jtag/core, target: unregister JTAG events
[openocd.git] / src / target / arm7_9_common.c
blob7fd1ed9f8cdb7a720bf9dec29a2bcd5c82879848
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2008 by Hongtao Zheng *
12 * hontor@126.com *
13 * *
14 * Copyright (C) 2009 by David Brownell *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
28 ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
34 #include "breakpoints.h"
35 #include "embeddedice.h"
36 #include "target_request.h"
37 #include "etm.h"
38 #include <helper/time_support.h>
39 #include "arm_simulator.h"
40 #include "arm_semihosting.h"
41 #include "algorithm.h"
42 #include "register.h"
43 #include "armv4_5.h"
45 /**
46 * @file
47 * Hold common code supporting the ARM7 and ARM9 core generations.
49 * While the ARM core implementations evolved substantially during these
50 * two generations, they look quite similar from the JTAG perspective.
51 * Both have similar debug facilities, based on the same two scan chains
52 * providing access to the core and to an EmbeddedICE module. Both can
53 * support similar ETM and ETB modules, for tracing. And both expose
54 * what could be viewed as "ARM Classic", with multiple processor modes,
55 * shadowed registers, and support for the Thumb instruction set.
57 * Processor differences include things like presence or absence of MMU
58 * and cache, pipeline sizes, use of a modified Harvard Architecure
59 * (with separate instruction and data busses from the CPU), support
60 * for cpu clock gating during idle, and more.
63 static int arm7_9_debug_entry(struct target *target);
65 /**
66 * Clear watchpoints for an ARM7/9 target.
68 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
69 * @return JTAG error status after executing queue
71 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
73 LOG_DEBUG("-");
74 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
75 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
76 arm7_9->sw_breakpoint_count = 0;
77 arm7_9->sw_breakpoints_added = 0;
78 arm7_9->wp0_used = 0;
79 arm7_9->wp1_used = arm7_9->wp1_used_default;
80 arm7_9->wp_available = arm7_9->wp_available_max;
82 return jtag_execute_queue();
85 /**
86 * Assign a watchpoint to one of the two available hardware comparators in an
87 * ARM7 or ARM9 target.
89 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
90 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
92 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
94 if (!arm7_9->wp0_used) {
95 arm7_9->wp0_used = 1;
96 breakpoint->set = 1;
97 arm7_9->wp_available--;
98 } else if (!arm7_9->wp1_used) {
99 arm7_9->wp1_used = 1;
100 breakpoint->set = 2;
101 arm7_9->wp_available--;
102 } else
103 LOG_ERROR("BUG: no hardware comparator available");
105 LOG_DEBUG("BPID: %" PRId32 " (0x%08" TARGET_PRIxADDR ") using hw wp: %d",
106 breakpoint->unique_id,
107 breakpoint->address,
108 breakpoint->set);
112 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
114 * @param arm7_9 Pointer to common struct for ARM7/9 targets
115 * @return Error codes if there is a problem finding a watchpoint or the result
116 * of executing the JTAG queue
118 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
120 if (arm7_9->sw_breakpoints_added)
121 return ERROR_OK;
122 if (arm7_9->wp_available < 1) {
123 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
124 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
126 arm7_9->wp_available--;
128 /* pick a breakpoint unit */
129 if (!arm7_9->wp0_used) {
130 arm7_9->sw_breakpoints_added = 1;
131 arm7_9->wp0_used = 3;
132 } else if (!arm7_9->wp1_used) {
133 arm7_9->sw_breakpoints_added = 2;
134 arm7_9->wp1_used = 3;
135 } else {
136 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
137 return ERROR_FAIL;
140 if (arm7_9->sw_breakpoints_added == 1) {
141 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
142 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
143 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
144 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
145 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
146 } else if (arm7_9->sw_breakpoints_added == 2) {
147 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
148 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
149 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
150 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
151 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
152 } else {
153 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
154 return ERROR_FAIL;
156 LOG_DEBUG("SW BP using hw wp: %d",
157 arm7_9->sw_breakpoints_added);
159 return jtag_execute_queue();
163 * Setup the common pieces for an ARM7/9 target after reset or on startup.
165 * @param target Pointer to an ARM7/9 target to setup
166 * @return Result of clearing the watchpoints on the target
168 static int arm7_9_setup(struct target *target)
170 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
172 return arm7_9_clear_watchpoints(arm7_9);
176 * Set either a hardware or software breakpoint on an ARM7/9 target. The
177 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
178 * might have erased the values in Embedded ICE.
180 * @param target Pointer to the target device to set the breakpoints on
181 * @param breakpoint Pointer to the breakpoint to be set
182 * @return For hardware breakpoints, this is the result of executing the JTAG
183 * queue. For software breakpoints, this will be the status of the
184 * required memory reads and writes
186 static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
188 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
189 int retval = ERROR_OK;
191 LOG_DEBUG("BPID: %" PRId32 ", Address: 0x%08" TARGET_PRIxADDR ", Type: %d",
192 breakpoint->unique_id,
193 breakpoint->address,
194 breakpoint->type);
196 if (target->state != TARGET_HALTED) {
197 LOG_WARNING("target not halted");
198 return ERROR_TARGET_NOT_HALTED;
201 if (breakpoint->type == BKPT_HARD) {
202 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
203 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
205 /* reassign a hw breakpoint */
206 if (breakpoint->set == 0)
207 arm7_9_assign_wp(arm7_9, breakpoint);
209 if (breakpoint->set == 1) {
210 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
211 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
212 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
213 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
214 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
215 } else if (breakpoint->set == 2) {
216 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
217 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
218 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
219 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
220 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
221 } else {
222 LOG_ERROR("BUG: no hardware comparator available");
223 return ERROR_OK;
226 retval = jtag_execute_queue();
227 } else if (breakpoint->type == BKPT_SOFT) {
228 /* did we already set this breakpoint? */
229 if (breakpoint->set)
230 return ERROR_OK;
232 if (breakpoint->length == 4) {
233 uint32_t verify = 0xffffffff;
234 /* keep the original instruction in target endianness */
235 retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr);
236 if (retval != ERROR_OK)
237 return retval;
238 /* write the breakpoint instruction in target
239 * endianness (arm7_9->arm_bkpt is host endian) */
240 retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt);
241 if (retval != ERROR_OK)
242 return retval;
244 retval = target_read_u32(target, breakpoint->address, &verify);
245 if (retval != ERROR_OK)
246 return retval;
247 if (verify != arm7_9->arm_bkpt) {
248 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" TARGET_PRIxADDR
249 " - check that memory is read/writable", breakpoint->address);
250 return ERROR_OK;
252 } else {
253 uint16_t verify = 0xffff;
254 /* keep the original instruction in target endianness */
255 retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr);
256 if (retval != ERROR_OK)
257 return retval;
258 /* write the breakpoint instruction in target
259 * endianness (arm7_9->thumb_bkpt is host endian) */
260 retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt);
261 if (retval != ERROR_OK)
262 return retval;
264 retval = target_read_u16(target, breakpoint->address, &verify);
265 if (retval != ERROR_OK)
266 return retval;
267 if (verify != arm7_9->thumb_bkpt) {
268 LOG_ERROR("Unable to set thumb software breakpoint at address %08" TARGET_PRIxADDR
269 " - check that memory is read/writable", breakpoint->address);
270 return ERROR_OK;
274 retval = arm7_9_set_software_breakpoints(arm7_9);
275 if (retval != ERROR_OK)
276 return retval;
278 arm7_9->sw_breakpoint_count++;
280 breakpoint->set = 1;
283 return retval;
287 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
288 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
289 * will be updated. Otherwise, the software breakpoint will be restored to its
290 * original instruction if it hasn't already been modified.
292 * @param target Pointer to ARM7/9 target to unset the breakpoint from
293 * @param breakpoint Pointer to breakpoint to be unset
294 * @return For hardware breakpoints, this is the result of executing the JTAG
295 * queue. For software breakpoints, this will be the status of the
296 * required memory reads and writes
298 static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
300 int retval = ERROR_OK;
301 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
303 LOG_DEBUG("BPID: %" PRId32 ", Address: 0x%08" TARGET_PRIxADDR,
304 breakpoint->unique_id,
305 breakpoint->address);
307 if (!breakpoint->set) {
308 LOG_WARNING("breakpoint not set");
309 return ERROR_OK;
312 if (breakpoint->type == BKPT_HARD) {
313 LOG_DEBUG("BPID: %" PRId32 " Releasing hw wp: %d",
314 breakpoint->unique_id,
315 breakpoint->set);
316 if (breakpoint->set == 1) {
317 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
318 arm7_9->wp0_used = 0;
319 arm7_9->wp_available++;
320 } else if (breakpoint->set == 2) {
321 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
322 arm7_9->wp1_used = 0;
323 arm7_9->wp_available++;
325 retval = jtag_execute_queue();
326 breakpoint->set = 0;
327 } else {
328 /* restore original instruction (kept in target endianness) */
329 if (breakpoint->length == 4) {
330 uint32_t current_instr;
331 /* check that user program as not modified breakpoint instruction */
332 retval = target_read_memory(target,
333 breakpoint->address, 4, 1, (uint8_t *)&current_instr);
334 if (retval != ERROR_OK)
335 return retval;
336 current_instr = target_buffer_get_u32(target, (uint8_t *)&current_instr);
337 if (current_instr == arm7_9->arm_bkpt) {
338 retval = target_write_memory(target,
339 breakpoint->address, 4, 1, breakpoint->orig_instr);
340 if (retval != ERROR_OK)
341 return retval;
344 } else {
345 uint16_t current_instr;
346 /* check that user program as not modified breakpoint instruction */
347 retval = target_read_memory(target,
348 breakpoint->address, 2, 1, (uint8_t *)&current_instr);
349 if (retval != ERROR_OK)
350 return retval;
351 current_instr = target_buffer_get_u16(target, (uint8_t *)&current_instr);
352 if (current_instr == arm7_9->thumb_bkpt) {
353 retval = target_write_memory(target,
354 breakpoint->address, 2, 1, breakpoint->orig_instr);
355 if (retval != ERROR_OK)
356 return retval;
360 if (--arm7_9->sw_breakpoint_count == 0) {
361 /* We have removed the last sw breakpoint, clear the hw breakpoint we used
362 *to implement it */
363 if (arm7_9->sw_breakpoints_added == 1)
364 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
365 EICE_W0_CONTROL_VALUE], 0);
366 else if (arm7_9->sw_breakpoints_added == 2)
367 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
368 EICE_W1_CONTROL_VALUE], 0);
371 breakpoint->set = 0;
374 return retval;
378 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
379 * dangling breakpoints and that the desired breakpoint can be added.
381 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
382 * @param breakpoint Pointer to the breakpoint to be added
383 * @return An error status if there is a problem adding the breakpoint or the
384 * result of setting the breakpoint
386 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
388 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
390 if (arm7_9->breakpoint_count == 0) {
391 /* make sure we don't have any dangling breakpoints. This is vital upon
392 * GDB connect/disconnect
394 arm7_9_clear_watchpoints(arm7_9);
397 if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1)) {
398 LOG_INFO("no watchpoint unit available for hardware breakpoint");
399 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
402 if ((breakpoint->length != 2) && (breakpoint->length != 4)) {
403 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
404 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
407 if (breakpoint->type == BKPT_HARD)
408 arm7_9_assign_wp(arm7_9, breakpoint);
410 arm7_9->breakpoint_count++;
412 return arm7_9_set_breakpoint(target, breakpoint);
416 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
417 * dangling breakpoints and updates available watchpoints if it is a hardware
418 * breakpoint.
420 * @param target Pointer to the target to have a breakpoint removed
421 * @param breakpoint Pointer to the breakpoint to be removed
422 * @return Error status if there was a problem unsetting the breakpoint or the
423 * watchpoints could not be cleared
425 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
427 int retval = ERROR_OK;
428 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
430 retval = arm7_9_unset_breakpoint(target, breakpoint);
431 if (retval != ERROR_OK)
432 return retval;
434 if (breakpoint->type == BKPT_HARD)
435 arm7_9->wp_available++;
437 arm7_9->breakpoint_count--;
438 if (arm7_9->breakpoint_count == 0) {
439 /* make sure we don't have any dangling breakpoints */
440 retval = arm7_9_clear_watchpoints(arm7_9);
441 if (retval != ERROR_OK)
442 return retval;
445 return ERROR_OK;
449 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
450 * considered a bug to call this function when there are no available watchpoint
451 * units.
453 * @param target Pointer to an ARM7/9 target to set a watchpoint on
454 * @param watchpoint Pointer to the watchpoint to be set
455 * @return Error status if watchpoint set fails or the result of executing the
456 * JTAG queue
458 static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
460 int retval = ERROR_OK;
461 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
462 int rw_mask = 1;
463 uint32_t mask;
465 mask = watchpoint->length - 1;
467 if (target->state != TARGET_HALTED) {
468 LOG_WARNING("target not halted");
469 return ERROR_TARGET_NOT_HALTED;
472 if (watchpoint->rw == WPT_ACCESS)
473 rw_mask = 0;
474 else
475 rw_mask = 1;
477 if (!arm7_9->wp0_used) {
478 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE],
479 watchpoint->address);
480 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
481 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK],
482 watchpoint->mask);
483 if (watchpoint->mask != 0xffffffffu)
484 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE],
485 watchpoint->value);
486 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
487 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
488 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
489 EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
491 retval = jtag_execute_queue();
492 if (retval != ERROR_OK)
493 return retval;
494 watchpoint->set = 1;
495 arm7_9->wp0_used = 2;
496 } else if (!arm7_9->wp1_used) {
497 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
498 watchpoint->address);
499 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
500 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK],
501 watchpoint->mask);
502 if (watchpoint->mask != 0xffffffffu)
503 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE],
504 watchpoint->value);
505 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
506 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
507 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
508 EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
510 retval = jtag_execute_queue();
511 if (retval != ERROR_OK)
512 return retval;
513 watchpoint->set = 2;
514 arm7_9->wp1_used = 2;
515 } else {
516 LOG_ERROR("BUG: no hardware comparator available");
517 return ERROR_OK;
520 return ERROR_OK;
524 * Unset an existing watchpoint and clear the used watchpoint unit.
526 * @param target Pointer to the target to have the watchpoint removed
527 * @param watchpoint Pointer to the watchpoint to be removed
528 * @return Error status while trying to unset the watchpoint or the result of
529 * executing the JTAG queue
531 static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
533 int retval = ERROR_OK;
534 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
536 if (target->state != TARGET_HALTED) {
537 LOG_WARNING("target not halted");
538 return ERROR_TARGET_NOT_HALTED;
541 if (!watchpoint->set) {
542 LOG_WARNING("breakpoint not set");
543 return ERROR_OK;
546 if (watchpoint->set == 1) {
547 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
548 retval = jtag_execute_queue();
549 if (retval != ERROR_OK)
550 return retval;
551 arm7_9->wp0_used = 0;
552 } else if (watchpoint->set == 2) {
553 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
554 retval = jtag_execute_queue();
555 if (retval != ERROR_OK)
556 return retval;
557 arm7_9->wp1_used = 0;
559 watchpoint->set = 0;
561 return ERROR_OK;
565 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
566 * available, an error response is returned.
568 * @param target Pointer to the ARM7/9 target to add a watchpoint to
569 * @param watchpoint Pointer to the watchpoint to be added
570 * @return Error status while trying to add the watchpoint
572 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
574 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
576 if (arm7_9->wp_available < 1)
577 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
579 if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
580 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
582 arm7_9->wp_available--;
584 return ERROR_OK;
588 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
589 * the used watchpoint unit will be reopened.
591 * @param target Pointer to the target to remove a watchpoint from
592 * @param watchpoint Pointer to the watchpoint to be removed
593 * @return Result of trying to unset the watchpoint
595 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
597 int retval = ERROR_OK;
598 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
600 if (watchpoint->set) {
601 retval = arm7_9_unset_watchpoint(target, watchpoint);
602 if (retval != ERROR_OK)
603 return retval;
606 arm7_9->wp_available++;
608 return ERROR_OK;
612 * Restarts the target by sending a RESTART instruction and moving the JTAG
613 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
614 * asserted by the processor.
616 * @param target Pointer to target to issue commands to
617 * @return Error status if there is a timeout or a problem while executing the
618 * JTAG queue
620 int arm7_9_execute_sys_speed(struct target *target)
622 int retval;
623 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
624 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
625 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
627 /* set RESTART instruction */
628 if (arm7_9->need_bypass_before_restart) {
629 arm7_9->need_bypass_before_restart = 0;
630 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
631 if (retval != ERROR_OK)
632 return retval;
634 retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
635 if (retval != ERROR_OK)
636 return retval;
638 int64_t then = timeval_ms();
639 bool timeout;
640 while (!(timeout = ((timeval_ms()-then) > 1000))) {
641 /* read debug status register */
642 embeddedice_read_reg(dbg_stat);
643 retval = jtag_execute_queue();
644 if (retval != ERROR_OK)
645 return retval;
646 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
647 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
648 break;
649 if (debug_level >= 3)
650 alive_sleep(100);
651 else
652 keep_alive();
654 if (timeout) {
655 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "",
656 buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
657 return ERROR_TARGET_TIMEOUT;
660 return ERROR_OK;
664 * Restarts the target by sending a RESTART instruction and moving the JTAG
665 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
666 * waiting until they are.
668 * @param target Pointer to the target to issue commands to
669 * @return Always ERROR_OK
671 static int arm7_9_execute_fast_sys_speed(struct target *target)
673 static int set;
674 static uint8_t check_value[4], check_mask[4];
676 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
677 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
678 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
679 int retval;
681 /* set RESTART instruction */
682 if (arm7_9->need_bypass_before_restart) {
683 arm7_9->need_bypass_before_restart = 0;
684 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
685 if (retval != ERROR_OK)
686 return retval;
688 retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
689 if (retval != ERROR_OK)
690 return retval;
692 if (!set) {
693 /* check for DBGACK and SYSCOMP set (others don't care) */
695 /* NB! These are constants that must be available until after next jtag_execute() and
696 * we evaluate the values upon first execution in lieu of setting up these constants
697 * during early setup.
698 * */
699 buf_set_u32(check_value, 0, 32, 0x9);
700 buf_set_u32(check_mask, 0, 32, 0x9);
701 set = 1;
704 /* read debug status register */
705 embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
707 return ERROR_OK;
711 * Get some data from the ARM7/9 target.
713 * @param target Pointer to the ARM7/9 target to read data from
714 * @param size The number of 32bit words to be read
715 * @param buffer Pointer to the buffer that will hold the data
716 * @return The result of receiving data from the Embedded ICE unit
718 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
720 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
721 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
722 uint32_t *data;
723 int retval = ERROR_OK;
724 uint32_t i;
726 data = malloc(size * (sizeof(uint32_t)));
728 retval = embeddedice_receive(jtag_info, data, size);
730 /* return the 32-bit ints in the 8-bit array */
731 for (i = 0; i < size; i++)
732 h_u32_to_le(buffer + (i * 4), data[i]);
734 free(data);
736 return retval;
740 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
741 * target is running and the DCC control register has the W bit high, this will
742 * execute the request on the target.
744 * @param priv Void pointer expected to be a struct target pointer
745 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
746 * from the Embedded ICE unit
748 static int arm7_9_handle_target_request(void *priv)
750 int retval = ERROR_OK;
751 struct target *target = priv;
752 if (!target_was_examined(target))
753 return ERROR_OK;
754 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
755 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
756 struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
758 if (!target->dbg_msg_enabled)
759 return ERROR_OK;
761 if (target->state == TARGET_RUNNING) {
762 /* read DCC control register */
763 embeddedice_read_reg(dcc_control);
764 retval = jtag_execute_queue();
765 if (retval != ERROR_OK)
766 return retval;
768 /* check W bit */
769 if (buf_get_u32(dcc_control->value, 1, 1) == 1) {
770 uint32_t request;
772 retval = embeddedice_receive(jtag_info, &request, 1);
773 if (retval != ERROR_OK)
774 return retval;
775 retval = target_request(target, request);
776 if (retval != ERROR_OK)
777 return retval;
781 return ERROR_OK;
785 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
786 * is manipulated to the right halted state based on its current state. This is
787 * what happens:
789 * <table>
790 * <tr><th > State</th><th > Action</th></tr>
791 * <tr><td > TARGET_RUNNING | TARGET_RESET</td>
792 * <td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
793 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
794 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
795 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
796 * </table>
798 * If the target does not end up in the halted state, a warning is produced. If
799 * DBGACK is cleared, then the target is expected to either be running or
800 * running in debug.
802 * @param target Pointer to the ARM7/9 target to poll
803 * @return ERROR_OK or an error status if a command fails
805 int arm7_9_poll(struct target *target)
807 int retval;
808 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
809 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
811 /* read debug status register */
812 embeddedice_read_reg(dbg_stat);
813 retval = jtag_execute_queue();
814 if (retval != ERROR_OK)
815 return retval;
817 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)) {
818 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, *32));*/
819 if (target->state == TARGET_UNKNOWN) {
820 /* Starting OpenOCD with target in debug-halt */
821 target->state = TARGET_RUNNING;
822 LOG_DEBUG("DBGACK already set during server startup.");
824 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET)) {
825 target->state = TARGET_HALTED;
827 retval = arm7_9_debug_entry(target);
828 if (retval != ERROR_OK)
829 return retval;
831 if (arm_semihosting(target, &retval) != 0)
832 return retval;
834 retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
835 if (retval != ERROR_OK)
836 return retval;
838 if (target->state == TARGET_DEBUG_RUNNING) {
839 target->state = TARGET_HALTED;
840 retval = arm7_9_debug_entry(target);
841 if (retval != ERROR_OK)
842 return retval;
844 retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
845 if (retval != ERROR_OK)
846 return retval;
848 if (target->state != TARGET_HALTED)
849 LOG_WARNING(
850 "DBGACK set, but the target did not end up in the halted state %d",
851 target->state);
852 } else {
853 if (target->state != TARGET_DEBUG_RUNNING)
854 target->state = TARGET_RUNNING;
857 return ERROR_OK;
861 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
862 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
863 * affected) completely stop the JTAG clock while the core is held in reset
864 * (SRST). It isn't possible to program the halt condition once reset is
865 * asserted, hence a hook that allows the target to set up its reset-halt
866 * condition is setup prior to asserting reset.
868 * @param target Pointer to an ARM7/9 target to assert reset on
869 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
871 int arm7_9_assert_reset(struct target *target)
873 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
874 enum reset_types jtag_reset_config = jtag_get_reset_config();
875 bool use_event = false;
877 /* TODO: apply hw reset signal in not examined state */
878 if (!(target_was_examined(target))) {
879 LOG_WARNING("Reset is not asserted because the target is not examined.");
880 LOG_WARNING("Use a reset button or power cycle the target.");
881 return ERROR_TARGET_NOT_EXAMINED;
884 LOG_DEBUG("target->state: %s", target_state_name(target));
886 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
887 use_event = true;
888 else if (!(jtag_reset_config & RESET_HAS_SRST)) {
889 LOG_ERROR("%s: how to reset?", target_name(target));
890 return ERROR_FAIL;
893 /* At this point trst has been asserted/deasserted once. We would
894 * like to program EmbeddedICE while SRST is asserted, instead of
895 * depending on SRST to leave that module alone. However, many CPUs
896 * gate the JTAG clock while SRST is asserted; or JTAG may need
897 * clock stability guarantees (adaptive clocking might help).
899 * So we assume JTAG access during SRST is off the menu unless it's
900 * been specifically enabled.
902 bool srst_asserted = false;
904 if (!use_event && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
905 && (jtag_reset_config & RESET_SRST_NO_GATING)) {
906 jtag_add_reset(0, 1);
907 srst_asserted = true;
910 if (target->reset_halt) {
912 * For targets that don't support communication while SRST is
913 * asserted, we need to set up the reset vector catch first.
915 * When we use TRST+SRST and that's equivalent to a power-up
916 * reset, these settings may well be reset anyway; so setting
917 * them here won't matter.
919 if (arm7_9->has_vector_catch) {
920 /* program vector catch register to catch reset */
921 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
923 /* extra runtest added as issues were found with
924 * certain ARM9 cores (maybe more) - AT91SAM9260
925 * and STR9
927 jtag_add_runtest(1, TAP_IDLE);
928 } else {
929 /* program watchpoint unit to match on reset vector
930 * address
932 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
933 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
934 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
935 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
936 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
940 if (use_event)
941 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
942 else {
943 /* If we use SRST ... we'd like to issue just SRST, but the
944 * board or chip may be set up so we have to assert TRST as
945 * well. On some chips that combination is equivalent to a
946 * power-up reset, and generally clobbers EICE state.
948 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
949 jtag_add_reset(1, 1);
950 else if (!srst_asserted)
951 jtag_add_reset(0, 1);
952 jtag_add_sleep(50000);
955 target->state = TARGET_RESET;
956 register_cache_invalidate(arm7_9->arm.core_cache);
958 /* REVISIT why isn't standard debug entry logic sufficient?? */
959 if (target->reset_halt && (!(jtag_reset_config & RESET_SRST_PULLS_TRST) || use_event)) {
960 /* debug entry was prepared above */
961 target->debug_reason = DBG_REASON_DBGRQ;
964 return ERROR_OK;
968 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
969 * and the target is being reset into a halt, a warning will be triggered
970 * because it is not possible to reset into a halted mode in this case. The
971 * target is halted using the target's functions.
973 * @param target Pointer to the target to have the reset deasserted
974 * @return ERROR_OK or an error from polling or halting the target
976 int arm7_9_deassert_reset(struct target *target)
978 int retval = ERROR_OK;
979 LOG_DEBUG("target->state: %s", target_state_name(target));
981 /* deassert reset lines */
982 jtag_add_reset(0, 0);
984 /* In case polling is disabled, we need to examine the
985 * target and poll here for this target to work correctly.
987 * Otherwise, e.g. halt will fail afterwards with bogus
988 * error messages as halt will believe that reset is
989 * still in effect.
991 retval = target_examine_one(target);
992 if (retval != ERROR_OK)
993 return retval;
995 retval = target_poll(target);
996 if (retval != ERROR_OK)
997 return retval;
999 enum reset_types jtag_reset_config = jtag_get_reset_config();
1000 if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0) {
1001 LOG_WARNING(
1002 "srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1003 retval = target_halt(target);
1004 if (retval != ERROR_OK)
1005 return retval;
1007 return retval;
1011 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1012 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1013 * vector catch was used, it is restored. Otherwise, the control value is
1014 * restored and the watchpoint unit is restored if it was in use.
1016 * @param target Pointer to the ARM7/9 target to have halt cleared
1017 * @return Always ERROR_OK
1019 static int arm7_9_clear_halt(struct target *target)
1021 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1022 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1024 /* we used DBGRQ only if we didn't come out of reset */
1025 if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq) {
1026 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1028 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1029 embeddedice_store_reg(dbg_ctrl);
1030 } else {
1031 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch) {
1032 /* if we came out of reset, and vector catch is supported, we used
1033 * vector catch to enter debug state
1034 * restore the register in that case
1036 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1037 } else {
1038 /* restore registers if watchpoint unit 0 was in use
1040 if (arm7_9->wp0_used) {
1041 if (arm7_9->debug_entry_from_reset)
1042 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1043 EICE_W0_ADDR_VALUE]);
1044 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1045 EICE_W0_ADDR_MASK]);
1046 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1047 EICE_W0_DATA_MASK]);
1048 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1049 EICE_W0_CONTROL_MASK]);
1051 /* control value always has to be restored, as it was either disabled,
1052 * or enabled with possibly different bits
1054 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1058 return ERROR_OK;
1062 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1063 * and then there is a wait until the processor shows the halt. This wait can
1064 * timeout and results in an error being returned. The software reset involves
1065 * clearing the halt, updating the debug control register, changing to ARM mode,
1066 * reset of the program counter, and reset of all of the registers.
1068 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1069 * @return Error status if any of the commands fail, otherwise ERROR_OK
1071 int arm7_9_soft_reset_halt(struct target *target)
1073 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1074 struct arm *arm = &arm7_9->arm;
1075 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1076 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1077 int i;
1078 int retval;
1080 /* FIX!!! replace some of this code with tcl commands
1082 * halt # the halt command is synchronous
1083 * armv4_5 core_state arm
1087 retval = target_halt(target);
1088 if (retval != ERROR_OK)
1089 return retval;
1091 long long then = timeval_ms();
1092 int timeout;
1093 while (!(timeout = ((timeval_ms()-then) > 1000))) {
1094 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1095 break;
1096 embeddedice_read_reg(dbg_stat);
1097 retval = jtag_execute_queue();
1098 if (retval != ERROR_OK)
1099 return retval;
1100 if (debug_level >= 3)
1101 alive_sleep(100);
1102 else
1103 keep_alive();
1105 if (timeout) {
1106 LOG_ERROR("Failed to halt CPU after 1 sec");
1107 return ERROR_TARGET_TIMEOUT;
1109 target->state = TARGET_HALTED;
1111 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1112 * ensure that DBGRQ is cleared
1114 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1115 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1116 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1117 embeddedice_store_reg(dbg_ctrl);
1119 retval = arm7_9_clear_halt(target);
1120 if (retval != ERROR_OK)
1121 return retval;
1123 /* if the target is in Thumb state, change to ARM state */
1124 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
1125 uint32_t r0_thumb, pc_thumb;
1126 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1127 /* Entered debug from Thumb mode */
1128 arm->core_state = ARM_STATE_THUMB;
1129 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1132 /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1134 /* all register content is now invalid */
1135 register_cache_invalidate(arm->core_cache);
1137 /* SVC, ARM state, IRQ and FIQ disabled */
1138 uint32_t cpsr;
1140 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1141 cpsr &= ~0xff;
1142 cpsr |= 0xd3;
1143 arm_set_cpsr(arm, cpsr);
1144 arm->cpsr->dirty = 1;
1146 /* start fetching from 0x0 */
1147 buf_set_u32(arm->pc->value, 0, 32, 0x0);
1148 arm->pc->dirty = 1;
1149 arm->pc->valid = 1;
1151 /* reset registers */
1152 for (i = 0; i <= 14; i++) {
1153 struct reg *r = arm_reg_current(arm, i);
1155 buf_set_u32(r->value, 0, 32, 0xffffffff);
1156 r->dirty = 1;
1157 r->valid = 1;
1160 retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1161 if (retval != ERROR_OK)
1162 return retval;
1164 return ERROR_OK;
1168 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1169 * line or by programming a watchpoint to trigger on any address. It is
1170 * considered a bug to call this function while the target is in the
1171 * TARGET_RESET state.
1173 * @param target Pointer to the ARM7/9 target to be halted
1174 * @return Always ERROR_OK
1176 int arm7_9_halt(struct target *target)
1178 if (target->state == TARGET_RESET) {
1179 LOG_ERROR(
1180 "BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1181 return ERROR_OK;
1184 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1185 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1187 LOG_DEBUG("target->state: %s",
1188 target_state_name(target));
1190 if (target->state == TARGET_HALTED) {
1191 LOG_DEBUG("target was already halted");
1192 return ERROR_OK;
1195 if (target->state == TARGET_UNKNOWN)
1196 LOG_WARNING("target was in unknown state when halt was requested");
1198 if (arm7_9->use_dbgrq) {
1199 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1201 if (arm7_9->set_special_dbgrq)
1202 arm7_9->set_special_dbgrq(target);
1203 else {
1204 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1205 embeddedice_store_reg(dbg_ctrl);
1207 } else {
1208 /* program watchpoint unit to match on any address
1210 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1211 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1212 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
1213 EICE_W_CTRL_ENABLE);
1214 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
1215 ~EICE_W_CTRL_nOPC & 0xff);
1218 target->debug_reason = DBG_REASON_DBGRQ;
1220 return ERROR_OK;
1224 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1225 * ARM. The JTAG queue is then executed and the reason for debug entry is
1226 * examined. Once done, the target is verified to be halted and the processor
1227 * is forced into ARM mode. The core registers are saved for the current core
1228 * mode and the program counter (register 15) is updated as needed. The core
1229 * registers and CPSR and SPSR are saved for restoration later.
1231 * @param target Pointer to target that is entering debug mode
1232 * @return Error code if anything fails, otherwise ERROR_OK
1234 static int arm7_9_debug_entry(struct target *target)
1236 int i;
1237 uint32_t context[16];
1238 uint32_t *context_p[16];
1239 uint32_t r0_thumb, pc_thumb;
1240 uint32_t cpsr, cpsr_mask = 0;
1241 int retval;
1242 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1243 struct arm *arm = &arm7_9->arm;
1244 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1245 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1247 #ifdef _DEBUG_ARM7_9_
1248 LOG_DEBUG("-");
1249 #endif
1251 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1252 * ensure that DBGRQ is cleared
1254 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1255 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1256 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1257 embeddedice_store_reg(dbg_ctrl);
1259 retval = arm7_9_clear_halt(target);
1260 if (retval != ERROR_OK)
1261 return retval;
1263 retval = jtag_execute_queue();
1264 if (retval != ERROR_OK)
1265 return retval;
1267 retval = arm7_9->examine_debug_reason(target);
1268 if (retval != ERROR_OK)
1269 return retval;
1271 if (target->state != TARGET_HALTED) {
1272 LOG_WARNING("target not halted");
1273 return ERROR_TARGET_NOT_HALTED;
1276 /* if the target is in Thumb state, change to ARM state */
1277 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
1278 LOG_DEBUG("target entered debug from Thumb state");
1279 /* Entered debug from Thumb mode */
1280 arm->core_state = ARM_STATE_THUMB;
1281 cpsr_mask = 1 << 5;
1282 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1283 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1284 ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1285 } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1286 /* \todo Get some vaguely correct handling of Jazelle, if
1287 * anyone ever uses it and full info becomes available.
1288 * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1289 * B.7.3 for the reverse. That'd be the bare minimum...
1291 LOG_DEBUG("target entered debug from Jazelle state");
1292 arm->core_state = ARM_STATE_JAZELLE;
1293 cpsr_mask = 1 << 24;
1294 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1295 } else {
1296 LOG_DEBUG("target entered debug from ARM state");
1297 /* Entered debug from ARM mode */
1298 arm->core_state = ARM_STATE_ARM;
1301 for (i = 0; i < 16; i++)
1302 context_p[i] = &context[i];
1303 /* save core registers (r0 - r15 of current core mode) */
1304 arm7_9->read_core_regs(target, 0xffff, context_p);
1306 arm7_9->read_xpsr(target, &cpsr, 0);
1308 retval = jtag_execute_queue();
1309 if (retval != ERROR_OK)
1310 return retval;
1312 /* Sync our CPSR copy with J or T bits EICE reported, but
1313 * which we then erased by putting the core into ARM mode.
1315 arm_set_cpsr(arm, cpsr | cpsr_mask);
1317 if (!is_arm_mode(arm->core_mode)) {
1318 target->state = TARGET_UNKNOWN;
1319 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1320 return ERROR_TARGET_FAILURE;
1323 LOG_DEBUG("target entered debug state in %s mode",
1324 arm_mode_name(arm->core_mode));
1326 if (arm->core_state == ARM_STATE_THUMB) {
1327 LOG_DEBUG("thumb state, applying fixups");
1328 context[0] = r0_thumb;
1329 context[15] = pc_thumb;
1330 } else if (arm->core_state == ARM_STATE_ARM) {
1331 /* adjust value stored by STM */
1332 context[15] -= 3 * 4;
1335 if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1336 context[15] -= 3 * ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1337 else
1338 context[15] -= arm7_9->dbgreq_adjust_pc *
1339 ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1341 for (i = 0; i <= 15; i++) {
1342 struct reg *r = arm_reg_current(arm, i);
1344 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1346 buf_set_u32(r->value, 0, 32, context[i]);
1347 /* r0 and r15 (pc) have to be restored later */
1348 r->dirty = (i == 0) || (i == 15);
1349 r->valid = 1;
1352 LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1354 /* exceptions other than USR & SYS have a saved program status register */
1355 if (arm->spsr) {
1356 uint32_t spsr;
1357 arm7_9->read_xpsr(target, &spsr, 1);
1358 retval = jtag_execute_queue();
1359 if (retval != ERROR_OK)
1360 return retval;
1361 buf_set_u32(arm->spsr->value, 0, 32, spsr);
1362 arm->spsr->dirty = 0;
1363 arm->spsr->valid = 1;
1366 retval = jtag_execute_queue();
1367 if (retval != ERROR_OK)
1368 return retval;
1370 if (arm7_9->post_debug_entry) {
1371 retval = arm7_9->post_debug_entry(target);
1372 if (retval != ERROR_OK)
1373 return retval;
1376 return ERROR_OK;
1380 * Validate the full context for an ARM7/9 target in all processor modes. If
1381 * there are any invalid registers for the target, they will all be read. This
1382 * includes the PSR.
1384 * @param target Pointer to the ARM7/9 target to capture the full context from
1385 * @return Error if the target is not halted, has an invalid core mode, or if
1386 * the JTAG queue fails to execute
1388 static int arm7_9_full_context(struct target *target)
1390 int i;
1391 int retval;
1392 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1393 struct arm *arm = &arm7_9->arm;
1395 LOG_DEBUG("-");
1397 if (target->state != TARGET_HALTED) {
1398 LOG_WARNING("target not halted");
1399 return ERROR_TARGET_NOT_HALTED;
1402 if (!is_arm_mode(arm->core_mode)) {
1403 LOG_ERROR("not a valid arm core mode - communication failure?");
1404 return ERROR_FAIL;
1407 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1408 * SYS shares registers with User, so we don't touch SYS
1410 for (i = 0; i < 6; i++) {
1411 uint32_t mask = 0;
1412 uint32_t *reg_p[16];
1413 int j;
1414 int valid = 1;
1416 /* check if there are invalid registers in the current mode
1418 for (j = 0; j <= 16; j++) {
1419 if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1420 valid = 0;
1423 if (!valid) {
1424 uint32_t tmp_cpsr;
1426 /* change processor mode (and mask T bit) */
1427 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8)
1428 & 0xe0;
1429 tmp_cpsr |= armv4_5_number_to_mode(i);
1430 tmp_cpsr &= ~0x20;
1431 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1433 for (j = 0; j < 15; j++) {
1434 if (ARMV4_5_CORE_REG_MODE(arm->core_cache,
1435 armv4_5_number_to_mode(i), j).valid == 0) {
1436 reg_p[j] = (uint32_t *)ARMV4_5_CORE_REG_MODE(
1437 arm->core_cache,
1438 armv4_5_number_to_mode(i),
1439 j).value;
1440 mask |= 1 << j;
1441 ARMV4_5_CORE_REG_MODE(arm->core_cache,
1442 armv4_5_number_to_mode(i),
1443 j).valid = 1;
1444 ARMV4_5_CORE_REG_MODE(arm->core_cache,
1445 armv4_5_number_to_mode(i),
1446 j).dirty = 0;
1450 /* if only the PSR is invalid, mask is all zeroes */
1451 if (mask)
1452 arm7_9->read_core_regs(target, mask, reg_p);
1454 /* check if the PSR has to be read */
1455 if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1456 16).valid == 0) {
1457 arm7_9->read_xpsr(target,
1458 (uint32_t *)ARMV4_5_CORE_REG_MODE(arm->core_cache,
1459 armv4_5_number_to_mode(i), 16).value, 1);
1460 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1461 16).valid = 1;
1462 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1463 16).dirty = 0;
1468 /* restore processor mode (mask T bit) */
1469 arm7_9->write_xpsr_im8(target,
1470 buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
1472 retval = jtag_execute_queue();
1473 if (retval != ERROR_OK)
1474 return retval;
1475 return ERROR_OK;
1479 * Restore the processor context on an ARM7/9 target. The full processor
1480 * context is analyzed to see if any of the registers are dirty on this end, but
1481 * have a valid new value. If this is the case, the processor is changed to the
1482 * appropriate mode and the new register values are written out to the
1483 * processor. If there happens to be a dirty register with an invalid value, an
1484 * error will be logged.
1486 * @param target Pointer to the ARM7/9 target to have its context restored
1487 * @return Error status if the target is not halted or the core mode in the
1488 * armv4_5 struct is invalid.
1490 static int arm7_9_restore_context(struct target *target)
1492 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1493 struct arm *arm = &arm7_9->arm;
1494 struct reg *reg;
1495 enum arm_mode current_mode = arm->core_mode;
1496 int i, j;
1497 int dirty;
1498 int mode_change;
1500 LOG_DEBUG("-");
1502 if (target->state != TARGET_HALTED) {
1503 LOG_WARNING("target not halted");
1504 return ERROR_TARGET_NOT_HALTED;
1507 if (arm7_9->pre_restore_context)
1508 arm7_9->pre_restore_context(target);
1510 if (!is_arm_mode(arm->core_mode)) {
1511 LOG_ERROR("not a valid arm core mode - communication failure?");
1512 return ERROR_FAIL;
1515 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1516 * SYS shares registers with User, so we don't touch SYS
1518 for (i = 0; i < 6; i++) {
1519 LOG_DEBUG("examining %s mode",
1520 arm_mode_name(arm->core_mode));
1521 dirty = 0;
1522 mode_change = 0;
1523 /* check if there are dirty registers in the current mode
1525 for (j = 0; j <= 16; j++) {
1526 reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j);
1527 if (reg->dirty == 1) {
1528 if (reg->valid == 1) {
1529 dirty = 1;
1530 LOG_DEBUG("examining dirty reg: %s", reg->name);
1531 struct arm_reg *reg_arch_info;
1532 reg_arch_info = reg->arch_info;
1533 if ((reg_arch_info->mode != ARM_MODE_ANY)
1534 && (reg_arch_info->mode != current_mode)
1535 && !((reg_arch_info->mode == ARM_MODE_USR)
1536 && (arm->core_mode == ARM_MODE_SYS))
1537 && !((reg_arch_info->mode == ARM_MODE_SYS)
1538 && (arm->core_mode == ARM_MODE_USR))) {
1539 mode_change = 1;
1540 LOG_DEBUG("require mode change");
1542 } else
1543 LOG_ERROR("BUG: dirty register '%s', but no valid data",
1544 reg->name);
1548 if (dirty) {
1549 uint32_t mask = 0x0;
1550 int num_regs = 0;
1551 uint32_t regs[16];
1553 if (mode_change) {
1554 uint32_t tmp_cpsr;
1556 /* change processor mode (mask T bit) */
1557 tmp_cpsr = buf_get_u32(arm->cpsr->value,
1558 0, 8) & 0xe0;
1559 tmp_cpsr |= armv4_5_number_to_mode(i);
1560 tmp_cpsr &= ~0x20;
1561 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1562 current_mode = armv4_5_number_to_mode(i);
1565 for (j = 0; j <= 14; j++) {
1566 reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1567 armv4_5_number_to_mode(i),
1570 if (reg->dirty == 1) {
1571 regs[j] = buf_get_u32(reg->value, 0, 32);
1572 mask |= 1 << j;
1573 num_regs++;
1574 reg->dirty = 0;
1575 reg->valid = 1;
1576 LOG_DEBUG("writing register %i mode %s "
1577 "with value 0x%8.8" PRIx32, j,
1578 arm_mode_name(arm->core_mode),
1579 regs[j]);
1583 if (mask)
1584 arm7_9->write_core_regs(target, mask, regs);
1586 reg =
1587 &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(
1588 i), 16);
1589 struct arm_reg *reg_arch_info;
1590 reg_arch_info = reg->arch_info;
1591 if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY)) {
1592 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "",
1594 buf_get_u32(reg->value, 0, 32));
1595 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1600 if (!arm->cpsr->dirty && (arm->core_mode != current_mode)) {
1601 /* restore processor mode (mask T bit) */
1602 uint32_t tmp_cpsr;
1604 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
1605 tmp_cpsr |= armv4_5_number_to_mode(i);
1606 tmp_cpsr &= ~0x20;
1607 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1608 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1610 } else if (arm->cpsr->dirty) {
1611 /* CPSR has been changed, full restore necessary (mask T bit) */
1612 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1613 buf_get_u32(arm->cpsr->value, 0, 32));
1614 arm7_9->write_xpsr(target,
1615 buf_get_u32(arm->cpsr->value, 0, 32)
1616 & ~0x20, 0);
1617 arm->cpsr->dirty = 0;
1618 arm->cpsr->valid = 1;
1621 /* restore PC */
1622 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1623 buf_get_u32(arm->pc->value, 0, 32));
1624 arm7_9->write_pc(target, buf_get_u32(arm->pc->value, 0, 32));
1625 arm->pc->dirty = 0;
1627 return ERROR_OK;
1631 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1632 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1633 * restart.
1635 * @param target Pointer to the ARM7/9 target to be restarted
1636 * @return Result of executing the JTAG queue
1638 static int arm7_9_restart_core(struct target *target)
1640 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1641 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1642 int retval;
1644 /* set RESTART instruction */
1645 if (arm7_9->need_bypass_before_restart) {
1646 arm7_9->need_bypass_before_restart = 0;
1648 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
1649 if (retval != ERROR_OK)
1650 return retval;
1652 retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
1653 if (retval != ERROR_OK)
1654 return retval;
1656 jtag_add_runtest(1, TAP_IDLE);
1657 return jtag_execute_queue();
1661 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1662 * iterated through and are set on the target if they aren't already set.
1664 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1666 static void arm7_9_enable_watchpoints(struct target *target)
1668 struct watchpoint *watchpoint = target->watchpoints;
1670 while (watchpoint) {
1671 if (watchpoint->set == 0)
1672 arm7_9_set_watchpoint(target, watchpoint);
1673 watchpoint = watchpoint->next;
1678 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1679 * iterated through and are set on the target.
1681 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1683 static void arm7_9_enable_breakpoints(struct target *target)
1685 struct breakpoint *breakpoint = target->breakpoints;
1687 /* set any pending breakpoints */
1688 while (breakpoint) {
1689 arm7_9_set_breakpoint(target, breakpoint);
1690 breakpoint = breakpoint->next;
1694 int arm7_9_resume(struct target *target,
1695 int current,
1696 target_addr_t address,
1697 int handle_breakpoints,
1698 int debug_execution)
1700 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1701 struct arm *arm = &arm7_9->arm;
1702 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1703 int err, retval = ERROR_OK;
1705 LOG_DEBUG("-");
1707 if (target->state != TARGET_HALTED) {
1708 LOG_WARNING("target not halted");
1709 return ERROR_TARGET_NOT_HALTED;
1712 if (!debug_execution)
1713 target_free_all_working_areas(target);
1715 /* current = 1: continue on current pc, otherwise continue at <address> */
1716 if (!current)
1717 buf_set_u32(arm->pc->value, 0, 32, address);
1719 uint32_t current_pc;
1720 current_pc = buf_get_u32(arm->pc->value, 0, 32);
1722 /* the front-end may request us not to handle breakpoints */
1723 if (handle_breakpoints) {
1724 struct breakpoint *breakpoint;
1725 breakpoint = breakpoint_find(target,
1726 buf_get_u32(arm->pc->value, 0, 32));
1727 if (breakpoint != NULL) {
1728 LOG_DEBUG("unset breakpoint at 0x%8.8" TARGET_PRIxADDR " (id: %" PRId32,
1729 breakpoint->address,
1730 breakpoint->unique_id);
1731 retval = arm7_9_unset_breakpoint(target, breakpoint);
1732 if (retval != ERROR_OK)
1733 return retval;
1735 /* calculate PC of next instruction */
1736 uint32_t next_pc;
1737 retval = arm_simulate_step(target, &next_pc);
1738 if (retval != ERROR_OK) {
1739 uint32_t current_opcode;
1740 target_read_u32(target, current_pc, &current_opcode);
1741 LOG_ERROR(
1742 "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
1743 current_opcode);
1744 return retval;
1747 LOG_DEBUG("enable single-step");
1748 arm7_9->enable_single_step(target, next_pc);
1750 target->debug_reason = DBG_REASON_SINGLESTEP;
1752 retval = arm7_9_restore_context(target);
1753 if (retval != ERROR_OK)
1754 return retval;
1756 if (arm->core_state == ARM_STATE_ARM)
1757 arm7_9->branch_resume(target);
1758 else if (arm->core_state == ARM_STATE_THUMB)
1759 arm7_9->branch_resume_thumb(target);
1760 else {
1761 LOG_ERROR("unhandled core state");
1762 return ERROR_FAIL;
1765 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1766 embeddedice_write_reg(dbg_ctrl,
1767 buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1768 err = arm7_9_execute_sys_speed(target);
1770 LOG_DEBUG("disable single-step");
1771 arm7_9->disable_single_step(target);
1773 if (err != ERROR_OK) {
1774 retval = arm7_9_set_breakpoint(target, breakpoint);
1775 if (retval != ERROR_OK)
1776 return retval;
1777 target->state = TARGET_UNKNOWN;
1778 return err;
1781 retval = arm7_9_debug_entry(target);
1782 if (retval != ERROR_OK)
1783 return retval;
1784 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1785 buf_get_u32(arm->pc->value, 0, 32));
1787 LOG_DEBUG("set breakpoint at 0x%8.8" TARGET_PRIxADDR "", breakpoint->address);
1788 retval = arm7_9_set_breakpoint(target, breakpoint);
1789 if (retval != ERROR_OK)
1790 return retval;
1794 /* enable any pending breakpoints and watchpoints */
1795 arm7_9_enable_breakpoints(target);
1796 arm7_9_enable_watchpoints(target);
1798 retval = arm7_9_restore_context(target);
1799 if (retval != ERROR_OK)
1800 return retval;
1802 if (arm->core_state == ARM_STATE_ARM)
1803 arm7_9->branch_resume(target);
1804 else if (arm->core_state == ARM_STATE_THUMB)
1805 arm7_9->branch_resume_thumb(target);
1806 else {
1807 LOG_ERROR("unhandled core state");
1808 return ERROR_FAIL;
1811 /* deassert DBGACK and INTDIS */
1812 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1813 /* INTDIS only when we really resume, not during debug execution */
1814 if (!debug_execution)
1815 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1816 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1818 retval = arm7_9_restart_core(target);
1819 if (retval != ERROR_OK)
1820 return retval;
1822 target->debug_reason = DBG_REASON_NOTHALTED;
1824 if (!debug_execution) {
1825 /* registers are now invalid */
1826 register_cache_invalidate(arm->core_cache);
1827 target->state = TARGET_RUNNING;
1828 retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1829 if (retval != ERROR_OK)
1830 return retval;
1831 } else {
1832 target->state = TARGET_DEBUG_RUNNING;
1833 retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1834 if (retval != ERROR_OK)
1835 return retval;
1838 LOG_DEBUG("target resumed");
1840 return ERROR_OK;
1843 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1845 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1846 struct arm *arm = &arm7_9->arm;
1847 uint32_t current_pc;
1848 current_pc = buf_get_u32(arm->pc->value, 0, 32);
1850 if (next_pc != current_pc) {
1851 /* setup an inverse breakpoint on the current PC
1852 * - comparator 1 matches the current address
1853 * - rangeout from comparator 1 is connected to comparator 0 rangein
1854 * - comparator 0 matches any address, as long as rangein is low */
1855 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1856 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1857 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
1858 EICE_W_CTRL_ENABLE);
1859 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
1860 ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1861 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
1862 current_pc);
1863 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1864 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1865 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1866 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
1867 ~EICE_W_CTRL_nOPC & 0xff);
1868 } else {
1869 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1870 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1871 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1872 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1873 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1874 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1875 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1876 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
1877 EICE_W_CTRL_ENABLE);
1878 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
1879 ~EICE_W_CTRL_nOPC & 0xff);
1883 void arm7_9_disable_eice_step(struct target *target)
1885 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1887 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1888 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1889 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1890 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1891 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1892 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1893 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1894 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1895 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1898 int arm7_9_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
1900 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1901 struct arm *arm = &arm7_9->arm;
1902 struct breakpoint *breakpoint = NULL;
1903 int err, retval;
1905 if (target->state != TARGET_HALTED) {
1906 LOG_WARNING("target not halted");
1907 return ERROR_TARGET_NOT_HALTED;
1910 /* current = 1: continue on current pc, otherwise continue at <address> */
1911 if (!current)
1912 buf_set_u32(arm->pc->value, 0, 32, address);
1914 uint32_t current_pc = buf_get_u32(arm->pc->value, 0, 32);
1916 /* the front-end may request us not to handle breakpoints */
1917 if (handle_breakpoints)
1918 breakpoint = breakpoint_find(target, current_pc);
1919 if (breakpoint != NULL) {
1920 retval = arm7_9_unset_breakpoint(target, breakpoint);
1921 if (retval != ERROR_OK)
1922 return retval;
1925 target->debug_reason = DBG_REASON_SINGLESTEP;
1927 /* calculate PC of next instruction */
1928 uint32_t next_pc;
1929 retval = arm_simulate_step(target, &next_pc);
1930 if (retval != ERROR_OK) {
1931 uint32_t current_opcode;
1932 target_read_u32(target, current_pc, &current_opcode);
1933 LOG_ERROR(
1934 "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
1935 current_opcode);
1936 return retval;
1939 retval = arm7_9_restore_context(target);
1940 if (retval != ERROR_OK)
1941 return retval;
1943 arm7_9->enable_single_step(target, next_pc);
1945 if (arm->core_state == ARM_STATE_ARM)
1946 arm7_9->branch_resume(target);
1947 else if (arm->core_state == ARM_STATE_THUMB)
1948 arm7_9->branch_resume_thumb(target);
1949 else {
1950 LOG_ERROR("unhandled core state");
1951 return ERROR_FAIL;
1954 retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1955 if (retval != ERROR_OK)
1956 return retval;
1958 err = arm7_9_execute_sys_speed(target);
1959 arm7_9->disable_single_step(target);
1961 /* registers are now invalid */
1962 register_cache_invalidate(arm->core_cache);
1964 if (err != ERROR_OK)
1965 target->state = TARGET_UNKNOWN;
1966 else {
1967 retval = arm7_9_debug_entry(target);
1968 if (retval != ERROR_OK)
1969 return retval;
1970 retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1971 if (retval != ERROR_OK)
1972 return retval;
1973 LOG_DEBUG("target stepped");
1976 if (breakpoint) {
1977 retval = arm7_9_set_breakpoint(target, breakpoint);
1978 if (retval != ERROR_OK)
1979 return retval;
1982 return err;
1985 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
1986 int num, enum arm_mode mode)
1988 uint32_t *reg_p[16];
1989 int retval;
1990 struct arm_reg *areg = r->arch_info;
1991 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1992 struct arm *arm = &arm7_9->arm;
1994 if (!is_arm_mode(arm->core_mode))
1995 return ERROR_FAIL;
1996 if ((num < 0) || (num > 16))
1997 return ERROR_COMMAND_SYNTAX_ERROR;
1999 if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2000 && (areg->mode != ARM_MODE_ANY)) {
2001 uint32_t tmp_cpsr;
2003 /* change processor mode (mask T bit) */
2004 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2005 tmp_cpsr |= mode;
2006 tmp_cpsr &= ~0x20;
2007 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2010 uint32_t value = 0;
2011 if ((num >= 0) && (num <= 15)) {
2012 /* read a normal core register */
2013 reg_p[num] = &value;
2015 arm7_9->read_core_regs(target, 1 << num, reg_p);
2016 } else {
2017 /* read a program status register
2018 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2020 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2023 retval = jtag_execute_queue();
2024 if (retval != ERROR_OK)
2025 return retval;
2027 r->valid = 1;
2028 r->dirty = 0;
2029 buf_set_u32(r->value, 0, 32, value);
2031 if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2032 && (areg->mode != ARM_MODE_ANY)) {
2033 /* restore processor mode (mask T bit) */
2034 arm7_9->write_xpsr_im8(target,
2035 buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
2038 return ERROR_OK;
2041 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2042 int num, enum arm_mode mode, uint8_t *value)
2044 uint32_t reg[16];
2045 struct arm_reg *areg = r->arch_info;
2046 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2047 struct arm *arm = &arm7_9->arm;
2049 if (!is_arm_mode(arm->core_mode))
2050 return ERROR_FAIL;
2051 if ((num < 0) || (num > 16))
2052 return ERROR_COMMAND_SYNTAX_ERROR;
2054 if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2055 && (areg->mode != ARM_MODE_ANY)) {
2056 uint32_t tmp_cpsr;
2058 /* change processor mode (mask T bit) */
2059 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2060 tmp_cpsr |= mode;
2061 tmp_cpsr &= ~0x20;
2062 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2065 if ((num >= 0) && (num <= 15)) {
2066 /* write a normal core register */
2067 reg[num] = buf_get_u32(value, 0, 32);
2069 arm7_9->write_core_regs(target, 1 << num, reg);
2070 } else {
2071 /* write a program status register
2072 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2074 int spsr = (areg->mode != ARM_MODE_ANY);
2076 uint32_t t = buf_get_u32(value, 0, 32);
2077 /* if we're writing the CPSR, mask the T bit */
2078 if (!spsr)
2079 t &= ~0x20;
2081 arm7_9->write_xpsr(target, t, spsr);
2084 r->valid = 1;
2085 r->dirty = 0;
2087 if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2088 && (areg->mode != ARM_MODE_ANY)) {
2089 /* restore processor mode (mask T bit) */
2090 arm7_9->write_xpsr_im8(target,
2091 buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
2094 return jtag_execute_queue();
2097 int arm7_9_read_memory(struct target *target,
2098 target_addr_t address,
2099 uint32_t size,
2100 uint32_t count,
2101 uint8_t *buffer)
2103 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2104 struct arm *arm = &arm7_9->arm;
2105 uint32_t reg[16];
2106 uint32_t num_accesses = 0;
2107 int thisrun_accesses;
2108 int i;
2109 uint32_t cpsr;
2110 int retval;
2111 int last_reg = 0;
2113 LOG_DEBUG("address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "",
2114 address, size, count);
2116 if (target->state != TARGET_HALTED) {
2117 LOG_WARNING("target not halted");
2118 return ERROR_TARGET_NOT_HALTED;
2121 /* sanitize arguments */
2122 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2123 return ERROR_COMMAND_SYNTAX_ERROR;
2125 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2126 return ERROR_TARGET_UNALIGNED_ACCESS;
2128 /* load the base register with the address of the first word */
2129 reg[0] = address;
2130 arm7_9->write_core_regs(target, 0x1, reg);
2132 int j = 0;
2134 switch (size) {
2135 case 4:
2136 while (num_accesses < count) {
2137 uint32_t reg_list;
2138 thisrun_accesses =
2139 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2140 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2142 if (last_reg <= thisrun_accesses)
2143 last_reg = thisrun_accesses;
2145 arm7_9->load_word_regs(target, reg_list);
2147 /* fast memory reads are only safe when the target is running
2148 * from a sufficiently high clock (32 kHz is usually too slow)
2150 if (arm7_9->fast_memory_access)
2151 retval = arm7_9_execute_fast_sys_speed(target);
2152 else
2153 retval = arm7_9_execute_sys_speed(target);
2154 if (retval != ERROR_OK)
2155 return retval;
2157 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2159 /* advance buffer, count number of accesses */
2160 buffer += thisrun_accesses * 4;
2161 num_accesses += thisrun_accesses;
2163 if ((j++%1024) == 0)
2164 keep_alive();
2166 break;
2167 case 2:
2168 while (num_accesses < count) {
2169 uint32_t reg_list;
2170 thisrun_accesses =
2171 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2172 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2174 for (i = 1; i <= thisrun_accesses; i++) {
2175 if (i > last_reg)
2176 last_reg = i;
2177 arm7_9->load_hword_reg(target, i);
2178 /* fast memory reads are only safe when the target is running
2179 * from a sufficiently high clock (32 kHz is usually too slow)
2181 if (arm7_9->fast_memory_access)
2182 retval = arm7_9_execute_fast_sys_speed(target);
2183 else
2184 retval = arm7_9_execute_sys_speed(target);
2185 if (retval != ERROR_OK)
2186 return retval;
2190 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2192 /* advance buffer, count number of accesses */
2193 buffer += thisrun_accesses * 2;
2194 num_accesses += thisrun_accesses;
2196 if ((j++%1024) == 0)
2197 keep_alive();
2199 break;
2200 case 1:
2201 while (num_accesses < count) {
2202 uint32_t reg_list;
2203 thisrun_accesses =
2204 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2205 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2207 for (i = 1; i <= thisrun_accesses; i++) {
2208 if (i > last_reg)
2209 last_reg = i;
2210 arm7_9->load_byte_reg(target, i);
2211 /* fast memory reads are only safe when the target is running
2212 * from a sufficiently high clock (32 kHz is usually too slow)
2214 if (arm7_9->fast_memory_access)
2215 retval = arm7_9_execute_fast_sys_speed(target);
2216 else
2217 retval = arm7_9_execute_sys_speed(target);
2218 if (retval != ERROR_OK)
2219 return retval;
2222 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2224 /* advance buffer, count number of accesses */
2225 buffer += thisrun_accesses * 1;
2226 num_accesses += thisrun_accesses;
2228 if ((j++%1024) == 0)
2229 keep_alive();
2231 break;
2234 if (!is_arm_mode(arm->core_mode))
2235 return ERROR_FAIL;
2237 for (i = 0; i <= last_reg; i++) {
2238 struct reg *r = arm_reg_current(arm, i);
2239 r->dirty = r->valid;
2242 arm7_9->read_xpsr(target, &cpsr, 0);
2243 retval = jtag_execute_queue();
2244 if (retval != ERROR_OK) {
2245 LOG_ERROR("JTAG error while reading cpsr");
2246 return ERROR_TARGET_DATA_ABORT;
2249 if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
2250 LOG_WARNING(
2251 "memory read caused data abort "
2252 "(address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
2253 address,
2254 size,
2255 count);
2257 arm7_9->write_xpsr_im8(target,
2258 buf_get_u32(arm->cpsr->value, 0, 8)
2259 & ~0x20, 0, 0);
2261 return ERROR_TARGET_DATA_ABORT;
2264 return ERROR_OK;
2267 int arm7_9_write_memory(struct target *target,
2268 target_addr_t address,
2269 uint32_t size,
2270 uint32_t count,
2271 const uint8_t *buffer)
2273 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2274 struct arm *arm = &arm7_9->arm;
2275 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2277 uint32_t reg[16];
2278 uint32_t num_accesses = 0;
2279 int thisrun_accesses;
2280 int i;
2281 uint32_t cpsr;
2282 int retval;
2283 int last_reg = 0;
2285 #ifdef _DEBUG_ARM7_9_
2286 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2287 #endif
2289 if (target->state != TARGET_HALTED) {
2290 LOG_WARNING("target not halted");
2291 return ERROR_TARGET_NOT_HALTED;
2294 /* sanitize arguments */
2295 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2296 return ERROR_COMMAND_SYNTAX_ERROR;
2298 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2299 return ERROR_TARGET_UNALIGNED_ACCESS;
2301 /* load the base register with the address of the first word */
2302 reg[0] = address;
2303 arm7_9->write_core_regs(target, 0x1, reg);
2305 /* Clear DBGACK, to make sure memory fetches work as expected */
2306 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2307 embeddedice_store_reg(dbg_ctrl);
2309 switch (size) {
2310 case 4:
2311 while (num_accesses < count) {
2312 uint32_t reg_list;
2313 thisrun_accesses =
2314 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2315 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2317 for (i = 1; i <= thisrun_accesses; i++) {
2318 if (i > last_reg)
2319 last_reg = i;
2320 reg[i] = target_buffer_get_u32(target, buffer);
2321 buffer += 4;
2324 arm7_9->write_core_regs(target, reg_list, reg);
2326 arm7_9->store_word_regs(target, reg_list);
2328 /* fast memory writes are only safe when the target is running
2329 * from a sufficiently high clock (32 kHz is usually too slow)
2331 if (arm7_9->fast_memory_access)
2332 retval = arm7_9_execute_fast_sys_speed(target);
2333 else {
2334 retval = arm7_9_execute_sys_speed(target);
2337 * if memory writes are made when the clock is running slow
2338 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2339 * processor operations after a "reset halt" or "reset init",
2340 * need to immediately stroke the keep alive or will end up with
2341 * gdb "keep alive not sent error message" problem.
2344 keep_alive();
2347 if (retval != ERROR_OK)
2348 return retval;
2350 num_accesses += thisrun_accesses;
2352 break;
2353 case 2:
2354 while (num_accesses < count) {
2355 uint32_t reg_list;
2356 thisrun_accesses =
2357 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2358 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2360 for (i = 1; i <= thisrun_accesses; i++) {
2361 if (i > last_reg)
2362 last_reg = i;
2363 reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2364 buffer += 2;
2367 arm7_9->write_core_regs(target, reg_list, reg);
2369 for (i = 1; i <= thisrun_accesses; i++) {
2370 arm7_9->store_hword_reg(target, i);
2372 /* fast memory writes are only safe when the target is running
2373 * from a sufficiently high clock (32 kHz is usually too slow)
2375 if (arm7_9->fast_memory_access)
2376 retval = arm7_9_execute_fast_sys_speed(target);
2377 else {
2378 retval = arm7_9_execute_sys_speed(target);
2381 * if memory writes are made when the clock is running slow
2382 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2383 * processor operations after a "reset halt" or "reset init",
2384 * need to immediately stroke the keep alive or will end up with
2385 * gdb "keep alive not sent error message" problem.
2388 keep_alive();
2391 if (retval != ERROR_OK)
2392 return retval;
2395 num_accesses += thisrun_accesses;
2397 break;
2398 case 1:
2399 while (num_accesses < count) {
2400 uint32_t reg_list;
2401 thisrun_accesses =
2402 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2403 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2405 for (i = 1; i <= thisrun_accesses; i++) {
2406 if (i > last_reg)
2407 last_reg = i;
2408 reg[i] = *buffer++ & 0xff;
2411 arm7_9->write_core_regs(target, reg_list, reg);
2413 for (i = 1; i <= thisrun_accesses; i++) {
2414 arm7_9->store_byte_reg(target, i);
2415 /* fast memory writes are only safe when the target is running
2416 * from a sufficiently high clock (32 kHz is usually too slow)
2418 if (arm7_9->fast_memory_access)
2419 retval = arm7_9_execute_fast_sys_speed(target);
2420 else {
2421 retval = arm7_9_execute_sys_speed(target);
2424 * if memory writes are made when the clock is running slow
2425 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2426 * processor operations after a "reset halt" or "reset init",
2427 * need to immediately stroke the keep alive or will end up with
2428 * gdb "keep alive not sent error message" problem.
2431 keep_alive();
2434 if (retval != ERROR_OK)
2435 return retval;
2439 num_accesses += thisrun_accesses;
2441 break;
2444 /* Re-Set DBGACK */
2445 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2446 embeddedice_store_reg(dbg_ctrl);
2448 if (!is_arm_mode(arm->core_mode))
2449 return ERROR_FAIL;
2451 for (i = 0; i <= last_reg; i++) {
2452 struct reg *r = arm_reg_current(arm, i);
2453 r->dirty = r->valid;
2456 arm7_9->read_xpsr(target, &cpsr, 0);
2457 retval = jtag_execute_queue();
2458 if (retval != ERROR_OK) {
2459 LOG_ERROR("JTAG error while reading cpsr");
2460 return ERROR_TARGET_DATA_ABORT;
2463 if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
2464 LOG_WARNING(
2465 "memory write caused data abort "
2466 "(address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
2467 address,
2468 size,
2469 count);
2471 arm7_9->write_xpsr_im8(target,
2472 buf_get_u32(arm->cpsr->value, 0, 8)
2473 & ~0x20, 0, 0);
2475 return ERROR_TARGET_DATA_ABORT;
2478 return ERROR_OK;
2481 int arm7_9_write_memory_opt(struct target *target,
2482 target_addr_t address,
2483 uint32_t size,
2484 uint32_t count,
2485 const uint8_t *buffer)
2487 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2488 int retval;
2490 if (size == 4 && count > 32 && arm7_9->bulk_write_memory) {
2491 /* Attempt to do a bulk write */
2492 retval = arm7_9->bulk_write_memory(target, address, count, buffer);
2494 if (retval == ERROR_OK)
2495 return ERROR_OK;
2498 return arm7_9->write_memory(target, address, size, count, buffer);
2501 int arm7_9_write_memory_no_opt(struct target *target,
2502 uint32_t address,
2503 uint32_t size,
2504 uint32_t count,
2505 const uint8_t *buffer)
2507 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2509 return arm7_9->write_memory(target, address, size, count, buffer);
2512 static int dcc_count;
2513 static const uint8_t *dcc_buffer;
2515 static int arm7_9_dcc_completion(struct target *target,
2516 uint32_t exit_point,
2517 int timeout_ms,
2518 void *arch_info)
2520 int retval = ERROR_OK;
2521 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2523 retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500);
2524 if (retval != ERROR_OK)
2525 return retval;
2527 int little = target->endianness == TARGET_LITTLE_ENDIAN;
2528 int count = dcc_count;
2529 const uint8_t *buffer = dcc_buffer;
2530 if (count > 2) {
2531 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2532 * core function repeated. */
2533 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2534 fast_target_buffer_get_u32(buffer, little));
2535 buffer += 4;
2537 struct embeddedice_reg *ice_reg =
2538 arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2539 uint8_t reg_addr = ice_reg->addr & 0x1f;
2540 struct jtag_tap *tap;
2541 tap = ice_reg->jtag_info->tap;
2543 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2544 buffer += (count-2)*4;
2546 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2547 fast_target_buffer_get_u32(buffer, little));
2548 } else {
2549 int i;
2550 for (i = 0; i < count; i++) {
2551 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2552 fast_target_buffer_get_u32(buffer, little));
2553 buffer += 4;
2557 retval = target_halt(target);
2558 if (retval != ERROR_OK)
2559 return retval;
2560 return target_wait_state(target, TARGET_HALTED, 500);
2563 static const uint32_t dcc_code[] = {
2564 /* r0 == input, points to memory buffer
2565 * r1 == scratch
2568 /* spin until DCC control (c0) reports data arrived */
2569 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2570 0xe3110001, /* tst r1, #1 */
2571 0x0afffffc, /* bne w */
2573 /* read word from DCC (c1), write to memory */
2574 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2575 0xe4801004, /* str r1, [r0], #4 */
2577 /* repeat */
2578 0xeafffff9 /* b w */
2581 int arm7_9_bulk_write_memory(struct target *target,
2582 target_addr_t address,
2583 uint32_t count,
2584 const uint8_t *buffer)
2586 int retval;
2587 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2589 if (address % 4 != 0)
2590 return ERROR_TARGET_UNALIGNED_ACCESS;
2592 if (!arm7_9->dcc_downloads)
2593 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2595 /* regrab previously allocated working_area, or allocate a new one */
2596 if (!arm7_9->dcc_working_area) {
2597 uint8_t dcc_code_buf[6 * 4];
2599 /* make sure we have a working area */
2600 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK) {
2601 LOG_INFO("no working area available, falling back to memory writes");
2602 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2605 /* copy target instructions to target endianness */
2606 target_buffer_set_u32_array(target, dcc_code_buf, ARRAY_SIZE(dcc_code), dcc_code);
2608 /* write DCC code to working area, using the non-optimized
2609 * memory write to avoid ending up here again */
2610 retval = arm7_9_write_memory_no_opt(target,
2611 arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf);
2612 if (retval != ERROR_OK)
2613 return retval;
2616 struct arm_algorithm arm_algo;
2617 struct reg_param reg_params[1];
2619 arm_algo.common_magic = ARM_COMMON_MAGIC;
2620 arm_algo.core_mode = ARM_MODE_SVC;
2621 arm_algo.core_state = ARM_STATE_ARM;
2623 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2625 buf_set_u32(reg_params[0].value, 0, 32, address);
2627 dcc_count = count;
2628 dcc_buffer = buffer;
2629 retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2630 arm7_9->dcc_working_area->address,
2631 arm7_9->dcc_working_area->address + 6*4,
2632 20*1000, &arm_algo, arm7_9_dcc_completion);
2634 if (retval == ERROR_OK) {
2635 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2636 if (endaddress != (address + count*4)) {
2637 LOG_ERROR(
2638 "DCC write failed, expected end address 0x%08" TARGET_PRIxADDR " got 0x%0" PRIx32 "",
2639 (address + count*4),
2640 endaddress);
2641 retval = ERROR_FAIL;
2645 destroy_reg_param(&reg_params[0]);
2647 return retval;
2651 * Perform per-target setup that requires JTAG access.
2653 int arm7_9_examine(struct target *target)
2655 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2656 int retval;
2658 if (!target_was_examined(target)) {
2659 struct reg_cache *t, **cache_p;
2661 t = embeddedice_build_reg_cache(target, arm7_9);
2662 if (t == NULL)
2663 return ERROR_FAIL;
2665 cache_p = register_get_last_cache_p(&target->reg_cache);
2666 (*cache_p) = t;
2667 arm7_9->eice_cache = (*cache_p);
2669 if (arm7_9->arm.etm)
2670 (*cache_p)->next = etm_build_reg_cache(target,
2671 &arm7_9->jtag_info,
2672 arm7_9->arm.etm);
2674 target_set_examined(target);
2677 retval = embeddedice_setup(target);
2678 if (retval == ERROR_OK)
2679 retval = arm7_9_setup(target);
2680 if (retval == ERROR_OK && arm7_9->arm.etm)
2681 retval = etm_setup(target);
2682 return retval;
2686 int arm7_9_check_reset(struct target *target)
2688 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2690 if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2691 LOG_WARNING(
2692 "NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2694 if (get_target_reset_nag() && (target->working_area_size == 0))
2695 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2697 if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2698 LOG_WARNING(
2699 "NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2701 return ERROR_OK;
2704 int arm7_9_endianness_callback(jtag_callback_data_t pu8_in,
2705 jtag_callback_data_t i_size, jtag_callback_data_t i_be,
2706 jtag_callback_data_t i_flip)
2708 uint8_t *in = (uint8_t *)pu8_in;
2709 int size = (int)i_size;
2710 int be = (int)i_be;
2711 int flip = (int)i_flip;
2712 uint32_t readback;
2714 switch (size) {
2715 case 4:
2716 readback = le_to_h_u32(in);
2717 if (flip)
2718 readback = flip_u32(readback, 32);
2719 if (be)
2720 h_u32_to_be(in, readback);
2721 else
2722 h_u32_to_le(in, readback);
2723 break;
2724 case 2:
2725 readback = le_to_h_u16(in);
2726 if (flip)
2727 readback = flip_u32(readback, 16);
2728 if (be)
2729 h_u16_to_be(in, readback & 0xffff);
2730 else
2731 h_u16_to_le(in, readback & 0xffff);
2732 break;
2733 case 1:
2734 readback = *in;
2735 if (flip)
2736 readback = flip_u32(readback, 8);
2737 *in = readback & 0xff;
2738 break;
2741 return ERROR_OK;
2744 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2746 struct target *target = get_current_target(CMD_CTX);
2747 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2749 if (!is_arm7_9(arm7_9)) {
2750 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2751 return ERROR_TARGET_INVALID;
2754 if (CMD_ARGC > 0)
2755 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->use_dbgrq);
2757 command_print(CMD_CTX,
2758 "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s",
2759 (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2761 return ERROR_OK;
2764 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2766 struct target *target = get_current_target(CMD_CTX);
2767 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2769 if (!is_arm7_9(arm7_9)) {
2770 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2771 return ERROR_TARGET_INVALID;
2774 if (CMD_ARGC > 0)
2775 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2777 command_print(CMD_CTX,
2778 "fast memory access is %s",
2779 (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2781 return ERROR_OK;
2784 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2786 struct target *target = get_current_target(CMD_CTX);
2787 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2789 if (!is_arm7_9(arm7_9)) {
2790 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2791 return ERROR_TARGET_INVALID;
2794 if (CMD_ARGC > 0)
2795 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2797 command_print(CMD_CTX,
2798 "dcc downloads are %s",
2799 (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2801 return ERROR_OK;
2804 static int arm7_9_setup_semihosting(struct target *target, int enable)
2806 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2808 if (!is_arm7_9(arm7_9)) {
2809 LOG_USER("current target isn't an ARM7/ARM9 target");
2810 return ERROR_TARGET_INVALID;
2813 if (arm7_9->has_vector_catch) {
2814 struct reg *vector_catch = &arm7_9->eice_cache
2815 ->reg_list[EICE_VEC_CATCH];
2817 if (!vector_catch->valid)
2818 embeddedice_read_reg(vector_catch);
2819 buf_set_u32(vector_catch->value, 2, 1, enable);
2820 embeddedice_store_reg(vector_catch);
2821 } else {
2822 /* TODO: allow optional high vectors and/or BKPT_HARD */
2823 if (enable)
2824 breakpoint_add(target, 8, 4, BKPT_SOFT);
2825 else
2826 breakpoint_remove(target, 8);
2829 return ERROR_OK;
2832 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2834 int retval = ERROR_OK;
2835 struct arm *arm = &arm7_9->arm;
2837 arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2839 retval = arm_jtag_setup_connection(&arm7_9->jtag_info);
2840 if (retval != ERROR_OK)
2841 return retval;
2843 /* caller must have allocated via calloc(), so everything's zeroed */
2845 arm7_9->wp_available_max = 2;
2847 arm7_9->fast_memory_access = false;
2848 arm7_9->dcc_downloads = false;
2850 arm->arch_info = arm7_9;
2851 arm->core_type = ARM_MODE_ANY;
2852 arm->read_core_reg = arm7_9_read_core_reg;
2853 arm->write_core_reg = arm7_9_write_core_reg;
2854 arm->full_context = arm7_9_full_context;
2855 arm->setup_semihosting = arm7_9_setup_semihosting;
2857 retval = arm_init_arch_info(target, arm);
2858 if (retval != ERROR_OK)
2859 return retval;
2861 return target_register_timer_callback(arm7_9_handle_target_request,
2862 1, 1, target);
2865 static const struct command_registration arm7_9_any_command_handlers[] = {
2867 "dbgrq",
2868 .handler = handle_arm7_9_dbgrq_command,
2869 .mode = COMMAND_ANY,
2870 .usage = "['enable'|'disable']",
2871 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2872 "for target halt requests",
2875 "fast_memory_access",
2876 .handler = handle_arm7_9_fast_memory_access_command,
2877 .mode = COMMAND_ANY,
2878 .usage = "['enable'|'disable']",
2879 .help = "use fast memory accesses instead of slower "
2880 "but potentially safer accesses",
2883 "dcc_downloads",
2884 .handler = handle_arm7_9_dcc_downloads_command,
2885 .mode = COMMAND_ANY,
2886 .usage = "['enable'|'disable']",
2887 .help = "use DCC downloads for larger memory writes",
2889 COMMAND_REGISTRATION_DONE
2891 const struct command_registration arm7_9_command_handlers[] = {
2893 .chain = arm_command_handlers,
2896 .chain = etm_command_handlers,
2899 .name = "arm7_9",
2900 .mode = COMMAND_ANY,
2901 .help = "arm7/9 specific commands",
2902 .usage = "",
2903 .chain = arm7_9_any_command_handlers,
2905 COMMAND_REGISTRATION_DONE