1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007,2008,2009 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
30 #include "embeddedice.h"
36 * This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
37 * module found on scan chain 2 in ARM7, ARM9, and some other families
40 * EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
41 * Communications Channel (DCC) used to read or write 32-bit words to
42 * OpenOCD-aware code running on the target CPU.
43 * Newer modules also include vector catch hardware. Some versions
44 * support hardware single-stepping, "monitor mode" debug (which is not
45 * currently supported by OpenOCD), or extended reporting on why the
46 * core entered debug mode.
50 * From: ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
60 /* width is assigned based on EICE version */
63 .name
= "debug_status",
65 /* width is assigned based on EICE version */
77 [EICE_W0_ADDR_VALUE
] = {
78 .name
= "watch_0_addr_value",
82 [EICE_W0_ADDR_MASK
] = {
83 .name
= "watch_0_addr_mask",
87 [EICE_W0_DATA_VALUE
] = {
88 .name
= "watch_0_data_value",
92 [EICE_W0_DATA_MASK
] = {
93 .name
= "watch_0_data_mask",
97 [EICE_W0_CONTROL_VALUE
] = {
98 .name
= "watch_0_control_value",
102 [EICE_W0_CONTROL_MASK
] = {
103 .name
= "watch_0_control_mask",
107 [EICE_W1_ADDR_VALUE
] = {
108 .name
= "watch_1_addr_value",
112 [EICE_W1_ADDR_MASK
] = {
113 .name
= "watch_1_addr_mask",
117 [EICE_W1_DATA_VALUE
] = {
118 .name
= "watch_1_data_value",
122 [EICE_W1_DATA_MASK
] = {
123 .name
= "watch_1_data_mask",
127 [EICE_W1_CONTROL_VALUE
] = {
128 .name
= "watch_1_control_value",
132 [EICE_W1_CONTROL_MASK
] = {
133 .name
= "watch_1_control_mask",
137 /* vector_catch isn't always present */
139 .name
= "vector_catch",
146 static int embeddedice_get_reg(struct reg
*reg
)
150 if ((retval
= embeddedice_read_reg(reg
)) != ERROR_OK
)
151 LOG_ERROR("error queueing EmbeddedICE register read");
152 else if ((retval
= jtag_execute_queue()) != ERROR_OK
)
153 LOG_ERROR("EmbeddedICE register read failed");
158 static const struct reg_arch_type eice_reg_type
= {
159 .get
= embeddedice_get_reg
,
160 .set
= embeddedice_set_reg_w_exec
,
164 * Probe EmbeddedICE module and set up local records of its registers.
165 * Different versions of the modules have different capabilities, such as
166 * hardware support for vector_catch, single stepping, and monitor mode.
169 embeddedice_build_reg_cache(struct target
*target
, struct arm7_9_common
*arm7_9
)
172 struct reg_cache
*reg_cache
= malloc(sizeof(struct reg_cache
));
173 struct reg
*reg_list
= NULL
;
174 struct embeddedice_reg
*arch_info
= NULL
;
175 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
176 int num_regs
= ARRAY_SIZE(eice_regs
);
178 int eice_version
= 0;
180 /* vector_catch isn't always present */
181 if (!arm7_9
->has_vector_catch
)
184 /* the actual registers are kept in two arrays */
185 reg_list
= calloc(num_regs
, sizeof(struct reg
));
186 arch_info
= calloc(num_regs
, sizeof(struct embeddedice_reg
));
188 /* fill in values for the reg cache */
189 reg_cache
->name
= "EmbeddedICE registers";
190 reg_cache
->next
= NULL
;
191 reg_cache
->reg_list
= reg_list
;
192 reg_cache
->num_regs
= num_regs
;
194 /* set up registers */
195 for (i
= 0; i
< num_regs
; i
++)
197 reg_list
[i
].name
= eice_regs
[i
].name
;
198 reg_list
[i
].size
= eice_regs
[i
].width
;
199 reg_list
[i
].dirty
= 0;
200 reg_list
[i
].valid
= 0;
201 reg_list
[i
].value
= calloc(1, 4);
202 reg_list
[i
].arch_info
= &arch_info
[i
];
203 reg_list
[i
].type
= &eice_reg_type
;
204 arch_info
[i
].addr
= eice_regs
[i
].addr
;
205 arch_info
[i
].jtag_info
= jtag_info
;
208 /* identify EmbeddedICE version by reading DCC control register */
209 embeddedice_read_reg(®_list
[EICE_COMMS_CTRL
]);
210 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
212 for (i
= 0; i
< num_regs
; i
++)
214 free(reg_list
[i
].value
);
222 eice_version
= buf_get_u32(reg_list
[EICE_COMMS_CTRL
].value
, 28, 4);
223 LOG_INFO("Embedded ICE version %d", eice_version
);
225 switch (eice_version
)
228 /* ARM7TDMI r3, ARM7TDMI-S r3
230 * REVISIT docs say ARM7TDMI-S r4 uses version 1 but
231 * that it has 6-bit CTRL and 5-bit STAT... doc bug?
232 * ARM7TDMI r4 docs say EICE v4.
234 reg_list
[EICE_DBG_CTRL
].size
= 3;
235 reg_list
[EICE_DBG_STAT
].size
= 5;
239 reg_list
[EICE_DBG_CTRL
].size
= 4;
240 reg_list
[EICE_DBG_STAT
].size
= 5;
241 arm7_9
->has_single_step
= 1;
244 LOG_ERROR("EmbeddedICE v%d handling might be broken",
246 reg_list
[EICE_DBG_CTRL
].size
= 6;
247 reg_list
[EICE_DBG_STAT
].size
= 5;
248 arm7_9
->has_single_step
= 1;
249 arm7_9
->has_monitor_mode
= 1;
253 reg_list
[EICE_DBG_CTRL
].size
= 6;
254 reg_list
[EICE_DBG_STAT
].size
= 5;
255 arm7_9
->has_monitor_mode
= 1;
259 reg_list
[EICE_DBG_CTRL
].size
= 6;
260 reg_list
[EICE_DBG_STAT
].size
= 5;
261 arm7_9
->has_single_step
= 1;
262 arm7_9
->has_monitor_mode
= 1;
265 /* ARM7EJ-S, ARM9E-S rev 2, ARM9EJ-S */
266 reg_list
[EICE_DBG_CTRL
].size
= 6;
267 reg_list
[EICE_DBG_STAT
].size
= 10;
268 /* DBG_STAT has MOE bits */
269 arm7_9
->has_monitor_mode
= 1;
272 LOG_ERROR("EmbeddedICE v%d handling might be broken",
274 reg_list
[EICE_DBG_CTRL
].size
= 6;
275 reg_list
[EICE_DBG_STAT
].size
= 5;
276 arm7_9
->has_monitor_mode
= 1;
280 * The Feroceon implementation has the version number
281 * in some unusual bits. Let feroceon.c validate it
282 * and do the appropriate setup itself.
284 if (strcmp(target_type_name(target
), "feroceon") == 0 ||
285 strcmp(target_type_name(target
), "dragonite") == 0)
287 LOG_ERROR("unknown EmbeddedICE version "
288 "(comms ctrl: 0x%8.8" PRIx32
")",
289 buf_get_u32(reg_list
[EICE_COMMS_CTRL
].value
, 0, 32));
296 * Initialize EmbeddedICE module, if needed.
298 int embeddedice_setup(struct target
*target
)
301 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
303 /* Explicitly disable monitor mode. For now we only support halting
304 * debug ... we don't know how to talk with a resident debug monitor
305 * that manages break requests. ARM's "Angel Debug Monitor" is one
306 * common example of such code.
308 if (arm7_9
->has_monitor_mode
)
310 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
312 embeddedice_read_reg(dbg_ctrl
);
313 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
315 buf_set_u32(dbg_ctrl
->value
, 4, 1, 0);
316 embeddedice_set_reg_w_exec(dbg_ctrl
, dbg_ctrl
->value
);
318 return jtag_execute_queue();
322 * Queue a read for an EmbeddedICE register into the register cache,
323 * optionally checking the value read.
324 * Note that at this level, all registers are 32 bits wide.
326 int embeddedice_read_reg_w_check(struct reg
*reg
,
327 uint8_t *check_value
, uint8_t *check_mask
)
329 struct embeddedice_reg
*ice_reg
= reg
->arch_info
;
330 uint8_t reg_addr
= ice_reg
->addr
& 0x1f;
331 struct scan_field fields
[3];
332 uint8_t field1_out
[1];
333 uint8_t field2_out
[1];
335 jtag_set_end_state(TAP_IDLE
);
336 arm_jtag_scann(ice_reg
->jtag_info
, 0x2);
338 arm_jtag_set_instr(ice_reg
->jtag_info
, ice_reg
->jtag_info
->intest_instr
, NULL
);
340 /* bits 31:0 -- data (ignored here) */
341 fields
[0].tap
= ice_reg
->jtag_info
->tap
;
342 fields
[0].num_bits
= 32;
343 fields
[0].out_value
= reg
->value
;
344 fields
[0].in_value
= NULL
;
345 fields
[0].check_value
= NULL
;
346 fields
[0].check_mask
= NULL
;
348 /* bits 36:32 -- register */
349 fields
[1].tap
= ice_reg
->jtag_info
->tap
;
350 fields
[1].num_bits
= 5;
351 fields
[1].out_value
= field1_out
;
352 fields
[1].out_value
[0] = reg_addr
;
353 fields
[1].in_value
= NULL
;
354 fields
[1].check_value
= NULL
;
355 fields
[1].check_mask
= NULL
;
357 /* bit 37 -- 0/read */
358 fields
[2].tap
= ice_reg
->jtag_info
->tap
;
359 fields
[2].num_bits
= 1;
360 fields
[2].out_value
= field2_out
;
361 fields
[2].out_value
[0] = 0;
362 fields
[2].in_value
= NULL
;
363 fields
[2].check_value
= NULL
;
364 fields
[2].check_mask
= NULL
;
366 /* traverse Update-DR, setting address for the next read */
367 jtag_add_dr_scan(3, fields
, jtag_get_end_state());
369 /* bits 31:0 -- the data we're reading (and maybe checking) */
370 fields
[0].in_value
= reg
->value
;
371 fields
[0].check_value
= check_value
;
372 fields
[0].check_mask
= check_mask
;
374 /* when reading the DCC data register, leaving the address field set to
375 * EICE_COMMS_DATA would read the register twice
376 * reading the control register is safe
378 fields
[1].out_value
[0] = eice_regs
[EICE_COMMS_CTRL
].addr
;
380 /* traverse Update-DR, reading but with no other side effects */
381 jtag_add_dr_scan_check(3, fields
, jtag_get_end_state());
387 * Receive a block of size 32-bit words from the DCC.
388 * We assume the target is always going to be fast enough (relative to
389 * the JTAG clock) that the debugger won't need to poll the handshake
390 * bit. The JTAG clock is usually at least six times slower than the
391 * functional clock, so the 50+ JTAG clocks needed to receive the word
392 * allow hundreds of instruction cycles (per word) in the target.
394 int embeddedice_receive(struct arm_jtag
*jtag_info
, uint32_t *data
, uint32_t size
)
396 struct scan_field fields
[3];
397 uint8_t field1_out
[1];
398 uint8_t field2_out
[1];
400 jtag_set_end_state(TAP_IDLE
);
401 arm_jtag_scann(jtag_info
, 0x2);
402 arm_jtag_set_instr(jtag_info
, jtag_info
->intest_instr
, NULL
);
404 fields
[0].tap
= jtag_info
->tap
;
405 fields
[0].num_bits
= 32;
406 fields
[0].out_value
= NULL
;
407 fields
[0].in_value
= NULL
;
409 fields
[1].tap
= jtag_info
->tap
;
410 fields
[1].num_bits
= 5;
411 fields
[1].out_value
= field1_out
;
412 fields
[1].out_value
[0] = eice_regs
[EICE_COMMS_DATA
].addr
;
413 fields
[1].in_value
= NULL
;
415 fields
[2].tap
= jtag_info
->tap
;
416 fields
[2].num_bits
= 1;
417 fields
[2].out_value
= field2_out
;
418 fields
[2].out_value
[0] = 0;
419 fields
[2].in_value
= NULL
;
421 jtag_add_dr_scan(3, fields
, jtag_get_end_state());
425 /* when reading the last item, set the register address to the DCC control reg,
426 * to avoid reading additional data from the DCC data reg
429 fields
[1].out_value
[0] = eice_regs
[EICE_COMMS_CTRL
].addr
;
431 fields
[0].in_value
= (uint8_t *)data
;
432 jtag_add_dr_scan(3, fields
, jtag_get_end_state());
433 jtag_add_callback(arm_le_to_h_u32
, (jtag_callback_data_t
)data
);
439 return jtag_execute_queue();
443 * Queue a read for an EmbeddedICE register into the register cache,
444 * not checking the value read.
446 int embeddedice_read_reg(struct reg
*reg
)
448 return embeddedice_read_reg_w_check(reg
, NULL
, NULL
);
452 * Queue a write for an EmbeddedICE register, updating the register cache.
453 * Uses embeddedice_write_reg().
455 void embeddedice_set_reg(struct reg
*reg
, uint32_t value
)
457 embeddedice_write_reg(reg
, value
);
459 buf_set_u32(reg
->value
, 0, reg
->size
, value
);
466 * Write an EmbeddedICE register, updating the register cache.
467 * Uses embeddedice_set_reg(); not queued.
469 int embeddedice_set_reg_w_exec(struct reg
*reg
, uint8_t *buf
)
473 embeddedice_set_reg(reg
, buf_get_u32(buf
, 0, reg
->size
));
474 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
475 LOG_ERROR("register write failed");
480 * Queue a write for an EmbeddedICE register, bypassing the register cache.
482 void embeddedice_write_reg(struct reg
*reg
, uint32_t value
)
484 struct embeddedice_reg
*ice_reg
= reg
->arch_info
;
486 LOG_DEBUG("%i: 0x%8.8" PRIx32
"", ice_reg
->addr
, value
);
488 jtag_set_end_state(TAP_IDLE
);
489 arm_jtag_scann(ice_reg
->jtag_info
, 0x2);
491 arm_jtag_set_instr(ice_reg
->jtag_info
, ice_reg
->jtag_info
->intest_instr
, NULL
);
493 uint8_t reg_addr
= ice_reg
->addr
& 0x1f;
494 embeddedice_write_reg_inner(ice_reg
->jtag_info
->tap
, reg_addr
, value
);
498 * Queue a write for an EmbeddedICE register, using cached value.
499 * Uses embeddedice_write_reg().
501 void embeddedice_store_reg(struct reg
*reg
)
503 embeddedice_write_reg(reg
, buf_get_u32(reg
->value
, 0, reg
->size
));
507 * Send a block of size 32-bit words to the DCC.
508 * We assume the target is always going to be fast enough (relative to
509 * the JTAG clock) that the debugger won't need to poll the handshake
510 * bit. The JTAG clock is usually at least six times slower than the
511 * functional clock, so the 50+ JTAG clocks needed to receive the word
512 * allow hundreds of instruction cycles (per word) in the target.
514 int embeddedice_send(struct arm_jtag
*jtag_info
, uint32_t *data
, uint32_t size
)
516 struct scan_field fields
[3];
517 uint8_t field0_out
[4];
518 uint8_t field1_out
[1];
519 uint8_t field2_out
[1];
521 jtag_set_end_state(TAP_IDLE
);
522 arm_jtag_scann(jtag_info
, 0x2);
523 arm_jtag_set_instr(jtag_info
, jtag_info
->intest_instr
, NULL
);
525 fields
[0].tap
= jtag_info
->tap
;
526 fields
[0].num_bits
= 32;
527 fields
[0].out_value
= field0_out
;
528 fields
[0].in_value
= NULL
;
530 fields
[1].tap
= jtag_info
->tap
;
531 fields
[1].num_bits
= 5;
532 fields
[1].out_value
= field1_out
;
533 fields
[1].out_value
[0] = eice_regs
[EICE_COMMS_DATA
].addr
;
534 fields
[1].in_value
= NULL
;
536 fields
[2].tap
= jtag_info
->tap
;
537 fields
[2].num_bits
= 1;
538 fields
[2].out_value
= field2_out
;
539 fields
[2].out_value
[0] = 1;
541 fields
[2].in_value
= NULL
;
545 buf_set_u32(fields
[0].out_value
, 0, 32, *data
);
546 jtag_add_dr_scan(3, fields
, jtag_get_end_state());
552 /* call to jtag_execute_queue() intentionally omitted */
557 * Poll DCC control register until read or write handshake completes.
559 int embeddedice_handshake(struct arm_jtag
*jtag_info
, int hsbit
, uint32_t timeout
)
561 struct scan_field fields
[3];
562 uint8_t field0_in
[4];
563 uint8_t field1_out
[1];
564 uint8_t field2_out
[1];
570 if (hsbit
== EICE_COMM_CTRL_WBIT
)
572 else if (hsbit
== EICE_COMM_CTRL_RBIT
)
575 return ERROR_INVALID_ARGUMENTS
;
577 jtag_set_end_state(TAP_IDLE
);
578 arm_jtag_scann(jtag_info
, 0x2);
579 arm_jtag_set_instr(jtag_info
, jtag_info
->intest_instr
, NULL
);
581 fields
[0].tap
= jtag_info
->tap
;
582 fields
[0].num_bits
= 32;
583 fields
[0].out_value
= NULL
;
584 fields
[0].in_value
= field0_in
;
586 fields
[1].tap
= jtag_info
->tap
;
587 fields
[1].num_bits
= 5;
588 fields
[1].out_value
= field1_out
;
589 fields
[1].out_value
[0] = eice_regs
[EICE_COMMS_DATA
].addr
;
590 fields
[1].in_value
= NULL
;
592 fields
[2].tap
= jtag_info
->tap
;
593 fields
[2].num_bits
= 1;
594 fields
[2].out_value
= field2_out
;
595 fields
[2].out_value
[0] = 0;
596 fields
[2].in_value
= NULL
;
598 jtag_add_dr_scan(3, fields
, jtag_get_end_state());
599 gettimeofday(&lap
, NULL
);
601 jtag_add_dr_scan(3, fields
, jtag_get_end_state());
602 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
605 if (buf_get_u32(field0_in
, hsbit
, 1) == hsact
)
608 gettimeofday(&now
, NULL
);
609 } while ((uint32_t)((now
.tv_sec
- lap
.tv_sec
) * 1000
610 + (now
.tv_usec
- lap
.tv_usec
) / 1000) <= timeout
);
612 return ERROR_TARGET_TIMEOUT
;
615 #ifndef HAVE_JTAG_MINIDRIVER_H
617 * This is an inner loop of the open loop DCC write of data to target
619 void embeddedice_write_dcc(struct jtag_tap
*tap
,
620 int reg_addr
, uint8_t *buffer
, int little
, int count
)
624 for (i
= 0; i
< count
; i
++)
626 embeddedice_write_reg_inner(tap
, reg_addr
,
627 fast_target_buffer_get_u32(buffer
, little
));
632 /* provided by minidriver */