < area->size) {
1676 struct working_area *new_wa = malloc(sizeof(*new_wa));
1678 if (new_wa == NULL)
1679 return;
1681 new_wa->next = area->next;
1682 new_wa->size = area->size - size;
1683 new_wa->address = area->address + size;
1684 new_wa->backup = NULL;
1685 new_wa->user = NULL;
1686 new_wa->free = true;
1688 area->next = new_wa;
1689 area->size = size;
1691 /* If backup memory was allocated to this area, it has the wrong size
1692 * now so free it and it will be reallocated if/when needed */
1693 if (area->backup) {
1694 free(area->backup);
1695 area->backup = NULL;
1700 /* Merge all adjacent free areas into one */
1701 static void target_merge_working_areas(struct target *target)
1703 struct working_area *c = target->working_areas;
1705 while (c && c->next) {
1706 assert(c->next->address == c->address + c->size); /* This is an invariant */
1708 /* Find two adjacent free areas */
1709 if (c->free && c->next->free) {
1710 /* Merge the last into the first */
1711 c->size += c->next->size;
1713 /* Remove the last */
1714 struct working_area *to_be_freed = c->next;
1715 c->next = c->next->next;
1716 if (to_be_freed->backup)
1717 free(to_be_freed->backup);
1718 free(to_be_freed);
1720 /* If backup memory was allocated to the remaining area, it's has
1721 * the wrong size now */
1722 if (c->backup) {
1723 free(c->backup);
1724 c->backup = NULL;
1726 } else {
1727 c = c->next;
1732 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1734 /* Reevaluate working area address based on MMU state*/
1735 if (target->working_areas == NULL) {
1736 int retval;
1737 int enabled;
1739 retval = target->type->mmu(target, &enabled);
1740 if (retval != ERROR_OK)
1741 return retval;
1743 if (!enabled) {
1744 if (target->working_area_phys_spec) {
1745 LOG_DEBUG("MMU disabled, using physical "
1746 "address for working memory " TARGET_ADDR_FMT,
1747 target->working_area_phys);
1748 target->working_area = target->working_area_phys;
1749 } else {
1750 LOG_ERROR("No working memory available. "
1751 "Specify -work-area-phys to target.");
1752 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1754 } else {
1755 if (target->working_area_virt_spec) {
1756 LOG_DEBUG("MMU enabled, using virtual "
1757 "address for working memory " TARGET_ADDR_FMT,
1758 target->working_area_virt);
1759 target->working_area = target->working_area_virt;
1760 } else {
1761 LOG_ERROR("No working memory available. "
1762 "Specify -work-area-virt to target.");
1763 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1767 /* Set up initial working area on first call */
1768 struct working_area *new_wa = malloc(sizeof(*new_wa));
1769 if (new_wa) {
1770 new_wa->next = NULL;
1771 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1772 new_wa->address = target->working_area;
1773 new_wa->backup = NULL;
1774 new_wa->user = NULL;
1775 new_wa->free = true;
1778 target->working_areas = new_wa;
1781 /* only allocate multiples of 4 byte */
1782 if (size % 4)
1783 size = (size + 3) & (~3UL);
1785 struct working_area *c = target->working_areas;
1787 /* Find the first large enough working area */
1788 while (c) {
1789 if (c->free && c->size >= size)
1790 break;
1791 c = c->next;
1794 if (c == NULL)
1795 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1797 /* Split the working area into the requested size */
1798 target_split_working_area(c, size);
1800 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1801 size, c->address);
1803 if (target->backup_working_area) {
1804 if (c->backup == NULL) {
1805 c->backup = malloc(c->size);
1806 if (c->backup == NULL)
1807 return ERROR_FAIL;
1810 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1811 if (retval != ERROR_OK)
1812 return retval;
1815 /* mark as used, and return the new (reused) area */
1816 c->free = false;
1817 *area = c;
1819 /* user pointer */
1820 c->user = area;
1822 print_wa_layout(target);
1824 return ERROR_OK;
1827 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1829 int retval;
1831 retval = target_alloc_working_area_try(target, size, area);
1832 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1833 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1834 return retval;
1838 static int target_restore_working_area(struct target *target, struct working_area *area)
1840 int retval = ERROR_OK;
1842 if (target->backup_working_area && area->backup != NULL) {
1843 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1844 if (retval != ERROR_OK)
1845 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1846 area->size, area->address);
1849 return retval;
1852 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1853 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1855 int retval = ERROR_OK;
1857 if (area->free)
1858 return retval;
1860 if (restore) {
1861 retval = target_restore_working_area(target, area);
1862 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1863 if (retval != ERROR_OK)
1864 return retval;
1867 area->free = true;
1869 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1870 area->size, area->address);
1872 /* mark user pointer invalid */
1873 /* TODO: Is this really safe? It points to some previous caller's memory.
1874 * How could we know that the area pointer is still in that place and not
1875 * some other vital data? What's the purpose of this, anyway? */
1876 *area->user = NULL;
1877 area->user = NULL;
1879 target_merge_working_areas(target);
1881 print_wa_layout(target);
1883 return retval;
1886 int target_free_working_area(struct target *target, struct working_area *area)
1888 return target_free_working_area_restore(target, area, 1);
1891 static void target_destroy(struct target *target)
1893 if (target->type->deinit_target)
1894 target->type->deinit_target(target);
1896 jtag_unregister_event_callback(jtag_enable_callback, target);
1898 struct target_event_action *teap = target->event_action;
1899 while (teap) {
1900 struct target_event_action *next = teap->next;
1901 Jim_DecrRefCount(teap->interp, teap->body);
1902 free(teap);
1903 teap = next;
1906 target_free_all_working_areas(target);
1907 /* Now we have none or only one working area marked as free */
1908 if (target->working_areas) {
1909 free(target->working_areas->backup);
1910 free(target->working_areas);
1913 free(target->type);
1914 free(target->trace_info);
1915 free(target->fileio_info);
1916 free(target->cmd_name);
1917 free(target);
1920 void target_quit(void)
1922 struct target_event_callback *pe = target_event_callbacks;
1923 while (pe) {
1924 struct target_event_callback *t = pe->next;
1925 free(pe);
1926 pe = t;
1928 target_event_callbacks = NULL;
1930 struct target_timer_callback *pt = target_timer_callbacks;
1931 while (pt) {
1932 struct target_timer_callback *t = pt->next;
1933 free(pt);
1934 pt = t;
1936 target_timer_callbacks = NULL;
1938 for (struct target *target = all_targets; target;) {
1939 struct target *tmp;
1941 tmp = target->next;
1942 target_destroy(target);
1943 target = tmp;
1946 all_targets = NULL;
1949 /* free resources and restore memory, if restoring memory fails,
1950 * free up resources anyway
1952 static void target_free_all_working_areas_restore(struct target *target, int restore)
1954 struct working_area *c = target->working_areas;
1956 LOG_DEBUG("freeing all working areas");
1958 /* Loop through all areas, restoring the allocated ones and marking them as free */
1959 while (c) {
1960 if (!c->free) {
1961 if (restore)
1962 target_restore_working_area(target, c);
1963 c->free = true;
1964 *c->user = NULL; /* Same as above */
1965 c->user = NULL;
1967 c = c->next;
1970 /* Run a merge pass to combine all areas into one */
1971 target_merge_working_areas(target);
1973 print_wa_layout(target);
1976 void target_free_all_working_areas(struct target *target)
1978 target_free_all_working_areas_restore(target, 1);
1981 /* Find the largest number of bytes that can be allocated */
1982 uint32_t target_get_working_area_avail(struct target *target)
1984 struct working_area *c = target->working_areas;
1985 uint32_t max_size = 0;
1987 if (c == NULL)
1988 return target->working_area_size;
1990 while (c) {
1991 if (c->free && max_size < c->size)
1992 max_size = c->size;
1994 c = c->next;
1997 return max_size;
2000 int target_arch_state(struct target *target)
2002 int retval;
2003 if (target == NULL) {
2004 LOG_WARNING("No target has been configured");
2005 return ERROR_OK;
2008 if (target->state != TARGET_HALTED)
2009 return ERROR_OK;
2011 retval = target->type->arch_state(target);
2012 return retval;
2015 static int target_get_gdb_fileio_info_default(struct target *target,
2016 struct gdb_fileio_info *fileio_info)
2018 /* If target does not support semi-hosting function, target
2019 has no need to provide .get_gdb_fileio_info callback.
2020 It just return ERROR_FAIL and gdb_server will return "Txx"
2021 as target halted every time. */
2022 return ERROR_FAIL;
2025 static int target_gdb_fileio_end_default(struct target *target,
2026 int retcode, int fileio_errno, bool ctrl_c)
2028 return ERROR_OK;
2031 static int target_profiling_default(struct target *target, uint32_t *samples,
2032 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2034 struct timeval timeout, now;
2036 gettimeofday(&timeout, NULL);
2037 timeval_add_time(&timeout, seconds, 0);
2039 LOG_INFO("Starting profiling. Halting and resuming the"
2040 " target as often as we can...");
2042 uint32_t sample_count = 0;
2043 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2044 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2046 int retval = ERROR_OK;
2047 for (;;) {
2048 target_poll(target);
2049 if (target->state == TARGET_HALTED) {
2050 uint32_t t = buf_get_u32(reg->value, 0, 32);
2051 samples[sample_count++] = t;
2052 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2053 retval = target_resume(target, 1, 0, 0, 0);
2054 target_poll(target);
2055 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2056 } else if (target->state == TARGET_RUNNING) {
2057 /* We want to quickly sample the PC. */
2058 retval = target_halt(target);
2059 } else {
2060 LOG_INFO("Target not halted or running");
2061 retval = ERROR_OK;
2062 break;
2065 if (retval != ERROR_OK)
2066 break;
2068 gettimeofday(&now, NULL);
2069 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2070 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2071 break;
2075 *num_samples = sample_count;
2076 return retval;
2079 /* Single aligned words are guaranteed to use 16 or 32 bit access
2080 * mode respectively, otherwise data is handled as quickly as
2081 * possible
2083 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2085 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2086 size, address);
2088 if (!target_was_examined(target)) {
2089 LOG_ERROR("Target not examined yet");
2090 return ERROR_FAIL;
2093 if (size == 0)
2094 return ERROR_OK;
2096 if ((address + size - 1) < address) {
2097 /* GDB can request this when e.g. PC is 0xfffffffc */
2098 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2099 address,
2100 size);
2101 return ERROR_FAIL;
2104 return target->type->write_buffer(target, address, size, buffer);
2107 static int target_write_buffer_default(struct target *target,
2108 target_addr_t address, uint32_t count, const uint8_t *buffer)
2110 uint32_t size;
2112 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2113 * will have something to do with the size we leave to it. */
2114 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2115 if (address & size) {
2116 int retval = target_write_memory(target, address, size, 1, buffer);
2117 if (retval != ERROR_OK)
2118 return retval;
2119 address += size;
2120 count -= size;
2121 buffer += size;
2125 /* Write the data with as large access size as possible. */
2126 for (; size > 0; size /= 2) {
2127 uint32_t aligned = count - count % size;
2128 if (aligned > 0) {
2129 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2130 if (retval != ERROR_OK)
2131 return retval;
2132 address += aligned;
2133 count -= aligned;
2134 buffer += aligned;
2138 return ERROR_OK;
2141 /* Single aligned words are guaranteed to use 16 or 32 bit access
2142 * mode respectively, otherwise data is handled as quickly as
2143 * possible
2145 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2147 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2148 size, address);
2150 if (!target_was_examined(target)) {
2151 LOG_ERROR("Target not examined yet");
2152 return ERROR_FAIL;
2155 if (size == 0)
2156 return ERROR_OK;
2158 if ((address + size - 1) < address) {
2159 /* GDB can request this when e.g. PC is 0xfffffffc */
2160 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2161 address,
2162 size);
2163 return ERROR_FAIL;
2166 return target->type->read_buffer(target, address, size, buffer);
2169 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2171 uint32_t size;
2173 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2174 * will have something to do with the size we leave to it. */
2175 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2176 if (address & size) {
2177 int retval = target_read_memory(target, address, size, 1, buffer);
2178 if (retval != ERROR_OK)
2179 return retval;
2180 address += size;
2181 count -= size;
2182 buffer += size;
2186 /* Read the data with as large access size as possible. */
2187 for (; size > 0; size /= 2) {
2188 uint32_t aligned = count - count % size;
2189 if (aligned > 0) {
2190 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2191 if (retval != ERROR_OK)
2192 return retval;
2193 address += aligned;
2194 count -= aligned;
2195 buffer += aligned;
2199 return ERROR_OK;
2202 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2204 uint8_t *buffer;
2205 int retval;
2206 uint32_t i;
2207 uint32_t checksum = 0;
2208 if (!target_was_examined(target)) {
2209 LOG_ERROR("Target not examined yet");
2210 return ERROR_FAIL;
2213 retval = target->type->checksum_memory(target, address, size, &checksum);
2214 if (retval != ERROR_OK) {
2215 buffer = malloc(size);
2216 if (buffer == NULL) {
2217 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2218 return ERROR_COMMAND_SYNTAX_ERROR;
2220 retval = target_read_buffer(target, address, size, buffer);
2221 if (retval != ERROR_OK) {
2222 free(buffer);
2223 return retval;
2226 /* convert to target endianness */
2227 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2228 uint32_t target_data;
2229 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2230 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2233 retval = image_calculate_checksum(buffer, size, &checksum);
2234 free(buffer);
2237 *crc = checksum;
2239 return retval;
2242 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2243 uint8_t erased_value)
2245 int retval;
2246 if (!target_was_examined(target)) {
2247 LOG_ERROR("Target not examined yet");
2248 return ERROR_FAIL;
2251 if (target->type->blank_check_memory == 0)
2252 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2254 retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2256 return retval;
2259 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2261 uint8_t value_buf[8];
2262 if (!target_was_examined(target)) {
2263 LOG_ERROR("Target not examined yet");
2264 return ERROR_FAIL;
2267 int retval = target_read_memory(target, address, 8, 1, value_buf);
2269 if (retval == ERROR_OK) {
2270 *value = target_buffer_get_u64(target, value_buf);
2271 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2272 address,
2273 *value);
2274 } else {
2275 *value = 0x0;
2276 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2277 address);
2280 return retval;
2283 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2285 uint8_t value_buf[4];
2286 if (!target_was_examined(target)) {
2287 LOG_ERROR("Target not examined yet");
2288 return ERROR_FAIL;
2291 int retval = target_read_memory(target, address, 4, 1, value_buf);
2293 if (retval == ERROR_OK) {
2294 *value = target_buffer_get_u32(target, value_buf);
2295 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2296 address,
2297 *value);
2298 } else {
2299 *value = 0x0;
2300 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2301 address);
2304 return retval;
2307 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2309 uint8_t value_buf[2];
2310 if (!target_was_examined(target)) {
2311 LOG_ERROR("Target not examined yet");
2312 return ERROR_FAIL;
2315 int retval = target_read_memory(target, address, 2, 1, value_buf);
2317 if (retval == ERROR_OK) {
2318 *value = target_buffer_get_u16(target, value_buf);
2319 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2320 address,
2321 *value);
2322 } else {
2323 *value = 0x0;
2324 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2325 address);
2328 return retval;
2331 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2333 if (!target_was_examined(target)) {
2334 LOG_ERROR("Target not examined yet");
2335 return ERROR_FAIL;
2338 int retval = target_read_memory(target, address, 1, 1, value);
2340 if (retval == ERROR_OK) {
2341 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2342 address,
2343 *value);
2344 } else {
2345 *value = 0x0;
2346 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2347 address);
2350 return retval;
2353 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2355 int retval;
2356 uint8_t value_buf[8];
2357 if (!target_was_examined(target)) {
2358 LOG_ERROR("Target not examined yet");
2359 return ERROR_FAIL;
2362 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2363 address,
2364 value);
2366 target_buffer_set_u64(target, value_buf, value);
2367 retval = target_write_memory(target, address, 8, 1, value_buf);
2368 if (retval != ERROR_OK)
2369 LOG_DEBUG("failed: %i", retval);
2371 return retval;
2374 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2376 int retval;
2377 uint8_t value_buf[4];
2378 if (!target_was_examined(target)) {
2379 LOG_ERROR("Target not examined yet");
2380 return ERROR_FAIL;
2383 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2384 address,
2385 value);
2387 target_buffer_set_u32(target, value_buf, value);
2388 retval = target_write_memory(target, address, 4, 1, value_buf);
2389 if (retval != ERROR_OK)
2390 LOG_DEBUG("failed: %i", retval);
2392 return retval;
2395 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2397 int retval;
2398 uint8_t value_buf[2];
2399 if (!target_was_examined(target)) {
2400 LOG_ERROR("Target not examined yet");
2401 return ERROR_FAIL;
2404 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2405 address,
2406 value);
2408 target_buffer_set_u16(target, value_buf, value);
2409 retval = target_write_memory(target, address, 2, 1, value_buf);
2410 if (retval != ERROR_OK)
2411 LOG_DEBUG("failed: %i", retval);
2413 return retval;
2416 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2418 int retval;
2419 if (!target_was_examined(target)) {
2420 LOG_ERROR("Target not examined yet");
2421 return ERROR_FAIL;
2424 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2425 address, value);
2427 retval = target_write_memory(target, address, 1, 1, &value);
2428 if (retval != ERROR_OK)
2429 LOG_DEBUG("failed: %i", retval);
2431 return retval;
2434 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2436 int retval;
2437 uint8_t value_buf[8];
2438 if (!target_was_examined(target)) {
2439 LOG_ERROR("Target not examined yet");
2440 return ERROR_FAIL;
2443 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2444 address,
2445 value);
2447 target_buffer_set_u64(target, value_buf, value);
2448 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2449 if (retval != ERROR_OK)
2450 LOG_DEBUG("failed: %i", retval);
2452 return retval;
2455 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2457 int retval;
2458 uint8_t value_buf[4];
2459 if (!target_was_examined(target)) {
2460 LOG_ERROR("Target not examined yet");
2461 return ERROR_FAIL;
2464 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2465 address,
2466 value);
2468 target_buffer_set_u32(target, value_buf, value);
2469 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2470 if (retval != ERROR_OK)
2471 LOG_DEBUG("failed: %i", retval);
2473 return retval;
2476 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2478 int retval;
2479 uint8_t value_buf[2];
2480 if (!target_was_examined(target)) {
2481 LOG_ERROR("Target not examined yet");
2482 return ERROR_FAIL;
2485 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2486 address,
2487 value);
2489 target_buffer_set_u16(target, value_buf, value);
2490 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2491 if (retval != ERROR_OK)
2492 LOG_DEBUG("failed: %i", retval);
2494 return retval;
2497 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2499 int retval;
2500 if (!target_was_examined(target)) {
2501 LOG_ERROR("Target not examined yet");
2502 return ERROR_FAIL;
2505 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2506 address, value);
2508 retval = target_write_phys_memory(target, address, 1, 1, &value);
2509 if (retval != ERROR_OK)
2510 LOG_DEBUG("failed: %i", retval);
2512 return retval;
2515 static int find_target(struct command_context *cmd_ctx, const char *name)
2517 struct target *target = get_target(name);
2518 if (target == NULL) {
2519 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2520 return ERROR_FAIL;
2522 if (!target->tap->enabled) {
2523 LOG_USER("Target: TAP %s is disabled, "
2524 "can't be the current target\n",
2525 target->tap->dotted_name);
2526 return ERROR_FAIL;
2529 cmd_ctx->current_target = target;
2530 if (cmd_ctx->current_target_override)
2531 cmd_ctx->current_target_override = target;
2533 return ERROR_OK;
2537 COMMAND_HANDLER(handle_targets_command)
2539 int retval = ERROR_OK;
2540 if (CMD_ARGC == 1) {
2541 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2542 if (retval == ERROR_OK) {
2543 /* we're done! */
2544 return retval;
2548 struct target *target = all_targets;
2549 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2550 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2551 while (target) {
2552 const char *state;
2553 char marker = ' ';
2555 if (target->tap->enabled)
2556 state = target_state_name(target);
2557 else
2558 state = "tap-disabled";
2560 if (CMD_CTX->current_target == target)
2561 marker = '*';
2563 /* keep columns lined up to match the headers above */
2564 command_print(CMD_CTX,
2565 "%2d%c %-18s %-10s %-6s %-18s %s",
2566 target->target_number,
2567 marker,
2568 target_name(target),
2569 target_type_name(target),
2570 Jim_Nvp_value2name_simple(nvp_target_endian,
2571 target->endianness)->name,
2572 target->tap->dotted_name,
2573 state);
2574 target = target->next;
2577 return retval;
2580 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2582 static int powerDropout;
2583 static int srstAsserted;
2585 static int runPowerRestore;
2586 static int runPowerDropout;
2587 static int runSrstAsserted;
2588 static int runSrstDeasserted;
2590 static int sense_handler(void)
2592 static int prevSrstAsserted;
2593 static int prevPowerdropout;
2595 int retval = jtag_power_dropout(&powerDropout);
2596 if (retval != ERROR_OK)
2597 return retval;
2599 int powerRestored;
2600 powerRestored = prevPowerdropout && !powerDropout;
2601 if (powerRestored)
2602 runPowerRestore = 1;
2604 int64_t current = timeval_ms();
2605 static int64_t lastPower;
2606 bool waitMore = lastPower + 2000 > current;
2607 if (powerDropout && !waitMore) {
2608 runPowerDropout = 1;
2609 lastPower = current;
2612 retval = jtag_srst_asserted(&srstAsserted);
2613 if (retval != ERROR_OK)
2614 return retval;
2616 int srstDeasserted;
2617 srstDeasserted = prevSrstAsserted && !srstAsserted;
2619 static int64_t lastSrst;
2620 waitMore = lastSrst + 2000 > current;
2621 if (srstDeasserted && !waitMore) {
2622 runSrstDeasserted = 1;
2623 lastSrst = current;
2626 if (!prevSrstAsserted && srstAsserted)
2627 runSrstAsserted = 1;
2629 prevSrstAsserted = srstAsserted;
2630 prevPowerdropout = powerDropout;
2632 if (srstDeasserted || powerRestored) {
2633 /* Other than logging the event we can't do anything here.
2634 * Issuing a reset is a particularly bad idea as we might
2635 * be inside a reset already.
2639 return ERROR_OK;
2642 /* process target state changes */
2643 static int handle_target(void *priv)
2645 Jim_Interp *interp = (Jim_Interp *)priv;
2646 int retval = ERROR_OK;
2648 if (!is_jtag_poll_safe()) {
2649 /* polling is disabled currently */
2650 return ERROR_OK;
2653 /* we do not want to recurse here... */
2654 static int recursive;
2655 if (!recursive) {
2656 recursive = 1;
2657 sense_handler();
2658 /* danger! running these procedures can trigger srst assertions and power dropouts.
2659 * We need to avoid an infinite loop/recursion here and we do that by
2660 * clearing the flags after running these events.
2662 int did_something = 0;
2663 if (runSrstAsserted) {
2664 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2665 Jim_Eval(interp, "srst_asserted");
2666 did_something = 1;
2668 if (runSrstDeasserted) {
2669 Jim_Eval(interp, "srst_deasserted");
2670 did_something = 1;
2672 if (runPowerDropout) {
2673 LOG_INFO("Power dropout detected, running power_dropout proc.");
2674 Jim_Eval(interp, "power_dropout");
2675 did_something = 1;
2677 if (runPowerRestore) {
2678 Jim_Eval(interp, "power_restore");
2679 did_something = 1;
2682 if (did_something) {
2683 /* clear detect flags */
2684 sense_handler();
2687 /* clear action flags */
2689 runSrstAsserted = 0;
2690 runSrstDeasserted = 0;
2691 runPowerRestore = 0;
2692 runPowerDropout = 0;
2694 recursive = 0;
2697 /* Poll targets for state changes unless that's globally disabled.
2698 * Skip targets that are currently disabled.
2700 for (struct target *target = all_targets;
2701 is_jtag_poll_safe() && target;
2702 target = target->next) {
2704 if (!target_was_examined(target))
2705 continue;
2707 if (!target->tap->enabled)
2708 continue;
2710 if (target->backoff.times > target->backoff.count) {
2711 /* do not poll this time as we failed previously */
2712 target->backoff.count++;
2713 continue;
2715 target->backoff.count = 0;
2717 /* only poll target if we've got power and srst isn't asserted */
2718 if (!powerDropout && !srstAsserted) {
2719 /* polling may fail silently until the target has been examined */
2720 retval = target_poll(target);
2721 if (retval != ERROR_OK) {
2722 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2723 if (target->backoff.times * polling_interval < 5000) {
2724 target->backoff.times *= 2;
2725 target->backoff.times++;
2728 /* Tell GDB to halt the debugger. This allows the user to
2729 * run monitor commands to handle the situation.
2731 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2733 if (target->backoff.times > 0) {
2734 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2735 target_reset_examined(target);
2736 retval = target_examine_one(target);
2737 /* Target examination could have failed due to unstable connection,
2738 * but we set the examined flag anyway to repoll it later */
2739 if (retval != ERROR_OK) {
2740 target->examined = true;
2741 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2742 target->backoff.times * polling_interval);
2743 return retval;
2747 /* Since we succeeded, we reset backoff count */
2748 target->backoff.times = 0;
2752 return retval;
2755 COMMAND_HANDLER(handle_reg_command)
2757 struct target *target;
2758 struct reg *reg = NULL;
2759 unsigned count = 0;
2760 char *value;
2762 LOG_DEBUG("-");
2764 target = get_current_target(CMD_CTX);
2766 /* list all available registers for the current target */
2767 if (CMD_ARGC == 0) {
2768 struct reg_cache *cache = target->reg_cache;
2770 count = 0;
2771 while (cache) {
2772 unsigned i;
2774 command_print(CMD_CTX, "===== %s", cache->name);
2776 for (i = 0, reg = cache->reg_list;
2777 i < cache->num_regs;
2778 i++, reg++, count++) {
2779 /* only print cached values if they are valid */
2780 if (reg->valid) {
2781 value = buf_to_str(reg->value,
2782 reg->size, 16);
2783 command_print(CMD_CTX,
2784 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2785 count, reg->name,
2786 reg->size, value,
2787 reg->dirty
2788 ? " (dirty)"
2789 : "");
2790 free(value);
2791 } else {
2792 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2793 count, reg->name,
2794 reg->size) ;
2797 cache = cache->next;
2800 return ERROR_OK;
2803 /* access a single register by its ordinal number */
2804 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2805 unsigned num;
2806 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2808 struct reg_cache *cache = target->reg_cache;
2809 count = 0;
2810 while (cache) {
2811 unsigned i;
2812 for (i = 0; i < cache->num_regs; i++) {
2813 if (count++ == num) {
2814 reg = &cache->reg_list[i];
2815 break;
2818 if (reg)
2819 break;
2820 cache = cache->next;
2823 if (!reg) {
2824 command_print(CMD_CTX, "%i is out of bounds, the current target "
2825 "has only %i registers (0 - %i)", num, count, count - 1);
2826 return ERROR_OK;
2828 } else {
2829 /* access a single register by its name */
2830 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2832 if (!reg) {
2833 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2834 return ERROR_OK;
2838 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2840 /* display a register */
2841 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2842 && (CMD_ARGV[1][0] <= '9')))) {
2843 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2844 reg->valid = 0;
2846 if (reg->valid == 0)
2847 reg->type->get(reg);
2848 value = buf_to_str(reg->value, reg->size, 16);
2849 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2850 free(value);
2851 return ERROR_OK;
2854 /* set register value */
2855 if (CMD_ARGC == 2) {
2856 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2857 if (buf == NULL)
2858 return ERROR_FAIL;
2859 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2861 reg->type->set(reg, buf);
2863 value = buf_to_str(reg->value, reg->size, 16);
2864 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2865 free(value);
2867 free(buf);
2869 return ERROR_OK;
2872 return ERROR_COMMAND_SYNTAX_ERROR;
2875 COMMAND_HANDLER(handle_poll_command)
2877 int retval = ERROR_OK;
2878 struct target *target = get_current_target(CMD_CTX);
2880 if (CMD_ARGC == 0) {
2881 command_print(CMD_CTX, "background polling: %s",
2882 jtag_poll_get_enabled() ? "on" : "off");
2883 command_print(CMD_CTX, "TAP: %s (%s)",
2884 target->tap->dotted_name,
2885 target->tap->enabled ? "enabled" : "disabled");
2886 if (!target->tap->enabled)
2887 return ERROR_OK;
2888 retval = target_poll(target);
2889 if (retval != ERROR_OK)
2890 return retval;
2891 retval = target_arch_state(target);
2892 if (retval != ERROR_OK)
2893 return retval;
2894 } else if (CMD_ARGC == 1) {
2895 bool enable;
2896 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2897 jtag_poll_set_enabled(enable);
2898 } else
2899 return ERROR_COMMAND_SYNTAX_ERROR;
2901 return retval;
2904 COMMAND_HANDLER(handle_wait_halt_command)
2906 if (CMD_ARGC > 1)
2907 return ERROR_COMMAND_SYNTAX_ERROR;
2909 unsigned ms = DEFAULT_HALT_TIMEOUT;
2910 if (1 == CMD_ARGC) {
2911 int retval = parse_uint(CMD_ARGV[0], &ms);
2912 if (ERROR_OK != retval)
2913 return ERROR_COMMAND_SYNTAX_ERROR;
2916 struct target *target = get_current_target(CMD_CTX);
2917 return target_wait_state(target, TARGET_HALTED, ms);
2920 /* wait for target state to change. The trick here is to have a low
2921 * latency for short waits and not to suck up all the CPU time
2922 * on longer waits.
2924 * After 500ms, keep_alive() is invoked
2926 int target_wait_state(struct target *target, enum target_state state, int ms)
2928 int retval;
2929 int64_t then = 0, cur;
2930 bool once = true;
2932 for (;;) {
2933 retval = target_poll(target);
2934 if (retval != ERROR_OK)
2935 return retval;
2936 if (target->state == state)
2937 break;
2938 cur = timeval_ms();
2939 if (once) {
2940 once = false;
2941 then = timeval_ms();
2942 LOG_DEBUG("waiting for target %s...",
2943 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2946 if (cur-then > 500)
2947 keep_alive();
2949 if ((cur-then) > ms) {
2950 LOG_ERROR("timed out while waiting for target %s",
2951 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2952 return ERROR_FAIL;
2956 return ERROR_OK;
2959 COMMAND_HANDLER(handle_halt_command)
2961 LOG_DEBUG("-");
2963 struct target *target = get_current_target(CMD_CTX);
2965 target->verbose_halt_msg = true;
2967 int retval = target_halt(target);
2968 if (ERROR_OK != retval)
2969 return retval;
2971 if (CMD_ARGC == 1) {
2972 unsigned wait_local;
2973 retval = parse_uint(CMD_ARGV[0], &wait_local);
2974 if (ERROR_OK != retval)
2975 return ERROR_COMMAND_SYNTAX_ERROR;
2976 if (!wait_local)
2977 return ERROR_OK;
2980 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2983 COMMAND_HANDLER(handle_soft_reset_halt_command)
2985 struct target *target = get_current_target(CMD_CTX);
2987 LOG_USER("requesting target halt and executing a soft reset");
2989 target_soft_reset_halt(target);
2991 return ERROR_OK;
2994 COMMAND_HANDLER(handle_reset_command)
2996 if (CMD_ARGC > 1)
2997 return ERROR_COMMAND_SYNTAX_ERROR;
2999 enum target_reset_mode reset_mode = RESET_RUN;
3000 if (CMD_ARGC == 1) {
3001 const Jim_Nvp *n;
3002 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3003 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3004 return ERROR_COMMAND_SYNTAX_ERROR;
3005 reset_mode = n->value;
3008 /* reset *all* targets */
3009 return target_process_reset(CMD_CTX, reset_mode);
3013 COMMAND_HANDLER(handle_resume_command)
3015 int current = 1;
3016 if (CMD_ARGC > 1)
3017 return ERROR_COMMAND_SYNTAX_ERROR;
3019 struct target *target = get_current_target(CMD_CTX);
3021 /* with no CMD_ARGV, resume from current pc, addr = 0,
3022 * with one arguments, addr = CMD_ARGV[0],
3023 * handle breakpoints, not debugging */
3024 target_addr_t addr = 0;
3025 if (CMD_ARGC == 1) {
3026 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3027 current = 0;
3030 return target_resume(target, current, addr, 1, 0);
3033 COMMAND_HANDLER(handle_step_command)
3035 if (CMD_ARGC > 1)
3036 return ERROR_COMMAND_SYNTAX_ERROR;
3038 LOG_DEBUG("-");
3040 /* with no CMD_ARGV, step from current pc, addr = 0,
3041 * with one argument addr = CMD_ARGV[0],
3042 * handle breakpoints, debugging */
3043 target_addr_t addr = 0;
3044 int current_pc = 1;
3045 if (CMD_ARGC == 1) {
3046 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3047 current_pc = 0;
3050 struct target *target = get_current_target(CMD_CTX);
3052 return target->type->step(target, current_pc, addr, 1);
3055 static void handle_md_output(struct command_context *cmd_ctx,
3056 struct target *target, target_addr_t address, unsigned size,
3057 unsigned count, const uint8_t *buffer)
3059 const unsigned line_bytecnt = 32;
3060 unsigned line_modulo = line_bytecnt / size;
3062 char output[line_bytecnt * 4 + 1];
3063 unsigned output_len = 0;
3065 const char *value_fmt;
3066 switch (size) {
3067 case 8:
3068 value_fmt = "%16.16"PRIx64" ";
3069 break;
3070 case 4:
3071 value_fmt = "%8.8"PRIx64" ";
3072 break;
3073 case 2:
3074 value_fmt = "%4.4"PRIx64" ";
3075 break;
3076 case 1:
3077 value_fmt = "%2.2"PRIx64" ";
3078 break;
3079 default:
3080 /* "can't happen", caller checked */
3081 LOG_ERROR("invalid memory read size: %u", size);
3082 return;
3085 for (unsigned i = 0; i < count; i++) {
3086 if (i % line_modulo == 0) {
3087 output_len += snprintf(output + output_len,
3088 sizeof(output) - output_len,
3089 TARGET_ADDR_FMT ": ",
3090 (address + (i * size)));
3093 uint64_t value = 0;
3094 const uint8_t *value_ptr = buffer + i * size;
3095 switch (size) {
3096 case 8:
3097 value = target_buffer_get_u64(target, value_ptr);
3098 break;
3099 case 4:
3100 value = target_buffer_get_u32(target, value_ptr);
3101 break;
3102 case 2:
3103 value = target_buffer_get_u16(target, value_ptr);
3104 break;
3105 case 1:
3106 value = *value_ptr;
3108 output_len += snprintf(output + output_len,
3109 sizeof(output) - output_len,
3110 value_fmt, value);
3112 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3113 command_print(cmd_ctx, "%s", output);
3114 output_len = 0;
3119 COMMAND_HANDLER(handle_md_command)
3121 if (CMD_ARGC < 1)
3122 return ERROR_COMMAND_SYNTAX_ERROR;
3124 unsigned size = 0;
3125 switch (CMD_NAME[2]) {
3126 case 'd':
3127 size = 8;
3128 break;
3129 case 'w':
3130 size = 4;
3131 break;
3132 case 'h':
3133 size = 2;
3134 break;
3135 case 'b':
3136 size = 1;
3137 break;
3138 default:
3139 return ERROR_COMMAND_SYNTAX_ERROR;
3142 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3143 int (*fn)(struct target *target,
3144 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3145 if (physical) {
3146 CMD_ARGC--;
3147 CMD_ARGV++;
3148 fn = target_read_phys_memory;
3149 } else
3150 fn = target_read_memory;
3151 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3152 return ERROR_COMMAND_SYNTAX_ERROR;
3154 target_addr_t address;
3155 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3157 unsigned count = 1;
3158 if (CMD_ARGC == 2)
3159 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3161 uint8_t *buffer = calloc(count, size);
3162 if (buffer == NULL) {
3163 LOG_ERROR("Failed to allocate md read buffer");
3164 return ERROR_FAIL;
3167 struct target *target = get_current_target(CMD_CTX);
3168 int retval = fn(target, address, size, count, buffer);
3169 if (ERROR_OK == retval)
3170 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3172 free(buffer);
3174 return retval;
3177 typedef int (*target_write_fn)(struct target *target,
3178 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3180 static int target_fill_mem(struct target *target,
3181 target_addr_t address,
3182 target_write_fn fn,
3183 unsigned data_size,
3184 /* value */
3185 uint64_t b,
3186 /* count */
3187 unsigned c)
3189 /* We have to write in reasonably large chunks to be able
3190 * to fill large memory areas with any sane speed */
3191 const unsigned chunk_size = 16384;
3192 uint8_t *target_buf = malloc(chunk_size * data_size);
3193 if (target_buf == NULL) {
3194 LOG_ERROR("Out of memory");
3195 return ERROR_FAIL;
3198 for (unsigned i = 0; i < chunk_size; i++) {
3199 switch (data_size) {
3200 case 8:
3201 target_buffer_set_u64(target, target_buf + i * data_size, b);
3202 break;
3203 case 4:
3204 target_buffer_set_u32(target, target_buf + i * data_size, b);
3205 break;
3206 case 2:
3207 target_buffer_set_u16(target, target_buf + i * data_size, b);
3208 break;
3209 case 1:
3210 target_buffer_set_u8(target, target_buf + i * data_size, b);
3211 break;
3212 default:
3213 exit(-1);
3217 int retval = ERROR_OK;
3219 for (unsigned x = 0; x < c; x += chunk_size) {
3220 unsigned current;
3221 current = c - x;
3222 if (current > chunk_size)
3223 current = chunk_size;
3224 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3225 if (retval != ERROR_OK)
3226 break;
3227 /* avoid GDB timeouts */
3228 keep_alive();
3230 free(target_buf);
3232 return retval;
3236 COMMAND_HANDLER(handle_mw_command)
3238 if (CMD_ARGC < 2)
3239 return ERROR_COMMAND_SYNTAX_ERROR;
3240 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3241 target_write_fn fn;
3242 if (physical) {
3243 CMD_ARGC--;
3244 CMD_ARGV++;
3245 fn = target_write_phys_memory;
3246 } else
3247 fn = target_write_memory;
3248 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3249 return ERROR_COMMAND_SYNTAX_ERROR;
3251 target_addr_t address;
3252 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3254 target_addr_t value;
3255 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3257 unsigned count = 1;
3258 if (CMD_ARGC == 3)
3259 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3261 struct target *target = get_current_target(CMD_CTX);
3262 unsigned wordsize;
3263 switch (CMD_NAME[2]) {
3264 case 'd':
3265 wordsize = 8;
3266 break;
3267 case 'w':
3268 wordsize = 4;
3269 break;
3270 case 'h':
3271 wordsize = 2;
3272 break;
3273 case 'b':
3274 wordsize = 1;
3275 break;
3276 default:
3277 return ERROR_COMMAND_SYNTAX_ERROR;
3280 return target_fill_mem(target, address, fn, wordsize, value, count);
3283 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3284 target_addr_t *min_address, target_addr_t *max_address)
3286 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3287 return ERROR_COMMAND_SYNTAX_ERROR;
3289 /* a base address isn't always necessary,
3290 * default to 0x0 (i.e. don't relocate) */
3291 if (CMD_ARGC >= 2) {
3292 target_addr_t addr;
3293 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3294 image->base_address = addr;
3295 image->base_address_set = 1;
3296 } else
3297 image->base_address_set = 0;
3299 image->start_address_set = 0;
3301 if (CMD_ARGC >= 4)
3302 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3303 if (CMD_ARGC == 5) {
3304 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3305 /* use size (given) to find max (required) */
3306 *max_address += *min_address;
3309 if (*min_address > *max_address)
3310 return ERROR_COMMAND_SYNTAX_ERROR;
3312 return ERROR_OK;
3315 COMMAND_HANDLER(handle_load_image_command)
3317 uint8_t *buffer;
3318 size_t buf_cnt;
3319 uint32_t image_size;
3320 target_addr_t min_address = 0;
3321 target_addr_t max_address = -1;
3322 int i;
3323 struct image image;
3325 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3326 &image, &min_address, &max_address);
3327 if (ERROR_OK != retval)
3328 return retval;
3330 struct target *target = get_current_target(CMD_CTX);
3332 struct duration bench;
3333 duration_start(&bench);
3335 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3336 return ERROR_FAIL;
3338 image_size = 0x0;
3339 retval = ERROR_OK;
3340 for (i = 0; i < image.num_sections; i++) {
3341 buffer = malloc(image.sections[i].size);
3342 if (buffer == NULL) {
3343 command_print(CMD_CTX,
3344 "error allocating buffer for section (%d bytes)",
3345 (int)(image.sections[i].size));
3346 retval = ERROR_FAIL;
3347 break;
3350 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3351 if (retval != ERROR_OK) {
3352 free(buffer);
3353 break;
3356 uint32_t offset = 0;
3357 uint32_t length = buf_cnt;
3359 /* DANGER!!! beware of unsigned comparision here!!! */
3361 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3362 (image.sections[i].base_address < max_address)) {
3364 if (image.sections[i].base_address < min_address) {
3365 /* clip addresses below */
3366 offset += min_address-image.sections[i].base_address;
3367 length -= offset;
3370 if (image.sections[i].base_address + buf_cnt > max_address)
3371 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3373 retval = target_write_buffer(target,
3374 image.sections[i].base_address + offset, length, buffer + offset);
3375 if (retval != ERROR_OK) {
3376 free(buffer);
3377 break;
3379 image_size += length;
3380 command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3381 (unsigned int)length,
3382 image.sections[i].base_address + offset);
3385 free(buffer);
3388 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3389 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3390 "in %fs (%0.3f KiB/s)", image_size,
3391 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3394 image_close(&image);
3396 return retval;
3400 COMMAND_HANDLER(handle_dump_image_command)
3402 struct fileio *fileio;
3403 uint8_t *buffer;
3404 int retval, retvaltemp;
3405 target_addr_t address, size;
3406 struct duration bench;
3407 struct target *target = get_current_target(CMD_CTX);
3409 if (CMD_ARGC != 3)
3410 return ERROR_COMMAND_SYNTAX_ERROR;
3412 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3413 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3415 uint32_t buf_size = (size > 4096) ? 4096 : size;
3416 buffer = malloc(buf_size);
3417 if (!buffer)
3418 return ERROR_FAIL;
3420 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3421 if (retval != ERROR_OK) {
3422 free(buffer);
3423 return retval;
3426 duration_start(&bench);
3428 while (size > 0) {
3429 size_t size_written;
3430 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3431 retval = target_read_buffer(target, address, this_run_size, buffer);
3432 if (retval != ERROR_OK)
3433 break;
3435 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3436 if (retval != ERROR_OK)
3437 break;
3439 size -= this_run_size;
3440 address += this_run_size;
3443 free(buffer);
3445 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3446 size_t filesize;
3447 retval = fileio_size(fileio, &filesize);
3448 if (retval != ERROR_OK)
3449 return retval;
3450 command_print(CMD_CTX,
3451 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3452 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3455 retvaltemp = fileio_close(fileio);
3456 if (retvaltemp != ERROR_OK)
3457 return retvaltemp;
3459 return retval;
3462 enum verify_mode {
3463 IMAGE_TEST = 0,
3464 IMAGE_VERIFY = 1,
3465 IMAGE_CHECKSUM_ONLY = 2
3468 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3470 uint8_t *buffer;
3471 size_t buf_cnt;
3472 uint32_t image_size;
3473 int i;
3474 int retval;
3475 uint32_t checksum = 0;
3476 uint32_t mem_checksum = 0;
3478 struct image image;
3480 struct target *target = get_current_target(CMD_CTX);
3482 if (CMD_ARGC < 1)
3483 return ERROR_COMMAND_SYNTAX_ERROR;
3485 if (!target) {
3486 LOG_ERROR("no target selected");
3487 return ERROR_FAIL;
3490 struct duration bench;
3491 duration_start(&bench);
3493 if (CMD_ARGC >= 2) {
3494 target_addr_t addr;
3495 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3496 image.base_address = addr;
3497 image.base_address_set = 1;
3498 } else {
3499 image.base_address_set = 0;
3500 image.base_address = 0x0;
3503 image.start_address_set = 0;
3505 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3506 if (retval != ERROR_OK)
3507 return retval;
3509 image_size = 0x0;
3510 int diffs = 0;
3511 retval = ERROR_OK;
3512 for (i = 0; i < image.num_sections; i++) {
3513 buffer = malloc(image.sections[i].size);
3514 if (buffer == NULL) {
3515 command_print(CMD_CTX,
3516 "error allocating buffer for section (%d bytes)",
3517 (int)(image.sections[i].size));
3518 break;
3520 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3521 if (retval != ERROR_OK) {
3522 free(buffer);
3523 break;
3526 if (verify >= IMAGE_VERIFY) {
3527 /* calculate checksum of image */
3528 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3529 if (retval != ERROR_OK) {
3530 free(buffer);
3531 break;
3534 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3535 if (retval != ERROR_OK) {
3536 free(buffer);
3537 break;
3539 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3540 LOG_ERROR("checksum mismatch");
3541 free(buffer);
3542 retval = ERROR_FAIL;
3543 goto done;
3545 if (checksum != mem_checksum) {
3546 /* failed crc checksum, fall back to a binary compare */
3547 uint8_t *data;
3549 if (diffs == 0)
3550 LOG_ERROR("checksum mismatch - attempting binary compare");
3552 data = malloc(buf_cnt);
3554 /* Can we use 32bit word accesses? */
3555 int size = 1;
3556 int count = buf_cnt;
3557 if ((count % 4) == 0) {
3558 size *= 4;
3559 count /= 4;
3561 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3562 if (retval == ERROR_OK) {
3563 uint32_t t;
3564 for (t = 0; t < buf_cnt; t++) {
3565 if (data[t] != buffer[t]) {
3566 command_print(CMD_CTX,
3567 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3568 diffs,
3569 (unsigned)(t + image.sections[i].base_address),
3570 data[t],
3571 buffer[t]);
3572 if (diffs++ >= 127) {
3573 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3574 free(data);
3575 free(buffer);
3576 goto done;
3579 keep_alive();
3582 free(data);
3584 } else {
3585 command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3586 image.sections[i].base_address,
3587 buf_cnt);
3590 free(buffer);
3591 image_size += buf_cnt;
3593 if (diffs > 0)
3594 command_print(CMD_CTX, "No more differences found.");
3595 done:
3596 if (diffs > 0)
3597 retval = ERROR_FAIL;
3598 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3599 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3600 "in %fs (%0.3f KiB/s)", image_size,
3601 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3604 image_close(&image);
3606 return retval;
3609 COMMAND_HANDLER(handle_verify_image_checksum_command)
3611 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3614 COMMAND_HANDLER(handle_verify_image_command)
3616 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3619 COMMAND_HANDLER(handle_test_image_command)
3621 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3624 static int handle_bp_command_list(struct command_context *cmd_ctx)
3626 struct target *target = get_current_target(cmd_ctx);
3627 struct breakpoint *breakpoint = target->breakpoints;
3628 while (breakpoint) {
3629 if (breakpoint->type == BKPT_SOFT) {
3630 char *buf = buf_to_str(breakpoint->orig_instr,
3631 breakpoint->length, 16);
3632 command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3633 breakpoint->address,
3634 breakpoint->length,
3635 breakpoint->set, buf);
3636 free(buf);
3637 } else {
3638 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3639 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3640 breakpoint->asid,
3641 breakpoint->length, breakpoint->set);
3642 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3643 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3644 breakpoint->address,
3645 breakpoint->length, breakpoint->set);
3646 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3647 breakpoint->asid);
3648 } else
3649 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3650 breakpoint->address,
3651 breakpoint->length, breakpoint->set);
3654 breakpoint = breakpoint->next;
3656 return ERROR_OK;
3659 static int handle_bp_command_set(struct command_context *cmd_ctx,
3660 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3662 struct target *target = get_current_target(cmd_ctx);
3663 int retval;
3665 if (asid == 0) {
3666 retval = breakpoint_add(target, addr, length, hw);
3667 if (ERROR_OK == retval)
3668 command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3669 else {
3670 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3671 return retval;
3673 } else if (addr == 0) {
3674 if (target->type->add_context_breakpoint == NULL) {
3675 LOG_WARNING("Context breakpoint not available");
3676 return ERROR_OK;
3678 retval = context_breakpoint_add(target, asid, length, hw);
3679 if (ERROR_OK == retval)
3680 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3681 else {
3682 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3683 return retval;
3685 } else {
3686 if (target->type->add_hybrid_breakpoint == NULL) {
3687 LOG_WARNING("Hybrid breakpoint not available");
3688 return ERROR_OK;
3690 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3691 if (ERROR_OK == retval)
3692 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3693 else {
3694 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3695 return retval;
3698 return ERROR_OK;
3701 COMMAND_HANDLER(handle_bp_command)
3703 target_addr_t addr;
3704 uint32_t asid;
3705 uint32_t length;
3706 int hw = BKPT_SOFT;
3708 switch (CMD_ARGC) {
3709 case 0:
3710 return handle_bp_command_list(CMD_CTX);
3712 case 2:
3713 asid = 0;
3714 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3715 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3716 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3718 case 3:
3719 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3720 hw = BKPT_HARD;
3721 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3722 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3723 asid = 0;
3724 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3725 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3726 hw = BKPT_HARD;
3727 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3728 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3729 addr = 0;
3730 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3732 /* fallthrough */
3733 case 4:
3734 hw = BKPT_HARD;
3735 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3736 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3737 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3738 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3740 default:
3741 return ERROR_COMMAND_SYNTAX_ERROR;
3745 COMMAND_HANDLER(handle_rbp_command)
3747 if (CMD_ARGC != 1)
3748 return ERROR_COMMAND_SYNTAX_ERROR;
3750 target_addr_t addr;
3751 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3753 struct target *target = get_current_target(CMD_CTX);
3754 breakpoint_remove(target, addr);
3756 return ERROR_OK;
3759 COMMAND_HANDLER(handle_wp_command)
3761 struct target *target = get_current_target(CMD_CTX);
3763 if (CMD_ARGC == 0) {
3764 struct watchpoint *watchpoint = target->watchpoints;
3766 while (watchpoint) {
3767 command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3768 ", len: 0x%8.8" PRIx32
3769 ", r/w/a: %i, value: 0x%8.8" PRIx32
3770 ", mask: 0x%8.8" PRIx32,
3771 watchpoint->address,
3772 watchpoint->length,
3773 (int)watchpoint->rw,
3774 watchpoint->value,
3775 watchpoint->mask);
3776 watchpoint = watchpoint->next;
3778 return ERROR_OK;
3781 enum watchpoint_rw type = WPT_ACCESS;
3782 uint32_t addr = 0;
3783 uint32_t length = 0;
3784 uint32_t data_value = 0x0;
3785 uint32_t data_mask = 0xffffffff;
3787 switch (CMD_ARGC) {
3788 case 5:
3789 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3790 /* fall through */
3791 case 4:
3792 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3793 /* fall through */
3794 case 3:
3795 switch (CMD_ARGV[2][0]) {
3796 case 'r':
3797 type = WPT_READ;
3798 break;
3799 case 'w':
3800 type = WPT_WRITE;
3801 break;
3802 case 'a':
3803 type = WPT_ACCESS;
3804 break;
3805 default:
3806 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3807 return ERROR_COMMAND_SYNTAX_ERROR;
3809 /* fall through */
3810 case 2:
3811 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3812 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3813 break;
3815 default:
3816 return ERROR_COMMAND_SYNTAX_ERROR;
3819 int retval = watchpoint_add(target, addr, length, type,
3820 data_value, data_mask);
3821 if (ERROR_OK != retval)
3822 LOG_ERROR("Failure setting watchpoints");
3824 return retval;
3827 COMMAND_HANDLER(handle_rwp_command)
3829 if (CMD_ARGC != 1)
3830 return ERROR_COMMAND_SYNTAX_ERROR;
3832 uint32_t addr;
3833 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3835 struct target *target = get_current_target(CMD_CTX);
3836 watchpoint_remove(target, addr);
3838 return ERROR_OK;
3842 * Translate a virtual address to a physical address.
3844 * The low-level target implementation must have logged a detailed error
3845 * which is forwarded to telnet/GDB session.
3847 COMMAND_HANDLER(handle_virt2phys_command)
3849 if (CMD_ARGC != 1)
3850 return ERROR_COMMAND_SYNTAX_ERROR;
3852 target_addr_t va;
3853 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3854 target_addr_t pa;
3856 struct target *target = get_current_target(CMD_CTX);
3857 int retval = target->type->virt2phys(target, va, &pa);
3858 if (retval == ERROR_OK)
3859 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3861 return retval;
3864 static void writeData(FILE *f, const void *data, size_t len)
3866 size_t written = fwrite(data, 1, len, f);
3867 if (written != len)
3868 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3871 static void writeLong(FILE *f, int l, struct target *target)
3873 uint8_t val[4];
3875 target_buffer_set_u32(target, val, l);
3876 writeData(f, val, 4);
3879 static void writeString(FILE *f, char *s)
3881 writeData(f, s, strlen(s));
3884 typedef unsigned char UNIT[2]; /* unit of profiling */
3886 /* Dump a gmon.out histogram file. */
3887 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3888 uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3890 uint32_t i;
3891 FILE *f = fopen(filename, "w");
3892 if (f == NULL)
3893 return;
3894 writeString(f, "gmon");
3895 writeLong(f, 0x00000001, target); /* Version */
3896 writeLong(f, 0, target); /* padding */
3897 writeLong(f, 0, target); /* padding */
3898 writeLong(f, 0, target); /* padding */
3900 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3901 writeData(f, &zero, 1);
3903 /* figure out bucket size */
3904 uint32_t min;
3905 uint32_t max;
3906 if (with_range) {
3907 min = start_address;
3908 max = end_address;
3909 } else {
3910 min = samples[0];
3911 max = samples[0];
3912 for (i = 0; i < sampleNum; i++) {
3913 if (min > samples[i])
3914 min = samples[i];
3915 if (max < samples[i])
3916 max = samples[i];
3919 /* max should be (largest sample + 1)
3920 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3921 max++;
3924 int addressSpace = max - min;
3925 assert(addressSpace >= 2);
3927 /* FIXME: What is the reasonable number of buckets?
3928 * The profiling result will be more accurate if there are enough buckets. */
3929 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3930 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3931 if (numBuckets > maxBuckets)
3932 numBuckets = maxBuckets;
3933 int *buckets = malloc(sizeof(int) * numBuckets);
3934 if (buckets == NULL) {
3935 fclose(f);
3936 return;
3938 memset(buckets, 0, sizeof(int) * numBuckets);
3939 for (i = 0; i < sampleNum; i++) {
3940 uint32_t address = samples[i];
3942 if ((address < min) || (max <= address))
3943 continue;
3945 long long a = address - min;
3946 long long b = numBuckets;
3947 long long c = addressSpace;
3948 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3949 buckets[index_t]++;
3952 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3953 writeLong(f, min, target); /* low_pc */
3954 writeLong(f, max, target); /* high_pc */
3955 writeLong(f, numBuckets, target); /* # of buckets */
3956 float sample_rate = sampleNum / (duration_ms / 1000.0);
3957 writeLong(f, sample_rate, target);
3958 writeString(f, "seconds");
3959 for (i = 0; i < (15-strlen("seconds")); i++)
3960 writeData(f, &zero, 1);
3961 writeString(f, "s");
3963 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3965 char *data = malloc(2 * numBuckets);
3966 if (data != NULL) {
3967 for (i = 0; i < numBuckets; i++) {
3968 int val;
3969 val = buckets[i];
3970 if (val > 65535)
3971 val = 65535;
3972 data[i * 2] = val&0xff;
3973 data[i * 2 + 1] = (val >> 8) & 0xff;
3975 free(buckets);
3976 writeData(f, data, numBuckets * 2);
3977 free(data);
3978 } else
3979 free(buckets);
3981 fclose(f);
3984 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3985 * which will be used as a random sampling of PC */
3986 COMMAND_HANDLER(handle_profile_command)
3988 struct target *target = get_current_target(CMD_CTX);
3990 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3991 return ERROR_COMMAND_SYNTAX_ERROR;
3993 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3994 uint32_t offset;
3995 uint32_t num_of_samples;
3996 int retval = ERROR_OK;
3998 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4000 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4001 if (samples == NULL) {
4002 LOG_ERROR("No memory to store samples.");
4003 return ERROR_FAIL;
4006 uint64_t timestart_ms = timeval_ms();
4008 * Some cores let us sample the PC without the
4009 * annoying halt/resume step; for example, ARMv7 PCSR.
4010 * Provide a way to use that more efficient mechanism.
4012 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4013 &num_of_samples, offset);
4014 if (retval != ERROR_OK) {
4015 free(samples);
4016 return retval;
4018 uint32_t duration_ms = timeval_ms() - timestart_ms;
4020 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4022 retval = target_poll(target);
4023 if (retval != ERROR_OK) {
4024 free(samples);
4025 return retval;
4027 if (target->state == TARGET_RUNNING) {
4028 retval = target_halt(target);
4029 if (retval != ERROR_OK) {
4030 free(samples);
4031 return retval;
4035 retval = target_poll(target);
4036 if (retval != ERROR_OK) {
4037 free(samples);
4038 return retval;
4041 uint32_t start_address = 0;
4042 uint32_t end_address = 0;
4043 bool with_range = false;
4044 if (CMD_ARGC == 4) {
4045 with_range = true;
4046 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4047 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4050 write_gmon(samples, num_of_samples, CMD_ARGV[1],
4051 with_range, start_address, end_address, target, duration_ms);
4052 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4054 free(samples);
4055 return retval;
4058 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4060 char *namebuf;
4061 Jim_Obj *nameObjPtr, *valObjPtr;
4062 int result;
4064 namebuf = alloc_printf("%s(%d)", varname, idx);
4065 if (!namebuf)
4066 return JIM_ERR;
4068 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4069 valObjPtr = Jim_NewIntObj(interp, val);
4070 if (!nameObjPtr || !valObjPtr) {
4071 free(namebuf);
4072 return JIM_ERR;
4075 Jim_IncrRefCount(nameObjPtr);
4076 Jim_IncrRefCount(valObjPtr);
4077 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4078 Jim_DecrRefCount(interp, nameObjPtr);
4079 Jim_DecrRefCount(interp, valObjPtr);
4080 free(namebuf);
4081 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4082 return result;
4085 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4087 struct command_context *context;
4088 struct target *target;
4090 context = current_command_context(interp);
4091 assert(context != NULL);
4093 target = get_current_target(context);
4094 if (target == NULL) {
4095 LOG_ERROR("mem2array: no current target");
4096 return JIM_ERR;
4099 return target_mem2array(interp, target, argc - 1, argv + 1);
4102 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4104 long l;
4105 uint32_t width;
4106 int len;
4107 uint32_t addr;
4108 uint32_t count;
4109 uint32_t v;
4110 const char *varname;
4111 const char *phys;
4112 bool is_phys;
4113 int n, e, retval;
4114 uint32_t i;
4116 /* argv[1] = name of array to receive the data
4117 * argv[2] = desired width
4118 * argv[3] = memory address
4119 * argv[4] = count of times to read
4121 if (argc < 4 || argc > 5) {
4122 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
4123 return JIM_ERR;
4125 varname = Jim_GetString(argv[0], &len);
4126 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4128 e = Jim_GetLong(interp, argv[1], &l);
4129 width = l;
4130 if (e != JIM_OK)
4131 return e;
4133 e = Jim_GetLong(interp, argv[2], &l);
4134 addr = l;
4135 if (e != JIM_OK)
4136 return e;
4137 e = Jim_GetLong(interp, argv[3], &l);
4138 len = l;
4139 if (e != JIM_OK)
4140 return e;
4141 is_phys = false;
4142 if (argc > 4) {
4143 phys = Jim_GetString(argv[4], &n);
4144 if (!strncmp(phys, "phys", n))
4145 is_phys = true;
4146 else
4147 return JIM_ERR;
4149 switch (width) {
4150 case 8:
4151 width = 1;
4152 break;
4153 case 16:
4154 width = 2;
4155 break;
4156 case 32:
4157 width = 4;
4158 break;
4159 default:
4160 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4161 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4162 return JIM_ERR;
4164 if (len == 0) {
4165 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4166 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4167 return JIM_ERR;
4169 if ((addr + (len * width)) < addr) {
4170 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4171 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4172 return JIM_ERR;
4174 /* absurd transfer size? */
4175 if (len > 65536) {
4176 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4177 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4178 return JIM_ERR;
4181 if ((width == 1) ||
4182 ((width == 2) && ((addr & 1) == 0)) ||
4183 ((width == 4) && ((addr & 3) == 0))) {
4184 /* all is well */
4185 } else {
4186 char buf[100];
4187 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4188 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4189 addr,
4190 width);
4191 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4192 return JIM_ERR;
4195 /* Transfer loop */
4197 /* index counter */
4198 n = 0;
4200 size_t buffersize = 4096;
4201 uint8_t *buffer = malloc(buffersize);
4202 if (buffer == NULL)
4203 return JIM_ERR;
4205 /* assume ok */
4206 e = JIM_OK;
4207 while (len) {
4208 /* Slurp... in buffer size chunks */
4210 count = len; /* in objects.. */
4211 if (count > (buffersize / width))
4212 count = (buffersize / width);
4214 if (is_phys)
4215 retval = target_read_phys_memory(target, addr, width, count, buffer);
4216 else
4217 retval = target_read_memory(target, addr, width, count, buffer);
4218 if (retval != ERROR_OK) {
4219 /* BOO !*/
4220 LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4221 addr,
4222 width,
4223 count);
4224 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4225 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4226 e = JIM_ERR;
4227 break;
4228 } else {
4229 v = 0; /* shut up gcc */
4230 for (i = 0; i < count ; i++, n++) {
4231 switch (width) {
4232 case 4:
4233 v = target_buffer_get_u32(target, &buffer[i*width]);
4234 break;
4235 case 2:
4236 v = target_buffer_get_u16(target, &buffer[i*width]);
4237 break;
4238 case 1:
4239 v = buffer[i] & 0x0ff;
4240 break;
4242 new_int_array_element(interp, varname, n, v);
4244 len -= count;
4245 addr += count * width;
4249 free(buffer);
4251 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4253 return e;
4256 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4258 char *namebuf;
4259 Jim_Obj *nameObjPtr, *valObjPtr;
4260 int result;
4261 long l;
4263 namebuf = alloc_printf("%s(%d)", varname, idx);
4264 if (!namebuf)
4265 return JIM_ERR;
4267 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4268 if (!nameObjPtr) {
4269 free(namebuf);
4270 return JIM_ERR;
4273 Jim_IncrRefCount(nameObjPtr);
4274 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4275 Jim_DecrRefCount(interp, nameObjPtr);
4276 free(namebuf);
4277 if (valObjPtr == NULL)
4278 return JIM_ERR;
4280 result = Jim_GetLong(interp, valObjPtr, &l);
4281 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4282 *val = l;
4283 return result;
4286 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4288 struct command_context *context;
4289 struct target *target;
4291 context = current_command_context(interp);
4292 assert(context != NULL);
4294 target = get_current_target(context);
4295 if (target == NULL) {
4296 LOG_ERROR("array2mem: no current target");
4297 return JIM_ERR;
4300 return target_array2mem(interp, target, argc-1, argv + 1);
4303 static int target_array2mem(Jim_Interp *interp, struct target *target,
4304 int argc, Jim_Obj *const *argv)
4306 long l;
4307 uint32_t width;
4308 int len;
4309 uint32_t addr;
4310 uint32_t count;
4311 uint32_t v;
4312 const char *varname;
4313 const char *phys;
4314 bool is_phys;
4315 int n, e, retval;
4316 uint32_t i;
4318 /* argv[1] = name of array to get the data
4319 * argv[2] = desired width
4320 * argv[3] = memory address
4321 * argv[4] = count to write
4323 if (argc < 4 || argc > 5) {
4324 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4325 return JIM_ERR;
4327 varname = Jim_GetString(argv[0], &len);
4328 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4330 e = Jim_GetLong(interp, argv[1], &l);
4331 width = l;
4332 if (e != JIM_OK)
4333 return e;
4335 e = Jim_GetLong(interp, argv[2], &l);
4336 addr = l;
4337 if (e != JIM_OK)
4338 return e;
4339 e = Jim_GetLong(interp, argv[3], &l);
4340 len = l;
4341 if (e != JIM_OK)
4342 return e;
4343 is_phys = false;
4344 if (argc > 4) {
4345 phys = Jim_GetString(argv[4], &n);
4346 if (!strncmp(phys, "phys", n))
4347 is_phys = true;
4348 else
4349 return JIM_ERR;
4351 switch (width) {
4352 case 8:
4353 width = 1;
4354 break;
4355 case 16:
4356 width = 2;
4357 break;
4358 case 32:
4359 width = 4;
4360 break;
4361 default:
4362 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4363 Jim_AppendStrings(interp, Jim_GetResult(interp),
4364 "Invalid width param, must be 8/16/32", NULL);
4365 return JIM_ERR;
4367 if (len == 0) {
4368 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4369 Jim_AppendStrings(interp, Jim_GetResult(interp),
4370 "array2mem: zero width read?", NULL);
4371 return JIM_ERR;
4373 if ((addr + (len * width)) < addr) {
4374 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4375 Jim_AppendStrings(interp, Jim_GetResult(interp),
4376 "array2mem: addr + len - wraps to zero?", NULL);
4377 return JIM_ERR;
4379 /* absurd transfer size? */
4380 if (len > 65536) {
4381 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4382 Jim_AppendStrings(interp, Jim_GetResult(interp),
4383 "array2mem: absurd > 64K item request", NULL);
4384 return JIM_ERR;
4387 if ((width == 1) ||
4388 ((width == 2) && ((addr & 1) == 0)) ||
4389 ((width == 4) && ((addr & 3) == 0))) {
4390 /* all is well */
4391 } else {
4392 char buf[100];
4393 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4394 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4395 addr,
4396 width);
4397 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4398 return JIM_ERR;
4401 /* Transfer loop */
4403 /* index counter */
4404 n = 0;
4405 /* assume ok */
4406 e = JIM_OK;
4408 size_t buffersize = 4096;
4409 uint8_t *buffer = malloc(buffersize);
4410 if (buffer == NULL)
4411 return JIM_ERR;
4413 while (len) {
4414 /* Slurp... in buffer size chunks */
4416 count = len; /* in objects.. */
4417 if (count > (buffersize / width))
4418 count = (buffersize / width);
4420 v = 0; /* shut up gcc */
4421 for (i = 0; i < count; i++, n++) {
4422 get_int_array_element(interp, varname, n, &v);
4423 switch (width) {
4424 case 4:
4425 target_buffer_set_u32(target, &buffer[i * width], v);
4426 break;
4427 case 2:
4428 target_buffer_set_u16(target, &buffer[i * width], v);
4429 break;
4430 case 1:
4431 buffer[i] = v & 0x0ff;
4432 break;
4435 len -= count;
4437 if (is_phys)
4438 retval = target_write_phys_memory(target, addr, width, count, buffer);
4439 else
4440 retval = target_write_memory(target, addr, width, count, buffer);
4441 if (retval != ERROR_OK) {
4442 /* BOO !*/
4443 LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4444 addr,
4445 width,
4446 count);
4447 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4448 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4449 e = JIM_ERR;
4450 break;
4452 addr += count * width;
4455 free(buffer);
4457 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4459 return e;
4462 /* FIX? should we propagate errors here rather than printing them
4463 * and continuing?
4465 void target_handle_event(struct target *target, enum target_event e)
4467 struct target_event_action *teap;
4469 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4470 if (teap->event == e) {
4471 LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4472 target->target_number,
4473 target_name(target),
4474 target_type_name(target),
4476 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4477 Jim_GetString(teap->body, NULL));
4479 /* Override current target by the target an event
4480 * is issued from (lot of scripts need it).
4481 * Return back to previous override as soon
4482 * as the handler processing is done */
4483 struct command_context *cmd_ctx = current_command_context(teap->interp);
4484 struct target *saved_target_override = cmd_ctx->current_target_override;
4485 cmd_ctx->current_target_override = target;
4487 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4488 Jim_MakeErrorMessage(teap->interp);
4489 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4492 cmd_ctx->current_target_override = saved_target_override;
4498 * Returns true only if the target has a handler for the specified event.
4500 bool target_has_event_action(struct target *target, enum target_event event)
4502 struct target_event_action *teap;
4504 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4505 if (teap->event == event)
4506 return true;
4508 return false;
4511 enum target_cfg_param {
4512 TCFG_TYPE,
4513 TCFG_EVENT,
4514 TCFG_WORK_AREA_VIRT,
4515 TCFG_WORK_AREA_PHYS,
4516 TCFG_WORK_AREA_SIZE,
4517 TCFG_WORK_AREA_BACKUP,
4518 TCFG_ENDIAN,
4519 TCFG_COREID,
4520 TCFG_CHAIN_POSITION,
4521 TCFG_DBGBASE,
4522 TCFG_RTOS,
4523 TCFG_DEFER_EXAMINE,
4526 static Jim_Nvp nvp_config_opts[] = {
4527 { .name = "-type", .value = TCFG_TYPE },
4528 { .name = "-event", .value = TCFG_EVENT },
4529 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4530 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4531 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4532 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4533 { .name = "-endian" , .value = TCFG_ENDIAN },
4534 { .name = "-coreid", .value = TCFG_COREID },
4535 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4536 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4537 { .name = "-rtos", .value = TCFG_RTOS },
4538 { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4539 { .name = NULL, .value = -1 }
4542 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4544 Jim_Nvp *n;
4545 Jim_Obj *o;
4546 jim_wide w;
4547 int e;
4549 /* parse config or cget options ... */
4550 while (goi->argc > 0) {
4551 Jim_SetEmptyResult(goi->interp);
4552 /* Jim_GetOpt_Debug(goi); */
4554 if (target->type->target_jim_configure) {
4555 /* target defines a configure function */
4556 /* target gets first dibs on parameters */
4557 e = (*(target->type->target_jim_configure))(target, goi);
4558 if (e == JIM_OK) {
4559 /* more? */
4560 continue;
4562 if (e == JIM_ERR) {
4563 /* An error */
4564 return e;
4566 /* otherwise we 'continue' below */
4568 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4569 if (e != JIM_OK) {
4570 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4571 return e;
4573 switch (n->value) {
4574 case TCFG_TYPE:
4575 /* not setable */
4576 if (goi->isconfigure) {
4577 Jim_SetResultFormatted(goi->interp,
4578 "not settable: %s", n->name);
4579 return JIM_ERR;
4580 } else {
4581 no_params:
4582 if (goi->argc != 0) {
4583 Jim_WrongNumArgs(goi->interp,
4584 goi->argc, goi->argv,
4585 "NO PARAMS");
4586 return JIM_ERR;
4589 Jim_SetResultString(goi->interp,
4590 target_type_name(target), -1);
4591 /* loop for more */
4592 break;
4593 case TCFG_EVENT:
4594 if (goi->argc == 0) {
4595 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4596 return JIM_ERR;
4599 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4600 if (e != JIM_OK) {
4601 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4602 return e;
4605 if (goi->isconfigure) {
4606 if (goi->argc != 1) {
4607 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4608 return JIM_ERR;
4610 } else {
4611 if (goi->argc != 0) {
4612 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4613 return JIM_ERR;
4618 struct target_event_action *teap;
4620 teap = target->event_action;
4621 /* replace existing? */
4622 while (teap) {
4623 if (teap->event == (enum target_event)n->value)
4624 break;
4625 teap = teap->next;
4628 if (goi->isconfigure) {
4629 bool replace = true;
4630 if (teap == NULL) {
4631 /* create new */
4632 teap = calloc(1, sizeof(*teap));
4633 replace = false;
4635 teap->event = n->value;
4636 teap->interp = goi->interp;
4637 Jim_GetOpt_Obj(goi, &o);
4638 if (teap->body)
4639 Jim_DecrRefCount(teap->interp, teap->body);
4640 teap->body = Jim_DuplicateObj(goi->interp, o);
4642 * FIXME:
4643 * Tcl/TK - "tk events" have a nice feature.
4644 * See the "BIND" command.
4645 * We should support that here.
4646 * You can specify %X and %Y in the event code.
4647 * The idea is: %T - target name.
4648 * The idea is: %N - target number
4649 * The idea is: %E - event name.
4651 Jim_IncrRefCount(teap->body);
4653 if (!replace) {
4654 /* add to head of event list */
4655 teap->next = target->event_action;
4656 target->event_action = teap;
4658 Jim_SetEmptyResult(goi->interp);
4659 } else {
4660 /* get */
4661 if (teap == NULL)
4662 Jim_SetEmptyResult(goi->interp);
4663 else
4664 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4667 /* loop for more */
4668 break;
4670 case TCFG_WORK_AREA_VIRT:
4671 if (goi->isconfigure) {
4672 target_free_all_working_areas(target);
4673 e = Jim_GetOpt_Wide(goi, &w);
4674 if (e != JIM_OK)
4675 return e;
4676 target->working_area_virt = w;
4677 target->working_area_virt_spec = true;
4678 } else {
4679 if (goi->argc != 0)
4680 goto no_params;
4682 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4683 /* loop for more */
4684 break;
4686 case TCFG_WORK_AREA_PHYS:
4687 if (goi->isconfigure) {
4688 target_free_all_working_areas(target);
4689 e = Jim_GetOpt_Wide(goi, &w);
4690 if (e != JIM_OK)
4691 return e;
4692 target->working_area_phys = w;
4693 target->working_area_phys_spec = true;
4694 } else {
4695 if (goi->argc != 0)
4696 goto no_params;
4698 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4699 /* loop for more */
4700 break;
4702 case TCFG_WORK_AREA_SIZE:
4703 if (goi->isconfigure) {
4704 target_free_all_working_areas(target);
4705 e = Jim_GetOpt_Wide(goi, &w);
4706 if (e != JIM_OK)
4707 return e;
4708 target->working_area_size = w;
4709 } else {
4710 if (goi->argc != 0)
4711 goto no_params;
4713 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4714 /* loop for more */
4715 break;
4717 case TCFG_WORK_AREA_BACKUP:
4718 if (goi->isconfigure) {
4719 target_free_all_working_areas(target);
4720 e = Jim_GetOpt_Wide(goi, &w);
4721 if (e != JIM_OK)
4722 return e;
4723 /* make this exactly 1 or 0 */
4724 target->backup_working_area = (!!w);
4725 } else {
4726 if (goi->argc != 0)
4727 goto no_params;
4729 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4730 /* loop for more e*/
4731 break;
4734 case TCFG_ENDIAN:
4735 if (goi->isconfigure) {
4736 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4737 if (e != JIM_OK) {
4738 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4739 return e;
4741 target->endianness = n->value;
4742 } else {
4743 if (goi->argc != 0)
4744 goto no_params;
4746 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4747 if (n->name == NULL) {
4748 target->endianness = TARGET_LITTLE_ENDIAN;
4749 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4751 Jim_SetResultString(goi->interp, n->name, -1);
4752 /* loop for more */
4753 break;
4755 case TCFG_COREID:
4756 if (goi->isconfigure) {
4757 e = Jim_GetOpt_Wide(goi, &w);
4758 if (e != JIM_OK)
4759 return e;
4760 target->coreid = (int32_t)w;
4761 } else {
4762 if (goi->argc != 0)
4763 goto no_params;
4765 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4766 /* loop for more */
4767 break;
4769 case TCFG_CHAIN_POSITION:
4770 if (goi->isconfigure) {
4771 Jim_Obj *o_t;
4772 struct jtag_tap *tap;
4774 if (target->has_dap) {
4775 Jim_SetResultString(goi->interp,
4776 "target requires -dap parameter instead of -chain-position!", -1);
4777 return JIM_ERR;
4780 target_free_all_working_areas(target);
4781 e = Jim_GetOpt_Obj(goi, &o_t);
4782 if (e != JIM_OK)
4783 return e;
4784 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4785 if (tap == NULL)
4786 return JIM_ERR;
4787 target->tap = tap;
4788 target->tap_configured = true;
4789 } else {
4790 if (goi->argc != 0)
4791 goto no_params;
4793 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4794 /* loop for more e*/
4795 break;
4796 case TCFG_DBGBASE:
4797 if (goi->isconfigure) {
4798 e = Jim_GetOpt_Wide(goi, &w);
4799 if (e != JIM_OK)
4800 return e;
4801 target->dbgbase = (uint32_t)w;
4802 target->dbgbase_set = true;
4803 } else {
4804 if (goi->argc != 0)
4805 goto no_params;
4807 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4808 /* loop for more */
4809 break;
4810 case TCFG_RTOS:
4811 /* RTOS */
4813 int result = rtos_create(goi, target);
4814 if (result != JIM_OK)
4815 return result;
4817 /* loop for more */
4818 break;
4820 case TCFG_DEFER_EXAMINE:
4821 /* DEFER_EXAMINE */
4822 target->defer_examine = true;
4823 /* loop for more */
4824 break;
4827 } /* while (goi->argc) */
4830 /* done - we return */
4831 return JIM_OK;
4834 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4836 Jim_GetOptInfo goi;
4838 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4839 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4840 if (goi.argc < 1) {
4841 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4842 "missing: -option ...");
4843 return JIM_ERR;
4845 struct target *target = Jim_CmdPrivData(goi.interp);
4846 return target_configure(&goi, target);
4849 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4851 const char *cmd_name = Jim_GetString(argv[0], NULL);
4853 Jim_GetOptInfo goi;
4854 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4856 if (goi.argc < 2 || goi.argc > 4) {
4857 Jim_SetResultFormatted(goi.interp,
4858 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4859 return JIM_ERR;
4862 target_write_fn fn;
4863 fn = target_write_memory;
4865 int e;
4866 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4867 /* consume it */
4868 struct Jim_Obj *obj;
4869 e = Jim_GetOpt_Obj(&goi, &obj);
4870 if (e != JIM_OK)
4871 return e;
4873 fn = target_write_phys_memory;
4876 jim_wide a;
4877 e = Jim_GetOpt_Wide(&goi, &a);
4878 if (e != JIM_OK)
4879 return e;
4881 jim_wide b;
4882 e = Jim_GetOpt_Wide(&goi, &b);
4883 if (e != JIM_OK)
4884 return e;
4886 jim_wide c = 1;
4887 if (goi.argc == 1) {
4888 e = Jim_GetOpt_Wide(&goi, &c);
4889 if (e != JIM_OK)
4890 return e;
4893 /* all args must be consumed */
4894 if (goi.argc != 0)
4895 return JIM_ERR;
4897 struct target *target = Jim_CmdPrivData(goi.interp);
4898 unsigned data_size;
4899 if (strcasecmp(cmd_name, "mww") == 0)
4900 data_size = 4;
4901 else if (strcasecmp(cmd_name, "mwh") == 0)
4902 data_size = 2;
4903 else if (strcasecmp(cmd_name, "mwb") == 0)
4904 data_size = 1;
4905 else {
4906 LOG_ERROR("command '%s' unknown: ", cmd_name);
4907 return JIM_ERR;
4910 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4914 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4916 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4917 * mdh [phys] <address> [<count>] - for 16 bit reads
4918 * mdb [phys] <address> [<count>] - for 8 bit reads
4920 * Count defaults to 1.
4922 * Calls target_read_memory or target_read_phys_memory depending on
4923 * the presence of the "phys" argument
4924 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4925 * to int representation in base16.
4926 * Also outputs read data in a human readable form using command_print
4928 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4929 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4930 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4931 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4932 * on success, with [<count>] number of elements.
4934 * In case of little endian target:
4935 * Example1: "mdw 0x00000000" returns "10123456"
4936 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4937 * Example3: "mdb 0x00000000" returns "56"
4938 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4939 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4941 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4943 const char *cmd_name = Jim_GetString(argv[0], NULL);
4945 Jim_GetOptInfo goi;
4946 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4948 if ((goi.argc < 1) || (goi.argc > 3)) {
4949 Jim_SetResultFormatted(goi.interp,
4950 "usage: %s [phys] <address> [<count>]", cmd_name);
4951 return JIM_ERR;
4954 int (*fn)(struct target *target,
4955 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4956 fn = target_read_memory;
4958 int e;
4959 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4960 /* consume it */
4961 struct Jim_Obj *obj;
4962 e = Jim_GetOpt_Obj(&goi, &obj);
4963 if (e != JIM_OK)
4964 return e;
4966 fn = target_read_phys_memory;
4969 /* Read address parameter */
4970 jim_wide addr;
4971 e = Jim_GetOpt_Wide(&goi, &addr);
4972 if (e != JIM_OK)
4973 return JIM_ERR;
4975 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4976 jim_wide count;
4977 if (goi.argc == 1) {
4978 e = Jim_GetOpt_Wide(&goi, &count);
4979 if (e != JIM_OK)
4980 return JIM_ERR;
4981 } else
4982 count = 1;
4984 /* all args must be consumed */
4985 if (goi.argc != 0)
4986 return JIM_ERR;
4988 jim_wide dwidth = 1; /* shut up gcc */
4989 if (strcasecmp(cmd_name, "mdw") == 0)
4990 dwidth = 4;
4991 else if (strcasecmp(cmd_name, "mdh") == 0)
4992 dwidth = 2;
4993 else if (strcasecmp(cmd_name, "mdb") == 0)
4994 dwidth = 1;
4995 else {
4996 LOG_ERROR("command '%s' unknown: ", cmd_name);
4997 return JIM_ERR;
5000 /* convert count to "bytes" */
5001 int bytes = count * dwidth;
5003 struct target *target = Jim_CmdPrivData(goi.interp);
5004 uint8_t target_buf[32];
5005 jim_wide x, y, z;
5006 while (bytes > 0) {
5007 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
5009 /* Try to read out next block */
5010 e = fn(target, addr, dwidth, y / dwidth, target_buf);
5012 if (e != ERROR_OK) {
5013 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
5014 return JIM_ERR;
5017 command_print_sameline(NULL, "0x%08x ", (int)(addr));
5018 switch (dwidth) {
5019 case 4:
5020 for (x = 0; x < 16 && x < y; x += 4) {
5021 z = target_buffer_get_u32(target, &(target_buf[x]));
5022 command_print_sameline(NULL, "%08x ", (int)(z));
5024 for (; (x < 16) ; x += 4)
5025 command_print_sameline(NULL, " ");
5026 break;
5027 case 2:
5028 for (x = 0; x < 16 && x < y; x += 2) {
5029 z = target_buffer_get_u16(target, &(target_buf[x]));
5030 command_print_sameline(NULL, "%04x ", (int)(z));
5032 for (; (x < 16) ; x += 2)
5033 command_print_sameline(NULL, " ");
5034 break;
5035 case 1:
5036 default:
5037 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
5038 z = target_buffer_get_u8(target, &(target_buf[x]));
5039 command_print_sameline(NULL, "%02x ", (int)(z));
5041 for (; (x < 16) ; x += 1)
5042 command_print_sameline(NULL, " ");
5043 break;
5045 /* ascii-ify the bytes */
5046 for (x = 0 ; x < y ; x++) {
5047 if ((target_buf[x] >= 0x20) &&
5048 (target_buf[x] <= 0x7e)) {
5049 /* good */
5050 } else {
5051 /* smack it */
5052 target_buf[x] = '.';
5055 /* space pad */
5056 while (x < 16) {
5057 target_buf[x] = ' ';
5058 x++;
5060 /* terminate */
5061 target_buf[16] = 0;
5062 /* print - with a newline */
5063 command_print_sameline(NULL, "%s\n", target_buf);
5064 /* NEXT... */
5065 bytes -= 16;
5066 addr += 16;
5068 return JIM_OK;
5071 static int jim_target_mem2array(Jim_Interp *interp,
5072 int argc, Jim_Obj *const *argv)
5074 struct target *target = Jim_CmdPrivData(interp);
5075 return target_mem2array(interp, target, argc - 1, argv + 1);
5078 static int jim_target_array2mem(Jim_Interp *interp,
5079 int argc, Jim_Obj *const *argv)
5081 struct target *target = Jim_CmdPrivData(interp);
5082 return target_array2mem(interp, target, argc - 1, argv + 1);
5085 static int jim_target_tap_disabled(Jim_Interp *interp)
5087 Jim_SetResultFormatted(interp, "[TAP is disabled]");
5088 return JIM_ERR;
5091 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5093 bool allow_defer = false;
5095 Jim_GetOptInfo goi;
5096 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5097 if (goi.argc > 1) {
5098 const char *cmd_name = Jim_GetString(argv[0], NULL);
5099 Jim_SetResultFormatted(goi.interp,
5100 "usage: %s ['allow-defer']", cmd_name);
5101 return JIM_ERR;
5103 if (goi.argc > 0 &&
5104 strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5105 /* consume it */
5106 struct Jim_Obj *obj;
5107 int e = Jim_GetOpt_Obj(&goi, &obj);
5108 if (e != JIM_OK)
5109 return e;
5110 allow_defer = true;
5113 struct target *target = Jim_CmdPrivData(interp);
5114 if (!target->tap->enabled)
5115 return jim_target_tap_disabled(interp);
5117 if (allow_defer && target->defer_examine) {
5118 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5119 LOG_INFO("Use arp_examine command to examine it manually!");
5120 return JIM_OK;
5123 int e = target->type->examine(target);
5124 if (e != ERROR_OK)
5125 return JIM_ERR;
5126 return JIM_OK;
5129 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5131 struct target *target = Jim_CmdPrivData(interp);
5133 Jim_SetResultBool(interp, target_was_examined(target));
5134 return JIM_OK;
5137 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5139 struct target *target = Jim_CmdPrivData(interp);
5141 Jim_SetResultBool(interp, target->defer_examine);
5142 return JIM_OK;
5145 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5147 if (argc != 1) {
5148 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5149 return JIM_ERR;
5151 struct target *target = Jim_CmdPrivData(interp);
5153 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5154 return JIM_ERR;
5156 return JIM_OK;
5159 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5161 if (argc != 1) {
5162 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5163 return JIM_ERR;
5165 struct target *target = Jim_CmdPrivData(interp);
5166 if (!target->tap->enabled)
5167 return jim_target_tap_disabled(interp);
5169 int e;
5170 if (!(target_was_examined(target)))
5171 e = ERROR_TARGET_NOT_EXAMINED;
5172 else
5173 e = target->type->poll(target);
5174 if (e != ERROR_OK)
5175 return JIM_ERR;
5176 return JIM_OK;
5179 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5181 Jim_GetOptInfo goi;
5182 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5184 if (goi.argc != 2) {
5185 Jim_WrongNumArgs(interp, 0, argv,
5186 "([tT]|[fF]|assert|deassert) BOOL");
5187 return JIM_ERR;
5190 Jim_Nvp *n;
5191 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5192 if (e != JIM_OK) {
5193 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5194 return e;
5196 /* the halt or not param */
5197 jim_wide a;
5198 e = Jim_GetOpt_Wide(&goi, &a);
5199 if (e != JIM_OK)
5200 return e;
5202 struct target *target = Jim_CmdPrivData(goi.interp);
5203 if (!target->tap->enabled)
5204 return jim_target_tap_disabled(interp);
5206 if (!target->type->assert_reset || !target->type->deassert_reset) {
5207 Jim_SetResultFormatted(interp,
5208 "No target-specific reset for %s",
5209 target_name(target));
5210 return JIM_ERR;
5213 if (target->defer_examine)
5214 target_reset_examined(target);
5216 /* determine if we should halt or not. */
5217 target->reset_halt = !!a;
5218 /* When this happens - all workareas are invalid. */
5219 target_free_all_working_areas_restore(target, 0);
5221 /* do the assert */
5222 if (n->value == NVP_ASSERT)
5223 e = target->type->assert_reset(target);
5224 else
5225 e = target->type->deassert_reset(target);
5226 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5229 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5231 if (argc != 1) {
5232 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5233 return JIM_ERR;
5235 struct target *target = Jim_CmdPrivData(interp);
5236 if (!target->tap->enabled)
5237 return jim_target_tap_disabled(interp);
5238 int e = target->type->halt(target);
5239 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5242 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5244 Jim_GetOptInfo goi;
5245 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5247 /* params: <name> statename timeoutmsecs */
5248 if (goi.argc != 2) {
5249 const char *cmd_name = Jim_GetString(argv[0], NULL);
5250 Jim_SetResultFormatted(goi.interp,
5251 "%s <state_name> <timeout_in_msec>", cmd_name);
5252 return JIM_ERR;
5255 Jim_Nvp *n;
5256 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5257 if (e != JIM_OK) {
5258 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5259 return e;
5261 jim_wide a;
5262 e = Jim_GetOpt_Wide(&goi, &a);
5263 if (e != JIM_OK)
5264 return e;
5265 struct target *target = Jim_CmdPrivData(interp);
5266 if (!target->tap->enabled)
5267 return jim_target_tap_disabled(interp);
5269 e = target_wait_state(target, n->value, a);
5270 if (e != ERROR_OK) {
5271 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5272 Jim_SetResultFormatted(goi.interp,
5273 "target: %s wait %s fails (%#s) %s",
5274 target_name(target), n->name,
5275 eObj, target_strerror_safe(e));
5276 Jim_FreeNewObj(interp, eObj);
5277 return JIM_ERR;
5279 return JIM_OK;
5281 /* List for human, Events defined for this target.
5282 * scripts/programs should use 'name cget -event NAME'
5284 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5286 struct command_context *cmd_ctx = current_command_context(interp);
5287 assert(cmd_ctx != NULL);
5289 struct target *target = Jim_CmdPrivData(interp);
5290 struct target_event_action *teap = target->event_action;
5291 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5292 target->target_number,
5293 target_name(target));
5294 command_print(cmd_ctx, "%-25s | Body", "Event");
5295 command_print(cmd_ctx, "------------------------- | "
5296 "----------------------------------------");
5297 while (teap) {
5298 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5299 command_print(cmd_ctx, "%-25s | %s",
5300 opt->name, Jim_GetString(teap->body, NULL));
5301 teap = teap->next;
5303 command_print(cmd_ctx, "***END***");
5304 return JIM_OK;
5306 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5308 if (argc != 1) {
5309 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5310 return JIM_ERR;
5312 struct target *target = Jim_CmdPrivData(interp);
5313 Jim_SetResultString(interp, target_state_name(target), -1);
5314 return JIM_OK;
5316 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5318 Jim_GetOptInfo goi;
5319 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5320 if (goi.argc != 1) {
5321 const char *cmd_name = Jim_GetString(argv[0], NULL);
5322 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5323 return JIM_ERR;
5325 Jim_Nvp *n;
5326 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5327 if (e != JIM_OK) {
5328 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5329 return e;
5331 struct target *target = Jim_CmdPrivData(interp);
5332 target_handle_event(target, n->value);
5333 return JIM_OK;
5336 static const struct command_registration target_instance_command_handlers[] = {
5338 .name = "configure",
5339 .mode = COMMAND_CONFIG,
5340 .jim_handler = jim_target_configure,
5341 .help = "configure a new target for use",
5342 .usage = "[target_attribute ...]",
5345 .name = "cget",
5346 .mode = COMMAND_ANY,
5347 .jim_handler = jim_target_configure,
5348 .help = "returns the specified target attribute",
5349 .usage = "target_attribute",
5352 .name = "mww",
5353 .mode = COMMAND_EXEC,
5354 .jim_handler = jim_target_mw,
5355 .help = "Write 32-bit word(s) to target memory",
5356 .usage = "address data [count]",
5359 .name = "mwh",
5360 .mode = COMMAND_EXEC,
5361 .jim_handler = jim_target_mw,
5362 .help = "Write 16-bit half-word(s) to target memory",
5363 .usage = "address data [count]",
5366 .name = "mwb",
5367 .mode = COMMAND_EXEC,
5368 .jim_handler = jim_target_mw,
5369 .help = "Write byte(s) to target memory",
5370 .usage = "address data [count]",
5373 .name = "mdw",
5374 .mode = COMMAND_EXEC,
5375 .jim_handler = jim_target_md,
5376 .help = "Display target memory as 32-bit words",
5377 .usage = "address [count]",
5380 .name = "mdh",
5381 .mode = COMMAND_EXEC,
5382 .jim_handler = jim_target_md,
5383 .help = "Display target memory as 16-bit half-words",
5384 .usage = "address [count]",
5387 .name = "mdb",
5388 .mode = COMMAND_EXEC,
5389 .jim_handler = jim_target_md,
5390 .help = "Display target memory as 8-bit bytes",
5391 .usage = "address [count]",
5394 .name = "array2mem",
5395 .mode = COMMAND_EXEC,
5396 .jim_handler = jim_target_array2mem,
5397 .help = "Writes Tcl array of 8/16/32 bit numbers "
5398 "to target memory",
5399 .usage = "arrayname bitwidth address count",
5402 .name = "mem2array",
5403 .mode = COMMAND_EXEC,
5404 .jim_handler = jim_target_mem2array,
5405 .help = "Loads Tcl array of 8/16/32 bit numbers "
5406 "from target memory",
5407 .usage = "arrayname bitwidth address count",
5410 .name = "eventlist",
5411 .mode = COMMAND_EXEC,
5412 .jim_handler = jim_target_event_list,
5413 .help = "displays a table of events defined for this target",
5416 .name = "curstate",
5417 .mode = COMMAND_EXEC,
5418 .jim_handler = jim_target_current_state,
5419 .help = "displays the current state of this target",
5422 .name = "arp_examine",
5423 .mode = COMMAND_EXEC,
5424 .jim_handler = jim_target_examine,
5425 .help = "used internally for reset processing",
5426 .usage = "arp_examine ['allow-defer']",
5429 .name = "was_examined",
5430 .mode = COMMAND_EXEC,
5431 .jim_handler = jim_target_was_examined,
5432 .help = "used internally for reset processing",
5433 .usage = "was_examined",
5436 .name = "examine_deferred",
5437 .mode = COMMAND_EXEC,
5438 .jim_handler = jim_target_examine_deferred,
5439 .help = "used internally for reset processing",
5440 .usage = "examine_deferred",
5443 .name = "arp_halt_gdb",
5444 .mode = COMMAND_EXEC,
5445 .jim_handler = jim_target_halt_gdb,
5446 .help = "used internally for reset processing to halt GDB",
5449 .name = "arp_poll",
5450 .mode = COMMAND_EXEC,
5451 .jim_handler = jim_target_poll,
5452 .help = "used internally for reset processing",
5455 .name = "arp_reset",
5456 .mode = COMMAND_EXEC,
5457 .jim_handler = jim_target_reset,
5458 .help = "used internally for reset processing",
5461 .name = "arp_halt",
5462 .mode = COMMAND_EXEC,
5463 .jim_handler = jim_target_halt,
5464 .help = "used internally for reset processing",
5467 .name = "arp_waitstate",
5468 .mode = COMMAND_EXEC,
5469 .jim_handler = jim_target_wait_state,
5470 .help = "used internally for reset processing",
5473 .name = "invoke-event",
5474 .mode = COMMAND_EXEC,
5475 .jim_handler = jim_target_invoke_event,
5476 .help = "invoke handler for specified event",
5477 .usage = "event_name",
5479 COMMAND_REGISTRATION_DONE
5482 static int target_create(Jim_GetOptInfo *goi)
5484 Jim_Obj *new_cmd;
5485 Jim_Cmd *cmd;
5486 const char *cp;
5487 int e;
5488 int x;
5489 struct target *target;
5490 struct command_context *cmd_ctx;
5492 cmd_ctx = current_command_context(goi->interp);
5493 assert(cmd_ctx != NULL);
5495 if (goi->argc < 3) {
5496 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5497 return JIM_ERR;
5500 /* COMMAND */
5501 Jim_GetOpt_Obj(goi, &new_cmd);
5502 /* does this command exist? */
5503 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5504 if (cmd) {
5505 cp = Jim_GetString(new_cmd, NULL);
5506 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5507 return JIM_ERR;
5510 /* TYPE */
5511 e = Jim_GetOpt_String(goi, &cp, NULL);
5512 if (e != JIM_OK)
5513 return e;
5514 struct transport *tr = get_current_transport();
5515 if (tr->override_target) {
5516 e = tr->override_target(&cp);
5517 if (e != ERROR_OK) {
5518 LOG_ERROR("The selected transport doesn't support this target");
5519 return JIM_ERR;
5521 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5523 /* now does target type exist */
5524 for (x = 0 ; target_types[x] ; x++) {
5525 if (0 == strcmp(cp, target_types[x]->name)) {
5526 /* found */
5527 break;
5530 /* check for deprecated name */
5531 if (target_types[x]->deprecated_name) {
5532 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5533 /* found */
5534 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5535 break;
5539 if (target_types[x] == NULL) {
5540 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5541 for (x = 0 ; target_types[x] ; x++) {
5542 if (target_types[x + 1]) {
5543 Jim_AppendStrings(goi->interp,
5544 Jim_GetResult(goi->interp),
5545 target_types[x]->name,
5546 ", ", NULL);
5547 } else {
5548 Jim_AppendStrings(goi->interp,
5549 Jim_GetResult(goi->interp),
5550 " or ",
5551 target_types[x]->name, NULL);
5554 return JIM_ERR;
5557 /* Create it */
5558 target = calloc(1, sizeof(struct target));
5559 /* set target number */
5560 target->target_number = new_target_number();
5561 cmd_ctx->current_target = target;
5563 /* allocate memory for each unique target type */
5564 target->type = calloc(1, sizeof(struct target_type));
5566 memcpy(target->type, target_types[x], sizeof(struct target_type));
5568 /* will be set by "-endian" */
5569 target->endianness = TARGET_ENDIAN_UNKNOWN;
5571 /* default to first core, override with -coreid */
5572 target->coreid = 0;
5574 target->working_area = 0x0;
5575 target->working_area_size = 0x0;
5576 target->working_areas = NULL;
5577 target->backup_working_area = 0;
5579 target->state = TARGET_UNKNOWN;
5580 target->debug_reason = DBG_REASON_UNDEFINED;
5581 target->reg_cache = NULL;
5582 target->breakpoints = NULL;
5583 target->watchpoints = NULL;
5584 target->next = NULL;
5585 target->arch_info = NULL;
5587 target->verbose_halt_msg = true;
5589 target->halt_issued = false;
5591 /* initialize trace information */
5592 target->trace_info = calloc(1, sizeof(struct trace));
5594 target->dbgmsg = NULL;
5595 target->dbg_msg_enabled = 0;
5597 target->endianness = TARGET_ENDIAN_UNKNOWN;
5599 target->rtos = NULL;
5600 target->rtos_auto_detect = false;
5602 /* Do the rest as "configure" options */
5603 goi->isconfigure = 1;
5604 e = target_configure(goi, target);
5606 if (e == JIM_OK) {
5607 if (target->has_dap) {
5608 if (!target->dap_configured) {
5609 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5610 e = JIM_ERR;
5612 } else {
5613 if (!target->tap_configured) {
5614 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5615 e = JIM_ERR;
5618 /* tap must be set after target was configured */
5619 if (target->tap == NULL)
5620 e = JIM_ERR;
5623 if (e != JIM_OK) {
5624 free(target->type);
5625 free(target);
5626 return e;
5629 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5630 /* default endian to little if not specified */
5631 target->endianness = TARGET_LITTLE_ENDIAN;
5634 cp = Jim_GetString(new_cmd, NULL);
5635 target->cmd_name = strdup(cp);
5637 if (target->type->target_create) {
5638 e = (*(target->type->target_create))(target, goi->interp);
5639 if (e != ERROR_OK) {
5640 LOG_DEBUG("target_create failed");
5641 free(target->type);
5642 free(target->cmd_name);
5643 free(target);
5644 return JIM_ERR;
5648 /* create the target specific commands */
5649 if (target->type->commands) {
5650 e = register_commands(cmd_ctx, NULL, target->type->commands);
5651 if (ERROR_OK != e)
5652 LOG_ERROR("unable to register '%s' commands", cp);
5655 /* append to end of list */
5657 struct target **tpp;
5658 tpp = &(all_targets);
5659 while (*tpp)
5660 tpp = &((*tpp)->next);
5661 *tpp = target;
5664 /* now - create the new target name command */
5665 const struct command_registration target_subcommands[] = {
5667 .chain = target_instance_command_handlers,
5670 .chain = target->type->commands,
5672 COMMAND_REGISTRATION_DONE
5674 const struct command_registration target_commands[] = {
5676 .name = cp,
5677 .mode = COMMAND_ANY,
5678 .help = "target command group",
5679 .usage = "",
5680 .chain = target_subcommands,
5682 COMMAND_REGISTRATION_DONE
5684 e = register_commands(cmd_ctx, NULL, target_commands);
5685 if (ERROR_OK != e)
5686 return JIM_ERR;
5688 struct command *c = command_find_in_context(cmd_ctx, cp);
5689 assert(c);
5690 command_set_handler_data(c, target);
5692 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5695 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5697 if (argc != 1) {
5698 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5699 return JIM_ERR;
5701 struct command_context *cmd_ctx = current_command_context(interp);
5702 assert(cmd_ctx != NULL);
5704 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5705 return JIM_OK;
5708 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5710 if (argc != 1) {
5711 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5712 return JIM_ERR;
5714 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5715 for (unsigned x = 0; NULL != target_types[x]; x++) {
5716 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5717 Jim_NewStringObj(interp, target_types[x]->name, -1));
5719 return JIM_OK;
5722 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5724 if (argc != 1) {
5725 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5726 return JIM_ERR;
5728 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5729 struct target *target = all_targets;
5730 while (target) {
5731 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5732 Jim_NewStringObj(interp, target_name(target), -1));
5733 target = target->next;
5735 return JIM_OK;
5738 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5740 int i;
5741 const char *targetname;
5742 int retval, len;
5743 struct target *target = (struct target *) NULL;
5744 struct target_list *head, *curr, *new;
5745 curr = (struct target_list *) NULL;
5746 head = (struct target_list *) NULL;
5748 retval = 0;
5749 LOG_DEBUG("%d", argc);
5750 /* argv[1] = target to associate in smp
5751 * argv[2] = target to assoicate in smp
5752 * argv[3] ...
5755 for (i = 1; i < argc; i++) {
5757 targetname = Jim_GetString(argv[i], &len);
5758 target = get_target(targetname);
5759 LOG_DEBUG("%s ", targetname);
5760 if (target) {
5761 new = malloc(sizeof(struct target_list));
5762 new->target = target;
5763 new->next = (struct target_list *)NULL;
5764 if (head == (struct target_list *)NULL) {
5765 head = new;
5766 curr = head;
5767 } else {
5768 curr->next = new;
5769 curr = new;
5773 /* now parse the list of cpu and put the target in smp mode*/
5774 curr = head;
5776 while (curr != (struct target_list *)NULL) {
5777 target = curr->target;
5778 target->smp = 1;
5779 target->head = head;
5780 curr = curr->next;
5783 if (target && target->rtos)
5784 retval = rtos_smp_init(head->target);
5786 return retval;
5790 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5792 Jim_GetOptInfo goi;
5793 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5794 if (goi.argc < 3) {
5795 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5796 "<name> <target_type> [<target_options> ...]");
5797 return JIM_ERR;
5799 return target_create(&goi);
5802 static const struct command_registration target_subcommand_handlers[] = {
5804 .name = "init",
5805 .mode = COMMAND_CONFIG,
5806 .handler = handle_target_init_command,
5807 .help = "initialize targets",
5810 .name = "create",
5811 /* REVISIT this should be COMMAND_CONFIG ... */
5812 .mode = COMMAND_ANY,
5813 .jim_handler = jim_target_create,
5814 .usage = "name type '-chain-position' name [options ...]",
5815 .help = "Creates and selects a new target",
5818 .name = "current",
5819 .mode = COMMAND_ANY,
5820 .jim_handler = jim_target_current,
5821 .help = "Returns the currently selected target",
5824 .name = "types",
5825 .mode = COMMAND_ANY,
5826 .jim_handler = jim_target_types,
5827 .help = "Returns the available target types as "
5828 "a list of strings",
5831 .name = "names",
5832 .mode = COMMAND_ANY,
5833 .jim_handler = jim_target_names,
5834 .help = "Returns the names of all targets as a list of strings",
5837 .name = "smp",
5838 .mode = COMMAND_ANY,
5839 .jim_handler = jim_target_smp,
5840 .usage = "targetname1 targetname2 ...",
5841 .help = "gather several target in a smp list"
5844 COMMAND_REGISTRATION_DONE
5847 struct FastLoad {
5848 target_addr_t address;
5849 uint8_t *data;
5850 int length;
5854 static int fastload_num;
5855 static struct FastLoad *fastload;
5857 static void free_fastload(void)
5859 if (fastload != NULL) {
5860 int i;
5861 for (i = 0; i < fastload_num; i++) {
5862 if (fastload[i].data)
5863 free(fastload[i].data);
5865 free(fastload);
5866 fastload = NULL;
5870 COMMAND_HANDLER(handle_fast_load_image_command)
5872 uint8_t *buffer;
5873 size_t buf_cnt;
5874 uint32_t image_size;
5875 target_addr_t min_address = 0;
5876 target_addr_t max_address = -1;
5877 int i;
5879 struct image image;
5881 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5882 &image, &min_address, &max_address);
5883 if (ERROR_OK != retval)
5884 return retval;
5886 struct duration bench;
5887 duration_start(&bench);
5889 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5890 if (retval != ERROR_OK)
5891 return retval;
5893 image_size = 0x0;
5894 retval = ERROR_OK;
5895 fastload_num = image.num_sections;
5896 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5897 if (fastload == NULL) {
5898 command_print(CMD_CTX, "out of memory");
5899 image_close(&image);
5900 return ERROR_FAIL;
5902 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5903 for (i = 0; i < image.num_sections; i++) {
5904 buffer = malloc(image.sections[i].size);
5905 if (buffer == NULL) {
5906 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5907 (int)(image.sections[i].size));
5908 retval = ERROR_FAIL;
5909 break;
5912 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5913 if (retval != ERROR_OK) {
5914 free(buffer);
5915 break;
5918 uint32_t offset = 0;
5919 uint32_t length = buf_cnt;
5921 /* DANGER!!! beware of unsigned comparision here!!! */
5923 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5924 (image.sections[i].base_address < max_address)) {
5925 if (image.sections[i].base_address < min_address) {
5926 /* clip addresses below */
5927 offset += min_address-image.sections[i].base_address;
5928 length -= offset;
5931 if (image.sections[i].base_address + buf_cnt > max_address)
5932 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5934 fastload[i].address = image.sections[i].base_address + offset;
5935 fastload[i].data = malloc(length);
5936 if (fastload[i].data == NULL) {
5937 free(buffer);
5938 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5939 length);
5940 retval = ERROR_FAIL;
5941 break;
5943 memcpy(fastload[i].data, buffer + offset, length);
5944 fastload[i].length = length;
5946 image_size += length;
5947 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5948 (unsigned int)length,
5949 ((unsigned int)(image.sections[i].base_address + offset)));
5952 free(buffer);
5955 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5956 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5957 "in %fs (%0.3f KiB/s)", image_size,
5958 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5960 command_print(CMD_CTX,
5961 "WARNING: image has not been loaded to target!"
5962 "You can issue a 'fast_load' to finish loading.");
5965 image_close(&image);
5967 if (retval != ERROR_OK)
5968 free_fastload();
5970 return retval;
5973 COMMAND_HANDLER(handle_fast_load_command)
5975 if (CMD_ARGC > 0)
5976 return ERROR_COMMAND_SYNTAX_ERROR;
5977 if (fastload == NULL) {
5978 LOG_ERROR("No image in memory");
5979 return ERROR_FAIL;
5981 int i;
5982 int64_t ms = timeval_ms();
5983 int size = 0;
5984 int retval = ERROR_OK;
5985 for (i = 0; i < fastload_num; i++) {
5986 struct target *target = get_current_target(CMD_CTX);
5987 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5988 (unsigned int)(fastload[i].address),
5989 (unsigned int)(fastload[i].length));
5990 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5991 if (retval != ERROR_OK)
5992 break;
5993 size += fastload[i].length;
5995 if (retval == ERROR_OK) {
5996 int64_t after = timeval_ms();
5997 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5999 return retval;
6002 static const struct command_registration target_command_handlers[] = {
6004 .name = "targets",
6005 .handler = handle_targets_command,
6006 .mode = COMMAND_ANY,
6007 .help = "change current default target (one parameter) "
6008 "or prints table of all targets (no parameters)",
6009 .usage = "[target]",
6012 .name = "target",
6013 .mode = COMMAND_CONFIG,
6014 .help = "configure target",
6016 .chain = target_subcommand_handlers,
6018 COMMAND_REGISTRATION_DONE
6021 int target_register_commands(struct command_context *cmd_ctx)
6023 return register_commands(cmd_ctx, NULL, target_command_handlers);
6026 static bool target_reset_nag = true;
6028 bool get_target_reset_nag(void)
6030 return target_reset_nag;
6033 COMMAND_HANDLER(handle_target_reset_nag)
6035 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6036 &target_reset_nag, "Nag after each reset about options to improve "
6037 "performance");
6040 COMMAND_HANDLER(handle_ps_command)
6042 struct target *target = get_current_target(CMD_CTX);
6043 char *display;
6044 if (target->state != TARGET_HALTED) {
6045 LOG_INFO("target not halted !!");
6046 return ERROR_OK;
6049 if ((target->rtos) && (target->rtos->type)
6050 && (target->rtos->type->ps_command)) {
6051 display = target->rtos->type->ps_command(target);
6052 command_print(CMD_CTX, "%s", display);
6053 free(display);
6054 return ERROR_OK;
6055 } else {
6056 LOG_INFO("failed");
6057 return ERROR_TARGET_FAILURE;
6061 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
6063 if (text != NULL)
6064 command_print_sameline(cmd_ctx, "%s", text);
6065 for (int i = 0; i < size; i++)
6066 command_print_sameline(cmd_ctx, " %02x", buf[i]);
6067 command_print(cmd_ctx, " ");
6070 COMMAND_HANDLER(handle_test_mem_access_command)
6072 struct target *target = get_current_target(CMD_CTX);
6073 uint32_t test_size;
6074 int retval = ERROR_OK;
6076 if (target->state != TARGET_HALTED) {
6077 LOG_INFO("target not halted !!");
6078 return ERROR_FAIL;
6081 if (CMD_ARGC != 1)
6082 return ERROR_COMMAND_SYNTAX_ERROR;
6084 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6086 /* Test reads */
6087 size_t num_bytes = test_size + 4;
6089 struct working_area *wa = NULL;
6090 retval = target_alloc_working_area(target, num_bytes, &wa);
6091 if (retval != ERROR_OK) {
6092 LOG_ERROR("Not enough working area");
6093 return ERROR_FAIL;
6096 uint8_t *test_pattern = malloc(num_bytes);
6098 for (size_t i = 0; i < num_bytes; i++)
6099 test_pattern[i] = rand();
6101 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6102 if (retval != ERROR_OK) {
6103 LOG_ERROR("Test pattern write failed");
6104 goto out;
6107 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6108 for (int size = 1; size <= 4; size *= 2) {
6109 for (int offset = 0; offset < 4; offset++) {
6110 uint32_t count = test_size / size;
6111 size_t host_bufsiz = (count + 2) * size + host_offset;
6112 uint8_t *read_ref = malloc(host_bufsiz);
6113 uint8_t *read_buf = malloc(host_bufsiz);
6115 for (size_t i = 0; i < host_bufsiz; i++) {
6116 read_ref[i] = rand();
6117 read_buf[i] = read_ref[i];
6119 command_print_sameline(CMD_CTX,
6120 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6121 size, offset, host_offset ? "un" : "");
6123 struct duration bench;
6124 duration_start(&bench);
6126 retval = target_read_memory(target, wa->address + offset, size, count,
6127 read_buf + size + host_offset);
6129 duration_measure(&bench);
6131 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6132 command_print(CMD_CTX, "Unsupported alignment");
6133 goto next;
6134 } else if (retval != ERROR_OK) {
6135 command_print(CMD_CTX, "Memory read failed");
6136 goto next;
6139 /* replay on host */
6140 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6142 /* check result */
6143 int result = memcmp(read_ref, read_buf, host_bufsiz);
6144 if (result == 0) {
6145 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6146 duration_elapsed(&bench),
6147 duration_kbps(&bench, count * size));
6148 } else {
6149 command_print(CMD_CTX, "Compare failed");
6150 binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6151 binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6153 next:
6154 free(read_ref);
6155 free(read_buf);
6160 out:
6161 free(test_pattern);
6163 if (wa != NULL)
6164 target_free_working_area(target, wa);
6166 /* Test writes */
6167 num_bytes = test_size + 4 + 4 + 4;
6169 retval = target_alloc_working_area(target, num_bytes, &wa);
6170 if (retval != ERROR_OK) {
6171 LOG_ERROR("Not enough working area");
6172 return ERROR_FAIL;
6175 test_pattern = malloc(num_bytes);
6177 for (size_t i = 0; i < num_bytes; i++)
6178 test_pattern[i] = rand();
6180 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6181 for (int size = 1; size <= 4; size *= 2) {
6182 for (int offset = 0; offset < 4; offset++) {
6183 uint32_t count = test_size / size;
6184 size_t host_bufsiz = count * size + host_offset;
6185 uint8_t *read_ref = malloc(num_bytes);
6186 uint8_t *read_buf = malloc(num_bytes);
6187 uint8_t *write_buf = malloc(host_bufsiz);
6189 for (size_t i = 0; i < host_bufsiz; i++)
6190 write_buf[i] = rand();
6191 command_print_sameline(CMD_CTX,
6192 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6193 size, offset, host_offset ? "un" : "");
6195 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6196 if (retval != ERROR_OK) {
6197 command_print(CMD_CTX, "Test pattern write failed");
6198 goto nextw;
6201 /* replay on host */
6202 memcpy(read_ref, test_pattern, num_bytes);
6203 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6205 struct duration bench;
6206 duration_start(&bench);
6208 retval = target_write_memory(target, wa->address + size + offset, size, count,
6209 write_buf + host_offset);
6211 duration_measure(&bench);
6213 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6214 command_print(CMD_CTX, "Unsupported alignment");
6215 goto nextw;
6216 } else if (retval != ERROR_OK) {
6217 command_print(CMD_CTX, "Memory write failed");
6218 goto nextw;
6221 /* read back */
6222 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6223 if (retval != ERROR_OK) {
6224 command_print(CMD_CTX, "Test pattern write failed");
6225 goto nextw;
6228 /* check result */
6229 int result = memcmp(read_ref, read_buf, num_bytes);
6230 if (result == 0) {
6231 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6232 duration_elapsed(&bench),
6233 duration_kbps(&bench, count * size));
6234 } else {
6235 command_print(CMD_CTX, "Compare failed");
6236 binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6237 binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6239 nextw:
6240 free(read_ref);
6241 free(read_buf);
6246 free(test_pattern);
6248 if (wa != NULL)
6249 target_free_working_area(target, wa);
6250 return retval;
6253 static const struct command_registration target_exec_command_handlers[] = {
6255 .name = "fast_load_image",
6256 .handler = handle_fast_load_image_command,
6257 .mode = COMMAND_ANY,
6258 .help = "Load image into server memory for later use by "
6259 "fast_load; primarily for profiling",
6260 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6261 "[min_address [max_length]]",
6264 .name = "fast_load",
6265 .handler = handle_fast_load_command,
6266 .mode = COMMAND_EXEC,
6267 .help = "loads active fast load image to current target "
6268 "- mainly for profiling purposes",
6269 .usage = "",
6272 .name = "profile",
6273 .handler = handle_profile_command,
6274 .mode = COMMAND_EXEC,
6275 .usage = "seconds filename [start end]",
6276 .help = "profiling samples the CPU PC",
6278 /** @todo don't register virt2phys() unless target supports it */
6280 .name = "virt2phys",
6281 .handler = handle_virt2phys_command,
6282 .mode = COMMAND_ANY,
6283 .help = "translate a virtual address into a physical address",
6284 .usage = "virtual_address",
6287 .name = "reg",
6288 .handler = handle_reg_command,
6289 .mode = COMMAND_EXEC,
6290 .help = "display (reread from target with \"force\") or set a register; "
6291 "with no arguments, displays all registers and their values",
6292 .usage = "[(register_number|register_name) [(value|'force')]]",
6295 .name = "poll",
6296 .handler = handle_poll_command,
6297 .mode = COMMAND_EXEC,
6298 .help = "poll target state; or reconfigure background polling",
6299 .usage = "['on'|'off']",
6302 .name = "wait_halt",
6303 .handler = handle_wait_halt_command,
6304 .mode = COMMAND_EXEC,
6305 .help = "wait up to the specified number of milliseconds "
6306 "(default 5000) for a previously requested halt",
6307 .usage = "[milliseconds]",
6310 .name = "halt",
6311 .handler = handle_halt_command,
6312 .mode = COMMAND_EXEC,
6313 .help = "request target to halt, then wait up to the specified"
6314 "number of milliseconds (default 5000) for it to complete",
6315 .usage = "[milliseconds]",
6318 .name = "resume",
6319 .handler = handle_resume_command,
6320 .mode = COMMAND_EXEC,
6321 .help = "resume target execution from current PC or address",
6322 .usage = "[address]",
6325 .name = "reset",
6326 .handler = handle_reset_command,
6327 .mode = COMMAND_EXEC,
6328 .usage = "[run|halt|init]",
6329 .help = "Reset all targets into the specified mode."
6330 "Default reset mode is run, if not given.",
6333 .name = "soft_reset_halt",
6334 .handler = handle_soft_reset_halt_command,
6335 .mode = COMMAND_EXEC,
6336 .usage = "",
6337 .help = "halt the target and do a soft reset",
6340 .name = "step",
6341 .handler = handle_step_command,
6342 .mode = COMMAND_EXEC,
6343 .help = "step one instruction from current PC or address",
6344 .usage = "[address]",
6347 .name = "mdd",
6348 .handler = handle_md_command,
6349 .mode = COMMAND_EXEC,
6350 .help = "display memory words",
6351 .usage = "['phys'] address [count]",
6354 .name = "mdw",
6355 .handler = handle_md_command,
6356 .mode = COMMAND_EXEC,
6357 .help = "display memory words",
6358 .usage = "['phys'] address [count]",
6361 .name = "mdh",
6362 .handler = handle_md_command,
6363 .mode = COMMAND_EXEC,
6364 .help = "display memory half-words",
6365 .usage = "['phys'] address [count]",
6368 .name = "mdb",
6369 .handler = handle_md_command,
6370 .mode = COMMAND_EXEC,
6371 .help = "display memory bytes",
6372 .usage = "['phys'] address [count]",
6375 .name = "mwd",
6376 .handler = handle_mw_command,
6377 .mode = COMMAND_EXEC,
6378 .help = "write memory word",
6379 .usage = "['phys'] address value [count]",
6382 .name = "mww",
6383 .handler = handle_mw_command,
6384 .mode = COMMAND_EXEC,
6385 .help = "write memory word",
6386 .usage = "['phys'] address value [count]",
6389 .name = "mwh",
6390 .handler = handle_mw_command,
6391 .mode = COMMAND_EXEC,
6392 .help = "write memory half-word",
6393 .usage = "['phys'] address value [count]",
6396 .name = "mwb",
6397 .handler = handle_mw_command,
6398 .mode = COMMAND_EXEC,
6399 .help = "write memory byte",
6400 .usage = "['phys'] address value [count]",
6403 .name = "bp",
6404 .handler = handle_bp_command,
6405 .mode = COMMAND_EXEC,
6406 .help = "list or set hardware or software breakpoint",
6407 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6410 .name = "rbp",
6411 .handler = handle_rbp_command,
6412 .mode = COMMAND_EXEC,
6413 .help = "remove breakpoint",
6414 .usage = "address",
6417 .name = "wp",
6418 .handler = handle_wp_command,
6419 .mode = COMMAND_EXEC,
6420 .help = "list (no params) or create watchpoints",
6421 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6424 .name = "rwp",
6425 .handler = handle_rwp_command,
6426 .mode = COMMAND_EXEC,
6427 .help = "remove watchpoint",
6428 .usage = "address",
6431 .name = "load_image",
6432 .handler = handle_load_image_command,
6433 .mode = COMMAND_EXEC,
6434 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6435 "[min_address] [max_length]",
6438 .name = "dump_image",
6439 .handler = handle_dump_image_command,
6440 .mode = COMMAND_EXEC,
6441 .usage = "filename address size",
6444 .name = "verify_image_checksum",
6445 .handler = handle_verify_image_checksum_command,
6446 .mode = COMMAND_EXEC,
6447 .usage = "filename [offset [type]]",
6450 .name = "verify_image",
6451 .handler = handle_verify_image_command,
6452 .mode = COMMAND_EXEC,
6453 .usage = "filename [offset [type]]",
6456 .name = "test_image",
6457 .handler = handle_test_image_command,
6458 .mode = COMMAND_EXEC,
6459 .usage = "filename [offset [type]]",
6462 .name = "mem2array",
6463 .mode = COMMAND_EXEC,
6464 .jim_handler = jim_mem2array,
6465 .help = "read 8/16/32 bit memory and return as a TCL array "
6466 "for script processing",
6467 .usage = "arrayname bitwidth address count",
6470 .name = "array2mem",
6471 .mode = COMMAND_EXEC,
6472 .jim_handler = jim_array2mem,
6473 .help = "convert a TCL array to memory locations "
6474 "and write the 8/16/32 bit values",
6475 .usage = "arrayname bitwidth address count",
6478 .name = "reset_nag",
6479 .handler = handle_target_reset_nag,
6480 .mode = COMMAND_ANY,
6481 .help = "Nag after each reset about options that could have been "
6482 "enabled to improve performance. ",
6483 .usage = "['enable'|'disable']",
6486 .name = "ps",
6487 .handler = handle_ps_command,
6488 .mode = COMMAND_EXEC,
6489 .help = "list all tasks ",
6490 .usage = " ",
6493 .name = "test_mem_access",
6494 .handler = handle_test_mem_access_command,
6495 .mode = COMMAND_EXEC,
6496 .help = "Test the target's memory access functions",
6497 .usage = "size",
6500 COMMAND_REGISTRATION_DONE
6502 static int target_register_user_commands(struct command_context *cmd_ctx)
6504 int retval = ERROR_OK;
6505 retval = target_request_register_commands(cmd_ctx);
6506 if (retval != ERROR_OK)
6507 return retval;
6509 retval = trace_register_commands(cmd_ctx);
6510 if (retval != ERROR_OK)
6511 return retval;
6514 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);