2 /***************************************************************************
3 * Copyright (C) 2005 by Dominic Rath *
4 * Dominic.Rath@gmx.de *
6 * This program is free software; you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation; either version 2 of the License, or *
9 * (at your option) any later version. *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
18 ***************************************************************************/
25 #include <helper/time_support.h>
26 #include "target_type.h"
28 #include "arm_opcodes.h"
31 * For information about the ARM920T, see ARM DDI 0151C especially
32 * Chapter 9 about debug support, which shows how to manipulate each
33 * of the different scan chains:
35 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
36 * 1 ... debugging; watchpoint and breakpoint status, etc; also
37 * MMU and cache access in conjunction with scan chain 15
39 * 3 ... external boundary scan (SoC-specific, unused here)
40 * 4 ... access to cache tag RAM
42 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
43 * "interpreted" works with a few actual MRC/MCR instructions
44 * "physical" provides register-like behaviors. Section 9.6.7
45 * covers these details.
47 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
51 #define _DEBUG_INSTRUCTION_EXECUTION_
54 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
55 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
56 * JTAG scan, while reads use two.
58 * Table 9-9 lists the thirteen registers which support physical access.
59 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
60 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
66 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
68 /* Registers supporting physical Read access (from table 9-9) */
69 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
70 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
71 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
72 /* NOTE: several more registers support only physical read access */
74 /* Registers supporting physical Read/Write access (from table 9-9) */
75 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
76 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
77 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
78 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
79 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
81 static int arm920t_read_cp15_physical(struct target
*target
,
82 int reg_addr
, uint32_t *value
)
84 struct arm920t_common
*arm920t
= target_to_arm920(target
);
85 struct arm_jtag
*jtag_info
;
86 struct scan_field fields
[4];
87 uint8_t access_type_buf
= 1;
88 uint8_t reg_addr_buf
= reg_addr
& 0x3f;
92 jtag_info
= &arm920t
->arm7_9_common
.jtag_info
;
94 retval
= arm_jtag_scann(jtag_info
, 0xf, TAP_IDLE
);
95 if (retval
!= ERROR_OK
)
97 retval
= arm_jtag_set_instr(jtag_info
->tap
, jtag_info
->intest_instr
, NULL
, TAP_IDLE
);
98 if (retval
!= ERROR_OK
)
101 fields
[0].num_bits
= 1;
102 fields
[0].out_value
= &access_type_buf
;
103 fields
[0].in_value
= NULL
;
105 fields
[1].num_bits
= 32;
106 fields
[1].out_value
= NULL
;
107 fields
[1].in_value
= NULL
;
109 fields
[2].num_bits
= 6;
110 fields
[2].out_value
= ®_addr_buf
;
111 fields
[2].in_value
= NULL
;
113 fields
[3].num_bits
= 1;
114 fields
[3].out_value
= &nr_w_buf
;
115 fields
[3].in_value
= NULL
;
117 jtag_add_dr_scan(jtag_info
->tap
, 4, fields
, TAP_IDLE
);
119 fields
[1].in_value
= (uint8_t *)value
;
121 jtag_add_dr_scan(jtag_info
->tap
, 4, fields
, TAP_IDLE
);
123 jtag_add_callback(arm_le_to_h_u32
, (jtag_callback_data_t
)value
);
125 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
126 jtag_execute_queue();
127 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr
, *value
);
133 static int arm920t_write_cp15_physical(struct target
*target
,
134 int reg_addr
, uint32_t value
)
136 struct arm920t_common
*arm920t
= target_to_arm920(target
);
137 struct arm_jtag
*jtag_info
;
138 struct scan_field fields
[4];
139 uint8_t access_type_buf
= 1;
140 uint8_t reg_addr_buf
= reg_addr
& 0x3f;
141 uint8_t nr_w_buf
= 1;
142 uint8_t value_buf
[4];
145 jtag_info
= &arm920t
->arm7_9_common
.jtag_info
;
147 buf_set_u32(value_buf
, 0, 32, value
);
149 retval
= arm_jtag_scann(jtag_info
, 0xf, TAP_IDLE
);
150 if (retval
!= ERROR_OK
)
152 retval
= arm_jtag_set_instr(jtag_info
->tap
, jtag_info
->intest_instr
, NULL
, TAP_IDLE
);
153 if (retval
!= ERROR_OK
)
156 fields
[0].num_bits
= 1;
157 fields
[0].out_value
= &access_type_buf
;
158 fields
[0].in_value
= NULL
;
160 fields
[1].num_bits
= 32;
161 fields
[1].out_value
= value_buf
;
162 fields
[1].in_value
= NULL
;
164 fields
[2].num_bits
= 6;
165 fields
[2].out_value
= ®_addr_buf
;
166 fields
[2].in_value
= NULL
;
168 fields
[3].num_bits
= 1;
169 fields
[3].out_value
= &nr_w_buf
;
170 fields
[3].in_value
= NULL
;
172 jtag_add_dr_scan(jtag_info
->tap
, 4, fields
, TAP_IDLE
);
174 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
175 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr
, value
);
181 /* See table 9-10 for scan chain 15 format during interpreted access mode.
182 * If the TESTSTATE register is set for interpreted access, certain CP15
183 * MRC and MCR instructions may be executed through scan chain 15.
185 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
186 * executed using scan chain 15 interpreted mode.
188 static int arm920t_execute_cp15(struct target
*target
, uint32_t cp15_opcode
,
192 struct arm920t_common
*arm920t
= target_to_arm920(target
);
193 struct arm_jtag
*jtag_info
;
194 struct scan_field fields
[4];
195 uint8_t access_type_buf
= 0; /* interpreted access */
196 uint8_t reg_addr_buf
= 0x0;
197 uint8_t nr_w_buf
= 0;
198 uint8_t cp15_opcode_buf
[4];
200 jtag_info
= &arm920t
->arm7_9_common
.jtag_info
;
202 retval
= arm_jtag_scann(jtag_info
, 0xf, TAP_IDLE
);
203 if (retval
!= ERROR_OK
)
205 retval
= arm_jtag_set_instr(jtag_info
->tap
, jtag_info
->intest_instr
, NULL
, TAP_IDLE
);
206 if (retval
!= ERROR_OK
)
209 buf_set_u32(cp15_opcode_buf
, 0, 32, cp15_opcode
);
211 fields
[0].num_bits
= 1;
212 fields
[0].out_value
= &access_type_buf
;
213 fields
[0].in_value
= NULL
;
215 fields
[1].num_bits
= 32;
216 fields
[1].out_value
= cp15_opcode_buf
;
217 fields
[1].in_value
= NULL
;
219 fields
[2].num_bits
= 6;
220 fields
[2].out_value
= ®_addr_buf
;
221 fields
[2].in_value
= NULL
;
223 fields
[3].num_bits
= 1;
224 fields
[3].out_value
= &nr_w_buf
;
225 fields
[3].in_value
= NULL
;
227 jtag_add_dr_scan(jtag_info
->tap
, 4, fields
, TAP_IDLE
);
229 arm9tdmi_clock_out(jtag_info
, arm_opcode
, 0, NULL
, 0);
230 arm9tdmi_clock_out(jtag_info
, ARMV4_5_NOP
, 0, NULL
, 1);
231 retval
= arm7_9_execute_sys_speed(target
);
232 if (retval
!= ERROR_OK
)
235 retval
= jtag_execute_queue();
236 if (retval
!= ERROR_OK
) {
237 LOG_ERROR("failed executing JTAG queue");
244 static int arm920t_read_cp15_interpreted(struct target
*target
,
245 uint32_t cp15_opcode
, uint32_t address
, uint32_t *value
)
247 struct arm
*arm
= target_to_arm(target
);
250 uint32_t cp15c15
= 0x0;
251 struct reg
*r
= arm
->core_cache
->reg_list
;
253 /* load address into R1 */
255 arm9tdmi_write_core_regs(target
, 0x2, regs
);
257 /* read-modify-write CP15 test state register
258 * to enable interpreted access mode */
259 arm920t_read_cp15_physical(target
, CP15PHYS_TESTSTATE
, &cp15c15
);
260 jtag_execute_queue();
261 cp15c15
|= 1; /* set interpret mode */
262 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
264 /* execute CP15 instruction and ARM load (reading from coprocessor) */
265 arm920t_execute_cp15(target
, cp15_opcode
, ARMV4_5_LDR(0, 1));
267 /* disable interpreted access mode */
268 cp15c15
&= ~1U; /* clear interpret mode */
269 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
271 /* retrieve value from R0 */
273 arm9tdmi_read_core_regs(target
, 0x1, regs_p
);
274 jtag_execute_queue();
276 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
277 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
278 cp15_opcode
, address
, *value
);
281 if (!is_arm_mode(arm
->core_mode
)) {
282 LOG_ERROR("not a valid arm core mode - communication failure?");
293 int arm920t_write_cp15_interpreted(struct target
*target
,
294 uint32_t cp15_opcode
, uint32_t value
, uint32_t address
)
296 uint32_t cp15c15
= 0x0;
297 struct arm
*arm
= target_to_arm(target
);
299 struct reg
*r
= arm
->core_cache
->reg_list
;
301 /* load value, address into R0, R1 */
304 arm9tdmi_write_core_regs(target
, 0x3, regs
);
306 /* read-modify-write CP15 test state register
307 * to enable interpreted access mode */
308 arm920t_read_cp15_physical(target
, CP15PHYS_TESTSTATE
, &cp15c15
);
309 jtag_execute_queue();
310 cp15c15
|= 1; /* set interpret mode */
311 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
313 /* execute CP15 instruction and ARM store (writing to coprocessor) */
314 arm920t_execute_cp15(target
, cp15_opcode
, ARMV4_5_STR(0, 1));
316 /* disable interpreted access mode */
317 cp15c15
&= ~1U; /* set interpret mode */
318 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
320 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
321 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
322 cp15_opcode
, value
, address
);
325 if (!is_arm_mode(arm
->core_mode
)) {
326 LOG_ERROR("not a valid arm core mode - communication failure?");
336 /* EXPORTED to FA256 */
337 int arm920t_get_ttb(struct target
*target
, uint32_t *result
)
342 retval
= arm920t_read_cp15_interpreted(target
,
343 /* FIXME use opcode macro */
344 0xeebf0f51, 0x0, &ttb
);
345 if (retval
!= ERROR_OK
)
352 /* EXPORTED to FA256 */
353 int arm920t_disable_mmu_caches(struct target
*target
, int mmu
,
354 int d_u_cache
, int i_cache
)
356 uint32_t cp15_control
;
359 /* read cp15 control register */
360 retval
= arm920t_read_cp15_physical(target
, CP15PHYS_CTRL
, &cp15_control
);
361 if (retval
!= ERROR_OK
)
363 retval
= jtag_execute_queue();
364 if (retval
!= ERROR_OK
)
368 cp15_control
&= ~0x1U
;
371 cp15_control
&= ~0x4U
;
374 cp15_control
&= ~0x1000U
;
376 retval
= arm920t_write_cp15_physical(target
, CP15PHYS_CTRL
, cp15_control
);
380 /* EXPORTED to FA256 */
381 int arm920t_enable_mmu_caches(struct target
*target
, int mmu
,
382 int d_u_cache
, int i_cache
)
384 uint32_t cp15_control
;
387 /* read cp15 control register */
388 retval
= arm920t_read_cp15_physical(target
, CP15PHYS_CTRL
, &cp15_control
);
389 if (retval
!= ERROR_OK
)
391 retval
= jtag_execute_queue();
392 if (retval
!= ERROR_OK
)
396 cp15_control
|= 0x1U
;
399 cp15_control
|= 0x4U
;
402 cp15_control
|= 0x1000U
;
404 retval
= arm920t_write_cp15_physical(target
, CP15PHYS_CTRL
, cp15_control
);
408 /* EXPORTED to FA256 */
409 int arm920t_post_debug_entry(struct target
*target
)
412 struct arm920t_common
*arm920t
= target_to_arm920(target
);
415 /* examine cp15 control reg */
416 retval
= arm920t_read_cp15_physical(target
,
417 CP15PHYS_CTRL
, &arm920t
->cp15_control_reg
);
418 if (retval
!= ERROR_OK
)
420 retval
= jtag_execute_queue();
421 if (retval
!= ERROR_OK
)
423 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32
, arm920t
->cp15_control_reg
);
425 if (arm920t
->armv4_5_mmu
.armv4_5_cache
.ctype
== -1) {
426 uint32_t cache_type_reg
;
427 /* identify caches */
428 retval
= arm920t_read_cp15_physical(target
,
429 CP15PHYS_CACHETYPE
, &cache_type_reg
);
430 if (retval
!= ERROR_OK
)
432 retval
= jtag_execute_queue();
433 if (retval
!= ERROR_OK
)
435 armv4_5_identify_cache(cache_type_reg
,
436 &arm920t
->armv4_5_mmu
.armv4_5_cache
);
439 arm920t
->armv4_5_mmu
.mmu_enabled
=
440 (arm920t
->cp15_control_reg
& 0x1U
) ? 1 : 0;
441 arm920t
->armv4_5_mmu
.armv4_5_cache
.d_u_cache_enabled
=
442 (arm920t
->cp15_control_reg
& 0x4U
) ? 1 : 0;
443 arm920t
->armv4_5_mmu
.armv4_5_cache
.i_cache_enabled
=
444 (arm920t
->cp15_control_reg
& 0x1000U
) ? 1 : 0;
446 /* save i/d fault status and address register
447 * FIXME use opcode macros */
448 retval
= arm920t_read_cp15_interpreted(target
, 0xee150f10, 0x0, &arm920t
->d_fsr
);
449 if (retval
!= ERROR_OK
)
451 retval
= arm920t_read_cp15_interpreted(target
, 0xee150f30, 0x0, &arm920t
->i_fsr
);
452 if (retval
!= ERROR_OK
)
454 retval
= arm920t_read_cp15_interpreted(target
, 0xee160f10, 0x0, &arm920t
->d_far
);
455 if (retval
!= ERROR_OK
)
457 retval
= arm920t_read_cp15_interpreted(target
, 0xee160f30, 0x0, &arm920t
->i_far
);
458 if (retval
!= ERROR_OK
)
461 LOG_DEBUG("D FSR: 0x%8.8" PRIx32
", D FAR: 0x%8.8" PRIx32
462 ", I FSR: 0x%8.8" PRIx32
", I FAR: 0x%8.8" PRIx32
,
463 arm920t
->d_fsr
, arm920t
->d_far
, arm920t
->i_fsr
, arm920t
->i_far
);
465 if (arm920t
->preserve_cache
) {
466 /* read-modify-write CP15 test state register
467 * to disable I/D-cache linefills */
468 retval
= arm920t_read_cp15_physical(target
,
469 CP15PHYS_TESTSTATE
, &cp15c15
);
470 if (retval
!= ERROR_OK
)
472 retval
= jtag_execute_queue();
473 if (retval
!= ERROR_OK
)
476 retval
= arm920t_write_cp15_physical(target
,
477 CP15PHYS_TESTSTATE
, cp15c15
);
478 if (retval
!= ERROR_OK
)
484 /* EXPORTED to FA256 */
485 void arm920t_pre_restore_context(struct target
*target
)
488 struct arm920t_common
*arm920t
= target_to_arm920(target
);
490 /* restore i/d fault status and address register */
491 arm920t_write_cp15_interpreted(target
, 0xee050f10, arm920t
->d_fsr
, 0x0);
492 arm920t_write_cp15_interpreted(target
, 0xee050f30, arm920t
->i_fsr
, 0x0);
493 arm920t_write_cp15_interpreted(target
, 0xee060f10, arm920t
->d_far
, 0x0);
494 arm920t_write_cp15_interpreted(target
, 0xee060f30, arm920t
->i_far
, 0x0);
496 /* read-modify-write CP15 test state register
497 * to reenable I/D-cache linefills */
498 if (arm920t
->preserve_cache
) {
499 arm920t_read_cp15_physical(target
,
500 CP15PHYS_TESTSTATE
, &cp15c15
);
501 jtag_execute_queue();
503 arm920t_write_cp15_physical(target
,
504 CP15PHYS_TESTSTATE
, cp15c15
);
508 static const char arm920_not
[] = "target is not an ARM920";
510 static int arm920t_verify_pointer(struct command_context
*cmd_ctx
,
511 struct arm920t_common
*arm920t
)
513 if (arm920t
->common_magic
!= ARM920T_COMMON_MAGIC
) {
514 command_print(cmd_ctx
, arm920_not
);
515 return ERROR_TARGET_INVALID
;
521 /** Logs summary of ARM920 state for a halted target. */
522 int arm920t_arch_state(struct target
*target
)
524 static const char *state
[] = {
525 "disabled", "enabled"
528 struct arm920t_common
*arm920t
= target_to_arm920(target
);
530 if (arm920t
->common_magic
!= ARM920T_COMMON_MAGIC
) {
531 LOG_ERROR("BUG: %s", arm920_not
);
532 return ERROR_TARGET_INVALID
;
535 arm_arch_state(target
);
536 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
537 state
[arm920t
->armv4_5_mmu
.mmu_enabled
],
538 state
[arm920t
->armv4_5_mmu
.armv4_5_cache
.d_u_cache_enabled
],
539 state
[arm920t
->armv4_5_mmu
.armv4_5_cache
.i_cache_enabled
]);
544 static int arm920_mmu(struct target
*target
, int *enabled
)
546 if (target
->state
!= TARGET_HALTED
) {
547 LOG_ERROR("%s: target not halted", __func__
);
548 return ERROR_TARGET_INVALID
;
551 *enabled
= target_to_arm920(target
)->armv4_5_mmu
.mmu_enabled
;
555 static int arm920_virt2phys(struct target
*target
,
556 target_addr_t virt
, target_addr_t
*phys
)
559 struct arm920t_common
*arm920t
= target_to_arm920(target
);
562 int retval
= armv4_5_mmu_translate_va(target
,
563 &arm920t
->armv4_5_mmu
, virt
, &cb
, &ret
);
564 if (retval
!= ERROR_OK
)
570 /** Reads a buffer, in the specified word size, with current MMU settings. */
571 int arm920t_read_memory(struct target
*target
, target_addr_t address
,
572 uint32_t size
, uint32_t count
, uint8_t *buffer
)
576 retval
= arm7_9_read_memory(target
, address
, size
, count
, buffer
);
582 static int arm920t_read_phys_memory(struct target
*target
,
583 target_addr_t address
, uint32_t size
,
584 uint32_t count
, uint8_t *buffer
)
586 struct arm920t_common
*arm920t
= target_to_arm920(target
);
588 return armv4_5_mmu_read_physical(target
, &arm920t
->armv4_5_mmu
,
589 address
, size
, count
, buffer
);
592 static int arm920t_write_phys_memory(struct target
*target
,
593 target_addr_t address
, uint32_t size
,
594 uint32_t count
, const uint8_t *buffer
)
596 struct arm920t_common
*arm920t
= target_to_arm920(target
);
598 return armv4_5_mmu_write_physical(target
, &arm920t
->armv4_5_mmu
,
599 address
, size
, count
, buffer
);
602 /** Writes a buffer, in the specified word size, with current MMU settings. */
603 int arm920t_write_memory(struct target
*target
, target_addr_t address
,
604 uint32_t size
, uint32_t count
, const uint8_t *buffer
)
607 const uint32_t cache_mask
= ~0x1f; /* cache line size : 32 byte */
608 struct arm920t_common
*arm920t
= target_to_arm920(target
);
610 /* FIX!!!! this should be cleaned up and made much more general. The
611 * plan is to write up and test on arm920t specifically and
612 * then generalize and clean up afterwards.
614 * Also it should be moved to the callbacks that handle breakpoints
615 * specifically and not the generic memory write fn's. See XScale code.
617 if (arm920t
->armv4_5_mmu
.mmu_enabled
&& (count
== 1) &&
618 ((size
== 2) || (size
== 4))) {
619 /* special case the handling of single word writes to
620 * bypass MMU, to allow implementation of breakpoints
621 * in memory marked read only
628 * We need physical address and cb
630 retval
= armv4_5_mmu_translate_va(target
, &arm920t
->armv4_5_mmu
,
632 if (retval
!= ERROR_OK
)
635 if (arm920t
->armv4_5_mmu
.armv4_5_cache
.d_u_cache_enabled
) {
637 LOG_DEBUG("D-Cache buffered, "
638 "drain write buffer");
641 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
644 retval
= arm920t_write_cp15_interpreted(target
,
645 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
647 if (retval
!= ERROR_OK
)
653 * Write back memory ? -> clean cache
655 * There is no way to clean cache lines using
656 * cp15 scan chain, so copy the full cache
657 * line from cache to physical memory.
661 LOG_DEBUG("D-Cache in 'write back' mode, "
664 retval
= target_read_memory(target
,
665 address
& cache_mask
, 1,
666 sizeof(data
), &data
[0]);
667 if (retval
!= ERROR_OK
)
670 retval
= armv4_5_mmu_write_physical(target
,
671 &arm920t
->armv4_5_mmu
,
673 sizeof(data
), &data
[0]);
674 if (retval
!= ERROR_OK
)
681 * Cached ? -> Invalidate data cache using MVA
683 * MCR p15,0,Rd,c7,c6,1
685 LOG_DEBUG("D-Cache enabled, "
686 "invalidate cache line");
688 retval
= arm920t_write_cp15_interpreted(target
,
689 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
690 address
& cache_mask
);
691 if (retval
!= ERROR_OK
)
696 /* write directly to physical memory,
697 * bypassing any read only MMU bits, etc.
699 retval
= armv4_5_mmu_write_physical(target
,
700 &arm920t
->armv4_5_mmu
, pa
, size
,
702 if (retval
!= ERROR_OK
)
705 retval
= arm7_9_write_memory(target
, address
, size
, count
, buffer
);
706 if (retval
!= ERROR_OK
)
710 /* If ICache is enabled, we have to invalidate affected ICache lines
711 * the DCache is forced to write-through,
712 * so we don't have to clean it here
714 if (arm920t
->armv4_5_mmu
.armv4_5_cache
.i_cache_enabled
) {
716 /* invalidate ICache single entry with MVA
717 * mcr 15, 0, r0, cr7, cr5, {1}
719 LOG_DEBUG("I-Cache enabled, "
720 "invalidating affected I-Cache line");
721 retval
= arm920t_write_cp15_interpreted(target
,
722 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
723 0x0, address
& cache_mask
);
724 if (retval
!= ERROR_OK
)
728 * mcr 15, 0, r0, cr7, cr5, {0}
730 retval
= arm920t_write_cp15_interpreted(target
,
731 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
733 if (retval
!= ERROR_OK
)
741 /* EXPORTED to FA256 */
742 int arm920t_soft_reset_halt(struct target
*target
)
744 int retval
= ERROR_OK
;
745 struct arm920t_common
*arm920t
= target_to_arm920(target
);
746 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
747 struct arm
*arm
= &arm7_9
->arm
;
748 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
750 retval
= target_halt(target
);
751 if (retval
!= ERROR_OK
)
754 int64_t then
= timeval_ms();
756 while (!(timeout
= ((timeval_ms()-then
) > 1000))) {
757 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1) == 0) {
758 embeddedice_read_reg(dbg_stat
);
759 retval
= jtag_execute_queue();
760 if (retval
!= ERROR_OK
)
764 if (debug_level
>= 3) {
765 /* do not eat all CPU, time out after 1 se*/
771 LOG_ERROR("Failed to halt CPU after 1 sec");
772 return ERROR_TARGET_TIMEOUT
;
775 target
->state
= TARGET_HALTED
;
777 /* SVC, ARM state, IRQ and FIQ disabled */
780 cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 32);
783 arm_set_cpsr(arm
, cpsr
);
784 arm
->cpsr
->dirty
= 1;
786 /* start fetching from 0x0 */
787 buf_set_u32(arm
->pc
->value
, 0, 32, 0x0);
791 arm920t_disable_mmu_caches(target
, 1, 1, 1);
792 arm920t
->armv4_5_mmu
.mmu_enabled
= 0;
793 arm920t
->armv4_5_mmu
.armv4_5_cache
.d_u_cache_enabled
= 0;
794 arm920t
->armv4_5_mmu
.armv4_5_cache
.i_cache_enabled
= 0;
796 return target_call_event_callbacks(target
, TARGET_EVENT_HALTED
);
799 /* FIXME remove forward decls */
800 static int arm920t_mrc(struct target
*target
, int cpnum
,
801 uint32_t op1
, uint32_t op2
,
802 uint32_t CRn
, uint32_t CRm
,
804 static int arm920t_mcr(struct target
*target
, int cpnum
,
805 uint32_t op1
, uint32_t op2
,
806 uint32_t CRn
, uint32_t CRm
,
809 static int arm920t_init_arch_info(struct target
*target
,
810 struct arm920t_common
*arm920t
, struct jtag_tap
*tap
)
812 struct arm7_9_common
*arm7_9
= &arm920t
->arm7_9_common
;
814 arm7_9
->arm
.mrc
= arm920t_mrc
;
815 arm7_9
->arm
.mcr
= arm920t_mcr
;
817 /* initialize arm7/arm9 specific info (including armv4_5) */
818 arm9tdmi_init_arch_info(target
, arm7_9
, tap
);
820 arm920t
->common_magic
= ARM920T_COMMON_MAGIC
;
822 arm7_9
->post_debug_entry
= arm920t_post_debug_entry
;
823 arm7_9
->pre_restore_context
= arm920t_pre_restore_context
;
824 arm7_9
->write_memory
= arm920t_write_memory
;
826 arm920t
->armv4_5_mmu
.armv4_5_cache
.ctype
= -1;
827 arm920t
->armv4_5_mmu
.get_ttb
= arm920t_get_ttb
;
828 arm920t
->armv4_5_mmu
.read_memory
= arm7_9_read_memory
;
829 arm920t
->armv4_5_mmu
.write_memory
= arm7_9_write_memory
;
830 arm920t
->armv4_5_mmu
.disable_mmu_caches
= arm920t_disable_mmu_caches
;
831 arm920t
->armv4_5_mmu
.enable_mmu_caches
= arm920t_enable_mmu_caches
;
832 arm920t
->armv4_5_mmu
.has_tiny_pages
= 1;
833 arm920t
->armv4_5_mmu
.mmu_enabled
= 0;
835 /* disabling linefills leads to lockups, so keep them enabled for now
836 * this doesn't affect correctness, but might affect timing issues, if
837 * important data is evicted from the cache during the debug session
839 arm920t
->preserve_cache
= 0;
841 /* override hw single-step capability from ARM9TDMI */
842 arm7_9
->has_single_step
= 1;
847 static int arm920t_target_create(struct target
*target
, Jim_Interp
*interp
)
849 struct arm920t_common
*arm920t
;
851 arm920t
= calloc(1, sizeof(struct arm920t_common
));
852 return arm920t_init_arch_info(target
, arm920t
, target
->tap
);
855 COMMAND_HANDLER(arm920t_handle_read_cache_command
)
857 int retval
= ERROR_OK
;
858 struct target
*target
= get_current_target(CMD_CTX
);
859 struct arm920t_common
*arm920t
= target_to_arm920(target
);
860 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
861 struct arm
*arm
= &arm7_9
->arm
;
863 uint32_t cp15_ctrl
, cp15_ctrl_saved
;
865 uint32_t *regs_p
[16];
866 uint32_t C15_C_D_Ind
, C15_C_I_Ind
;
869 int segment
, index_t
;
872 retval
= arm920t_verify_pointer(CMD_CTX
, arm920t
);
873 if (retval
!= ERROR_OK
)
877 return ERROR_COMMAND_SYNTAX_ERROR
;
879 output
= fopen(CMD_ARGV
[0], "w");
880 if (output
== NULL
) {
881 LOG_DEBUG("error opening cache content file");
885 for (i
= 0; i
< 16; i
++)
886 regs_p
[i
] = ®s
[i
];
888 /* disable MMU and Caches */
889 arm920t_read_cp15_physical(target
, CP15PHYS_CTRL
, &cp15_ctrl
);
890 retval
= jtag_execute_queue();
891 if (retval
!= ERROR_OK
)
893 cp15_ctrl_saved
= cp15_ctrl
;
894 cp15_ctrl
&= ~(ARMV4_5_MMU_ENABLED
895 | ARMV4_5_D_U_CACHE_ENABLED
| ARMV4_5_I_CACHE_ENABLED
);
896 arm920t_write_cp15_physical(target
, CP15PHYS_CTRL
, cp15_ctrl
);
898 /* read CP15 test state register */
899 arm920t_read_cp15_physical(target
, CP15PHYS_TESTSTATE
, &cp15c15
);
900 jtag_execute_queue();
902 /* read DCache content */
903 fprintf(output
, "DCache:\n");
905 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
907 segment
< arm920t
->armv4_5_mmu
.armv4_5_cache
.d_u_size
.nsets
;
909 fprintf(output
, "\nsegment: %i\n----------", segment
);
911 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
912 regs
[0] = 0x0 | (segment
<< 5);
913 arm9tdmi_write_core_regs(target
, 0x1, regs
);
915 /* set interpret mode */
917 arm920t_write_cp15_physical(target
,
918 CP15PHYS_TESTSTATE
, cp15c15
);
920 /* D CAM Read, loads current victim into C15.C.D.Ind */
921 arm920t_execute_cp15(target
,
922 ARMV4_5_MCR(15, 2, 0, 15, 6, 2), ARMV4_5_LDR(1, 0));
924 /* read current victim */
925 arm920t_read_cp15_physical(target
,
926 CP15PHYS_DCACHE_IDX
, &C15_C_D_Ind
);
928 /* clear interpret mode */
930 arm920t_write_cp15_physical(target
,
931 CP15PHYS_TESTSTATE
, cp15c15
);
933 for (index_t
= 0; index_t
< 64; index_t
++) {
935 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
937 regs
[0] = 0x0 | (segment
<< 5) | (index_t
<< 26);
938 arm9tdmi_write_core_regs(target
, 0x1, regs
);
940 /* set interpret mode */
942 arm920t_write_cp15_physical(target
,
943 CP15PHYS_TESTSTATE
, cp15c15
);
945 /* Write DCache victim */
946 arm920t_execute_cp15(target
,
947 ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
950 arm920t_execute_cp15(target
,
951 ARMV4_5_MCR(15, 2, 0, 15, 10, 2),
952 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
955 arm920t_execute_cp15(target
,
956 ARMV4_5_MCR(15, 2, 0, 15, 6, 2),
959 /* clear interpret mode */
961 arm920t_write_cp15_physical(target
,
962 CP15PHYS_TESTSTATE
, cp15c15
);
964 /* read D RAM and CAM content */
965 arm9tdmi_read_core_regs(target
, 0x3fe, regs_p
);
966 retval
= jtag_execute_queue();
967 if (retval
!= ERROR_OK
)
971 regs
[9] &= 0xfffffffe;
972 fprintf(output
, "\nsegment: %i, index: %i, CAM: 0x%8.8"
973 PRIx32
", content (%s):\n",
974 segment
, index_t
, regs
[9],
975 (regs
[9] & 0x10) ? "valid" : "invalid");
977 for (i
= 1; i
< 9; i
++) {
978 fprintf(output
, "%i: 0x%8.8" PRIx32
"\n",
984 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
985 regs
[0] = 0x0 | (segment
<< 5) | (C15_C_D_Ind
<< 26);
986 arm9tdmi_write_core_regs(target
, 0x1, regs
);
988 /* set interpret mode */
990 arm920t_write_cp15_physical(target
,
991 CP15PHYS_TESTSTATE
, cp15c15
);
993 /* Write DCache victim */
994 arm920t_execute_cp15(target
,
995 ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
997 /* clear interpret mode */
999 arm920t_write_cp15_physical(target
,
1000 CP15PHYS_TESTSTATE
, cp15c15
);
1003 /* read ICache content */
1004 fprintf(output
, "ICache:\n");
1006 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
1008 segment
< arm920t
->armv4_5_mmu
.armv4_5_cache
.d_u_size
.nsets
;
1010 fprintf(output
, "segment: %i\n----------", segment
);
1012 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1013 regs
[0] = 0x0 | (segment
<< 5);
1014 arm9tdmi_write_core_regs(target
, 0x1, regs
);
1016 /* set interpret mode */
1018 arm920t_write_cp15_physical(target
,
1019 CP15PHYS_TESTSTATE
, cp15c15
);
1021 /* I CAM Read, loads current victim into C15.C.I.Ind */
1022 arm920t_execute_cp15(target
,
1023 ARMV4_5_MCR(15, 2, 0, 15, 5, 2), ARMV4_5_LDR(1, 0));
1025 /* read current victim */
1026 arm920t_read_cp15_physical(target
, CP15PHYS_ICACHE_IDX
,
1029 /* clear interpret mode */
1031 arm920t_write_cp15_physical(target
,
1032 CP15PHYS_TESTSTATE
, cp15c15
);
1034 for (index_t
= 0; index_t
< 64; index_t
++) {
1036 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1038 regs
[0] = 0x0 | (segment
<< 5) | (index_t
<< 26);
1039 arm9tdmi_write_core_regs(target
, 0x1, regs
);
1041 /* set interpret mode */
1043 arm920t_write_cp15_physical(target
,
1044 CP15PHYS_TESTSTATE
, cp15c15
);
1046 /* Write ICache victim */
1047 arm920t_execute_cp15(target
,
1048 ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
1051 arm920t_execute_cp15(target
,
1052 ARMV4_5_MCR(15, 2, 0, 15, 9, 2),
1053 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1056 arm920t_execute_cp15(target
,
1057 ARMV4_5_MCR(15, 2, 0, 15, 5, 2),
1060 /* clear interpret mode */
1062 arm920t_write_cp15_physical(target
,
1063 CP15PHYS_TESTSTATE
, cp15c15
);
1065 /* read I RAM and CAM content */
1066 arm9tdmi_read_core_regs(target
, 0x3fe, regs_p
);
1067 retval
= jtag_execute_queue();
1068 if (retval
!= ERROR_OK
)
1072 regs
[9] &= 0xfffffffe;
1073 fprintf(output
, "\nsegment: %i, index: %i, "
1074 "CAM: 0x%8.8" PRIx32
", content (%s):\n",
1075 segment
, index_t
, regs
[9],
1076 (regs
[9] & 0x10) ? "valid" : "invalid");
1078 for (i
= 1; i
< 9; i
++) {
1079 fprintf(output
, "%i: 0x%8.8" PRIx32
"\n",
1084 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1085 regs
[0] = 0x0 | (segment
<< 5) | (C15_C_D_Ind
<< 26);
1086 arm9tdmi_write_core_regs(target
, 0x1, regs
);
1088 /* set interpret mode */
1090 arm920t_write_cp15_physical(target
,
1091 CP15PHYS_TESTSTATE
, cp15c15
);
1093 /* Write ICache victim */
1094 arm920t_execute_cp15(target
,
1095 ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
1097 /* clear interpret mode */
1099 arm920t_write_cp15_physical(target
,
1100 CP15PHYS_TESTSTATE
, cp15c15
);
1103 /* restore CP15 MMU and Cache settings */
1104 arm920t_write_cp15_physical(target
, CP15PHYS_CTRL
, cp15_ctrl_saved
);
1106 command_print(CMD_CTX
, "cache content successfully output to %s",
1111 if (!is_arm_mode(arm
->core_mode
)) {
1112 LOG_ERROR("not a valid arm core mode - communication failure?");
1116 /* force writeback of the valid data */
1117 r
= arm
->core_cache
->reg_list
;
1118 r
[0].dirty
= r
[0].valid
;
1119 r
[1].dirty
= r
[1].valid
;
1120 r
[2].dirty
= r
[2].valid
;
1121 r
[3].dirty
= r
[3].valid
;
1122 r
[4].dirty
= r
[4].valid
;
1123 r
[5].dirty
= r
[5].valid
;
1124 r
[6].dirty
= r
[6].valid
;
1125 r
[7].dirty
= r
[7].valid
;
1127 r
= arm_reg_current(arm
, 8);
1128 r
->dirty
= r
->valid
;
1130 r
= arm_reg_current(arm
, 9);
1131 r
->dirty
= r
->valid
;
1136 COMMAND_HANDLER(arm920t_handle_read_mmu_command
)
1138 int retval
= ERROR_OK
;
1139 struct target
*target
= get_current_target(CMD_CTX
);
1140 struct arm920t_common
*arm920t
= target_to_arm920(target
);
1141 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1142 struct arm
*arm
= &arm7_9
->arm
;
1144 uint32_t cp15_ctrl
, cp15_ctrl_saved
;
1146 uint32_t *regs_p
[16];
1149 uint32_t Dlockdown
, Ilockdown
;
1150 struct arm920t_tlb_entry d_tlb
[64], i_tlb
[64];
1154 retval
= arm920t_verify_pointer(CMD_CTX
, arm920t
);
1155 if (retval
!= ERROR_OK
)
1159 return ERROR_COMMAND_SYNTAX_ERROR
;
1161 output
= fopen(CMD_ARGV
[0], "w");
1162 if (output
== NULL
) {
1163 LOG_DEBUG("error opening mmu content file");
1167 for (i
= 0; i
< 16; i
++)
1168 regs_p
[i
] = ®s
[i
];
1170 /* disable MMU and Caches */
1171 arm920t_read_cp15_physical(target
, CP15PHYS_CTRL
, &cp15_ctrl
);
1172 retval
= jtag_execute_queue();
1173 if (retval
!= ERROR_OK
)
1175 cp15_ctrl_saved
= cp15_ctrl
;
1176 cp15_ctrl
&= ~(ARMV4_5_MMU_ENABLED
1177 | ARMV4_5_D_U_CACHE_ENABLED
| ARMV4_5_I_CACHE_ENABLED
);
1178 arm920t_write_cp15_physical(target
, CP15PHYS_CTRL
, cp15_ctrl
);
1180 /* read CP15 test state register */
1181 arm920t_read_cp15_physical(target
, CP15PHYS_TESTSTATE
, &cp15c15
);
1182 retval
= jtag_execute_queue();
1183 if (retval
!= ERROR_OK
)
1186 /* prepare reading D TLB content
1189 /* set interpret mode */
1191 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
1193 /* Read D TLB lockdown */
1194 arm920t_execute_cp15(target
,
1195 ARMV4_5_MRC(15, 0, 0, 10, 0, 0), ARMV4_5_LDR(1, 0));
1197 /* clear interpret mode */
1199 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
1201 /* read D TLB lockdown stored to r1 */
1202 arm9tdmi_read_core_regs(target
, 0x2, regs_p
);
1203 retval
= jtag_execute_queue();
1204 if (retval
!= ERROR_OK
)
1206 Dlockdown
= regs
[1];
1208 for (victim
= 0; victim
< 64; victim
+= 8) {
1209 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1210 * base remains unchanged, victim goes through entries 0 to 63
1212 regs
[1] = (Dlockdown
& 0xfc000000) | (victim
<< 20);
1213 arm9tdmi_write_core_regs(target
, 0x2, regs
);
1215 /* set interpret mode */
1217 arm920t_write_cp15_physical(target
,
1218 CP15PHYS_TESTSTATE
, cp15c15
);
1220 /* Write D TLB lockdown */
1221 arm920t_execute_cp15(target
,
1222 ARMV4_5_MCR(15, 0, 0, 10, 0, 0),
1225 /* Read D TLB CAM */
1226 arm920t_execute_cp15(target
,
1227 ARMV4_5_MCR(15, 4, 0, 15, 6, 4),
1228 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1230 /* clear interpret mode */
1232 arm920t_write_cp15_physical(target
,
1233 CP15PHYS_TESTSTATE
, cp15c15
);
1235 /* read D TLB CAM content stored to r2-r9 */
1236 arm9tdmi_read_core_regs(target
, 0x3fc, regs_p
);
1237 retval
= jtag_execute_queue();
1238 if (retval
!= ERROR_OK
)
1241 for (i
= 0; i
< 8; i
++)
1242 d_tlb
[victim
+ i
].cam
= regs
[i
+ 2];
1245 for (victim
= 0; victim
< 64; victim
++) {
1246 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1247 * base remains unchanged, victim goes through entries 0 to 63
1249 regs
[1] = (Dlockdown
& 0xfc000000) | (victim
<< 20);
1250 arm9tdmi_write_core_regs(target
, 0x2, regs
);
1252 /* set interpret mode */
1254 arm920t_write_cp15_physical(target
,
1255 CP15PHYS_TESTSTATE
, cp15c15
);
1257 /* Write D TLB lockdown */
1258 arm920t_execute_cp15(target
,
1259 ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
1261 /* Read D TLB RAM1 */
1262 arm920t_execute_cp15(target
,
1263 ARMV4_5_MCR(15, 4, 0, 15, 10, 4), ARMV4_5_LDR(2, 0));
1265 /* Read D TLB RAM2 */
1266 arm920t_execute_cp15(target
,
1267 ARMV4_5_MCR(15, 4, 0, 15, 2, 5), ARMV4_5_LDR(3, 0));
1269 /* clear interpret mode */
1271 arm920t_write_cp15_physical(target
,
1272 CP15PHYS_TESTSTATE
, cp15c15
);
1274 /* read D TLB RAM content stored to r2 and r3 */
1275 arm9tdmi_read_core_regs(target
, 0xc, regs_p
);
1276 retval
= jtag_execute_queue();
1277 if (retval
!= ERROR_OK
)
1280 d_tlb
[victim
].ram1
= regs
[2];
1281 d_tlb
[victim
].ram2
= regs
[3];
1284 /* restore D TLB lockdown */
1285 regs
[1] = Dlockdown
;
1286 arm9tdmi_write_core_regs(target
, 0x2, regs
);
1288 /* Write D TLB lockdown */
1289 arm920t_execute_cp15(target
,
1290 ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
1292 /* prepare reading I TLB content
1295 /* set interpret mode */
1297 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
1299 /* Read I TLB lockdown */
1300 arm920t_execute_cp15(target
,
1301 ARMV4_5_MRC(15, 0, 0, 10, 0, 1), ARMV4_5_LDR(1, 0));
1303 /* clear interpret mode */
1305 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
1307 /* read I TLB lockdown stored to r1 */
1308 arm9tdmi_read_core_regs(target
, 0x2, regs_p
);
1309 retval
= jtag_execute_queue();
1310 if (retval
!= ERROR_OK
)
1312 Ilockdown
= regs
[1];
1314 for (victim
= 0; victim
< 64; victim
+= 8) {
1315 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1316 * base remains unchanged, victim goes through entries 0 to 63
1318 regs
[1] = (Ilockdown
& 0xfc000000) | (victim
<< 20);
1319 arm9tdmi_write_core_regs(target
, 0x2, regs
);
1321 /* set interpret mode */
1323 arm920t_write_cp15_physical(target
,
1324 CP15PHYS_TESTSTATE
, cp15c15
);
1326 /* Write I TLB lockdown */
1327 arm920t_execute_cp15(target
,
1328 ARMV4_5_MCR(15, 0, 0, 10, 0, 1),
1331 /* Read I TLB CAM */
1332 arm920t_execute_cp15(target
,
1333 ARMV4_5_MCR(15, 4, 0, 15, 5, 4),
1334 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1336 /* clear interpret mode */
1338 arm920t_write_cp15_physical(target
,
1339 CP15PHYS_TESTSTATE
, cp15c15
);
1341 /* read I TLB CAM content stored to r2-r9 */
1342 arm9tdmi_read_core_regs(target
, 0x3fc, regs_p
);
1343 retval
= jtag_execute_queue();
1344 if (retval
!= ERROR_OK
)
1347 for (i
= 0; i
< 8; i
++)
1348 i_tlb
[i
+ victim
].cam
= regs
[i
+ 2];
1351 for (victim
= 0; victim
< 64; victim
++) {
1352 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1353 * base remains unchanged, victim goes through entries 0 to 63
1355 regs
[1] = (Dlockdown
& 0xfc000000) | (victim
<< 20);
1356 arm9tdmi_write_core_regs(target
, 0x2, regs
);
1358 /* set interpret mode */
1360 arm920t_write_cp15_physical(target
,
1361 CP15PHYS_TESTSTATE
, cp15c15
);
1363 /* Write I TLB lockdown */
1364 arm920t_execute_cp15(target
,
1365 ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
1367 /* Read I TLB RAM1 */
1368 arm920t_execute_cp15(target
,
1369 ARMV4_5_MCR(15, 4, 0, 15, 9, 4), ARMV4_5_LDR(2, 0));
1371 /* Read I TLB RAM2 */
1372 arm920t_execute_cp15(target
,
1373 ARMV4_5_MCR(15, 4, 0, 15, 1, 5), ARMV4_5_LDR(3, 0));
1375 /* clear interpret mode */
1377 arm920t_write_cp15_physical(target
,
1378 CP15PHYS_TESTSTATE
, cp15c15
);
1380 /* read I TLB RAM content stored to r2 and r3 */
1381 arm9tdmi_read_core_regs(target
, 0xc, regs_p
);
1382 retval
= jtag_execute_queue();
1383 if (retval
!= ERROR_OK
)
1386 i_tlb
[victim
].ram1
= regs
[2];
1387 i_tlb
[victim
].ram2
= regs
[3];
1390 /* restore I TLB lockdown */
1391 regs
[1] = Ilockdown
;
1392 arm9tdmi_write_core_regs(target
, 0x2, regs
);
1394 /* Write I TLB lockdown */
1395 arm920t_execute_cp15(target
,
1396 ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
1398 /* restore CP15 MMU and Cache settings */
1399 arm920t_write_cp15_physical(target
, CP15PHYS_CTRL
, cp15_ctrl_saved
);
1401 /* output data to file */
1402 fprintf(output
, "D TLB content:\n");
1403 for (i
= 0; i
< 64; i
++) {
1404 fprintf(output
, "%i: 0x%8.8" PRIx32
" 0x%8.8" PRIx32
1405 " 0x%8.8" PRIx32
" %s\n",
1406 i
, d_tlb
[i
].cam
, d_tlb
[i
].ram1
, d_tlb
[i
].ram2
,
1407 (d_tlb
[i
].cam
& 0x20) ? "(valid)" : "(invalid)");
1410 fprintf(output
, "\n\nI TLB content:\n");
1411 for (i
= 0; i
< 64; i
++) {
1412 fprintf(output
, "%i: 0x%8.8" PRIx32
" 0x%8.8" PRIx32
1413 " 0x%8.8" PRIx32
" %s\n",
1414 i
, i_tlb
[i
].cam
, i_tlb
[i
].ram1
, i_tlb
[i
].ram2
,
1415 (i_tlb
[i
].cam
& 0x20) ? "(valid)" : "(invalid)");
1418 command_print(CMD_CTX
, "mmu content successfully output to %s",
1423 if (!is_arm_mode(arm
->core_mode
)) {
1424 LOG_ERROR("not a valid arm core mode - communication failure?");
1428 /* force writeback of the valid data */
1429 r
= arm
->core_cache
->reg_list
;
1430 r
[0].dirty
= r
[0].valid
;
1431 r
[1].dirty
= r
[1].valid
;
1432 r
[2].dirty
= r
[2].valid
;
1433 r
[3].dirty
= r
[3].valid
;
1434 r
[4].dirty
= r
[4].valid
;
1435 r
[5].dirty
= r
[5].valid
;
1436 r
[6].dirty
= r
[6].valid
;
1437 r
[7].dirty
= r
[7].valid
;
1439 r
= arm_reg_current(arm
, 8);
1440 r
->dirty
= r
->valid
;
1442 r
= arm_reg_current(arm
, 9);
1443 r
->dirty
= r
->valid
;
1448 COMMAND_HANDLER(arm920t_handle_cp15_command
)
1451 struct target
*target
= get_current_target(CMD_CTX
);
1452 struct arm920t_common
*arm920t
= target_to_arm920(target
);
1454 retval
= arm920t_verify_pointer(CMD_CTX
, arm920t
);
1455 if (retval
!= ERROR_OK
)
1458 if (target
->state
!= TARGET_HALTED
) {
1459 command_print(CMD_CTX
, "target must be stopped for "
1460 "\"%s\" command", CMD_NAME
);
1464 /* one argument, read a register.
1465 * two arguments, write it.
1467 if (CMD_ARGC
>= 1) {
1469 COMMAND_PARSE_NUMBER(int, CMD_ARGV
[0], address
);
1471 if (CMD_ARGC
== 1) {
1473 retval
= arm920t_read_cp15_physical(target
, address
, &value
);
1474 if (retval
!= ERROR_OK
) {
1475 command_print(CMD_CTX
,
1476 "couldn't access reg %i", address
);
1479 retval
= jtag_execute_queue();
1480 if (retval
!= ERROR_OK
)
1483 command_print(CMD_CTX
, "%i: %8.8" PRIx32
,
1485 } else if (CMD_ARGC
== 2) {
1487 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], value
);
1488 retval
= arm920t_write_cp15_physical(target
,
1490 if (retval
!= ERROR_OK
) {
1491 command_print(CMD_CTX
,
1492 "couldn't access reg %i", address
);
1493 /* REVISIT why lie? "return retval"? */
1496 command_print(CMD_CTX
, "%i: %8.8" PRIx32
,
1504 COMMAND_HANDLER(arm920t_handle_cp15i_command
)
1507 struct target
*target
= get_current_target(CMD_CTX
);
1508 struct arm920t_common
*arm920t
= target_to_arm920(target
);
1510 retval
= arm920t_verify_pointer(CMD_CTX
, arm920t
);
1511 if (retval
!= ERROR_OK
)
1515 if (target
->state
!= TARGET_HALTED
) {
1516 command_print(CMD_CTX
, "target must be stopped for "
1517 "\"%s\" command", CMD_NAME
);
1521 /* one argument, read a register.
1522 * two arguments, write it.
1524 if (CMD_ARGC
>= 1) {
1526 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], opcode
);
1528 if (CMD_ARGC
== 1) {
1530 retval
= arm920t_read_cp15_interpreted(target
,
1531 opcode
, 0x0, &value
);
1532 if (retval
!= ERROR_OK
) {
1533 command_print(CMD_CTX
,
1534 "couldn't execute %8.8" PRIx32
,
1536 /* REVISIT why lie? "return retval"? */
1540 command_print(CMD_CTX
, "%8.8" PRIx32
": %8.8" PRIx32
,
1542 } else if (CMD_ARGC
== 2) {
1544 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], value
);
1545 retval
= arm920t_write_cp15_interpreted(target
,
1547 if (retval
!= ERROR_OK
) {
1548 command_print(CMD_CTX
,
1549 "couldn't execute %8.8" PRIx32
,
1551 /* REVISIT why lie? "return retval"? */
1554 command_print(CMD_CTX
, "%8.8" PRIx32
": %8.8" PRIx32
,
1556 } else if (CMD_ARGC
== 3) {
1558 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], value
);
1560 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[2], address
);
1561 retval
= arm920t_write_cp15_interpreted(target
,
1562 opcode
, value
, address
);
1563 if (retval
!= ERROR_OK
) {
1564 command_print(CMD_CTX
,
1565 "couldn't execute %8.8" PRIx32
, opcode
);
1566 /* REVISIT why lie? "return retval"? */
1569 command_print(CMD_CTX
, "%8.8" PRIx32
": %8.8" PRIx32
1570 " %8.8" PRIx32
, opcode
, value
, address
);
1573 return ERROR_COMMAND_SYNTAX_ERROR
;
1578 COMMAND_HANDLER(arm920t_handle_cache_info_command
)
1581 struct target
*target
= get_current_target(CMD_CTX
);
1582 struct arm920t_common
*arm920t
= target_to_arm920(target
);
1584 retval
= arm920t_verify_pointer(CMD_CTX
, arm920t
);
1585 if (retval
!= ERROR_OK
)
1588 return armv4_5_handle_cache_info_command(CMD_CTX
,
1589 &arm920t
->armv4_5_mmu
.armv4_5_cache
);
1593 static int arm920t_mrc(struct target
*target
, int cpnum
,
1594 uint32_t op1
, uint32_t op2
,
1595 uint32_t CRn
, uint32_t CRm
,
1599 LOG_ERROR("Only cp15 is supported");
1604 return arm920t_read_cp15_interpreted(target
,
1605 ARMV4_5_MRC(cpnum
, op1
, 0, CRn
, CRm
, op2
),
1609 static int arm920t_mcr(struct target
*target
, int cpnum
,
1610 uint32_t op1
, uint32_t op2
,
1611 uint32_t CRn
, uint32_t CRm
,
1615 LOG_ERROR("Only cp15 is supported");
1619 /* write "from" r0 */
1620 return arm920t_write_cp15_interpreted(target
,
1621 ARMV4_5_MCR(cpnum
, op1
, 0, CRn
, CRm
, op2
),
1625 static const struct command_registration arm920t_exec_command_handlers
[] = {
1628 .handler
= arm920t_handle_cp15_command
,
1629 .mode
= COMMAND_EXEC
,
1630 .help
= "display/modify cp15 register",
1631 .usage
= "regnum [value]",
1635 .handler
= arm920t_handle_cp15i_command
,
1636 .mode
= COMMAND_EXEC
,
1637 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1638 .help
= "display/modify cp15 register using ARM opcode"
1640 .usage
= "instruction [value [address]]",
1643 .name
= "cache_info",
1644 .handler
= arm920t_handle_cache_info_command
,
1645 .mode
= COMMAND_EXEC
,
1647 .help
= "display information about target caches",
1650 .name
= "read_cache",
1651 .handler
= arm920t_handle_read_cache_command
,
1652 .mode
= COMMAND_EXEC
,
1653 .help
= "dump I/D cache content to file",
1654 .usage
= "filename",
1658 .handler
= arm920t_handle_read_mmu_command
,
1659 .mode
= COMMAND_EXEC
,
1660 .help
= "dump I/D mmu content to file",
1661 .usage
= "filename",
1663 COMMAND_REGISTRATION_DONE
1665 const struct command_registration arm920t_command_handlers
[] = {
1667 .chain
= arm9tdmi_command_handlers
,
1671 .mode
= COMMAND_ANY
,
1672 .help
= "arm920t command group",
1674 .chain
= arm920t_exec_command_handlers
,
1676 COMMAND_REGISTRATION_DONE
1679 /** Holds methods for ARM920 targets. */
1680 struct target_type arm920t_target
= {
1683 .poll
= arm7_9_poll
,
1684 .arch_state
= arm920t_arch_state
,
1686 .target_request_data
= arm7_9_target_request_data
,
1688 .halt
= arm7_9_halt
,
1689 .resume
= arm7_9_resume
,
1690 .step
= arm7_9_step
,
1692 .assert_reset
= arm7_9_assert_reset
,
1693 .deassert_reset
= arm7_9_deassert_reset
,
1694 .soft_reset_halt
= arm920t_soft_reset_halt
,
1696 .get_gdb_reg_list
= arm_get_gdb_reg_list
,
1698 .read_memory
= arm920t_read_memory
,
1699 .write_memory
= arm7_9_write_memory_opt
,
1700 .read_phys_memory
= arm920t_read_phys_memory
,
1701 .write_phys_memory
= arm920t_write_phys_memory
,
1703 .virt2phys
= arm920_virt2phys
,
1705 .checksum_memory
= arm_checksum_memory
,
1706 .blank_check_memory
= arm_blank_check_memory
,
1708 .run_algorithm
= armv4_5_run_algorithm
,
1710 .add_breakpoint
= arm7_9_add_breakpoint
,
1711 .remove_breakpoint
= arm7_9_remove_breakpoint
,
1712 .add_watchpoint
= arm7_9_add_watchpoint
,
1713 .remove_watchpoint
= arm7_9_remove_watchpoint
,
1715 .commands
= arm920t_command_handlers
,
1716 .target_create
= arm920t_target_create
,
1717 .init_target
= arm9tdmi_init_target
,
1718 .examine
= arm7_9_examine
,
1719 .check_reset
= arm7_9_check_reset
,