1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
5 * Copyright (C) 2008 by David T.L. Wong *
7 * Copyright (C) 2007,2008 Øyvind Harboe *
8 * oyvind.harboe@zylin.com *
10 * Copyright (C) 2011 by Drasko DRASKOVIC *
11 * drasko.draskovic@gmail.com *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
25 ***************************************************************************/
32 #include "breakpoints.h"
33 #include "algorithm.h"
36 static const char *mips_isa_strings
[] = {
40 #define MIPS32_GDB_DUMMY_FP_REG 1
44 * based on gdb-7.6.2/gdb/features/mips-{fpu,cp0,cpu}.xml
54 { 0, "r0", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
55 { 1, "r1", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
56 { 2, "r2", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
57 { 3, "r3", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
58 { 4, "r4", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
59 { 5, "r5", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
60 { 6, "r6", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
61 { 7, "r7", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
62 { 8, "r8", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
63 { 9, "r9", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
64 { 10, "r10", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
65 { 11, "r11", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
66 { 12, "r12", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
67 { 13, "r13", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
68 { 14, "r14", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
69 { 15, "r15", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
70 { 16, "r16", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
71 { 17, "r17", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
72 { 18, "r18", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
73 { 19, "r19", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
74 { 20, "r20", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
75 { 21, "r21", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
76 { 22, "r22", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
77 { 23, "r23", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
78 { 24, "r24", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
79 { 25, "r25", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
80 { 26, "r26", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
81 { 27, "r27", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
82 { 28, "r28", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
83 { 29, "r29", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
84 { 30, "r30", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
85 { 31, "r31", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
86 { 32, "status", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cp0", 0 },
87 { 33, "lo", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
88 { 34, "hi", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
89 { 35, "badvaddr", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cp0", 0 },
90 { 36, "cause", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cp0", 0 },
91 { 37, "pc", REG_TYPE_INT
, NULL
, "org.gnu.gdb.mips.cpu", 0 },
93 { 38, "f0", REG_TYPE_IEEE_SINGLE
, NULL
,
94 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
95 { 39, "f1", REG_TYPE_IEEE_SINGLE
, NULL
,
96 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
97 { 40, "f2", REG_TYPE_IEEE_SINGLE
, NULL
,
98 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
99 { 41, "f3", REG_TYPE_IEEE_SINGLE
, NULL
,
100 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
101 { 42, "f4", REG_TYPE_IEEE_SINGLE
, NULL
,
102 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
103 { 43, "f5", REG_TYPE_IEEE_SINGLE
, NULL
,
104 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
105 { 44, "f6", REG_TYPE_IEEE_SINGLE
, NULL
,
106 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
107 { 45, "f7", REG_TYPE_IEEE_SINGLE
, NULL
,
108 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
109 { 46, "f8", REG_TYPE_IEEE_SINGLE
, NULL
,
110 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
111 { 47, "f9", REG_TYPE_IEEE_SINGLE
, NULL
,
112 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
113 { 48, "f10", REG_TYPE_IEEE_SINGLE
, NULL
,
114 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
115 { 49, "f11", REG_TYPE_IEEE_SINGLE
, NULL
,
116 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
117 { 50, "f12", REG_TYPE_IEEE_SINGLE
, NULL
,
118 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
119 { 51, "f13", REG_TYPE_IEEE_SINGLE
, NULL
,
120 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
121 { 52, "f14", REG_TYPE_IEEE_SINGLE
, NULL
,
122 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
123 { 53, "f15", REG_TYPE_IEEE_SINGLE
, NULL
,
124 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
125 { 54, "f16", REG_TYPE_IEEE_SINGLE
, NULL
,
126 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
127 { 55, "f17", REG_TYPE_IEEE_SINGLE
, NULL
,
128 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
129 { 56, "f18", REG_TYPE_IEEE_SINGLE
, NULL
,
130 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
131 { 57, "f19", REG_TYPE_IEEE_SINGLE
, NULL
,
132 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
133 { 58, "f20", REG_TYPE_IEEE_SINGLE
, NULL
,
134 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
135 { 59, "f21", REG_TYPE_IEEE_SINGLE
, NULL
,
136 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
137 { 60, "f22", REG_TYPE_IEEE_SINGLE
, NULL
,
138 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
139 { 61, "f23", REG_TYPE_IEEE_SINGLE
, NULL
,
140 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
141 { 62, "f24", REG_TYPE_IEEE_SINGLE
, NULL
,
142 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
143 { 63, "f25", REG_TYPE_IEEE_SINGLE
, NULL
,
144 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
145 { 64, "f26", REG_TYPE_IEEE_SINGLE
, NULL
,
146 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
147 { 65, "f27", REG_TYPE_IEEE_SINGLE
, NULL
,
148 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
149 { 66, "f28", REG_TYPE_IEEE_SINGLE
, NULL
,
150 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
151 { 67, "f29", REG_TYPE_IEEE_SINGLE
, NULL
,
152 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
153 { 68, "f30", REG_TYPE_IEEE_SINGLE
, NULL
,
154 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
155 { 69, "f31", REG_TYPE_IEEE_SINGLE
, NULL
,
156 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
157 { 70, "fcsr", REG_TYPE_INT
, "float",
158 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
159 { 71, "fir", REG_TYPE_INT
, "float",
160 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG
},
164 #define MIPS32_NUM_REGS ARRAY_SIZE(mips32_regs)
166 static uint8_t mips32_gdb_dummy_fp_value
[] = {0, 0, 0, 0};
168 static int mips32_get_core_reg(struct reg
*reg
)
171 struct mips32_core_reg
*mips32_reg
= reg
->arch_info
;
172 struct target
*target
= mips32_reg
->target
;
173 struct mips32_common
*mips32_target
= target_to_mips32(target
);
175 if (target
->state
!= TARGET_HALTED
)
176 return ERROR_TARGET_NOT_HALTED
;
178 retval
= mips32_target
->read_core_reg(target
, mips32_reg
->num
);
183 static int mips32_set_core_reg(struct reg
*reg
, uint8_t *buf
)
185 struct mips32_core_reg
*mips32_reg
= reg
->arch_info
;
186 struct target
*target
= mips32_reg
->target
;
187 uint32_t value
= buf_get_u32(buf
, 0, 32);
189 if (target
->state
!= TARGET_HALTED
)
190 return ERROR_TARGET_NOT_HALTED
;
192 buf_set_u32(reg
->value
, 0, 32, value
);
199 static int mips32_read_core_reg(struct target
*target
, unsigned int num
)
203 /* get pointers to arch-specific information */
204 struct mips32_common
*mips32
= target_to_mips32(target
);
206 if (num
>= MIPS32_NUM_REGS
)
207 return ERROR_COMMAND_SYNTAX_ERROR
;
209 reg_value
= mips32
->core_regs
[num
];
210 buf_set_u32(mips32
->core_cache
->reg_list
[num
].value
, 0, 32, reg_value
);
211 mips32
->core_cache
->reg_list
[num
].valid
= 1;
212 mips32
->core_cache
->reg_list
[num
].dirty
= 0;
217 static int mips32_write_core_reg(struct target
*target
, unsigned int num
)
221 /* get pointers to arch-specific information */
222 struct mips32_common
*mips32
= target_to_mips32(target
);
224 if (num
>= MIPS32_NUM_REGS
)
225 return ERROR_COMMAND_SYNTAX_ERROR
;
227 reg_value
= buf_get_u32(mips32
->core_cache
->reg_list
[num
].value
, 0, 32);
228 mips32
->core_regs
[num
] = reg_value
;
229 LOG_DEBUG("write core reg %i value 0x%" PRIx32
"", num
, reg_value
);
230 mips32
->core_cache
->reg_list
[num
].valid
= 1;
231 mips32
->core_cache
->reg_list
[num
].dirty
= 0;
236 int mips32_get_gdb_reg_list(struct target
*target
, struct reg
**reg_list
[],
237 int *reg_list_size
, enum target_register_class reg_class
)
239 /* get pointers to arch-specific information */
240 struct mips32_common
*mips32
= target_to_mips32(target
);
243 /* include floating point registers */
244 *reg_list_size
= MIPS32_NUM_REGS
;
245 *reg_list
= malloc(sizeof(struct reg
*) * (*reg_list_size
));
247 for (i
= 0; i
< MIPS32_NUM_REGS
; i
++)
248 (*reg_list
)[i
] = &mips32
->core_cache
->reg_list
[i
];
253 int mips32_save_context(struct target
*target
)
257 /* get pointers to arch-specific information */
258 struct mips32_common
*mips32
= target_to_mips32(target
);
259 struct mips_ejtag
*ejtag_info
= &mips32
->ejtag_info
;
261 /* read core registers */
262 mips32_pracc_read_regs(ejtag_info
, mips32
->core_regs
);
264 for (i
= 0; i
< MIPS32_NUM_REGS
; i
++) {
265 if (!mips32
->core_cache
->reg_list
[i
].valid
)
266 mips32
->read_core_reg(target
, i
);
272 int mips32_restore_context(struct target
*target
)
276 /* get pointers to arch-specific information */
277 struct mips32_common
*mips32
= target_to_mips32(target
);
278 struct mips_ejtag
*ejtag_info
= &mips32
->ejtag_info
;
280 for (i
= 0; i
< MIPS32_NUM_REGS
; i
++) {
281 if (mips32
->core_cache
->reg_list
[i
].dirty
)
282 mips32
->write_core_reg(target
, i
);
285 /* write core regs */
286 mips32_pracc_write_regs(ejtag_info
, mips32
->core_regs
);
291 int mips32_arch_state(struct target
*target
)
293 struct mips32_common
*mips32
= target_to_mips32(target
);
295 LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32
"",
296 mips_isa_strings
[mips32
->isa_mode
],
297 debug_reason_name(target
),
298 buf_get_u32(mips32
->core_cache
->reg_list
[MIPS32_PC
].value
, 0, 32));
303 static const struct reg_arch_type mips32_reg_type
= {
304 .get
= mips32_get_core_reg
,
305 .set
= mips32_set_core_reg
,
308 struct reg_cache
*mips32_build_reg_cache(struct target
*target
)
310 /* get pointers to arch-specific information */
311 struct mips32_common
*mips32
= target_to_mips32(target
);
313 int num_regs
= MIPS32_NUM_REGS
;
314 struct reg_cache
**cache_p
= register_get_last_cache_p(&target
->reg_cache
);
315 struct reg_cache
*cache
= malloc(sizeof(struct reg_cache
));
316 struct reg
*reg_list
= calloc(num_regs
, sizeof(struct reg
));
317 struct mips32_core_reg
*arch_info
= malloc(sizeof(struct mips32_core_reg
) * num_regs
);
318 struct reg_feature
*feature
;
321 /* Build the process context cache */
322 cache
->name
= "mips32 registers";
324 cache
->reg_list
= reg_list
;
325 cache
->num_regs
= num_regs
;
327 mips32
->core_cache
= cache
;
329 for (i
= 0; i
< num_regs
; i
++) {
330 arch_info
[i
].num
= mips32_regs
[i
].id
;
331 arch_info
[i
].target
= target
;
332 arch_info
[i
].mips32_common
= mips32
;
334 reg_list
[i
].name
= mips32_regs
[i
].name
;
335 reg_list
[i
].size
= 32;
337 if (mips32_regs
[i
].flag
== MIPS32_GDB_DUMMY_FP_REG
) {
338 reg_list
[i
].value
= mips32_gdb_dummy_fp_value
;
339 reg_list
[i
].valid
= 1;
340 reg_list
[i
].arch_info
= NULL
;
341 register_init_dummy(®_list
[i
]);
343 reg_list
[i
].value
= calloc(1, 4);
344 reg_list
[i
].valid
= 0;
345 reg_list
[i
].type
= &mips32_reg_type
;
346 reg_list
[i
].arch_info
= &arch_info
[i
];
348 reg_list
[i
].reg_data_type
= calloc(1, sizeof(struct reg_data_type
));
349 if (reg_list
[i
].reg_data_type
)
350 reg_list
[i
].reg_data_type
->type
= mips32_regs
[i
].type
;
352 LOG_ERROR("unable to allocate reg type list");
355 reg_list
[i
].dirty
= 0;
357 reg_list
[i
].group
= mips32_regs
[i
].group
;
358 reg_list
[i
].number
= i
;
359 reg_list
[i
].exist
= true;
360 reg_list
[i
].caller_save
= true; /* gdb defaults to true */
362 feature
= calloc(1, sizeof(struct reg_feature
));
364 feature
->name
= mips32_regs
[i
].feature
;
365 reg_list
[i
].feature
= feature
;
367 LOG_ERROR("unable to allocate feature list");
373 int mips32_init_arch_info(struct target
*target
, struct mips32_common
*mips32
, struct jtag_tap
*tap
)
375 target
->arch_info
= mips32
;
376 mips32
->common_magic
= MIPS32_COMMON_MAGIC
;
377 mips32
->fast_data_area
= NULL
;
379 /* has breakpoint/watchpoint unit been scanned */
380 mips32
->bp_scanned
= 0;
381 mips32
->data_break_list
= NULL
;
383 mips32
->ejtag_info
.tap
= tap
;
384 mips32
->read_core_reg
= mips32_read_core_reg
;
385 mips32
->write_core_reg
= mips32_write_core_reg
;
387 mips32
->ejtag_info
.scan_delay
= MIPS32_SCAN_DELAY_LEGACY_MODE
; /* Initial default value */
388 mips32
->ejtag_info
.mode
= 0; /* Initial default value */
393 /* run to exit point. return error if exit point was not reached. */
394 static int mips32_run_and_wait(struct target
*target
, target_addr_t entry_point
,
395 int timeout_ms
, target_addr_t exit_point
, struct mips32_common
*mips32
)
399 /* This code relies on the target specific resume() and poll()->debug_entry()
400 * sequence to write register values to the processor and the read them back */
401 retval
= target_resume(target
, 0, entry_point
, 0, 1);
402 if (retval
!= ERROR_OK
)
405 retval
= target_wait_state(target
, TARGET_HALTED
, timeout_ms
);
406 /* If the target fails to halt due to the breakpoint, force a halt */
407 if (retval
!= ERROR_OK
|| target
->state
!= TARGET_HALTED
) {
408 retval
= target_halt(target
);
409 if (retval
!= ERROR_OK
)
411 retval
= target_wait_state(target
, TARGET_HALTED
, 500);
412 if (retval
!= ERROR_OK
)
414 return ERROR_TARGET_TIMEOUT
;
417 pc
= buf_get_u32(mips32
->core_cache
->reg_list
[MIPS32_PC
].value
, 0, 32);
418 if (exit_point
&& (pc
!= exit_point
)) {
419 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32
" ", pc
);
420 return ERROR_TARGET_TIMEOUT
;
426 int mips32_run_algorithm(struct target
*target
, int num_mem_params
,
427 struct mem_param
*mem_params
, int num_reg_params
,
428 struct reg_param
*reg_params
, target_addr_t entry_point
,
429 target_addr_t exit_point
, int timeout_ms
, void *arch_info
)
431 struct mips32_common
*mips32
= target_to_mips32(target
);
432 struct mips32_algorithm
*mips32_algorithm_info
= arch_info
;
433 enum mips32_isa_mode isa_mode
= mips32
->isa_mode
;
435 uint32_t context
[MIPS32_NUM_REGS
];
436 int retval
= ERROR_OK
;
438 LOG_DEBUG("Running algorithm");
440 /* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
441 * at the exit point */
443 if (mips32
->common_magic
!= MIPS32_COMMON_MAGIC
) {
444 LOG_ERROR("current target isn't a MIPS32 target");
445 return ERROR_TARGET_INVALID
;
448 if (target
->state
!= TARGET_HALTED
) {
449 LOG_WARNING("target not halted");
450 return ERROR_TARGET_NOT_HALTED
;
453 /* refresh core register cache */
454 for (unsigned int i
= 0; i
< MIPS32_NUM_REGS
; i
++) {
455 if (!mips32
->core_cache
->reg_list
[i
].valid
)
456 mips32
->read_core_reg(target
, i
);
457 context
[i
] = buf_get_u32(mips32
->core_cache
->reg_list
[i
].value
, 0, 32);
460 for (int i
= 0; i
< num_mem_params
; i
++) {
461 retval
= target_write_buffer(target
, mem_params
[i
].address
,
462 mem_params
[i
].size
, mem_params
[i
].value
);
463 if (retval
!= ERROR_OK
)
467 for (int i
= 0; i
< num_reg_params
; i
++) {
468 struct reg
*reg
= register_get_by_name(mips32
->core_cache
, reg_params
[i
].reg_name
, 0);
471 LOG_ERROR("BUG: register '%s' not found", reg_params
[i
].reg_name
);
472 return ERROR_COMMAND_SYNTAX_ERROR
;
475 if (reg
->size
!= reg_params
[i
].size
) {
476 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
477 reg_params
[i
].reg_name
);
478 return ERROR_COMMAND_SYNTAX_ERROR
;
481 mips32_set_core_reg(reg
, reg_params
[i
].value
);
484 mips32
->isa_mode
= mips32_algorithm_info
->isa_mode
;
486 retval
= mips32_run_and_wait(target
, entry_point
, timeout_ms
, exit_point
, mips32
);
488 if (retval
!= ERROR_OK
)
491 for (int i
= 0; i
< num_mem_params
; i
++) {
492 if (mem_params
[i
].direction
!= PARAM_OUT
) {
493 retval
= target_read_buffer(target
, mem_params
[i
].address
, mem_params
[i
].size
,
494 mem_params
[i
].value
);
495 if (retval
!= ERROR_OK
)
500 for (int i
= 0; i
< num_reg_params
; i
++) {
501 if (reg_params
[i
].direction
!= PARAM_OUT
) {
502 struct reg
*reg
= register_get_by_name(mips32
->core_cache
, reg_params
[i
].reg_name
, 0);
504 LOG_ERROR("BUG: register '%s' not found", reg_params
[i
].reg_name
);
505 return ERROR_COMMAND_SYNTAX_ERROR
;
508 if (reg
->size
!= reg_params
[i
].size
) {
509 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
510 reg_params
[i
].reg_name
);
511 return ERROR_COMMAND_SYNTAX_ERROR
;
514 buf_set_u32(reg_params
[i
].value
, 0, 32, buf_get_u32(reg
->value
, 0, 32));
518 /* restore everything we saved before */
519 for (unsigned int i
= 0; i
< MIPS32_NUM_REGS
; i
++) {
521 regvalue
= buf_get_u32(mips32
->core_cache
->reg_list
[i
].value
, 0, 32);
522 if (regvalue
!= context
[i
]) {
523 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32
,
524 mips32
->core_cache
->reg_list
[i
].name
, context
[i
]);
525 buf_set_u32(mips32
->core_cache
->reg_list
[i
].value
,
527 mips32
->core_cache
->reg_list
[i
].valid
= 1;
528 mips32
->core_cache
->reg_list
[i
].dirty
= 1;
532 mips32
->isa_mode
= isa_mode
;
537 int mips32_examine(struct target
*target
)
539 struct mips32_common
*mips32
= target_to_mips32(target
);
541 if (!target_was_examined(target
)) {
542 target_set_examined(target
);
544 /* we will configure later */
545 mips32
->bp_scanned
= 0;
546 mips32
->num_inst_bpoints
= 0;
547 mips32
->num_data_bpoints
= 0;
548 mips32
->num_inst_bpoints_avail
= 0;
549 mips32
->num_data_bpoints_avail
= 0;
555 static int mips32_configure_ibs(struct target
*target
)
557 struct mips32_common
*mips32
= target_to_mips32(target
);
558 struct mips_ejtag
*ejtag_info
= &mips32
->ejtag_info
;
562 /* get number of inst breakpoints */
563 retval
= target_read_u32(target
, ejtag_info
->ejtag_ibs_addr
, &bpinfo
);
564 if (retval
!= ERROR_OK
)
567 mips32
->num_inst_bpoints
= (bpinfo
>> 24) & 0x0F;
568 mips32
->num_inst_bpoints_avail
= mips32
->num_inst_bpoints
;
569 mips32
->inst_break_list
= calloc(mips32
->num_inst_bpoints
,
570 sizeof(struct mips32_comparator
));
572 for (i
= 0; i
< mips32
->num_inst_bpoints
; i
++)
573 mips32
->inst_break_list
[i
].reg_address
=
574 ejtag_info
->ejtag_iba0_addr
+
575 (ejtag_info
->ejtag_iba_step_size
* i
);
578 retval
= target_write_u32(target
, ejtag_info
->ejtag_ibs_addr
, 0);
582 static int mips32_configure_dbs(struct target
*target
)
584 struct mips32_common
*mips32
= target_to_mips32(target
);
585 struct mips_ejtag
*ejtag_info
= &mips32
->ejtag_info
;
589 /* get number of data breakpoints */
590 retval
= target_read_u32(target
, ejtag_info
->ejtag_dbs_addr
, &bpinfo
);
591 if (retval
!= ERROR_OK
)
594 mips32
->num_data_bpoints
= (bpinfo
>> 24) & 0x0F;
595 mips32
->num_data_bpoints_avail
= mips32
->num_data_bpoints
;
596 mips32
->data_break_list
= calloc(mips32
->num_data_bpoints
,
597 sizeof(struct mips32_comparator
));
599 for (i
= 0; i
< mips32
->num_data_bpoints
; i
++)
600 mips32
->data_break_list
[i
].reg_address
=
601 ejtag_info
->ejtag_dba0_addr
+
602 (ejtag_info
->ejtag_dba_step_size
* i
);
605 retval
= target_write_u32(target
, ejtag_info
->ejtag_dbs_addr
, 0);
609 int mips32_configure_break_unit(struct target
*target
)
611 /* get pointers to arch-specific information */
612 struct mips32_common
*mips32
= target_to_mips32(target
);
613 struct mips_ejtag
*ejtag_info
= &mips32
->ejtag_info
;
617 if (mips32
->bp_scanned
)
620 /* get info about breakpoint support */
621 retval
= target_read_u32(target
, EJTAG_DCR
, &dcr
);
622 if (retval
!= ERROR_OK
)
625 /* EJTAG 2.0 defines IB and DB bits in IMP instead of DCR. */
626 if (ejtag_info
->ejtag_version
== EJTAG_VERSION_20
) {
627 ejtag_info
->debug_caps
= dcr
& EJTAG_DCR_ENM
;
628 if (!(ejtag_info
->impcode
& EJTAG_V20_IMP_NOIB
))
629 ejtag_info
->debug_caps
|= EJTAG_DCR_IB
;
630 if (!(ejtag_info
->impcode
& EJTAG_V20_IMP_NODB
))
631 ejtag_info
->debug_caps
|= EJTAG_DCR_DB
;
633 /* keep debug caps for later use */
634 ejtag_info
->debug_caps
= dcr
& (EJTAG_DCR_ENM
635 | EJTAG_DCR_IB
| EJTAG_DCR_DB
);
638 if (ejtag_info
->debug_caps
& EJTAG_DCR_IB
) {
639 retval
= mips32_configure_ibs(target
);
640 if (retval
!= ERROR_OK
)
644 if (ejtag_info
->debug_caps
& EJTAG_DCR_DB
) {
645 retval
= mips32_configure_dbs(target
);
646 if (retval
!= ERROR_OK
)
650 /* check if target endianness settings matches debug control register */
651 if (((ejtag_info
->debug_caps
& EJTAG_DCR_ENM
)
652 && (target
->endianness
== TARGET_LITTLE_ENDIAN
)) ||
653 (!(ejtag_info
->debug_caps
& EJTAG_DCR_ENM
)
654 && (target
->endianness
== TARGET_BIG_ENDIAN
)))
655 LOG_WARNING("DCR endianness settings does not match target settings");
657 LOG_DEBUG("DCR 0x%" PRIx32
" numinst %i numdata %i", dcr
, mips32
->num_inst_bpoints
,
658 mips32
->num_data_bpoints
);
660 mips32
->bp_scanned
= 1;
665 int mips32_enable_interrupts(struct target
*target
, int enable
)
671 /* read debug control register */
672 retval
= target_read_u32(target
, EJTAG_DCR
, &dcr
);
673 if (retval
!= ERROR_OK
)
677 if (!(dcr
& EJTAG_DCR_INTE
)) {
678 /* enable interrupts */
679 dcr
|= EJTAG_DCR_INTE
;
683 if (dcr
& EJTAG_DCR_INTE
) {
684 /* disable interrupts */
685 dcr
&= ~EJTAG_DCR_INTE
;
691 retval
= target_write_u32(target
, EJTAG_DCR
, dcr
);
692 if (retval
!= ERROR_OK
)
699 int mips32_checksum_memory(struct target
*target
, target_addr_t address
,
700 uint32_t count
, uint32_t *checksum
)
702 struct working_area
*crc_algorithm
;
703 struct reg_param reg_params
[2];
704 struct mips32_algorithm mips32_info
;
706 /* see contrib/loaders/checksum/mips32.s for src */
708 static const uint32_t mips_crc_code
[] = {
709 0x248C0000, /* addiu $t4, $a0, 0 */
710 0x24AA0000, /* addiu $t2, $a1, 0 */
711 0x2404FFFF, /* addiu $a0, $zero, 0xffffffff */
712 0x10000010, /* beq $zero, $zero, ncomp */
713 0x240B0000, /* addiu $t3, $zero, 0 */
715 0x81850000, /* lb $a1, ($t4) */
716 0x218C0001, /* addi $t4, $t4, 1 */
717 0x00052E00, /* sll $a1, $a1, 24 */
718 0x3C0204C1, /* lui $v0, 0x04c1 */
719 0x00852026, /* xor $a0, $a0, $a1 */
720 0x34471DB7, /* ori $a3, $v0, 0x1db7 */
721 0x00003021, /* addu $a2, $zero, $zero */
723 0x00044040, /* sll $t0, $a0, 1 */
724 0x24C60001, /* addiu $a2, $a2, 1 */
725 0x28840000, /* slti $a0, $a0, 0 */
726 0x01074826, /* xor $t1, $t0, $a3 */
727 0x0124400B, /* movn $t0, $t1, $a0 */
728 0x28C30008, /* slti $v1, $a2, 8 */
729 0x1460FFF9, /* bne $v1, $zero, loop */
730 0x01002021, /* addu $a0, $t0, $zero */
732 0x154BFFF0, /* bne $t2, $t3, nbyte */
733 0x256B0001, /* addiu $t3, $t3, 1 */
734 0x7000003F, /* sdbbp */
737 /* make sure we have a working area */
738 if (target_alloc_working_area(target
, sizeof(mips_crc_code
), &crc_algorithm
) != ERROR_OK
)
739 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
741 /* convert mips crc code into a buffer in target endianness */
742 uint8_t mips_crc_code_8
[sizeof(mips_crc_code
)];
743 target_buffer_set_u32_array(target
, mips_crc_code_8
,
744 ARRAY_SIZE(mips_crc_code
), mips_crc_code
);
746 target_write_buffer(target
, crc_algorithm
->address
, sizeof(mips_crc_code
), mips_crc_code_8
);
748 mips32_info
.common_magic
= MIPS32_COMMON_MAGIC
;
749 mips32_info
.isa_mode
= MIPS32_ISA_MIPS32
;
751 init_reg_param(®_params
[0], "r4", 32, PARAM_IN_OUT
);
752 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
754 init_reg_param(®_params
[1], "r5", 32, PARAM_OUT
);
755 buf_set_u32(reg_params
[1].value
, 0, 32, count
);
757 int timeout
= 20000 * (1 + (count
/ (1024 * 1024)));
759 int retval
= target_run_algorithm(target
, 0, NULL
, 2, reg_params
,
760 crc_algorithm
->address
, crc_algorithm
->address
+ (sizeof(mips_crc_code
) - 4), timeout
,
763 if (retval
== ERROR_OK
)
764 *checksum
= buf_get_u32(reg_params
[0].value
, 0, 32);
766 destroy_reg_param(®_params
[0]);
767 destroy_reg_param(®_params
[1]);
769 target_free_working_area(target
, crc_algorithm
);
774 /** Checks whether a memory region is erased. */
775 int mips32_blank_check_memory(struct target
*target
,
776 target_addr_t address
, uint32_t count
, uint32_t *blank
, uint8_t erased_value
)
778 struct working_area
*erase_check_algorithm
;
779 struct reg_param reg_params
[3];
780 struct mips32_algorithm mips32_info
;
782 static const uint32_t erase_check_code
[] = {
784 0x80880000, /* lb $t0, ($a0) */
785 0x00C83024, /* and $a2, $a2, $t0 */
786 0x24A5FFFF, /* addiu $a1, $a1, -1 */
787 0x14A0FFFC, /* bne $a1, $zero, nbyte */
788 0x24840001, /* addiu $a0, $a0, 1 */
789 0x7000003F /* sdbbp */
792 if (erased_value
!= 0xff) {
793 LOG_ERROR("Erase value 0x%02" PRIx8
" not yet supported for MIPS32",
798 /* make sure we have a working area */
799 if (target_alloc_working_area(target
, sizeof(erase_check_code
), &erase_check_algorithm
) != ERROR_OK
)
800 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
802 /* convert erase check code into a buffer in target endianness */
803 uint8_t erase_check_code_8
[sizeof(erase_check_code
)];
804 target_buffer_set_u32_array(target
, erase_check_code_8
,
805 ARRAY_SIZE(erase_check_code
), erase_check_code
);
807 target_write_buffer(target
, erase_check_algorithm
->address
, sizeof(erase_check_code
), erase_check_code_8
);
809 mips32_info
.common_magic
= MIPS32_COMMON_MAGIC
;
810 mips32_info
.isa_mode
= MIPS32_ISA_MIPS32
;
812 init_reg_param(®_params
[0], "r4", 32, PARAM_OUT
);
813 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
815 init_reg_param(®_params
[1], "r5", 32, PARAM_OUT
);
816 buf_set_u32(reg_params
[1].value
, 0, 32, count
);
818 init_reg_param(®_params
[2], "r6", 32, PARAM_IN_OUT
);
819 buf_set_u32(reg_params
[2].value
, 0, 32, erased_value
);
821 int retval
= target_run_algorithm(target
, 0, NULL
, 3, reg_params
,
822 erase_check_algorithm
->address
,
823 erase_check_algorithm
->address
+ (sizeof(erase_check_code
) - 4),
824 10000, &mips32_info
);
826 if (retval
== ERROR_OK
)
827 *blank
= buf_get_u32(reg_params
[2].value
, 0, 32);
829 destroy_reg_param(®_params
[0]);
830 destroy_reg_param(®_params
[1]);
831 destroy_reg_param(®_params
[2]);
833 target_free_working_area(target
, erase_check_algorithm
);
838 static int mips32_verify_pointer(struct command_context
*cmd_ctx
,
839 struct mips32_common
*mips32
)
841 if (mips32
->common_magic
!= MIPS32_COMMON_MAGIC
) {
842 command_print(cmd_ctx
, "target is not an MIPS32");
843 return ERROR_TARGET_INVALID
;
849 * MIPS32 targets expose command interface
850 * to manipulate CP0 registers
852 COMMAND_HANDLER(mips32_handle_cp0_command
)
855 struct target
*target
= get_current_target(CMD_CTX
);
856 struct mips32_common
*mips32
= target_to_mips32(target
);
857 struct mips_ejtag
*ejtag_info
= &mips32
->ejtag_info
;
860 retval
= mips32_verify_pointer(CMD_CTX
, mips32
);
861 if (retval
!= ERROR_OK
)
864 if (target
->state
!= TARGET_HALTED
) {
865 command_print(CMD_CTX
, "target must be stopped for \"%s\" command", CMD_NAME
);
869 /* two or more argument, access a single register/select (write if third argument is given) */
871 return ERROR_COMMAND_SYNTAX_ERROR
;
873 uint32_t cp0_reg
, cp0_sel
;
874 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], cp0_reg
);
875 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], cp0_sel
);
880 retval
= mips32_cp0_read(ejtag_info
, &value
, cp0_reg
, cp0_sel
);
881 if (retval
!= ERROR_OK
) {
882 command_print(CMD_CTX
,
883 "couldn't access reg %" PRIi32
,
887 command_print(CMD_CTX
, "cp0 reg %" PRIi32
", select %" PRIi32
": %8.8" PRIx32
,
888 cp0_reg
, cp0_sel
, value
);
890 } else if (CMD_ARGC
== 3) {
892 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[2], value
);
893 retval
= mips32_cp0_write(ejtag_info
, value
, cp0_reg
, cp0_sel
);
894 if (retval
!= ERROR_OK
) {
895 command_print(CMD_CTX
,
896 "couldn't access cp0 reg %" PRIi32
", select %" PRIi32
,
900 command_print(CMD_CTX
, "cp0 reg %" PRIi32
", select %" PRIi32
": %8.8" PRIx32
,
901 cp0_reg
, cp0_sel
, value
);
908 COMMAND_HANDLER(mips32_handle_scan_delay_command
)
910 struct target
*target
= get_current_target(CMD_CTX
);
911 struct mips32_common
*mips32
= target_to_mips32(target
);
912 struct mips_ejtag
*ejtag_info
= &mips32
->ejtag_info
;
915 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[0], ejtag_info
->scan_delay
);
916 else if (CMD_ARGC
> 1)
917 return ERROR_COMMAND_SYNTAX_ERROR
;
919 command_print(CMD_CTX
, "scan delay: %d nsec", ejtag_info
->scan_delay
);
920 if (ejtag_info
->scan_delay
>= MIPS32_SCAN_DELAY_LEGACY_MODE
) {
921 ejtag_info
->mode
= 0;
922 command_print(CMD_CTX
, "running in legacy mode");
924 ejtag_info
->mode
= 1;
925 command_print(CMD_CTX
, "running in fast queued mode");
931 static const struct command_registration mips32_exec_command_handlers
[] = {
934 .handler
= mips32_handle_cp0_command
,
935 .mode
= COMMAND_EXEC
,
936 .usage
= "regnum select [value]",
937 .help
= "display/modify cp0 register",
940 .name
= "scan_delay",
941 .handler
= mips32_handle_scan_delay_command
,
943 .help
= "display/set scan delay in nano seconds",
946 COMMAND_REGISTRATION_DONE
949 const struct command_registration mips32_command_handlers
[] = {
953 .help
= "mips32 command group",
955 .chain
= mips32_exec_command_handlers
,
957 COMMAND_REGISTRATION_DONE