1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * Copyright (C) 2008 by Hongtao Zheng *
14 * Copyright (C) 2009 by David Brownell *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
28 ***************************************************************************/
34 #include "breakpoints.h"
35 #include "embeddedice.h"
36 #include "target_request.h"
38 #include <helper/time_support.h>
39 #include "arm_simulator.h"
40 #include "arm_semihosting.h"
41 #include "algorithm.h"
47 * Hold common code supporting the ARM7 and ARM9 core generations.
49 * While the ARM core implementations evolved substantially during these
50 * two generations, they look quite similar from the JTAG perspective.
51 * Both have similar debug facilities, based on the same two scan chains
52 * providing access to the core and to an EmbeddedICE module. Both can
53 * support similar ETM and ETB modules, for tracing. And both expose
54 * what could be viewed as "ARM Classic", with multiple processor modes,
55 * shadowed registers, and support for the Thumb instruction set.
57 * Processor differences include things like presence or absence of MMU
58 * and cache, pipeline sizes, use of a modified Harvard Architecure
59 * (with separate instruction and data busses from the CPU), support
60 * for cpu clock gating during idle, and more.
63 static int arm7_9_debug_entry(struct target
*target
);
66 * Clear watchpoints for an ARM7/9 target.
68 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
69 * @return JTAG error status after executing queue
71 static int arm7_9_clear_watchpoints(struct arm7_9_common
*arm7_9
)
74 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
75 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
76 arm7_9
->sw_breakpoint_count
= 0;
77 arm7_9
->sw_breakpoints_added
= 0;
79 arm7_9
->wp1_used
= arm7_9
->wp1_used_default
;
80 arm7_9
->wp_available
= arm7_9
->wp_available_max
;
82 return jtag_execute_queue();
86 * Assign a watchpoint to one of the two available hardware comparators in an
87 * ARM7 or ARM9 target.
89 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
90 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
92 static void arm7_9_assign_wp(struct arm7_9_common
*arm7_9
, struct breakpoint
*breakpoint
)
94 if (!arm7_9
->wp0_used
) {
97 arm7_9
->wp_available
--;
98 } else if (!arm7_9
->wp1_used
) {
101 arm7_9
->wp_available
--;
103 LOG_ERROR("BUG: no hardware comparator available");
105 LOG_DEBUG("BPID: %" PRId32
" (0x%08" TARGET_PRIxADDR
") using hw wp: %d",
106 breakpoint
->unique_id
,
112 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
114 * @param arm7_9 Pointer to common struct for ARM7/9 targets
115 * @return Error codes if there is a problem finding a watchpoint or the result
116 * of executing the JTAG queue
118 static int arm7_9_set_software_breakpoints(struct arm7_9_common
*arm7_9
)
120 if (arm7_9
->sw_breakpoints_added
)
122 if (arm7_9
->wp_available
< 1) {
123 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
124 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
126 arm7_9
->wp_available
--;
128 /* pick a breakpoint unit */
129 if (!arm7_9
->wp0_used
) {
130 arm7_9
->sw_breakpoints_added
= 1;
131 arm7_9
->wp0_used
= 3;
132 } else if (!arm7_9
->wp1_used
) {
133 arm7_9
->sw_breakpoints_added
= 2;
134 arm7_9
->wp1_used
= 3;
136 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
140 if (arm7_9
->sw_breakpoints_added
== 1) {
141 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], arm7_9
->arm_bkpt
);
142 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0x0);
143 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffffu
);
144 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
145 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
146 } else if (arm7_9
->sw_breakpoints_added
== 2) {
147 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], arm7_9
->arm_bkpt
);
148 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0x0);
149 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0xffffffffu
);
150 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
151 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
153 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
156 LOG_DEBUG("SW BP using hw wp: %d",
157 arm7_9
->sw_breakpoints_added
);
159 return jtag_execute_queue();
163 * Setup the common pieces for an ARM7/9 target after reset or on startup.
165 * @param target Pointer to an ARM7/9 target to setup
166 * @return Result of clearing the watchpoints on the target
168 static int arm7_9_setup(struct target
*target
)
170 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
172 return arm7_9_clear_watchpoints(arm7_9
);
176 * Set either a hardware or software breakpoint on an ARM7/9 target. The
177 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
178 * might have erased the values in Embedded ICE.
180 * @param target Pointer to the target device to set the breakpoints on
181 * @param breakpoint Pointer to the breakpoint to be set
182 * @return For hardware breakpoints, this is the result of executing the JTAG
183 * queue. For software breakpoints, this will be the status of the
184 * required memory reads and writes
186 static int arm7_9_set_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
188 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
189 int retval
= ERROR_OK
;
191 LOG_DEBUG("BPID: %" PRId32
", Address: 0x%08" TARGET_PRIxADDR
", Type: %d",
192 breakpoint
->unique_id
,
196 if (target
->state
!= TARGET_HALTED
) {
197 LOG_WARNING("target not halted");
198 return ERROR_TARGET_NOT_HALTED
;
201 if (breakpoint
->type
== BKPT_HARD
) {
202 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
203 uint32_t mask
= (breakpoint
->length
== 4) ? 0x3u
: 0x1u
;
205 /* reassign a hw breakpoint */
206 if (breakpoint
->set
== 0)
207 arm7_9_assign_wp(arm7_9
, breakpoint
);
209 if (breakpoint
->set
== 1) {
210 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], breakpoint
->address
);
211 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
212 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffffu
);
213 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
214 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
215 } else if (breakpoint
->set
== 2) {
216 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], breakpoint
->address
);
217 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
218 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffffu
);
219 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
220 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
222 LOG_ERROR("BUG: no hardware comparator available");
226 retval
= jtag_execute_queue();
227 } else if (breakpoint
->type
== BKPT_SOFT
) {
228 /* did we already set this breakpoint? */
232 if (breakpoint
->length
== 4) {
233 uint32_t verify
= 0xffffffff;
234 /* keep the original instruction in target endianness */
235 retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
);
236 if (retval
!= ERROR_OK
)
238 /* write the breakpoint instruction in target
239 * endianness (arm7_9->arm_bkpt is host endian) */
240 retval
= target_write_u32(target
, breakpoint
->address
, arm7_9
->arm_bkpt
);
241 if (retval
!= ERROR_OK
)
244 retval
= target_read_u32(target
, breakpoint
->address
, &verify
);
245 if (retval
!= ERROR_OK
)
247 if (verify
!= arm7_9
->arm_bkpt
) {
248 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" TARGET_PRIxADDR
249 " - check that memory is read/writable", breakpoint
->address
);
253 uint16_t verify
= 0xffff;
254 /* keep the original instruction in target endianness */
255 retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
);
256 if (retval
!= ERROR_OK
)
258 /* write the breakpoint instruction in target
259 * endianness (arm7_9->thumb_bkpt is host endian) */
260 retval
= target_write_u16(target
, breakpoint
->address
, arm7_9
->thumb_bkpt
);
261 if (retval
!= ERROR_OK
)
264 retval
= target_read_u16(target
, breakpoint
->address
, &verify
);
265 if (retval
!= ERROR_OK
)
267 if (verify
!= arm7_9
->thumb_bkpt
) {
268 LOG_ERROR("Unable to set thumb software breakpoint at address %08" TARGET_PRIxADDR
269 " - check that memory is read/writable", breakpoint
->address
);
274 retval
= arm7_9_set_software_breakpoints(arm7_9
);
275 if (retval
!= ERROR_OK
)
278 arm7_9
->sw_breakpoint_count
++;
287 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
288 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
289 * will be updated. Otherwise, the software breakpoint will be restored to its
290 * original instruction if it hasn't already been modified.
292 * @param target Pointer to ARM7/9 target to unset the breakpoint from
293 * @param breakpoint Pointer to breakpoint to be unset
294 * @return For hardware breakpoints, this is the result of executing the JTAG
295 * queue. For software breakpoints, this will be the status of the
296 * required memory reads and writes
298 static int arm7_9_unset_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
300 int retval
= ERROR_OK
;
301 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
303 LOG_DEBUG("BPID: %" PRId32
", Address: 0x%08" TARGET_PRIxADDR
,
304 breakpoint
->unique_id
,
305 breakpoint
->address
);
307 if (!breakpoint
->set
) {
308 LOG_WARNING("breakpoint not set");
312 if (breakpoint
->type
== BKPT_HARD
) {
313 LOG_DEBUG("BPID: %" PRId32
" Releasing hw wp: %d",
314 breakpoint
->unique_id
,
316 if (breakpoint
->set
== 1) {
317 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
318 arm7_9
->wp0_used
= 0;
319 arm7_9
->wp_available
++;
320 } else if (breakpoint
->set
== 2) {
321 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
322 arm7_9
->wp1_used
= 0;
323 arm7_9
->wp_available
++;
325 retval
= jtag_execute_queue();
328 /* restore original instruction (kept in target endianness) */
329 if (breakpoint
->length
== 4) {
330 uint32_t current_instr
;
331 /* check that user program as not modified breakpoint instruction */
332 retval
= target_read_memory(target
,
333 breakpoint
->address
, 4, 1, (uint8_t *)¤t_instr
);
334 if (retval
!= ERROR_OK
)
336 current_instr
= target_buffer_get_u32(target
, (uint8_t *)¤t_instr
);
337 if (current_instr
== arm7_9
->arm_bkpt
) {
338 retval
= target_write_memory(target
,
339 breakpoint
->address
, 4, 1, breakpoint
->orig_instr
);
340 if (retval
!= ERROR_OK
)
345 uint16_t current_instr
;
346 /* check that user program as not modified breakpoint instruction */
347 retval
= target_read_memory(target
,
348 breakpoint
->address
, 2, 1, (uint8_t *)¤t_instr
);
349 if (retval
!= ERROR_OK
)
351 current_instr
= target_buffer_get_u16(target
, (uint8_t *)¤t_instr
);
352 if (current_instr
== arm7_9
->thumb_bkpt
) {
353 retval
= target_write_memory(target
,
354 breakpoint
->address
, 2, 1, breakpoint
->orig_instr
);
355 if (retval
!= ERROR_OK
)
360 if (--arm7_9
->sw_breakpoint_count
== 0) {
361 /* We have removed the last sw breakpoint, clear the hw breakpoint we used
363 if (arm7_9
->sw_breakpoints_added
== 1)
364 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[
365 EICE_W0_CONTROL_VALUE
], 0);
366 else if (arm7_9
->sw_breakpoints_added
== 2)
367 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[
368 EICE_W1_CONTROL_VALUE
], 0);
378 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
379 * dangling breakpoints and that the desired breakpoint can be added.
381 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
382 * @param breakpoint Pointer to the breakpoint to be added
383 * @return An error status if there is a problem adding the breakpoint or the
384 * result of setting the breakpoint
386 int arm7_9_add_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
388 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
390 if (arm7_9
->breakpoint_count
== 0) {
391 /* make sure we don't have any dangling breakpoints. This is vital upon
392 * GDB connect/disconnect
394 arm7_9_clear_watchpoints(arm7_9
);
397 if ((breakpoint
->type
== BKPT_HARD
) && (arm7_9
->wp_available
< 1)) {
398 LOG_INFO("no watchpoint unit available for hardware breakpoint");
399 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
402 if ((breakpoint
->length
!= 2) && (breakpoint
->length
!= 4)) {
403 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
404 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
407 if (breakpoint
->type
== BKPT_HARD
)
408 arm7_9_assign_wp(arm7_9
, breakpoint
);
410 arm7_9
->breakpoint_count
++;
412 return arm7_9_set_breakpoint(target
, breakpoint
);
416 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
417 * dangling breakpoints and updates available watchpoints if it is a hardware
420 * @param target Pointer to the target to have a breakpoint removed
421 * @param breakpoint Pointer to the breakpoint to be removed
422 * @return Error status if there was a problem unsetting the breakpoint or the
423 * watchpoints could not be cleared
425 int arm7_9_remove_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
427 int retval
= ERROR_OK
;
428 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
430 retval
= arm7_9_unset_breakpoint(target
, breakpoint
);
431 if (retval
!= ERROR_OK
)
434 if (breakpoint
->type
== BKPT_HARD
)
435 arm7_9
->wp_available
++;
437 arm7_9
->breakpoint_count
--;
438 if (arm7_9
->breakpoint_count
== 0) {
439 /* make sure we don't have any dangling breakpoints */
440 retval
= arm7_9_clear_watchpoints(arm7_9
);
441 if (retval
!= ERROR_OK
)
449 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
450 * considered a bug to call this function when there are no available watchpoint
453 * @param target Pointer to an ARM7/9 target to set a watchpoint on
454 * @param watchpoint Pointer to the watchpoint to be set
455 * @return Error status if watchpoint set fails or the result of executing the
458 static int arm7_9_set_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
460 int retval
= ERROR_OK
;
461 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
465 mask
= watchpoint
->length
- 1;
467 if (target
->state
!= TARGET_HALTED
) {
468 LOG_WARNING("target not halted");
469 return ERROR_TARGET_NOT_HALTED
;
472 if (watchpoint
->rw
== WPT_ACCESS
)
477 if (!arm7_9
->wp0_used
) {
478 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
],
479 watchpoint
->address
);
480 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
481 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
],
483 if (watchpoint
->mask
!= 0xffffffffu
)
484 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
],
486 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
],
487 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
488 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
],
489 EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
491 retval
= jtag_execute_queue();
492 if (retval
!= ERROR_OK
)
495 arm7_9
->wp0_used
= 2;
496 } else if (!arm7_9
->wp1_used
) {
497 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
],
498 watchpoint
->address
);
499 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
500 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
],
502 if (watchpoint
->mask
!= 0xffffffffu
)
503 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
],
505 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
],
506 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
507 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
],
508 EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
510 retval
= jtag_execute_queue();
511 if (retval
!= ERROR_OK
)
514 arm7_9
->wp1_used
= 2;
516 LOG_ERROR("BUG: no hardware comparator available");
524 * Unset an existing watchpoint and clear the used watchpoint unit.
526 * @param target Pointer to the target to have the watchpoint removed
527 * @param watchpoint Pointer to the watchpoint to be removed
528 * @return Error status while trying to unset the watchpoint or the result of
529 * executing the JTAG queue
531 static int arm7_9_unset_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
533 int retval
= ERROR_OK
;
534 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
536 if (target
->state
!= TARGET_HALTED
) {
537 LOG_WARNING("target not halted");
538 return ERROR_TARGET_NOT_HALTED
;
541 if (!watchpoint
->set
) {
542 LOG_WARNING("breakpoint not set");
546 if (watchpoint
->set
== 1) {
547 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
548 retval
= jtag_execute_queue();
549 if (retval
!= ERROR_OK
)
551 arm7_9
->wp0_used
= 0;
552 } else if (watchpoint
->set
== 2) {
553 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
554 retval
= jtag_execute_queue();
555 if (retval
!= ERROR_OK
)
557 arm7_9
->wp1_used
= 0;
565 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
566 * available, an error response is returned.
568 * @param target Pointer to the ARM7/9 target to add a watchpoint to
569 * @param watchpoint Pointer to the watchpoint to be added
570 * @return Error status while trying to add the watchpoint
572 int arm7_9_add_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
574 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
576 if (arm7_9
->wp_available
< 1)
577 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
579 if ((watchpoint
->length
!= 1) && (watchpoint
->length
!= 2) && (watchpoint
->length
!= 4))
580 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
582 arm7_9
->wp_available
--;
588 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
589 * the used watchpoint unit will be reopened.
591 * @param target Pointer to the target to remove a watchpoint from
592 * @param watchpoint Pointer to the watchpoint to be removed
593 * @return Result of trying to unset the watchpoint
595 int arm7_9_remove_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
597 int retval
= ERROR_OK
;
598 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
600 if (watchpoint
->set
) {
601 retval
= arm7_9_unset_watchpoint(target
, watchpoint
);
602 if (retval
!= ERROR_OK
)
606 arm7_9
->wp_available
++;
612 * Restarts the target by sending a RESTART instruction and moving the JTAG
613 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
614 * asserted by the processor.
616 * @param target Pointer to target to issue commands to
617 * @return Error status if there is a timeout or a problem while executing the
620 int arm7_9_execute_sys_speed(struct target
*target
)
623 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
624 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
625 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
627 /* set RESTART instruction */
628 if (arm7_9
->need_bypass_before_restart
) {
629 arm7_9
->need_bypass_before_restart
= 0;
630 retval
= arm_jtag_set_instr(jtag_info
->tap
, 0xf, NULL
, TAP_IDLE
);
631 if (retval
!= ERROR_OK
)
634 retval
= arm_jtag_set_instr(jtag_info
->tap
, 0x4, NULL
, TAP_IDLE
);
635 if (retval
!= ERROR_OK
)
638 int64_t then
= timeval_ms();
640 while (!(timeout
= ((timeval_ms()-then
) > 1000))) {
641 /* read debug status register */
642 embeddedice_read_reg(dbg_stat
);
643 retval
= jtag_execute_queue();
644 if (retval
!= ERROR_OK
)
646 if ((buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
647 && (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_SYSCOMP
, 1)))
649 if (debug_level
>= 3)
655 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32
"",
656 buf_get_u32(dbg_stat
->value
, 0, dbg_stat
->size
));
657 return ERROR_TARGET_TIMEOUT
;
664 * Restarts the target by sending a RESTART instruction and moving the JTAG
665 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
666 * waiting until they are.
668 * @param target Pointer to the target to issue commands to
669 * @return Always ERROR_OK
671 static int arm7_9_execute_fast_sys_speed(struct target
*target
)
674 static uint8_t check_value
[4], check_mask
[4];
676 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
677 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
678 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
681 /* set RESTART instruction */
682 if (arm7_9
->need_bypass_before_restart
) {
683 arm7_9
->need_bypass_before_restart
= 0;
684 retval
= arm_jtag_set_instr(jtag_info
->tap
, 0xf, NULL
, TAP_IDLE
);
685 if (retval
!= ERROR_OK
)
688 retval
= arm_jtag_set_instr(jtag_info
->tap
, 0x4, NULL
, TAP_IDLE
);
689 if (retval
!= ERROR_OK
)
693 /* check for DBGACK and SYSCOMP set (others don't care) */
695 /* NB! These are constants that must be available until after next jtag_execute() and
696 * we evaluate the values upon first execution in lieu of setting up these constants
697 * during early setup.
699 buf_set_u32(check_value
, 0, 32, 0x9);
700 buf_set_u32(check_mask
, 0, 32, 0x9);
704 /* read debug status register */
705 embeddedice_read_reg_w_check(dbg_stat
, check_value
, check_mask
);
711 * Get some data from the ARM7/9 target.
713 * @param target Pointer to the ARM7/9 target to read data from
714 * @param size The number of 32bit words to be read
715 * @param buffer Pointer to the buffer that will hold the data
716 * @return The result of receiving data from the Embedded ICE unit
718 int arm7_9_target_request_data(struct target
*target
, uint32_t size
, uint8_t *buffer
)
720 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
721 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
723 int retval
= ERROR_OK
;
726 data
= malloc(size
* (sizeof(uint32_t)));
728 retval
= embeddedice_receive(jtag_info
, data
, size
);
730 /* return the 32-bit ints in the 8-bit array */
731 for (i
= 0; i
< size
; i
++)
732 h_u32_to_le(buffer
+ (i
* 4), data
[i
]);
740 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
741 * target is running and the DCC control register has the W bit high, this will
742 * execute the request on the target.
744 * @param priv Void pointer expected to be a struct target pointer
745 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
746 * from the Embedded ICE unit
748 static int arm7_9_handle_target_request(void *priv
)
750 int retval
= ERROR_OK
;
751 struct target
*target
= priv
;
752 if (!target_was_examined(target
))
754 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
755 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
756 struct reg
*dcc_control
= &arm7_9
->eice_cache
->reg_list
[EICE_COMMS_CTRL
];
758 if (!target
->dbg_msg_enabled
)
761 if (target
->state
== TARGET_RUNNING
) {
762 /* read DCC control register */
763 embeddedice_read_reg(dcc_control
);
764 retval
= jtag_execute_queue();
765 if (retval
!= ERROR_OK
)
769 if (buf_get_u32(dcc_control
->value
, 1, 1) == 1) {
772 retval
= embeddedice_receive(jtag_info
, &request
, 1);
773 if (retval
!= ERROR_OK
)
775 retval
= target_request(target
, request
);
776 if (retval
!= ERROR_OK
)
785 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
786 * is manipulated to the right halted state based on its current state. This is
790 * <tr><th > State</th><th > Action</th></tr>
791 * <tr><td > TARGET_RUNNING | TARGET_RESET</td>
792 * <td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
793 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
794 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
795 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
798 * If the target does not end up in the halted state, a warning is produced. If
799 * DBGACK is cleared, then the target is expected to either be running or
802 * @param target Pointer to the ARM7/9 target to poll
803 * @return ERROR_OK or an error status if a command fails
805 int arm7_9_poll(struct target
*target
)
808 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
809 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
811 /* read debug status register */
812 embeddedice_read_reg(dbg_stat
);
813 retval
= jtag_execute_queue();
814 if (retval
!= ERROR_OK
)
817 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1)) {
818 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, *32));*/
819 if (target
->state
== TARGET_UNKNOWN
) {
820 /* Starting OpenOCD with target in debug-halt */
821 target
->state
= TARGET_RUNNING
;
822 LOG_DEBUG("DBGACK already set during server startup.");
824 if ((target
->state
== TARGET_RUNNING
) || (target
->state
== TARGET_RESET
)) {
825 target
->state
= TARGET_HALTED
;
827 retval
= arm7_9_debug_entry(target
);
828 if (retval
!= ERROR_OK
)
831 if (arm_semihosting(target
, &retval
) != 0)
834 retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
);
835 if (retval
!= ERROR_OK
)
838 if (target
->state
== TARGET_DEBUG_RUNNING
) {
839 target
->state
= TARGET_HALTED
;
840 retval
= arm7_9_debug_entry(target
);
841 if (retval
!= ERROR_OK
)
844 retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_HALTED
);
845 if (retval
!= ERROR_OK
)
848 if (target
->state
!= TARGET_HALTED
)
850 "DBGACK set, but the target did not end up in the halted state %d",
853 if (target
->state
!= TARGET_DEBUG_RUNNING
)
854 target
->state
= TARGET_RUNNING
;
861 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
862 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
863 * affected) completely stop the JTAG clock while the core is held in reset
864 * (SRST). It isn't possible to program the halt condition once reset is
865 * asserted, hence a hook that allows the target to set up its reset-halt
866 * condition is setup prior to asserting reset.
868 * @param target Pointer to an ARM7/9 target to assert reset on
869 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
871 int arm7_9_assert_reset(struct target
*target
)
873 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
874 enum reset_types jtag_reset_config
= jtag_get_reset_config();
875 bool use_event
= false;
877 /* TODO: apply hw reset signal in not examined state */
878 if (!(target_was_examined(target
))) {
879 LOG_WARNING("Reset is not asserted because the target is not examined.");
880 LOG_WARNING("Use a reset button or power cycle the target.");
881 return ERROR_TARGET_NOT_EXAMINED
;
884 LOG_DEBUG("target->state: %s", target_state_name(target
));
886 if (target_has_event_action(target
, TARGET_EVENT_RESET_ASSERT
))
888 else if (!(jtag_reset_config
& RESET_HAS_SRST
)) {
889 LOG_ERROR("%s: how to reset?", target_name(target
));
893 /* At this point trst has been asserted/deasserted once. We would
894 * like to program EmbeddedICE while SRST is asserted, instead of
895 * depending on SRST to leave that module alone. However, many CPUs
896 * gate the JTAG clock while SRST is asserted; or JTAG may need
897 * clock stability guarantees (adaptive clocking might help).
899 * So we assume JTAG access during SRST is off the menu unless it's
900 * been specifically enabled.
902 bool srst_asserted
= false;
904 if (!use_event
&& !(jtag_reset_config
& RESET_SRST_PULLS_TRST
)
905 && (jtag_reset_config
& RESET_SRST_NO_GATING
)) {
906 jtag_add_reset(0, 1);
907 srst_asserted
= true;
910 if (target
->reset_halt
) {
912 * For targets that don't support communication while SRST is
913 * asserted, we need to set up the reset vector catch first.
915 * When we use TRST+SRST and that's equivalent to a power-up
916 * reset, these settings may well be reset anyway; so setting
917 * them here won't matter.
919 if (arm7_9
->has_vector_catch
) {
920 /* program vector catch register to catch reset */
921 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
], 0x1);
923 /* extra runtest added as issues were found with
924 * certain ARM9 cores (maybe more) - AT91SAM9260
927 jtag_add_runtest(1, TAP_IDLE
);
929 /* program watchpoint unit to match on reset vector
932 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], 0x0);
933 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0x3);
934 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
935 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
936 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
941 target_handle_event(target
, TARGET_EVENT_RESET_ASSERT
);
943 /* If we use SRST ... we'd like to issue just SRST, but the
944 * board or chip may be set up so we have to assert TRST as
945 * well. On some chips that combination is equivalent to a
946 * power-up reset, and generally clobbers EICE state.
948 if (jtag_reset_config
& RESET_SRST_PULLS_TRST
)
949 jtag_add_reset(1, 1);
950 else if (!srst_asserted
)
951 jtag_add_reset(0, 1);
952 jtag_add_sleep(50000);
955 target
->state
= TARGET_RESET
;
956 register_cache_invalidate(arm7_9
->arm
.core_cache
);
958 /* REVISIT why isn't standard debug entry logic sufficient?? */
959 if (target
->reset_halt
&& (!(jtag_reset_config
& RESET_SRST_PULLS_TRST
) || use_event
)) {
960 /* debug entry was prepared above */
961 target
->debug_reason
= DBG_REASON_DBGRQ
;
968 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
969 * and the target is being reset into a halt, a warning will be triggered
970 * because it is not possible to reset into a halted mode in this case. The
971 * target is halted using the target's functions.
973 * @param target Pointer to the target to have the reset deasserted
974 * @return ERROR_OK or an error from polling or halting the target
976 int arm7_9_deassert_reset(struct target
*target
)
978 int retval
= ERROR_OK
;
979 LOG_DEBUG("target->state: %s", target_state_name(target
));
981 /* deassert reset lines */
982 jtag_add_reset(0, 0);
984 /* In case polling is disabled, we need to examine the
985 * target and poll here for this target to work correctly.
987 * Otherwise, e.g. halt will fail afterwards with bogus
988 * error messages as halt will believe that reset is
991 retval
= target_examine_one(target
);
992 if (retval
!= ERROR_OK
)
995 retval
= target_poll(target
);
996 if (retval
!= ERROR_OK
)
999 enum reset_types jtag_reset_config
= jtag_get_reset_config();
1000 if (target
->reset_halt
&& (jtag_reset_config
& RESET_SRST_PULLS_TRST
) != 0) {
1002 "srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1003 retval
= target_halt(target
);
1004 if (retval
!= ERROR_OK
)
1011 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1012 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1013 * vector catch was used, it is restored. Otherwise, the control value is
1014 * restored and the watchpoint unit is restored if it was in use.
1016 * @param target Pointer to the ARM7/9 target to have halt cleared
1017 * @return Always ERROR_OK
1019 static int arm7_9_clear_halt(struct target
*target
)
1021 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1022 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1024 /* we used DBGRQ only if we didn't come out of reset */
1025 if (!arm7_9
->debug_entry_from_reset
&& arm7_9
->use_dbgrq
) {
1026 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1028 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1029 embeddedice_store_reg(dbg_ctrl
);
1031 if (arm7_9
->debug_entry_from_reset
&& arm7_9
->has_vector_catch
) {
1032 /* if we came out of reset, and vector catch is supported, we used
1033 * vector catch to enter debug state
1034 * restore the register in that case
1036 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
]);
1038 /* restore registers if watchpoint unit 0 was in use
1040 if (arm7_9
->wp0_used
) {
1041 if (arm7_9
->debug_entry_from_reset
)
1042 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[
1043 EICE_W0_ADDR_VALUE
]);
1044 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[
1045 EICE_W0_ADDR_MASK
]);
1046 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[
1047 EICE_W0_DATA_MASK
]);
1048 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[
1049 EICE_W0_CONTROL_MASK
]);
1051 /* control value always has to be restored, as it was either disabled,
1052 * or enabled with possibly different bits
1054 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
1062 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1063 * and then there is a wait until the processor shows the halt. This wait can
1064 * timeout and results in an error being returned. The software reset involves
1065 * clearing the halt, updating the debug control register, changing to ARM mode,
1066 * reset of the program counter, and reset of all of the registers.
1068 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1069 * @return Error status if any of the commands fail, otherwise ERROR_OK
1071 int arm7_9_soft_reset_halt(struct target
*target
)
1073 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1074 struct arm
*arm
= &arm7_9
->arm
;
1075 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1076 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1080 /* FIX!!! replace some of this code with tcl commands
1082 * halt # the halt command is synchronous
1083 * armv4_5 core_state arm
1087 retval
= target_halt(target
);
1088 if (retval
!= ERROR_OK
)
1091 long long then
= timeval_ms();
1093 while (!(timeout
= ((timeval_ms()-then
) > 1000))) {
1094 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1) != 0)
1096 embeddedice_read_reg(dbg_stat
);
1097 retval
= jtag_execute_queue();
1098 if (retval
!= ERROR_OK
)
1100 if (debug_level
>= 3)
1106 LOG_ERROR("Failed to halt CPU after 1 sec");
1107 return ERROR_TARGET_TIMEOUT
;
1109 target
->state
= TARGET_HALTED
;
1111 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1112 * ensure that DBGRQ is cleared
1114 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1115 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1116 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1117 embeddedice_store_reg(dbg_ctrl
);
1119 retval
= arm7_9_clear_halt(target
);
1120 if (retval
!= ERROR_OK
)
1123 /* if the target is in Thumb state, change to ARM state */
1124 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1)) {
1125 uint32_t r0_thumb
, pc_thumb
;
1126 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1127 /* Entered debug from Thumb mode */
1128 arm
->core_state
= ARM_STATE_THUMB
;
1129 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1132 /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1134 /* all register content is now invalid */
1135 register_cache_invalidate(arm
->core_cache
);
1137 /* SVC, ARM state, IRQ and FIQ disabled */
1140 cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 32);
1143 arm_set_cpsr(arm
, cpsr
);
1144 arm
->cpsr
->dirty
= 1;
1146 /* start fetching from 0x0 */
1147 buf_set_u32(arm
->pc
->value
, 0, 32, 0x0);
1151 /* reset registers */
1152 for (i
= 0; i
<= 14; i
++) {
1153 struct reg
*r
= arm_reg_current(arm
, i
);
1155 buf_set_u32(r
->value
, 0, 32, 0xffffffff);
1160 retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
);
1161 if (retval
!= ERROR_OK
)
1168 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1169 * line or by programming a watchpoint to trigger on any address. It is
1170 * considered a bug to call this function while the target is in the
1171 * TARGET_RESET state.
1173 * @param target Pointer to the ARM7/9 target to be halted
1174 * @return Always ERROR_OK
1176 int arm7_9_halt(struct target
*target
)
1178 if (target
->state
== TARGET_RESET
) {
1180 "BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1184 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1185 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1187 LOG_DEBUG("target->state: %s",
1188 target_state_name(target
));
1190 if (target
->state
== TARGET_HALTED
) {
1191 LOG_DEBUG("target was already halted");
1195 if (target
->state
== TARGET_UNKNOWN
)
1196 LOG_WARNING("target was in unknown state when halt was requested");
1198 if (arm7_9
->use_dbgrq
) {
1199 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1201 if (arm7_9
->set_special_dbgrq
)
1202 arm7_9
->set_special_dbgrq(target
);
1204 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 1);
1205 embeddedice_store_reg(dbg_ctrl
);
1208 /* program watchpoint unit to match on any address
1210 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1211 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1212 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
],
1213 EICE_W_CTRL_ENABLE
);
1214 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
],
1215 ~EICE_W_CTRL_nOPC
& 0xff);
1218 target
->debug_reason
= DBG_REASON_DBGRQ
;
1224 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1225 * ARM. The JTAG queue is then executed and the reason for debug entry is
1226 * examined. Once done, the target is verified to be halted and the processor
1227 * is forced into ARM mode. The core registers are saved for the current core
1228 * mode and the program counter (register 15) is updated as needed. The core
1229 * registers and CPSR and SPSR are saved for restoration later.
1231 * @param target Pointer to target that is entering debug mode
1232 * @return Error code if anything fails, otherwise ERROR_OK
1234 static int arm7_9_debug_entry(struct target
*target
)
1237 uint32_t context
[16];
1238 uint32_t *context_p
[16];
1239 uint32_t r0_thumb
, pc_thumb
;
1240 uint32_t cpsr
, cpsr_mask
= 0;
1242 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1243 struct arm
*arm
= &arm7_9
->arm
;
1244 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1245 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1247 #ifdef _DEBUG_ARM7_9_
1251 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1252 * ensure that DBGRQ is cleared
1254 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1255 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1256 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1257 embeddedice_store_reg(dbg_ctrl
);
1259 retval
= arm7_9_clear_halt(target
);
1260 if (retval
!= ERROR_OK
)
1263 retval
= jtag_execute_queue();
1264 if (retval
!= ERROR_OK
)
1267 retval
= arm7_9
->examine_debug_reason(target
);
1268 if (retval
!= ERROR_OK
)
1271 if (target
->state
!= TARGET_HALTED
) {
1272 LOG_WARNING("target not halted");
1273 return ERROR_TARGET_NOT_HALTED
;
1276 /* if the target is in Thumb state, change to ARM state */
1277 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1)) {
1278 LOG_DEBUG("target entered debug from Thumb state");
1279 /* Entered debug from Thumb mode */
1280 arm
->core_state
= ARM_STATE_THUMB
;
1282 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1283 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1284 ", pc_thumb: 0x%8.8" PRIx32
, r0_thumb
, pc_thumb
);
1285 } else if (buf_get_u32(dbg_stat
->value
, 5, 1)) {
1286 /* \todo Get some vaguely correct handling of Jazelle, if
1287 * anyone ever uses it and full info becomes available.
1288 * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1289 * B.7.3 for the reverse. That'd be the bare minimum...
1291 LOG_DEBUG("target entered debug from Jazelle state");
1292 arm
->core_state
= ARM_STATE_JAZELLE
;
1293 cpsr_mask
= 1 << 24;
1294 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1296 LOG_DEBUG("target entered debug from ARM state");
1297 /* Entered debug from ARM mode */
1298 arm
->core_state
= ARM_STATE_ARM
;
1301 for (i
= 0; i
< 16; i
++)
1302 context_p
[i
] = &context
[i
];
1303 /* save core registers (r0 - r15 of current core mode) */
1304 arm7_9
->read_core_regs(target
, 0xffff, context_p
);
1306 arm7_9
->read_xpsr(target
, &cpsr
, 0);
1308 retval
= jtag_execute_queue();
1309 if (retval
!= ERROR_OK
)
1312 /* Sync our CPSR copy with J or T bits EICE reported, but
1313 * which we then erased by putting the core into ARM mode.
1315 arm_set_cpsr(arm
, cpsr
| cpsr_mask
);
1317 if (!is_arm_mode(arm
->core_mode
)) {
1318 target
->state
= TARGET_UNKNOWN
;
1319 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1320 return ERROR_TARGET_FAILURE
;
1323 LOG_DEBUG("target entered debug state in %s mode",
1324 arm_mode_name(arm
->core_mode
));
1326 if (arm
->core_state
== ARM_STATE_THUMB
) {
1327 LOG_DEBUG("thumb state, applying fixups");
1328 context
[0] = r0_thumb
;
1329 context
[15] = pc_thumb
;
1330 } else if (arm
->core_state
== ARM_STATE_ARM
) {
1331 /* adjust value stored by STM */
1332 context
[15] -= 3 * 4;
1335 if ((target
->debug_reason
!= DBG_REASON_DBGRQ
) || (!arm7_9
->use_dbgrq
))
1336 context
[15] -= 3 * ((arm
->core_state
== ARM_STATE_ARM
) ? 4 : 2);
1338 context
[15] -= arm7_9
->dbgreq_adjust_pc
*
1339 ((arm
->core_state
== ARM_STATE_ARM
) ? 4 : 2);
1341 for (i
= 0; i
<= 15; i
++) {
1342 struct reg
*r
= arm_reg_current(arm
, i
);
1344 LOG_DEBUG("r%i: 0x%8.8" PRIx32
"", i
, context
[i
]);
1346 buf_set_u32(r
->value
, 0, 32, context
[i
]);
1347 /* r0 and r15 (pc) have to be restored later */
1348 r
->dirty
= (i
== 0) || (i
== 15);
1352 LOG_DEBUG("entered debug state at PC 0x%" PRIx32
"", context
[15]);
1354 /* exceptions other than USR & SYS have a saved program status register */
1357 arm7_9
->read_xpsr(target
, &spsr
, 1);
1358 retval
= jtag_execute_queue();
1359 if (retval
!= ERROR_OK
)
1361 buf_set_u32(arm
->spsr
->value
, 0, 32, spsr
);
1362 arm
->spsr
->dirty
= 0;
1363 arm
->spsr
->valid
= 1;
1366 retval
= jtag_execute_queue();
1367 if (retval
!= ERROR_OK
)
1370 if (arm7_9
->post_debug_entry
) {
1371 retval
= arm7_9
->post_debug_entry(target
);
1372 if (retval
!= ERROR_OK
)
1380 * Validate the full context for an ARM7/9 target in all processor modes. If
1381 * there are any invalid registers for the target, they will all be read. This
1384 * @param target Pointer to the ARM7/9 target to capture the full context from
1385 * @return Error if the target is not halted, has an invalid core mode, or if
1386 * the JTAG queue fails to execute
1388 static int arm7_9_full_context(struct target
*target
)
1392 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1393 struct arm
*arm
= &arm7_9
->arm
;
1397 if (target
->state
!= TARGET_HALTED
) {
1398 LOG_WARNING("target not halted");
1399 return ERROR_TARGET_NOT_HALTED
;
1402 if (!is_arm_mode(arm
->core_mode
)) {
1403 LOG_ERROR("not a valid arm core mode - communication failure?");
1407 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1408 * SYS shares registers with User, so we don't touch SYS
1410 for (i
= 0; i
< 6; i
++) {
1412 uint32_t *reg_p
[16];
1416 /* check if there are invalid registers in the current mode
1418 for (j
= 0; j
<= 16; j
++) {
1419 if (ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1426 /* change processor mode (and mask T bit) */
1427 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 8)
1429 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1431 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1433 for (j
= 0; j
< 15; j
++) {
1434 if (ARMV4_5_CORE_REG_MODE(arm
->core_cache
,
1435 armv4_5_number_to_mode(i
), j
).valid
== 0) {
1436 reg_p
[j
] = (uint32_t *)ARMV4_5_CORE_REG_MODE(
1438 armv4_5_number_to_mode(i
),
1441 ARMV4_5_CORE_REG_MODE(arm
->core_cache
,
1442 armv4_5_number_to_mode(i
),
1444 ARMV4_5_CORE_REG_MODE(arm
->core_cache
,
1445 armv4_5_number_to_mode(i
),
1450 /* if only the PSR is invalid, mask is all zeroes */
1452 arm7_9
->read_core_regs(target
, mask
, reg_p
);
1454 /* check if the PSR has to be read */
1455 if (ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
),
1457 arm7_9
->read_xpsr(target
,
1458 (uint32_t *)ARMV4_5_CORE_REG_MODE(arm
->core_cache
,
1459 armv4_5_number_to_mode(i
), 16).value
, 1);
1460 ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
),
1462 ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
),
1468 /* restore processor mode (mask T bit) */
1469 arm7_9
->write_xpsr_im8(target
,
1470 buf_get_u32(arm
->cpsr
->value
, 0, 8) & ~0x20, 0, 0);
1472 retval
= jtag_execute_queue();
1473 if (retval
!= ERROR_OK
)
1479 * Restore the processor context on an ARM7/9 target. The full processor
1480 * context is analyzed to see if any of the registers are dirty on this end, but
1481 * have a valid new value. If this is the case, the processor is changed to the
1482 * appropriate mode and the new register values are written out to the
1483 * processor. If there happens to be a dirty register with an invalid value, an
1484 * error will be logged.
1486 * @param target Pointer to the ARM7/9 target to have its context restored
1487 * @return Error status if the target is not halted or the core mode in the
1488 * armv4_5 struct is invalid.
1490 static int arm7_9_restore_context(struct target
*target
)
1492 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1493 struct arm
*arm
= &arm7_9
->arm
;
1495 enum arm_mode current_mode
= arm
->core_mode
;
1502 if (target
->state
!= TARGET_HALTED
) {
1503 LOG_WARNING("target not halted");
1504 return ERROR_TARGET_NOT_HALTED
;
1507 if (arm7_9
->pre_restore_context
)
1508 arm7_9
->pre_restore_context(target
);
1510 if (!is_arm_mode(arm
->core_mode
)) {
1511 LOG_ERROR("not a valid arm core mode - communication failure?");
1515 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1516 * SYS shares registers with User, so we don't touch SYS
1518 for (i
= 0; i
< 6; i
++) {
1519 LOG_DEBUG("examining %s mode",
1520 arm_mode_name(arm
->core_mode
));
1523 /* check if there are dirty registers in the current mode
1525 for (j
= 0; j
<= 16; j
++) {
1526 reg
= &ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
), j
);
1527 if (reg
->dirty
== 1) {
1528 if (reg
->valid
== 1) {
1530 LOG_DEBUG("examining dirty reg: %s", reg
->name
);
1531 struct arm_reg
*reg_arch_info
;
1532 reg_arch_info
= reg
->arch_info
;
1533 if ((reg_arch_info
->mode
!= ARM_MODE_ANY
)
1534 && (reg_arch_info
->mode
!= current_mode
)
1535 && !((reg_arch_info
->mode
== ARM_MODE_USR
)
1536 && (arm
->core_mode
== ARM_MODE_SYS
))
1537 && !((reg_arch_info
->mode
== ARM_MODE_SYS
)
1538 && (arm
->core_mode
== ARM_MODE_USR
))) {
1540 LOG_DEBUG("require mode change");
1543 LOG_ERROR("BUG: dirty register '%s', but no valid data",
1549 uint32_t mask
= 0x0;
1556 /* change processor mode (mask T bit) */
1557 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
,
1559 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1561 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1562 current_mode
= armv4_5_number_to_mode(i
);
1565 for (j
= 0; j
<= 14; j
++) {
1566 reg
= &ARMV4_5_CORE_REG_MODE(arm
->core_cache
,
1567 armv4_5_number_to_mode(i
),
1570 if (reg
->dirty
== 1) {
1571 regs
[j
] = buf_get_u32(reg
->value
, 0, 32);
1576 LOG_DEBUG("writing register %i mode %s "
1577 "with value 0x%8.8" PRIx32
, j
,
1578 arm_mode_name(arm
->core_mode
),
1584 arm7_9
->write_core_regs(target
, mask
, regs
);
1587 &ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(
1589 struct arm_reg
*reg_arch_info
;
1590 reg_arch_info
= reg
->arch_info
;
1591 if ((reg
->dirty
) && (reg_arch_info
->mode
!= ARM_MODE_ANY
)) {
1592 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32
"",
1594 buf_get_u32(reg
->value
, 0, 32));
1595 arm7_9
->write_xpsr(target
, buf_get_u32(reg
->value
, 0, 32), 1);
1600 if (!arm
->cpsr
->dirty
&& (arm
->core_mode
!= current_mode
)) {
1601 /* restore processor mode (mask T bit) */
1604 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 8) & 0xE0;
1605 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1607 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr
));
1608 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1610 } else if (arm
->cpsr
->dirty
) {
1611 /* CPSR has been changed, full restore necessary (mask T bit) */
1612 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32
,
1613 buf_get_u32(arm
->cpsr
->value
, 0, 32));
1614 arm7_9
->write_xpsr(target
,
1615 buf_get_u32(arm
->cpsr
->value
, 0, 32)
1617 arm
->cpsr
->dirty
= 0;
1618 arm
->cpsr
->valid
= 1;
1622 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32
,
1623 buf_get_u32(arm
->pc
->value
, 0, 32));
1624 arm7_9
->write_pc(target
, buf_get_u32(arm
->pc
->value
, 0, 32));
1631 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1632 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1635 * @param target Pointer to the ARM7/9 target to be restarted
1636 * @return Result of executing the JTAG queue
1638 static int arm7_9_restart_core(struct target
*target
)
1640 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1641 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
1644 /* set RESTART instruction */
1645 if (arm7_9
->need_bypass_before_restart
) {
1646 arm7_9
->need_bypass_before_restart
= 0;
1648 retval
= arm_jtag_set_instr(jtag_info
->tap
, 0xf, NULL
, TAP_IDLE
);
1649 if (retval
!= ERROR_OK
)
1652 retval
= arm_jtag_set_instr(jtag_info
->tap
, 0x4, NULL
, TAP_IDLE
);
1653 if (retval
!= ERROR_OK
)
1656 jtag_add_runtest(1, TAP_IDLE
);
1657 return jtag_execute_queue();
1661 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1662 * iterated through and are set on the target if they aren't already set.
1664 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1666 static void arm7_9_enable_watchpoints(struct target
*target
)
1668 struct watchpoint
*watchpoint
= target
->watchpoints
;
1670 while (watchpoint
) {
1671 if (watchpoint
->set
== 0)
1672 arm7_9_set_watchpoint(target
, watchpoint
);
1673 watchpoint
= watchpoint
->next
;
1678 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1679 * iterated through and are set on the target.
1681 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1683 static void arm7_9_enable_breakpoints(struct target
*target
)
1685 struct breakpoint
*breakpoint
= target
->breakpoints
;
1687 /* set any pending breakpoints */
1688 while (breakpoint
) {
1689 arm7_9_set_breakpoint(target
, breakpoint
);
1690 breakpoint
= breakpoint
->next
;
1694 int arm7_9_resume(struct target
*target
,
1696 target_addr_t address
,
1697 int handle_breakpoints
,
1698 int debug_execution
)
1700 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1701 struct arm
*arm
= &arm7_9
->arm
;
1702 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1703 int err
, retval
= ERROR_OK
;
1707 if (target
->state
!= TARGET_HALTED
) {
1708 LOG_WARNING("target not halted");
1709 return ERROR_TARGET_NOT_HALTED
;
1712 if (!debug_execution
)
1713 target_free_all_working_areas(target
);
1715 /* current = 1: continue on current pc, otherwise continue at <address> */
1717 buf_set_u32(arm
->pc
->value
, 0, 32, address
);
1719 uint32_t current_pc
;
1720 current_pc
= buf_get_u32(arm
->pc
->value
, 0, 32);
1722 /* the front-end may request us not to handle breakpoints */
1723 if (handle_breakpoints
) {
1724 struct breakpoint
*breakpoint
;
1725 breakpoint
= breakpoint_find(target
,
1726 buf_get_u32(arm
->pc
->value
, 0, 32));
1727 if (breakpoint
!= NULL
) {
1728 LOG_DEBUG("unset breakpoint at 0x%8.8" TARGET_PRIxADDR
" (id: %" PRId32
,
1729 breakpoint
->address
,
1730 breakpoint
->unique_id
);
1731 retval
= arm7_9_unset_breakpoint(target
, breakpoint
);
1732 if (retval
!= ERROR_OK
)
1735 /* calculate PC of next instruction */
1737 retval
= arm_simulate_step(target
, &next_pc
);
1738 if (retval
!= ERROR_OK
) {
1739 uint32_t current_opcode
;
1740 target_read_u32(target
, current_pc
, ¤t_opcode
);
1742 "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"",
1747 LOG_DEBUG("enable single-step");
1748 arm7_9
->enable_single_step(target
, next_pc
);
1750 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
1752 retval
= arm7_9_restore_context(target
);
1753 if (retval
!= ERROR_OK
)
1756 if (arm
->core_state
== ARM_STATE_ARM
)
1757 arm7_9
->branch_resume(target
);
1758 else if (arm
->core_state
== ARM_STATE_THUMB
)
1759 arm7_9
->branch_resume_thumb(target
);
1761 LOG_ERROR("unhandled core state");
1765 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1766 embeddedice_write_reg(dbg_ctrl
,
1767 buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1768 err
= arm7_9_execute_sys_speed(target
);
1770 LOG_DEBUG("disable single-step");
1771 arm7_9
->disable_single_step(target
);
1773 if (err
!= ERROR_OK
) {
1774 retval
= arm7_9_set_breakpoint(target
, breakpoint
);
1775 if (retval
!= ERROR_OK
)
1777 target
->state
= TARGET_UNKNOWN
;
1781 retval
= arm7_9_debug_entry(target
);
1782 if (retval
!= ERROR_OK
)
1784 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32
,
1785 buf_get_u32(arm
->pc
->value
, 0, 32));
1787 LOG_DEBUG("set breakpoint at 0x%8.8" TARGET_PRIxADDR
"", breakpoint
->address
);
1788 retval
= arm7_9_set_breakpoint(target
, breakpoint
);
1789 if (retval
!= ERROR_OK
)
1794 /* enable any pending breakpoints and watchpoints */
1795 arm7_9_enable_breakpoints(target
);
1796 arm7_9_enable_watchpoints(target
);
1798 retval
= arm7_9_restore_context(target
);
1799 if (retval
!= ERROR_OK
)
1802 if (arm
->core_state
== ARM_STATE_ARM
)
1803 arm7_9
->branch_resume(target
);
1804 else if (arm
->core_state
== ARM_STATE_THUMB
)
1805 arm7_9
->branch_resume_thumb(target
);
1807 LOG_ERROR("unhandled core state");
1811 /* deassert DBGACK and INTDIS */
1812 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1813 /* INTDIS only when we really resume, not during debug execution */
1814 if (!debug_execution
)
1815 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 0);
1816 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1818 retval
= arm7_9_restart_core(target
);
1819 if (retval
!= ERROR_OK
)
1822 target
->debug_reason
= DBG_REASON_NOTHALTED
;
1824 if (!debug_execution
) {
1825 /* registers are now invalid */
1826 register_cache_invalidate(arm
->core_cache
);
1827 target
->state
= TARGET_RUNNING
;
1828 retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
);
1829 if (retval
!= ERROR_OK
)
1832 target
->state
= TARGET_DEBUG_RUNNING
;
1833 retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_RESUMED
);
1834 if (retval
!= ERROR_OK
)
1838 LOG_DEBUG("target resumed");
1843 void arm7_9_enable_eice_step(struct target
*target
, uint32_t next_pc
)
1845 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1846 struct arm
*arm
= &arm7_9
->arm
;
1847 uint32_t current_pc
;
1848 current_pc
= buf_get_u32(arm
->pc
->value
, 0, 32);
1850 if (next_pc
!= current_pc
) {
1851 /* setup an inverse breakpoint on the current PC
1852 * - comparator 1 matches the current address
1853 * - rangeout from comparator 1 is connected to comparator 0 rangein
1854 * - comparator 0 matches any address, as long as rangein is low */
1855 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1856 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1857 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
],
1858 EICE_W_CTRL_ENABLE
);
1859 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
],
1860 ~(EICE_W_CTRL_RANGE
| EICE_W_CTRL_nOPC
) & 0xff);
1861 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
],
1863 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1864 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1865 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
1866 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
],
1867 ~EICE_W_CTRL_nOPC
& 0xff);
1869 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1870 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1871 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
1872 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff);
1873 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], next_pc
);
1874 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1875 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1876 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
],
1877 EICE_W_CTRL_ENABLE
);
1878 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
],
1879 ~EICE_W_CTRL_nOPC
& 0xff);
1883 void arm7_9_disable_eice_step(struct target
*target
)
1885 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1887 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
1888 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
1889 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
1890 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
1891 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
]);
1892 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
]);
1893 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
]);
1894 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
]);
1895 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
]);
1898 int arm7_9_step(struct target
*target
, int current
, target_addr_t address
, int handle_breakpoints
)
1900 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1901 struct arm
*arm
= &arm7_9
->arm
;
1902 struct breakpoint
*breakpoint
= NULL
;
1905 if (target
->state
!= TARGET_HALTED
) {
1906 LOG_WARNING("target not halted");
1907 return ERROR_TARGET_NOT_HALTED
;
1910 /* current = 1: continue on current pc, otherwise continue at <address> */
1912 buf_set_u32(arm
->pc
->value
, 0, 32, address
);
1914 uint32_t current_pc
= buf_get_u32(arm
->pc
->value
, 0, 32);
1916 /* the front-end may request us not to handle breakpoints */
1917 if (handle_breakpoints
)
1918 breakpoint
= breakpoint_find(target
, current_pc
);
1919 if (breakpoint
!= NULL
) {
1920 retval
= arm7_9_unset_breakpoint(target
, breakpoint
);
1921 if (retval
!= ERROR_OK
)
1925 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
1927 /* calculate PC of next instruction */
1929 retval
= arm_simulate_step(target
, &next_pc
);
1930 if (retval
!= ERROR_OK
) {
1931 uint32_t current_opcode
;
1932 target_read_u32(target
, current_pc
, ¤t_opcode
);
1934 "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"",
1939 retval
= arm7_9_restore_context(target
);
1940 if (retval
!= ERROR_OK
)
1943 arm7_9
->enable_single_step(target
, next_pc
);
1945 if (arm
->core_state
== ARM_STATE_ARM
)
1946 arm7_9
->branch_resume(target
);
1947 else if (arm
->core_state
== ARM_STATE_THUMB
)
1948 arm7_9
->branch_resume_thumb(target
);
1950 LOG_ERROR("unhandled core state");
1954 retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
);
1955 if (retval
!= ERROR_OK
)
1958 err
= arm7_9_execute_sys_speed(target
);
1959 arm7_9
->disable_single_step(target
);
1961 /* registers are now invalid */
1962 register_cache_invalidate(arm
->core_cache
);
1964 if (err
!= ERROR_OK
)
1965 target
->state
= TARGET_UNKNOWN
;
1967 retval
= arm7_9_debug_entry(target
);
1968 if (retval
!= ERROR_OK
)
1970 retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
);
1971 if (retval
!= ERROR_OK
)
1973 LOG_DEBUG("target stepped");
1977 retval
= arm7_9_set_breakpoint(target
, breakpoint
);
1978 if (retval
!= ERROR_OK
)
1985 static int arm7_9_read_core_reg(struct target
*target
, struct reg
*r
,
1986 int num
, enum arm_mode mode
)
1988 uint32_t *reg_p
[16];
1990 struct arm_reg
*areg
= r
->arch_info
;
1991 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1992 struct arm
*arm
= &arm7_9
->arm
;
1994 if (!is_arm_mode(arm
->core_mode
))
1996 if ((num
< 0) || (num
> 16))
1997 return ERROR_COMMAND_SYNTAX_ERROR
;
1999 if ((mode
!= ARM_MODE_ANY
) && (mode
!= arm
->core_mode
)
2000 && (areg
->mode
!= ARM_MODE_ANY
)) {
2003 /* change processor mode (mask T bit) */
2004 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 8) & 0xE0;
2007 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2011 if ((num
>= 0) && (num
<= 15)) {
2012 /* read a normal core register */
2013 reg_p
[num
] = &value
;
2015 arm7_9
->read_core_regs(target
, 1 << num
, reg_p
);
2017 /* read a program status register
2018 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2020 arm7_9
->read_xpsr(target
, &value
, areg
->mode
!= ARM_MODE_ANY
);
2023 retval
= jtag_execute_queue();
2024 if (retval
!= ERROR_OK
)
2029 buf_set_u32(r
->value
, 0, 32, value
);
2031 if ((mode
!= ARM_MODE_ANY
) && (mode
!= arm
->core_mode
)
2032 && (areg
->mode
!= ARM_MODE_ANY
)) {
2033 /* restore processor mode (mask T bit) */
2034 arm7_9
->write_xpsr_im8(target
,
2035 buf_get_u32(arm
->cpsr
->value
, 0, 8) & ~0x20, 0, 0);
2041 static int arm7_9_write_core_reg(struct target
*target
, struct reg
*r
,
2042 int num
, enum arm_mode mode
, uint8_t *value
)
2045 struct arm_reg
*areg
= r
->arch_info
;
2046 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2047 struct arm
*arm
= &arm7_9
->arm
;
2049 if (!is_arm_mode(arm
->core_mode
))
2051 if ((num
< 0) || (num
> 16))
2052 return ERROR_COMMAND_SYNTAX_ERROR
;
2054 if ((mode
!= ARM_MODE_ANY
) && (mode
!= arm
->core_mode
)
2055 && (areg
->mode
!= ARM_MODE_ANY
)) {
2058 /* change processor mode (mask T bit) */
2059 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 8) & 0xE0;
2062 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2065 if ((num
>= 0) && (num
<= 15)) {
2066 /* write a normal core register */
2067 reg
[num
] = buf_get_u32(value
, 0, 32);
2069 arm7_9
->write_core_regs(target
, 1 << num
, reg
);
2071 /* write a program status register
2072 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2074 int spsr
= (areg
->mode
!= ARM_MODE_ANY
);
2076 uint32_t t
= buf_get_u32(value
, 0, 32);
2077 /* if we're writing the CPSR, mask the T bit */
2081 arm7_9
->write_xpsr(target
, t
, spsr
);
2087 if ((mode
!= ARM_MODE_ANY
) && (mode
!= arm
->core_mode
)
2088 && (areg
->mode
!= ARM_MODE_ANY
)) {
2089 /* restore processor mode (mask T bit) */
2090 arm7_9
->write_xpsr_im8(target
,
2091 buf_get_u32(arm
->cpsr
->value
, 0, 8) & ~0x20, 0, 0);
2094 return jtag_execute_queue();
2097 int arm7_9_read_memory(struct target
*target
,
2098 target_addr_t address
,
2103 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2104 struct arm
*arm
= &arm7_9
->arm
;
2106 uint32_t num_accesses
= 0;
2107 int thisrun_accesses
;
2113 LOG_DEBUG("address: 0x%8.8" TARGET_PRIxADDR
", size: 0x%8.8" PRIx32
", count: 0x%8.8" PRIx32
"",
2114 address
, size
, count
);
2116 if (target
->state
!= TARGET_HALTED
) {
2117 LOG_WARNING("target not halted");
2118 return ERROR_TARGET_NOT_HALTED
;
2121 /* sanitize arguments */
2122 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2123 return ERROR_COMMAND_SYNTAX_ERROR
;
2125 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2126 return ERROR_TARGET_UNALIGNED_ACCESS
;
2128 /* load the base register with the address of the first word */
2130 arm7_9
->write_core_regs(target
, 0x1, reg
);
2136 while (num_accesses
< count
) {
2139 ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2140 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2142 if (last_reg
<= thisrun_accesses
)
2143 last_reg
= thisrun_accesses
;
2145 arm7_9
->load_word_regs(target
, reg_list
);
2147 /* fast memory reads are only safe when the target is running
2148 * from a sufficiently high clock (32 kHz is usually too slow)
2150 if (arm7_9
->fast_memory_access
)
2151 retval
= arm7_9_execute_fast_sys_speed(target
);
2153 retval
= arm7_9_execute_sys_speed(target
);
2154 if (retval
!= ERROR_OK
)
2157 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 4);
2159 /* advance buffer, count number of accesses */
2160 buffer
+= thisrun_accesses
* 4;
2161 num_accesses
+= thisrun_accesses
;
2163 if ((j
++%1024) == 0)
2168 while (num_accesses
< count
) {
2171 ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2172 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2174 for (i
= 1; i
<= thisrun_accesses
; i
++) {
2177 arm7_9
->load_hword_reg(target
, i
);
2178 /* fast memory reads are only safe when the target is running
2179 * from a sufficiently high clock (32 kHz is usually too slow)
2181 if (arm7_9
->fast_memory_access
)
2182 retval
= arm7_9_execute_fast_sys_speed(target
);
2184 retval
= arm7_9_execute_sys_speed(target
);
2185 if (retval
!= ERROR_OK
)
2190 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 2);
2192 /* advance buffer, count number of accesses */
2193 buffer
+= thisrun_accesses
* 2;
2194 num_accesses
+= thisrun_accesses
;
2196 if ((j
++%1024) == 0)
2201 while (num_accesses
< count
) {
2204 ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2205 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2207 for (i
= 1; i
<= thisrun_accesses
; i
++) {
2210 arm7_9
->load_byte_reg(target
, i
);
2211 /* fast memory reads are only safe when the target is running
2212 * from a sufficiently high clock (32 kHz is usually too slow)
2214 if (arm7_9
->fast_memory_access
)
2215 retval
= arm7_9_execute_fast_sys_speed(target
);
2217 retval
= arm7_9_execute_sys_speed(target
);
2218 if (retval
!= ERROR_OK
)
2222 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 1);
2224 /* advance buffer, count number of accesses */
2225 buffer
+= thisrun_accesses
* 1;
2226 num_accesses
+= thisrun_accesses
;
2228 if ((j
++%1024) == 0)
2234 if (!is_arm_mode(arm
->core_mode
))
2237 for (i
= 0; i
<= last_reg
; i
++) {
2238 struct reg
*r
= arm_reg_current(arm
, i
);
2239 r
->dirty
= r
->valid
;
2242 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2243 retval
= jtag_execute_queue();
2244 if (retval
!= ERROR_OK
) {
2245 LOG_ERROR("JTAG error while reading cpsr");
2246 return ERROR_TARGET_DATA_ABORT
;
2249 if (((cpsr
& 0x1f) == ARM_MODE_ABT
) && (arm
->core_mode
!= ARM_MODE_ABT
)) {
2251 "memory read caused data abort "
2252 "(address: 0x%8.8" TARGET_PRIxADDR
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")",
2257 arm7_9
->write_xpsr_im8(target
,
2258 buf_get_u32(arm
->cpsr
->value
, 0, 8)
2261 return ERROR_TARGET_DATA_ABORT
;
2267 int arm7_9_write_memory(struct target
*target
,
2268 target_addr_t address
,
2271 const uint8_t *buffer
)
2273 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2274 struct arm
*arm
= &arm7_9
->arm
;
2275 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
2278 uint32_t num_accesses
= 0;
2279 int thisrun_accesses
;
2285 #ifdef _DEBUG_ARM7_9_
2286 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address
, size
, count
);
2289 if (target
->state
!= TARGET_HALTED
) {
2290 LOG_WARNING("target not halted");
2291 return ERROR_TARGET_NOT_HALTED
;
2294 /* sanitize arguments */
2295 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2296 return ERROR_COMMAND_SYNTAX_ERROR
;
2298 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2299 return ERROR_TARGET_UNALIGNED_ACCESS
;
2301 /* load the base register with the address of the first word */
2303 arm7_9
->write_core_regs(target
, 0x1, reg
);
2305 /* Clear DBGACK, to make sure memory fetches work as expected */
2306 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
2307 embeddedice_store_reg(dbg_ctrl
);
2311 while (num_accesses
< count
) {
2314 ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2315 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2317 for (i
= 1; i
<= thisrun_accesses
; i
++) {
2320 reg
[i
] = target_buffer_get_u32(target
, buffer
);
2324 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2326 arm7_9
->store_word_regs(target
, reg_list
);
2328 /* fast memory writes are only safe when the target is running
2329 * from a sufficiently high clock (32 kHz is usually too slow)
2331 if (arm7_9
->fast_memory_access
)
2332 retval
= arm7_9_execute_fast_sys_speed(target
);
2334 retval
= arm7_9_execute_sys_speed(target
);
2337 * if memory writes are made when the clock is running slow
2338 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2339 * processor operations after a "reset halt" or "reset init",
2340 * need to immediately stroke the keep alive or will end up with
2341 * gdb "keep alive not sent error message" problem.
2347 if (retval
!= ERROR_OK
)
2350 num_accesses
+= thisrun_accesses
;
2354 while (num_accesses
< count
) {
2357 ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2358 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2360 for (i
= 1; i
<= thisrun_accesses
; i
++) {
2363 reg
[i
] = target_buffer_get_u16(target
, buffer
) & 0xffff;
2367 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2369 for (i
= 1; i
<= thisrun_accesses
; i
++) {
2370 arm7_9
->store_hword_reg(target
, i
);
2372 /* fast memory writes are only safe when the target is running
2373 * from a sufficiently high clock (32 kHz is usually too slow)
2375 if (arm7_9
->fast_memory_access
)
2376 retval
= arm7_9_execute_fast_sys_speed(target
);
2378 retval
= arm7_9_execute_sys_speed(target
);
2381 * if memory writes are made when the clock is running slow
2382 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2383 * processor operations after a "reset halt" or "reset init",
2384 * need to immediately stroke the keep alive or will end up with
2385 * gdb "keep alive not sent error message" problem.
2391 if (retval
!= ERROR_OK
)
2395 num_accesses
+= thisrun_accesses
;
2399 while (num_accesses
< count
) {
2402 ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2403 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2405 for (i
= 1; i
<= thisrun_accesses
; i
++) {
2408 reg
[i
] = *buffer
++ & 0xff;
2411 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2413 for (i
= 1; i
<= thisrun_accesses
; i
++) {
2414 arm7_9
->store_byte_reg(target
, i
);
2415 /* fast memory writes are only safe when the target is running
2416 * from a sufficiently high clock (32 kHz is usually too slow)
2418 if (arm7_9
->fast_memory_access
)
2419 retval
= arm7_9_execute_fast_sys_speed(target
);
2421 retval
= arm7_9_execute_sys_speed(target
);
2424 * if memory writes are made when the clock is running slow
2425 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2426 * processor operations after a "reset halt" or "reset init",
2427 * need to immediately stroke the keep alive or will end up with
2428 * gdb "keep alive not sent error message" problem.
2434 if (retval
!= ERROR_OK
)
2439 num_accesses
+= thisrun_accesses
;
2445 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
2446 embeddedice_store_reg(dbg_ctrl
);
2448 if (!is_arm_mode(arm
->core_mode
))
2451 for (i
= 0; i
<= last_reg
; i
++) {
2452 struct reg
*r
= arm_reg_current(arm
, i
);
2453 r
->dirty
= r
->valid
;
2456 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2457 retval
= jtag_execute_queue();
2458 if (retval
!= ERROR_OK
) {
2459 LOG_ERROR("JTAG error while reading cpsr");
2460 return ERROR_TARGET_DATA_ABORT
;
2463 if (((cpsr
& 0x1f) == ARM_MODE_ABT
) && (arm
->core_mode
!= ARM_MODE_ABT
)) {
2465 "memory write caused data abort "
2466 "(address: 0x%8.8" TARGET_PRIxADDR
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")",
2471 arm7_9
->write_xpsr_im8(target
,
2472 buf_get_u32(arm
->cpsr
->value
, 0, 8)
2475 return ERROR_TARGET_DATA_ABORT
;
2481 int arm7_9_write_memory_opt(struct target
*target
,
2482 target_addr_t address
,
2485 const uint8_t *buffer
)
2487 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2490 if (size
== 4 && count
> 32 && arm7_9
->bulk_write_memory
) {
2491 /* Attempt to do a bulk write */
2492 retval
= arm7_9
->bulk_write_memory(target
, address
, count
, buffer
);
2494 if (retval
== ERROR_OK
)
2498 return arm7_9
->write_memory(target
, address
, size
, count
, buffer
);
2501 int arm7_9_write_memory_no_opt(struct target
*target
,
2505 const uint8_t *buffer
)
2507 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2509 return arm7_9
->write_memory(target
, address
, size
, count
, buffer
);
2512 static int dcc_count
;
2513 static const uint8_t *dcc_buffer
;
2515 static int arm7_9_dcc_completion(struct target
*target
,
2516 uint32_t exit_point
,
2520 int retval
= ERROR_OK
;
2521 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2523 retval
= target_wait_state(target
, TARGET_DEBUG_RUNNING
, 500);
2524 if (retval
!= ERROR_OK
)
2527 int little
= target
->endianness
== TARGET_LITTLE_ENDIAN
;
2528 int count
= dcc_count
;
2529 const uint8_t *buffer
= dcc_buffer
;
2531 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2532 * core function repeated. */
2533 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
],
2534 fast_target_buffer_get_u32(buffer
, little
));
2537 struct embeddedice_reg
*ice_reg
=
2538 arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
].arch_info
;
2539 uint8_t reg_addr
= ice_reg
->addr
& 0x1f;
2540 struct jtag_tap
*tap
;
2541 tap
= ice_reg
->jtag_info
->tap
;
2543 embeddedice_write_dcc(tap
, reg_addr
, buffer
, little
, count
-2);
2544 buffer
+= (count
-2)*4;
2546 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
],
2547 fast_target_buffer_get_u32(buffer
, little
));
2550 for (i
= 0; i
< count
; i
++) {
2551 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
],
2552 fast_target_buffer_get_u32(buffer
, little
));
2557 retval
= target_halt(target
);
2558 if (retval
!= ERROR_OK
)
2560 return target_wait_state(target
, TARGET_HALTED
, 500);
2563 static const uint32_t dcc_code
[] = {
2564 /* r0 == input, points to memory buffer
2568 /* spin until DCC control (c0) reports data arrived */
2569 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2570 0xe3110001, /* tst r1, #1 */
2571 0x0afffffc, /* bne w */
2573 /* read word from DCC (c1), write to memory */
2574 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2575 0xe4801004, /* str r1, [r0], #4 */
2578 0xeafffff9 /* b w */
2581 int arm7_9_bulk_write_memory(struct target
*target
,
2582 target_addr_t address
,
2584 const uint8_t *buffer
)
2587 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2589 if (address
% 4 != 0)
2590 return ERROR_TARGET_UNALIGNED_ACCESS
;
2592 if (!arm7_9
->dcc_downloads
)
2593 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2595 /* regrab previously allocated working_area, or allocate a new one */
2596 if (!arm7_9
->dcc_working_area
) {
2597 uint8_t dcc_code_buf
[6 * 4];
2599 /* make sure we have a working area */
2600 if (target_alloc_working_area(target
, 24, &arm7_9
->dcc_working_area
) != ERROR_OK
) {
2601 LOG_INFO("no working area available, falling back to memory writes");
2602 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2605 /* copy target instructions to target endianness */
2606 target_buffer_set_u32_array(target
, dcc_code_buf
, ARRAY_SIZE(dcc_code
), dcc_code
);
2608 /* write DCC code to working area, using the non-optimized
2609 * memory write to avoid ending up here again */
2610 retval
= arm7_9_write_memory_no_opt(target
,
2611 arm7_9
->dcc_working_area
->address
, 4, 6, dcc_code_buf
);
2612 if (retval
!= ERROR_OK
)
2616 struct arm_algorithm arm_algo
;
2617 struct reg_param reg_params
[1];
2619 arm_algo
.common_magic
= ARM_COMMON_MAGIC
;
2620 arm_algo
.core_mode
= ARM_MODE_SVC
;
2621 arm_algo
.core_state
= ARM_STATE_ARM
;
2623 init_reg_param(®_params
[0], "r0", 32, PARAM_IN_OUT
);
2625 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
2628 dcc_buffer
= buffer
;
2629 retval
= armv4_5_run_algorithm_inner(target
, 0, NULL
, 1, reg_params
,
2630 arm7_9
->dcc_working_area
->address
,
2631 arm7_9
->dcc_working_area
->address
+ 6*4,
2632 20*1000, &arm_algo
, arm7_9_dcc_completion
);
2634 if (retval
== ERROR_OK
) {
2635 uint32_t endaddress
= buf_get_u32(reg_params
[0].value
, 0, 32);
2636 if (endaddress
!= (address
+ count
*4)) {
2638 "DCC write failed, expected end address 0x%08" TARGET_PRIxADDR
" got 0x%0" PRIx32
"",
2639 (address
+ count
*4),
2641 retval
= ERROR_FAIL
;
2645 destroy_reg_param(®_params
[0]);
2651 * Perform per-target setup that requires JTAG access.
2653 int arm7_9_examine(struct target
*target
)
2655 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2658 if (!target_was_examined(target
)) {
2659 struct reg_cache
*t
, **cache_p
;
2661 t
= embeddedice_build_reg_cache(target
, arm7_9
);
2665 cache_p
= register_get_last_cache_p(&target
->reg_cache
);
2667 arm7_9
->eice_cache
= (*cache_p
);
2669 if (arm7_9
->arm
.etm
)
2670 (*cache_p
)->next
= etm_build_reg_cache(target
,
2674 target_set_examined(target
);
2677 retval
= embeddedice_setup(target
);
2678 if (retval
== ERROR_OK
)
2679 retval
= arm7_9_setup(target
);
2680 if (retval
== ERROR_OK
&& arm7_9
->arm
.etm
)
2681 retval
= etm_setup(target
);
2686 int arm7_9_check_reset(struct target
*target
)
2688 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2690 if (get_target_reset_nag() && !arm7_9
->dcc_downloads
)
2692 "NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2694 if (get_target_reset_nag() && (target
->working_area_size
== 0))
2695 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2697 if (get_target_reset_nag() && !arm7_9
->fast_memory_access
)
2699 "NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2704 int arm7_9_endianness_callback(jtag_callback_data_t pu8_in
,
2705 jtag_callback_data_t i_size
, jtag_callback_data_t i_be
,
2706 jtag_callback_data_t i_flip
)
2708 uint8_t *in
= (uint8_t *)pu8_in
;
2709 int size
= (int)i_size
;
2711 int flip
= (int)i_flip
;
2716 readback
= le_to_h_u32(in
);
2718 readback
= flip_u32(readback
, 32);
2720 h_u32_to_be(in
, readback
);
2722 h_u32_to_le(in
, readback
);
2725 readback
= le_to_h_u16(in
);
2727 readback
= flip_u32(readback
, 16);
2729 h_u16_to_be(in
, readback
& 0xffff);
2731 h_u16_to_le(in
, readback
& 0xffff);
2736 readback
= flip_u32(readback
, 8);
2737 *in
= readback
& 0xff;
2744 COMMAND_HANDLER(handle_arm7_9_dbgrq_command
)
2746 struct target
*target
= get_current_target(CMD_CTX
);
2747 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2749 if (!is_arm7_9(arm7_9
)) {
2750 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2751 return ERROR_TARGET_INVALID
;
2755 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->use_dbgrq
);
2757 command_print(CMD_CTX
,
2758 "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s",
2759 (arm7_9
->use_dbgrq
) ? "enabled" : "disabled");
2764 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command
)
2766 struct target
*target
= get_current_target(CMD_CTX
);
2767 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2769 if (!is_arm7_9(arm7_9
)) {
2770 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2771 return ERROR_TARGET_INVALID
;
2775 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->fast_memory_access
);
2777 command_print(CMD_CTX
,
2778 "fast memory access is %s",
2779 (arm7_9
->fast_memory_access
) ? "enabled" : "disabled");
2784 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command
)
2786 struct target
*target
= get_current_target(CMD_CTX
);
2787 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2789 if (!is_arm7_9(arm7_9
)) {
2790 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2791 return ERROR_TARGET_INVALID
;
2795 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->dcc_downloads
);
2797 command_print(CMD_CTX
,
2798 "dcc downloads are %s",
2799 (arm7_9
->dcc_downloads
) ? "enabled" : "disabled");
2804 static int arm7_9_setup_semihosting(struct target
*target
, int enable
)
2806 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2808 if (!is_arm7_9(arm7_9
)) {
2809 LOG_USER("current target isn't an ARM7/ARM9 target");
2810 return ERROR_TARGET_INVALID
;
2813 if (arm7_9
->has_vector_catch
) {
2814 struct reg
*vector_catch
= &arm7_9
->eice_cache
2815 ->reg_list
[EICE_VEC_CATCH
];
2817 if (!vector_catch
->valid
)
2818 embeddedice_read_reg(vector_catch
);
2819 buf_set_u32(vector_catch
->value
, 2, 1, enable
);
2820 embeddedice_store_reg(vector_catch
);
2822 /* TODO: allow optional high vectors and/or BKPT_HARD */
2824 breakpoint_add(target
, 8, 4, BKPT_SOFT
);
2826 breakpoint_remove(target
, 8);
2832 int arm7_9_init_arch_info(struct target
*target
, struct arm7_9_common
*arm7_9
)
2834 int retval
= ERROR_OK
;
2835 struct arm
*arm
= &arm7_9
->arm
;
2837 arm7_9
->common_magic
= ARM7_9_COMMON_MAGIC
;
2839 retval
= arm_jtag_setup_connection(&arm7_9
->jtag_info
);
2840 if (retval
!= ERROR_OK
)
2843 /* caller must have allocated via calloc(), so everything's zeroed */
2845 arm7_9
->wp_available_max
= 2;
2847 arm7_9
->fast_memory_access
= false;
2848 arm7_9
->dcc_downloads
= false;
2850 arm
->arch_info
= arm7_9
;
2851 arm
->core_type
= ARM_MODE_ANY
;
2852 arm
->read_core_reg
= arm7_9_read_core_reg
;
2853 arm
->write_core_reg
= arm7_9_write_core_reg
;
2854 arm
->full_context
= arm7_9_full_context
;
2855 arm
->setup_semihosting
= arm7_9_setup_semihosting
;
2857 retval
= arm_init_arch_info(target
, arm
);
2858 if (retval
!= ERROR_OK
)
2861 return target_register_timer_callback(arm7_9_handle_target_request
,
2865 static const struct command_registration arm7_9_any_command_handlers
[] = {
2868 .handler
= handle_arm7_9_dbgrq_command
,
2869 .mode
= COMMAND_ANY
,
2870 .usage
= "['enable'|'disable']",
2871 .help
= "use EmbeddedICE dbgrq instead of breakpoint "
2872 "for target halt requests",
2875 "fast_memory_access",
2876 .handler
= handle_arm7_9_fast_memory_access_command
,
2877 .mode
= COMMAND_ANY
,
2878 .usage
= "['enable'|'disable']",
2879 .help
= "use fast memory accesses instead of slower "
2880 "but potentially safer accesses",
2884 .handler
= handle_arm7_9_dcc_downloads_command
,
2885 .mode
= COMMAND_ANY
,
2886 .usage
= "['enable'|'disable']",
2887 .help
= "use DCC downloads for larger memory writes",
2889 COMMAND_REGISTRATION_DONE
2891 const struct command_registration arm7_9_command_handlers
[] = {
2893 .chain
= arm_command_handlers
,
2896 .chain
= etm_command_handlers
,
2900 .mode
= COMMAND_ANY
,
2901 .help
= "arm7/9 specific commands",
2903 .chain
= arm7_9_any_command_handlers
,
2905 COMMAND_REGISTRATION_DONE