ARM: rename armv4_5_state_* as arm_state_*
[openocd.git] / src / target / embeddedice.c
blobcca9cc06269a3281c468aa8e3297d64d215d6b92
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008,2009 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
30 #include "embeddedice.h"
31 #include "register.h"
33 /**
34 * @file
36 * This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
37 * module found on scan chain 2 in ARM7, ARM9, and some other families
38 * of ARM cores.
40 * EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
41 * Communications Channel (DCC) used to read or write 32-bit words to
42 * OpenOCD-aware code running on the target CPU.
43 * Newer modules also include vector catch hardware. Some versions
44 * support hardware single-stepping, "monitor mode" debug (which is not
45 * currently supported by OpenOCD), or extended reporting on why the
46 * core entered debug mode.
50 * From: ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
52 static const struct {
53 char *name;
54 unsigned short addr;
55 unsigned short width;
56 } eice_regs[] = {
57 [EICE_DBG_CTRL] = {
58 .name = "debug_ctrl",
59 .addr = 0,
60 /* width is assigned based on EICE version */
62 [EICE_DBG_STAT] = {
63 .name = "debug_status",
64 .addr = 1,
65 /* width is assigned based on EICE version */
67 [EICE_COMMS_CTRL] = {
68 .name = "comms_ctrl",
69 .addr = 4,
70 .width = 6,
72 [EICE_COMMS_DATA] = {
73 .name = "comms_data",
74 .addr = 5,
75 .width = 32,
77 [EICE_W0_ADDR_VALUE] = {
78 .name = "watch_0_addr_value",
79 .addr = 8,
80 .width = 32,
82 [EICE_W0_ADDR_MASK] = {
83 .name = "watch_0_addr_mask",
84 .addr = 9,
85 .width = 32,
87 [EICE_W0_DATA_VALUE ] = {
88 .name = "watch_0_data_value",
89 .addr = 10,
90 .width = 32,
92 [EICE_W0_DATA_MASK] = {
93 .name = "watch_0_data_mask",
94 .addr = 11,
95 .width = 32,
97 [EICE_W0_CONTROL_VALUE] = {
98 .name = "watch_0_control_value",
99 .addr = 12,
100 .width = 9,
102 [EICE_W0_CONTROL_MASK] = {
103 .name = "watch_0_control_mask",
104 .addr = 13,
105 .width = 8,
107 [EICE_W1_ADDR_VALUE] = {
108 .name = "watch_1_addr_value",
109 .addr = 16,
110 .width = 32,
112 [EICE_W1_ADDR_MASK] = {
113 .name = "watch_1_addr_mask",
114 .addr = 17,
115 .width = 32,
117 [EICE_W1_DATA_VALUE] = {
118 .name = "watch_1_data_value",
119 .addr = 18,
120 .width = 32,
122 [EICE_W1_DATA_MASK] = {
123 .name = "watch_1_data_mask",
124 .addr = 19,
125 .width = 32,
127 [EICE_W1_CONTROL_VALUE] = {
128 .name = "watch_1_control_value",
129 .addr = 20,
130 .width = 9,
132 [EICE_W1_CONTROL_MASK] = {
133 .name = "watch_1_control_mask",
134 .addr = 21,
135 .width = 8,
137 /* vector_catch isn't always present */
138 [EICE_VEC_CATCH] = {
139 .name = "vector_catch",
140 .addr = 2,
141 .width = 8,
146 static int embeddedice_get_reg(struct reg *reg)
148 int retval;
150 if ((retval = embeddedice_read_reg(reg)) != ERROR_OK)
151 LOG_ERROR("error queueing EmbeddedICE register read");
152 else if ((retval = jtag_execute_queue()) != ERROR_OK)
153 LOG_ERROR("EmbeddedICE register read failed");
155 return retval;
158 static const struct reg_arch_type eice_reg_type = {
159 .get = embeddedice_get_reg,
160 .set = embeddedice_set_reg_w_exec,
164 * Probe EmbeddedICE module and set up local records of its registers.
165 * Different versions of the modules have different capabilities, such as
166 * hardware support for vector_catch, single stepping, and monitor mode.
168 struct reg_cache *
169 embeddedice_build_reg_cache(struct target *target, struct arm7_9_common *arm7_9)
171 int retval;
172 struct reg_cache *reg_cache = malloc(sizeof(struct reg_cache));
173 struct reg *reg_list = NULL;
174 struct embeddedice_reg *arch_info = NULL;
175 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
176 int num_regs = ARRAY_SIZE(eice_regs);
177 int i;
178 int eice_version = 0;
180 /* vector_catch isn't always present */
181 if (!arm7_9->has_vector_catch)
182 num_regs--;
184 /* the actual registers are kept in two arrays */
185 reg_list = calloc(num_regs, sizeof(struct reg));
186 arch_info = calloc(num_regs, sizeof(struct embeddedice_reg));
188 /* fill in values for the reg cache */
189 reg_cache->name = "EmbeddedICE registers";
190 reg_cache->next = NULL;
191 reg_cache->reg_list = reg_list;
192 reg_cache->num_regs = num_regs;
194 /* set up registers */
195 for (i = 0; i < num_regs; i++)
197 reg_list[i].name = eice_regs[i].name;
198 reg_list[i].size = eice_regs[i].width;
199 reg_list[i].dirty = 0;
200 reg_list[i].valid = 0;
201 reg_list[i].value = calloc(1, 4);
202 reg_list[i].arch_info = &arch_info[i];
203 reg_list[i].type = &eice_reg_type;
204 arch_info[i].addr = eice_regs[i].addr;
205 arch_info[i].jtag_info = jtag_info;
208 /* identify EmbeddedICE version by reading DCC control register */
209 embeddedice_read_reg(&reg_list[EICE_COMMS_CTRL]);
210 if ((retval = jtag_execute_queue()) != ERROR_OK)
212 for (i = 0; i < num_regs; i++)
214 free(reg_list[i].value);
216 free(reg_list);
217 free(reg_cache);
218 free(arch_info);
219 return NULL;
222 eice_version = buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 28, 4);
223 LOG_INFO("Embedded ICE version %d", eice_version);
225 switch (eice_version)
227 case 1:
228 /* ARM7TDMI r3, ARM7TDMI-S r3
230 * REVISIT docs say ARM7TDMI-S r4 uses version 1 but
231 * that it has 6-bit CTRL and 5-bit STAT... doc bug?
232 * ARM7TDMI r4 docs say EICE v4.
234 reg_list[EICE_DBG_CTRL].size = 3;
235 reg_list[EICE_DBG_STAT].size = 5;
236 break;
237 case 2:
238 /* ARM9TDMI */
239 reg_list[EICE_DBG_CTRL].size = 4;
240 reg_list[EICE_DBG_STAT].size = 5;
241 arm7_9->has_single_step = 1;
242 break;
243 case 3:
244 LOG_ERROR("EmbeddedICE v%d handling might be broken",
245 eice_version);
246 reg_list[EICE_DBG_CTRL].size = 6;
247 reg_list[EICE_DBG_STAT].size = 5;
248 arm7_9->has_single_step = 1;
249 arm7_9->has_monitor_mode = 1;
250 break;
251 case 4:
252 /* ARM7TDMI r4 */
253 reg_list[EICE_DBG_CTRL].size = 6;
254 reg_list[EICE_DBG_STAT].size = 5;
255 arm7_9->has_monitor_mode = 1;
256 break;
257 case 5:
258 /* ARM9E-S rev 1 */
259 reg_list[EICE_DBG_CTRL].size = 6;
260 reg_list[EICE_DBG_STAT].size = 5;
261 arm7_9->has_single_step = 1;
262 arm7_9->has_monitor_mode = 1;
263 break;
264 case 6:
265 /* ARM7EJ-S, ARM9E-S rev 2, ARM9EJ-S */
266 reg_list[EICE_DBG_CTRL].size = 6;
267 reg_list[EICE_DBG_STAT].size = 10;
268 /* DBG_STAT has MOE bits */
269 arm7_9->has_monitor_mode = 1;
270 break;
271 case 7:
272 LOG_ERROR("EmbeddedICE v%d handling might be broken",
273 eice_version);
274 reg_list[EICE_DBG_CTRL].size = 6;
275 reg_list[EICE_DBG_STAT].size = 5;
276 arm7_9->has_monitor_mode = 1;
277 break;
278 default:
280 * The Feroceon implementation has the version number
281 * in some unusual bits. Let feroceon.c validate it
282 * and do the appropriate setup itself.
284 if (strcmp(target_type_name(target), "feroceon") == 0 ||
285 strcmp(target_type_name(target), "dragonite") == 0)
286 break;
287 LOG_ERROR("unknown EmbeddedICE version "
288 "(comms ctrl: 0x%8.8" PRIx32 ")",
289 buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32));
292 return reg_cache;
296 * Initialize EmbeddedICE module, if needed.
298 int embeddedice_setup(struct target *target)
300 int retval;
301 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
303 /* Explicitly disable monitor mode. For now we only support halting
304 * debug ... we don't know how to talk with a resident debug monitor
305 * that manages break requests. ARM's "Angel Debug Monitor" is one
306 * common example of such code.
308 if (arm7_9->has_monitor_mode)
310 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
312 embeddedice_read_reg(dbg_ctrl);
313 if ((retval = jtag_execute_queue()) != ERROR_OK)
314 return retval;
315 buf_set_u32(dbg_ctrl->value, 4, 1, 0);
316 embeddedice_set_reg_w_exec(dbg_ctrl, dbg_ctrl->value);
318 return jtag_execute_queue();
322 * Queue a read for an EmbeddedICE register into the register cache,
323 * optionally checking the value read.
324 * Note that at this level, all registers are 32 bits wide.
326 int embeddedice_read_reg_w_check(struct reg *reg,
327 uint8_t *check_value, uint8_t *check_mask)
329 struct embeddedice_reg *ice_reg = reg->arch_info;
330 uint8_t reg_addr = ice_reg->addr & 0x1f;
331 struct scan_field fields[3];
332 uint8_t field1_out[1];
333 uint8_t field2_out[1];
335 jtag_set_end_state(TAP_IDLE);
336 arm_jtag_scann(ice_reg->jtag_info, 0x2);
338 arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL);
340 /* bits 31:0 -- data (ignored here) */
341 fields[0].tap = ice_reg->jtag_info->tap;
342 fields[0].num_bits = 32;
343 fields[0].out_value = reg->value;
344 fields[0].in_value = NULL;
345 fields[0].check_value = NULL;
346 fields[0].check_mask = NULL;
348 /* bits 36:32 -- register */
349 fields[1].tap = ice_reg->jtag_info->tap;
350 fields[1].num_bits = 5;
351 fields[1].out_value = field1_out;
352 fields[1].out_value[0] = reg_addr;
353 fields[1].in_value = NULL;
354 fields[1].check_value = NULL;
355 fields[1].check_mask = NULL;
357 /* bit 37 -- 0/read */
358 fields[2].tap = ice_reg->jtag_info->tap;
359 fields[2].num_bits = 1;
360 fields[2].out_value = field2_out;
361 fields[2].out_value[0] = 0;
362 fields[2].in_value = NULL;
363 fields[2].check_value = NULL;
364 fields[2].check_mask = NULL;
366 /* traverse Update-DR, setting address for the next read */
367 jtag_add_dr_scan(3, fields, jtag_get_end_state());
369 /* bits 31:0 -- the data we're reading (and maybe checking) */
370 fields[0].in_value = reg->value;
371 fields[0].check_value = check_value;
372 fields[0].check_mask = check_mask;
374 /* when reading the DCC data register, leaving the address field set to
375 * EICE_COMMS_DATA would read the register twice
376 * reading the control register is safe
378 fields[1].out_value[0] = eice_regs[EICE_COMMS_CTRL].addr;
380 /* traverse Update-DR, reading but with no other side effects */
381 jtag_add_dr_scan_check(3, fields, jtag_get_end_state());
383 return ERROR_OK;
387 * Receive a block of size 32-bit words from the DCC.
388 * We assume the target is always going to be fast enough (relative to
389 * the JTAG clock) that the debugger won't need to poll the handshake
390 * bit. The JTAG clock is usually at least six times slower than the
391 * functional clock, so the 50+ JTAG clocks needed to receive the word
392 * allow hundreds of instruction cycles (per word) in the target.
394 int embeddedice_receive(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
396 struct scan_field fields[3];
397 uint8_t field1_out[1];
398 uint8_t field2_out[1];
400 jtag_set_end_state(TAP_IDLE);
401 arm_jtag_scann(jtag_info, 0x2);
402 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
404 fields[0].tap = jtag_info->tap;
405 fields[0].num_bits = 32;
406 fields[0].out_value = NULL;
407 fields[0].in_value = NULL;
409 fields[1].tap = jtag_info->tap;
410 fields[1].num_bits = 5;
411 fields[1].out_value = field1_out;
412 fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
413 fields[1].in_value = NULL;
415 fields[2].tap = jtag_info->tap;
416 fields[2].num_bits = 1;
417 fields[2].out_value = field2_out;
418 fields[2].out_value[0] = 0;
419 fields[2].in_value = NULL;
421 jtag_add_dr_scan(3, fields, jtag_get_end_state());
423 while (size > 0)
425 /* when reading the last item, set the register address to the DCC control reg,
426 * to avoid reading additional data from the DCC data reg
428 if (size == 1)
429 fields[1].out_value[0] = eice_regs[EICE_COMMS_CTRL].addr;
431 fields[0].in_value = (uint8_t *)data;
432 jtag_add_dr_scan(3, fields, jtag_get_end_state());
433 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)data);
435 data++;
436 size--;
439 return jtag_execute_queue();
443 * Queue a read for an EmbeddedICE register into the register cache,
444 * not checking the value read.
446 int embeddedice_read_reg(struct reg *reg)
448 return embeddedice_read_reg_w_check(reg, NULL, NULL);
452 * Queue a write for an EmbeddedICE register, updating the register cache.
453 * Uses embeddedice_write_reg().
455 void embeddedice_set_reg(struct reg *reg, uint32_t value)
457 embeddedice_write_reg(reg, value);
459 buf_set_u32(reg->value, 0, reg->size, value);
460 reg->valid = 1;
461 reg->dirty = 0;
466 * Write an EmbeddedICE register, updating the register cache.
467 * Uses embeddedice_set_reg(); not queued.
469 int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf)
471 int retval;
473 embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size));
474 if ((retval = jtag_execute_queue()) != ERROR_OK)
475 LOG_ERROR("register write failed");
476 return retval;
480 * Queue a write for an EmbeddedICE register, bypassing the register cache.
482 void embeddedice_write_reg(struct reg *reg, uint32_t value)
484 struct embeddedice_reg *ice_reg = reg->arch_info;
486 LOG_DEBUG("%i: 0x%8.8" PRIx32 "", ice_reg->addr, value);
488 jtag_set_end_state(TAP_IDLE);
489 arm_jtag_scann(ice_reg->jtag_info, 0x2);
491 arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL);
493 uint8_t reg_addr = ice_reg->addr & 0x1f;
494 embeddedice_write_reg_inner(ice_reg->jtag_info->tap, reg_addr, value);
498 * Queue a write for an EmbeddedICE register, using cached value.
499 * Uses embeddedice_write_reg().
501 void embeddedice_store_reg(struct reg *reg)
503 embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
507 * Send a block of size 32-bit words to the DCC.
508 * We assume the target is always going to be fast enough (relative to
509 * the JTAG clock) that the debugger won't need to poll the handshake
510 * bit. The JTAG clock is usually at least six times slower than the
511 * functional clock, so the 50+ JTAG clocks needed to receive the word
512 * allow hundreds of instruction cycles (per word) in the target.
514 int embeddedice_send(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
516 struct scan_field fields[3];
517 uint8_t field0_out[4];
518 uint8_t field1_out[1];
519 uint8_t field2_out[1];
521 jtag_set_end_state(TAP_IDLE);
522 arm_jtag_scann(jtag_info, 0x2);
523 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
525 fields[0].tap = jtag_info->tap;
526 fields[0].num_bits = 32;
527 fields[0].out_value = field0_out;
528 fields[0].in_value = NULL;
530 fields[1].tap = jtag_info->tap;
531 fields[1].num_bits = 5;
532 fields[1].out_value = field1_out;
533 fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
534 fields[1].in_value = NULL;
536 fields[2].tap = jtag_info->tap;
537 fields[2].num_bits = 1;
538 fields[2].out_value = field2_out;
539 fields[2].out_value[0] = 1;
541 fields[2].in_value = NULL;
543 while (size > 0)
545 buf_set_u32(fields[0].out_value, 0, 32, *data);
546 jtag_add_dr_scan(3, fields, jtag_get_end_state());
548 data++;
549 size--;
552 /* call to jtag_execute_queue() intentionally omitted */
553 return ERROR_OK;
557 * Poll DCC control register until read or write handshake completes.
559 int embeddedice_handshake(struct arm_jtag *jtag_info, int hsbit, uint32_t timeout)
561 struct scan_field fields[3];
562 uint8_t field0_in[4];
563 uint8_t field1_out[1];
564 uint8_t field2_out[1];
565 int retval;
566 uint32_t hsact;
567 struct timeval lap;
568 struct timeval now;
570 if (hsbit == EICE_COMM_CTRL_WBIT)
571 hsact = 1;
572 else if (hsbit == EICE_COMM_CTRL_RBIT)
573 hsact = 0;
574 else
575 return ERROR_INVALID_ARGUMENTS;
577 jtag_set_end_state(TAP_IDLE);
578 arm_jtag_scann(jtag_info, 0x2);
579 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
581 fields[0].tap = jtag_info->tap;
582 fields[0].num_bits = 32;
583 fields[0].out_value = NULL;
584 fields[0].in_value = field0_in;
586 fields[1].tap = jtag_info->tap;
587 fields[1].num_bits = 5;
588 fields[1].out_value = field1_out;
589 fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
590 fields[1].in_value = NULL;
592 fields[2].tap = jtag_info->tap;
593 fields[2].num_bits = 1;
594 fields[2].out_value = field2_out;
595 fields[2].out_value[0] = 0;
596 fields[2].in_value = NULL;
598 jtag_add_dr_scan(3, fields, jtag_get_end_state());
599 gettimeofday(&lap, NULL);
600 do {
601 jtag_add_dr_scan(3, fields, jtag_get_end_state());
602 if ((retval = jtag_execute_queue()) != ERROR_OK)
603 return retval;
605 if (buf_get_u32(field0_in, hsbit, 1) == hsact)
606 return ERROR_OK;
608 gettimeofday(&now, NULL);
609 } while ((uint32_t)((now.tv_sec - lap.tv_sec) * 1000
610 + (now.tv_usec - lap.tv_usec) / 1000) <= timeout);
612 return ERROR_TARGET_TIMEOUT;
615 #ifndef HAVE_JTAG_MINIDRIVER_H
617 * This is an inner loop of the open loop DCC write of data to target
619 void embeddedice_write_dcc(struct jtag_tap *tap,
620 int reg_addr, uint8_t *buffer, int little, int count)
622 int i;
624 for (i = 0; i < count; i++)
626 embeddedice_write_reg_inner(tap, reg_addr,
627 fast_target_buffer_get_u32(buffer, little));
628 buffer += 4;
631 #else
632 /* provided by minidriver */
633 #endif