target: Replace malloc+manual zeroing with calloc
[openocd.git] / src / target / target.c
blobc8a3ce4d8e8288d3c1168889249d2c0903b8a25a
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
61 static int target_read_buffer_default(struct target *target, uint32_t address,
62 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, uint32_t address,
64 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type cortexr4_target;
92 extern struct target_type arm11_target;
93 extern struct target_type ls1_sap_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104 extern struct target_type or1k_target;
105 extern struct target_type quark_x10xx_target;
106 extern struct target_type quark_d20xx_target;
108 static struct target_type *target_types[] = {
109 &arm7tdmi_target,
110 &arm9tdmi_target,
111 &arm920t_target,
112 &arm720t_target,
113 &arm966e_target,
114 &arm946e_target,
115 &arm926ejs_target,
116 &fa526_target,
117 &feroceon_target,
118 &dragonite_target,
119 &xscale_target,
120 &cortexm_target,
121 &cortexa_target,
122 &cortexr4_target,
123 &arm11_target,
124 &ls1_sap_target,
125 &mips_m4k_target,
126 &avr_target,
127 &dsp563xx_target,
128 &dsp5680xx_target,
129 &testee_target,
130 &avr32_ap7k_target,
131 &hla_target,
132 &nds32_v2_target,
133 &nds32_v3_target,
134 &nds32_v3m_target,
135 &or1k_target,
136 &quark_x10xx_target,
137 &quark_d20xx_target,
138 NULL,
141 struct target *all_targets;
142 static struct target_event_callback *target_event_callbacks;
143 static struct target_timer_callback *target_timer_callbacks;
144 LIST_HEAD(target_reset_callback_list);
145 LIST_HEAD(target_trace_callback_list);
146 static const int polling_interval = 100;
148 static const Jim_Nvp nvp_assert[] = {
149 { .name = "assert", NVP_ASSERT },
150 { .name = "deassert", NVP_DEASSERT },
151 { .name = "T", NVP_ASSERT },
152 { .name = "F", NVP_DEASSERT },
153 { .name = "t", NVP_ASSERT },
154 { .name = "f", NVP_DEASSERT },
155 { .name = NULL, .value = -1 }
158 static const Jim_Nvp nvp_error_target[] = {
159 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
160 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
161 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
162 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
163 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
164 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
165 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
166 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
167 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
168 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
169 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
170 { .value = -1, .name = NULL }
173 static const char *target_strerror_safe(int err)
175 const Jim_Nvp *n;
177 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
178 if (n->name == NULL)
179 return "unknown";
180 else
181 return n->name;
184 static const Jim_Nvp nvp_target_event[] = {
186 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
187 { .value = TARGET_EVENT_HALTED, .name = "halted" },
188 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
189 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
190 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
192 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
193 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
195 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
196 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
197 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
198 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
199 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
200 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
201 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
202 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
203 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
204 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
205 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
206 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
208 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
209 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
211 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
212 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
214 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
215 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
217 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
218 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
220 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
221 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
223 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
225 { .name = NULL, .value = -1 }
228 static const Jim_Nvp nvp_target_state[] = {
229 { .name = "unknown", .value = TARGET_UNKNOWN },
230 { .name = "running", .value = TARGET_RUNNING },
231 { .name = "halted", .value = TARGET_HALTED },
232 { .name = "reset", .value = TARGET_RESET },
233 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
234 { .name = NULL, .value = -1 },
237 static const Jim_Nvp nvp_target_debug_reason[] = {
238 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
239 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
240 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
241 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
242 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
243 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
244 { .name = "program-exit" , .value = DBG_REASON_EXIT },
245 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
246 { .name = NULL, .value = -1 },
249 static const Jim_Nvp nvp_target_endian[] = {
250 { .name = "big", .value = TARGET_BIG_ENDIAN },
251 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
252 { .name = "be", .value = TARGET_BIG_ENDIAN },
253 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
254 { .name = NULL, .value = -1 },
257 static const Jim_Nvp nvp_reset_modes[] = {
258 { .name = "unknown", .value = RESET_UNKNOWN },
259 { .name = "run" , .value = RESET_RUN },
260 { .name = "halt" , .value = RESET_HALT },
261 { .name = "init" , .value = RESET_INIT },
262 { .name = NULL , .value = -1 },
265 const char *debug_reason_name(struct target *t)
267 const char *cp;
269 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
270 t->debug_reason)->name;
271 if (!cp) {
272 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
273 cp = "(*BUG*unknown*BUG*)";
275 return cp;
278 const char *target_state_name(struct target *t)
280 const char *cp;
281 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
282 if (!cp) {
283 LOG_ERROR("Invalid target state: %d", (int)(t->state));
284 cp = "(*BUG*unknown*BUG*)";
287 if (!target_was_examined(t) && t->defer_examine)
288 cp = "examine deferred";
290 return cp;
293 const char *target_event_name(enum target_event event)
295 const char *cp;
296 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
297 if (!cp) {
298 LOG_ERROR("Invalid target event: %d", (int)(event));
299 cp = "(*BUG*unknown*BUG*)";
301 return cp;
304 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
306 const char *cp;
307 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
308 if (!cp) {
309 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
310 cp = "(*BUG*unknown*BUG*)";
312 return cp;
315 /* determine the number of the new target */
316 static int new_target_number(void)
318 struct target *t;
319 int x;
321 /* number is 0 based */
322 x = -1;
323 t = all_targets;
324 while (t) {
325 if (x < t->target_number)
326 x = t->target_number;
327 t = t->next;
329 return x + 1;
332 /* read a uint64_t from a buffer in target memory endianness */
333 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
335 if (target->endianness == TARGET_LITTLE_ENDIAN)
336 return le_to_h_u64(buffer);
337 else
338 return be_to_h_u64(buffer);
341 /* read a uint32_t from a buffer in target memory endianness */
342 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
344 if (target->endianness == TARGET_LITTLE_ENDIAN)
345 return le_to_h_u32(buffer);
346 else
347 return be_to_h_u32(buffer);
350 /* read a uint24_t from a buffer in target memory endianness */
351 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
353 if (target->endianness == TARGET_LITTLE_ENDIAN)
354 return le_to_h_u24(buffer);
355 else
356 return be_to_h_u24(buffer);
359 /* read a uint16_t from a buffer in target memory endianness */
360 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
362 if (target->endianness == TARGET_LITTLE_ENDIAN)
363 return le_to_h_u16(buffer);
364 else
365 return be_to_h_u16(buffer);
368 /* read a uint8_t from a buffer in target memory endianness */
369 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
371 return *buffer & 0x0ff;
374 /* write a uint64_t to a buffer in target memory endianness */
375 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
377 if (target->endianness == TARGET_LITTLE_ENDIAN)
378 h_u64_to_le(buffer, value);
379 else
380 h_u64_to_be(buffer, value);
383 /* write a uint32_t to a buffer in target memory endianness */
384 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
386 if (target->endianness == TARGET_LITTLE_ENDIAN)
387 h_u32_to_le(buffer, value);
388 else
389 h_u32_to_be(buffer, value);
392 /* write a uint24_t to a buffer in target memory endianness */
393 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
395 if (target->endianness == TARGET_LITTLE_ENDIAN)
396 h_u24_to_le(buffer, value);
397 else
398 h_u24_to_be(buffer, value);
401 /* write a uint16_t to a buffer in target memory endianness */
402 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
404 if (target->endianness == TARGET_LITTLE_ENDIAN)
405 h_u16_to_le(buffer, value);
406 else
407 h_u16_to_be(buffer, value);
410 /* write a uint8_t to a buffer in target memory endianness */
411 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
413 *buffer = value;
416 /* write a uint64_t array to a buffer in target memory endianness */
417 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
419 uint32_t i;
420 for (i = 0; i < count; i++)
421 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
424 /* write a uint32_t array to a buffer in target memory endianness */
425 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
427 uint32_t i;
428 for (i = 0; i < count; i++)
429 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
432 /* write a uint16_t array to a buffer in target memory endianness */
433 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
435 uint32_t i;
436 for (i = 0; i < count; i++)
437 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
440 /* write a uint64_t array to a buffer in target memory endianness */
441 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
443 uint32_t i;
444 for (i = 0; i < count; i++)
445 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
448 /* write a uint32_t array to a buffer in target memory endianness */
449 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
451 uint32_t i;
452 for (i = 0; i < count; i++)
453 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
456 /* write a uint16_t array to a buffer in target memory endianness */
457 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
459 uint32_t i;
460 for (i = 0; i < count; i++)
461 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
464 /* return a pointer to a configured target; id is name or number */
465 struct target *get_target(const char *id)
467 struct target *target;
469 /* try as tcltarget name */
470 for (target = all_targets; target; target = target->next) {
471 if (target_name(target) == NULL)
472 continue;
473 if (strcmp(id, target_name(target)) == 0)
474 return target;
477 /* It's OK to remove this fallback sometime after August 2010 or so */
479 /* no match, try as number */
480 unsigned num;
481 if (parse_uint(id, &num) != ERROR_OK)
482 return NULL;
484 for (target = all_targets; target; target = target->next) {
485 if (target->target_number == (int)num) {
486 LOG_WARNING("use '%s' as target identifier, not '%u'",
487 target_name(target), num);
488 return target;
492 return NULL;
495 /* returns a pointer to the n-th configured target */
496 struct target *get_target_by_num(int num)
498 struct target *target = all_targets;
500 while (target) {
501 if (target->target_number == num)
502 return target;
503 target = target->next;
506 return NULL;
509 struct target *get_current_target(struct command_context *cmd_ctx)
511 struct target *target = get_target_by_num(cmd_ctx->current_target);
513 if (target == NULL) {
514 LOG_ERROR("BUG: current_target out of bounds");
515 exit(-1);
518 return target;
521 int target_poll(struct target *target)
523 int retval;
525 /* We can't poll until after examine */
526 if (!target_was_examined(target)) {
527 /* Fail silently lest we pollute the log */
528 return ERROR_FAIL;
531 retval = target->type->poll(target);
532 if (retval != ERROR_OK)
533 return retval;
535 if (target->halt_issued) {
536 if (target->state == TARGET_HALTED)
537 target->halt_issued = false;
538 else {
539 int64_t t = timeval_ms() - target->halt_issued_time;
540 if (t > DEFAULT_HALT_TIMEOUT) {
541 target->halt_issued = false;
542 LOG_INFO("Halt timed out, wake up GDB.");
543 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
548 return ERROR_OK;
551 int target_halt(struct target *target)
553 int retval;
554 /* We can't poll until after examine */
555 if (!target_was_examined(target)) {
556 LOG_ERROR("Target not examined yet");
557 return ERROR_FAIL;
560 retval = target->type->halt(target);
561 if (retval != ERROR_OK)
562 return retval;
564 target->halt_issued = true;
565 target->halt_issued_time = timeval_ms();
567 return ERROR_OK;
571 * Make the target (re)start executing using its saved execution
572 * context (possibly with some modifications).
574 * @param target Which target should start executing.
575 * @param current True to use the target's saved program counter instead
576 * of the address parameter
577 * @param address Optionally used as the program counter.
578 * @param handle_breakpoints True iff breakpoints at the resumption PC
579 * should be skipped. (For example, maybe execution was stopped by
580 * such a breakpoint, in which case it would be counterprodutive to
581 * let it re-trigger.
582 * @param debug_execution False if all working areas allocated by OpenOCD
583 * should be released and/or restored to their original contents.
584 * (This would for example be true to run some downloaded "helper"
585 * algorithm code, which resides in one such working buffer and uses
586 * another for data storage.)
588 * @todo Resolve the ambiguity about what the "debug_execution" flag
589 * signifies. For example, Target implementations don't agree on how
590 * it relates to invalidation of the register cache, or to whether
591 * breakpoints and watchpoints should be enabled. (It would seem wrong
592 * to enable breakpoints when running downloaded "helper" algorithms
593 * (debug_execution true), since the breakpoints would be set to match
594 * target firmware being debugged, not the helper algorithm.... and
595 * enabling them could cause such helpers to malfunction (for example,
596 * by overwriting data with a breakpoint instruction. On the other
597 * hand the infrastructure for running such helpers might use this
598 * procedure but rely on hardware breakpoint to detect termination.)
600 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
602 int retval;
604 /* We can't poll until after examine */
605 if (!target_was_examined(target)) {
606 LOG_ERROR("Target not examined yet");
607 return ERROR_FAIL;
610 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
612 /* note that resume *must* be asynchronous. The CPU can halt before
613 * we poll. The CPU can even halt at the current PC as a result of
614 * a software breakpoint being inserted by (a bug?) the application.
616 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
617 if (retval != ERROR_OK)
618 return retval;
620 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
622 return retval;
625 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
627 char buf[100];
628 int retval;
629 Jim_Nvp *n;
630 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
631 if (n->name == NULL) {
632 LOG_ERROR("invalid reset mode");
633 return ERROR_FAIL;
636 struct target *target;
637 for (target = all_targets; target; target = target->next)
638 target_call_reset_callbacks(target, reset_mode);
640 /* disable polling during reset to make reset event scripts
641 * more predictable, i.e. dr/irscan & pathmove in events will
642 * not have JTAG operations injected into the middle of a sequence.
644 bool save_poll = jtag_poll_get_enabled();
646 jtag_poll_set_enabled(false);
648 sprintf(buf, "ocd_process_reset %s", n->name);
649 retval = Jim_Eval(cmd_ctx->interp, buf);
651 jtag_poll_set_enabled(save_poll);
653 if (retval != JIM_OK) {
654 Jim_MakeErrorMessage(cmd_ctx->interp);
655 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
656 return ERROR_FAIL;
659 /* We want any events to be processed before the prompt */
660 retval = target_call_timer_callbacks_now();
662 for (target = all_targets; target; target = target->next) {
663 target->type->check_reset(target);
664 target->running_alg = false;
667 return retval;
670 static int identity_virt2phys(struct target *target,
671 uint32_t virtual, uint32_t *physical)
673 *physical = virtual;
674 return ERROR_OK;
677 static int no_mmu(struct target *target, int *enabled)
679 *enabled = 0;
680 return ERROR_OK;
683 static int default_examine(struct target *target)
685 target_set_examined(target);
686 return ERROR_OK;
689 /* no check by default */
690 static int default_check_reset(struct target *target)
692 return ERROR_OK;
695 int target_examine_one(struct target *target)
697 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
699 int retval = target->type->examine(target);
700 if (retval != ERROR_OK)
701 return retval;
703 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
705 return ERROR_OK;
708 static int jtag_enable_callback(enum jtag_event event, void *priv)
710 struct target *target = priv;
712 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
713 return ERROR_OK;
715 jtag_unregister_event_callback(jtag_enable_callback, target);
717 return target_examine_one(target);
720 /* Targets that correctly implement init + examine, i.e.
721 * no communication with target during init:
723 * XScale
725 int target_examine(void)
727 int retval = ERROR_OK;
728 struct target *target;
730 for (target = all_targets; target; target = target->next) {
731 /* defer examination, but don't skip it */
732 if (!target->tap->enabled) {
733 jtag_register_event_callback(jtag_enable_callback,
734 target);
735 continue;
738 if (target->defer_examine)
739 continue;
741 retval = target_examine_one(target);
742 if (retval != ERROR_OK)
743 return retval;
745 return retval;
748 const char *target_type_name(struct target *target)
750 return target->type->name;
753 static int target_soft_reset_halt(struct target *target)
755 if (!target_was_examined(target)) {
756 LOG_ERROR("Target not examined yet");
757 return ERROR_FAIL;
759 if (!target->type->soft_reset_halt) {
760 LOG_ERROR("Target %s does not support soft_reset_halt",
761 target_name(target));
762 return ERROR_FAIL;
764 return target->type->soft_reset_halt(target);
768 * Downloads a target-specific native code algorithm to the target,
769 * and executes it. * Note that some targets may need to set up, enable,
770 * and tear down a breakpoint (hard or * soft) to detect algorithm
771 * termination, while others may support lower overhead schemes where
772 * soft breakpoints embedded in the algorithm automatically terminate the
773 * algorithm.
775 * @param target used to run the algorithm
776 * @param arch_info target-specific description of the algorithm.
778 int target_run_algorithm(struct target *target,
779 int num_mem_params, struct mem_param *mem_params,
780 int num_reg_params, struct reg_param *reg_param,
781 uint32_t entry_point, uint32_t exit_point,
782 int timeout_ms, void *arch_info)
784 int retval = ERROR_FAIL;
786 if (!target_was_examined(target)) {
787 LOG_ERROR("Target not examined yet");
788 goto done;
790 if (!target->type->run_algorithm) {
791 LOG_ERROR("Target type '%s' does not support %s",
792 target_type_name(target), __func__);
793 goto done;
796 target->running_alg = true;
797 retval = target->type->run_algorithm(target,
798 num_mem_params, mem_params,
799 num_reg_params, reg_param,
800 entry_point, exit_point, timeout_ms, arch_info);
801 target->running_alg = false;
803 done:
804 return retval;
808 * Downloads a target-specific native code algorithm to the target,
809 * executes and leaves it running.
811 * @param target used to run the algorithm
812 * @param arch_info target-specific description of the algorithm.
814 int target_start_algorithm(struct target *target,
815 int num_mem_params, struct mem_param *mem_params,
816 int num_reg_params, struct reg_param *reg_params,
817 uint32_t entry_point, uint32_t exit_point,
818 void *arch_info)
820 int retval = ERROR_FAIL;
822 if (!target_was_examined(target)) {
823 LOG_ERROR("Target not examined yet");
824 goto done;
826 if (!target->type->start_algorithm) {
827 LOG_ERROR("Target type '%s' does not support %s",
828 target_type_name(target), __func__);
829 goto done;
831 if (target->running_alg) {
832 LOG_ERROR("Target is already running an algorithm");
833 goto done;
836 target->running_alg = true;
837 retval = target->type->start_algorithm(target,
838 num_mem_params, mem_params,
839 num_reg_params, reg_params,
840 entry_point, exit_point, arch_info);
842 done:
843 return retval;
847 * Waits for an algorithm started with target_start_algorithm() to complete.
849 * @param target used to run the algorithm
850 * @param arch_info target-specific description of the algorithm.
852 int target_wait_algorithm(struct target *target,
853 int num_mem_params, struct mem_param *mem_params,
854 int num_reg_params, struct reg_param *reg_params,
855 uint32_t exit_point, int timeout_ms,
856 void *arch_info)
858 int retval = ERROR_FAIL;
860 if (!target->type->wait_algorithm) {
861 LOG_ERROR("Target type '%s' does not support %s",
862 target_type_name(target), __func__);
863 goto done;
865 if (!target->running_alg) {
866 LOG_ERROR("Target is not running an algorithm");
867 goto done;
870 retval = target->type->wait_algorithm(target,
871 num_mem_params, mem_params,
872 num_reg_params, reg_params,
873 exit_point, timeout_ms, arch_info);
874 if (retval != ERROR_TARGET_TIMEOUT)
875 target->running_alg = false;
877 done:
878 return retval;
882 * Executes a target-specific native code algorithm in the target.
883 * It differs from target_run_algorithm in that the algorithm is asynchronous.
884 * Because of this it requires an compliant algorithm:
885 * see contrib/loaders/flash/stm32f1x.S for example.
887 * @param target used to run the algorithm
890 int target_run_flash_async_algorithm(struct target *target,
891 const uint8_t *buffer, uint32_t count, int block_size,
892 int num_mem_params, struct mem_param *mem_params,
893 int num_reg_params, struct reg_param *reg_params,
894 uint32_t buffer_start, uint32_t buffer_size,
895 uint32_t entry_point, uint32_t exit_point, void *arch_info)
897 int retval;
898 int timeout = 0;
900 const uint8_t *buffer_orig = buffer;
902 /* Set up working area. First word is write pointer, second word is read pointer,
903 * rest is fifo data area. */
904 uint32_t wp_addr = buffer_start;
905 uint32_t rp_addr = buffer_start + 4;
906 uint32_t fifo_start_addr = buffer_start + 8;
907 uint32_t fifo_end_addr = buffer_start + buffer_size;
909 uint32_t wp = fifo_start_addr;
910 uint32_t rp = fifo_start_addr;
912 /* validate block_size is 2^n */
913 assert(!block_size || !(block_size & (block_size - 1)));
915 retval = target_write_u32(target, wp_addr, wp);
916 if (retval != ERROR_OK)
917 return retval;
918 retval = target_write_u32(target, rp_addr, rp);
919 if (retval != ERROR_OK)
920 return retval;
922 /* Start up algorithm on target and let it idle while writing the first chunk */
923 retval = target_start_algorithm(target, num_mem_params, mem_params,
924 num_reg_params, reg_params,
925 entry_point,
926 exit_point,
927 arch_info);
929 if (retval != ERROR_OK) {
930 LOG_ERROR("error starting target flash write algorithm");
931 return retval;
934 while (count > 0) {
936 retval = target_read_u32(target, rp_addr, &rp);
937 if (retval != ERROR_OK) {
938 LOG_ERROR("failed to get read pointer");
939 break;
942 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
943 (size_t) (buffer - buffer_orig), count, wp, rp);
945 if (rp == 0) {
946 LOG_ERROR("flash write algorithm aborted by target");
947 retval = ERROR_FLASH_OPERATION_FAILED;
948 break;
951 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
952 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
953 break;
956 /* Count the number of bytes available in the fifo without
957 * crossing the wrap around. Make sure to not fill it completely,
958 * because that would make wp == rp and that's the empty condition. */
959 uint32_t thisrun_bytes;
960 if (rp > wp)
961 thisrun_bytes = rp - wp - block_size;
962 else if (rp > fifo_start_addr)
963 thisrun_bytes = fifo_end_addr - wp;
964 else
965 thisrun_bytes = fifo_end_addr - wp - block_size;
967 if (thisrun_bytes == 0) {
968 /* Throttle polling a bit if transfer is (much) faster than flash
969 * programming. The exact delay shouldn't matter as long as it's
970 * less than buffer size / flash speed. This is very unlikely to
971 * run when using high latency connections such as USB. */
972 alive_sleep(10);
974 /* to stop an infinite loop on some targets check and increment a timeout
975 * this issue was observed on a stellaris using the new ICDI interface */
976 if (timeout++ >= 500) {
977 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
978 return ERROR_FLASH_OPERATION_FAILED;
980 continue;
983 /* reset our timeout */
984 timeout = 0;
986 /* Limit to the amount of data we actually want to write */
987 if (thisrun_bytes > count * block_size)
988 thisrun_bytes = count * block_size;
990 /* Write data to fifo */
991 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
992 if (retval != ERROR_OK)
993 break;
995 /* Update counters and wrap write pointer */
996 buffer += thisrun_bytes;
997 count -= thisrun_bytes / block_size;
998 wp += thisrun_bytes;
999 if (wp >= fifo_end_addr)
1000 wp = fifo_start_addr;
1002 /* Store updated write pointer to target */
1003 retval = target_write_u32(target, wp_addr, wp);
1004 if (retval != ERROR_OK)
1005 break;
1008 if (retval != ERROR_OK) {
1009 /* abort flash write algorithm on target */
1010 target_write_u32(target, wp_addr, 0);
1013 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1014 num_reg_params, reg_params,
1015 exit_point,
1016 10000,
1017 arch_info);
1019 if (retval2 != ERROR_OK) {
1020 LOG_ERROR("error waiting for target flash write algorithm");
1021 retval = retval2;
1024 if (retval == ERROR_OK) {
1025 /* check if algorithm set rp = 0 after fifo writer loop finished */
1026 retval = target_read_u32(target, rp_addr, &rp);
1027 if (retval == ERROR_OK && rp == 0) {
1028 LOG_ERROR("flash write algorithm aborted by target");
1029 retval = ERROR_FLASH_OPERATION_FAILED;
1033 return retval;
1036 int target_read_memory(struct target *target,
1037 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1039 if (!target_was_examined(target)) {
1040 LOG_ERROR("Target not examined yet");
1041 return ERROR_FAIL;
1043 if (!target->type->read_memory) {
1044 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1045 return ERROR_FAIL;
1047 return target->type->read_memory(target, address, size, count, buffer);
1050 int target_read_phys_memory(struct target *target,
1051 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1053 if (!target_was_examined(target)) {
1054 LOG_ERROR("Target not examined yet");
1055 return ERROR_FAIL;
1057 if (!target->type->read_phys_memory) {
1058 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1059 return ERROR_FAIL;
1061 return target->type->read_phys_memory(target, address, size, count, buffer);
1064 int target_write_memory(struct target *target,
1065 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1067 if (!target_was_examined(target)) {
1068 LOG_ERROR("Target not examined yet");
1069 return ERROR_FAIL;
1071 if (!target->type->write_memory) {
1072 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1073 return ERROR_FAIL;
1075 return target->type->write_memory(target, address, size, count, buffer);
1078 int target_write_phys_memory(struct target *target,
1079 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1081 if (!target_was_examined(target)) {
1082 LOG_ERROR("Target not examined yet");
1083 return ERROR_FAIL;
1085 if (!target->type->write_phys_memory) {
1086 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1087 return ERROR_FAIL;
1089 return target->type->write_phys_memory(target, address, size, count, buffer);
1092 int target_add_breakpoint(struct target *target,
1093 struct breakpoint *breakpoint)
1095 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1096 LOG_WARNING("target %s is not halted", target_name(target));
1097 return ERROR_TARGET_NOT_HALTED;
1099 return target->type->add_breakpoint(target, breakpoint);
1102 int target_add_context_breakpoint(struct target *target,
1103 struct breakpoint *breakpoint)
1105 if (target->state != TARGET_HALTED) {
1106 LOG_WARNING("target %s is not halted", target_name(target));
1107 return ERROR_TARGET_NOT_HALTED;
1109 return target->type->add_context_breakpoint(target, breakpoint);
1112 int target_add_hybrid_breakpoint(struct target *target,
1113 struct breakpoint *breakpoint)
1115 if (target->state != TARGET_HALTED) {
1116 LOG_WARNING("target %s is not halted", target_name(target));
1117 return ERROR_TARGET_NOT_HALTED;
1119 return target->type->add_hybrid_breakpoint(target, breakpoint);
1122 int target_remove_breakpoint(struct target *target,
1123 struct breakpoint *breakpoint)
1125 return target->type->remove_breakpoint(target, breakpoint);
1128 int target_add_watchpoint(struct target *target,
1129 struct watchpoint *watchpoint)
1131 if (target->state != TARGET_HALTED) {
1132 LOG_WARNING("target %s is not halted", target_name(target));
1133 return ERROR_TARGET_NOT_HALTED;
1135 return target->type->add_watchpoint(target, watchpoint);
1137 int target_remove_watchpoint(struct target *target,
1138 struct watchpoint *watchpoint)
1140 return target->type->remove_watchpoint(target, watchpoint);
1142 int target_hit_watchpoint(struct target *target,
1143 struct watchpoint **hit_watchpoint)
1145 if (target->state != TARGET_HALTED) {
1146 LOG_WARNING("target %s is not halted", target->cmd_name);
1147 return ERROR_TARGET_NOT_HALTED;
1150 if (target->type->hit_watchpoint == NULL) {
1151 /* For backward compatible, if hit_watchpoint is not implemented,
1152 * return ERROR_FAIL such that gdb_server will not take the nonsense
1153 * information. */
1154 return ERROR_FAIL;
1157 return target->type->hit_watchpoint(target, hit_watchpoint);
1160 int target_get_gdb_reg_list(struct target *target,
1161 struct reg **reg_list[], int *reg_list_size,
1162 enum target_register_class reg_class)
1164 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1166 int target_step(struct target *target,
1167 int current, uint32_t address, int handle_breakpoints)
1169 return target->type->step(target, current, address, handle_breakpoints);
1172 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1174 if (target->state != TARGET_HALTED) {
1175 LOG_WARNING("target %s is not halted", target->cmd_name);
1176 return ERROR_TARGET_NOT_HALTED;
1178 return target->type->get_gdb_fileio_info(target, fileio_info);
1181 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1183 if (target->state != TARGET_HALTED) {
1184 LOG_WARNING("target %s is not halted", target->cmd_name);
1185 return ERROR_TARGET_NOT_HALTED;
1187 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1190 int target_profiling(struct target *target, uint32_t *samples,
1191 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1193 if (target->state != TARGET_HALTED) {
1194 LOG_WARNING("target %s is not halted", target->cmd_name);
1195 return ERROR_TARGET_NOT_HALTED;
1197 return target->type->profiling(target, samples, max_num_samples,
1198 num_samples, seconds);
1202 * Reset the @c examined flag for the given target.
1203 * Pure paranoia -- targets are zeroed on allocation.
1205 static void target_reset_examined(struct target *target)
1207 target->examined = false;
1210 static int handle_target(void *priv);
1212 static int target_init_one(struct command_context *cmd_ctx,
1213 struct target *target)
1215 target_reset_examined(target);
1217 struct target_type *type = target->type;
1218 if (type->examine == NULL)
1219 type->examine = default_examine;
1221 if (type->check_reset == NULL)
1222 type->check_reset = default_check_reset;
1224 assert(type->init_target != NULL);
1226 int retval = type->init_target(cmd_ctx, target);
1227 if (ERROR_OK != retval) {
1228 LOG_ERROR("target '%s' init failed", target_name(target));
1229 return retval;
1232 /* Sanity-check MMU support ... stub in what we must, to help
1233 * implement it in stages, but warn if we need to do so.
1235 if (type->mmu) {
1236 if (type->virt2phys == NULL) {
1237 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1238 type->virt2phys = identity_virt2phys;
1240 } else {
1241 /* Make sure no-MMU targets all behave the same: make no
1242 * distinction between physical and virtual addresses, and
1243 * ensure that virt2phys() is always an identity mapping.
1245 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1246 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1248 type->mmu = no_mmu;
1249 type->write_phys_memory = type->write_memory;
1250 type->read_phys_memory = type->read_memory;
1251 type->virt2phys = identity_virt2phys;
1254 if (target->type->read_buffer == NULL)
1255 target->type->read_buffer = target_read_buffer_default;
1257 if (target->type->write_buffer == NULL)
1258 target->type->write_buffer = target_write_buffer_default;
1260 if (target->type->get_gdb_fileio_info == NULL)
1261 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1263 if (target->type->gdb_fileio_end == NULL)
1264 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1266 if (target->type->profiling == NULL)
1267 target->type->profiling = target_profiling_default;
1269 return ERROR_OK;
1272 static int target_init(struct command_context *cmd_ctx)
1274 struct target *target;
1275 int retval;
1277 for (target = all_targets; target; target = target->next) {
1278 retval = target_init_one(cmd_ctx, target);
1279 if (ERROR_OK != retval)
1280 return retval;
1283 if (!all_targets)
1284 return ERROR_OK;
1286 retval = target_register_user_commands(cmd_ctx);
1287 if (ERROR_OK != retval)
1288 return retval;
1290 retval = target_register_timer_callback(&handle_target,
1291 polling_interval, 1, cmd_ctx->interp);
1292 if (ERROR_OK != retval)
1293 return retval;
1295 return ERROR_OK;
1298 COMMAND_HANDLER(handle_target_init_command)
1300 int retval;
1302 if (CMD_ARGC != 0)
1303 return ERROR_COMMAND_SYNTAX_ERROR;
1305 static bool target_initialized;
1306 if (target_initialized) {
1307 LOG_INFO("'target init' has already been called");
1308 return ERROR_OK;
1310 target_initialized = true;
1312 retval = command_run_line(CMD_CTX, "init_targets");
1313 if (ERROR_OK != retval)
1314 return retval;
1316 retval = command_run_line(CMD_CTX, "init_target_events");
1317 if (ERROR_OK != retval)
1318 return retval;
1320 retval = command_run_line(CMD_CTX, "init_board");
1321 if (ERROR_OK != retval)
1322 return retval;
1324 LOG_DEBUG("Initializing targets...");
1325 return target_init(CMD_CTX);
1328 int target_register_event_callback(int (*callback)(struct target *target,
1329 enum target_event event, void *priv), void *priv)
1331 struct target_event_callback **callbacks_p = &target_event_callbacks;
1333 if (callback == NULL)
1334 return ERROR_COMMAND_SYNTAX_ERROR;
1336 if (*callbacks_p) {
1337 while ((*callbacks_p)->next)
1338 callbacks_p = &((*callbacks_p)->next);
1339 callbacks_p = &((*callbacks_p)->next);
1342 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1343 (*callbacks_p)->callback = callback;
1344 (*callbacks_p)->priv = priv;
1345 (*callbacks_p)->next = NULL;
1347 return ERROR_OK;
1350 int target_register_reset_callback(int (*callback)(struct target *target,
1351 enum target_reset_mode reset_mode, void *priv), void *priv)
1353 struct target_reset_callback *entry;
1355 if (callback == NULL)
1356 return ERROR_COMMAND_SYNTAX_ERROR;
1358 entry = malloc(sizeof(struct target_reset_callback));
1359 if (entry == NULL) {
1360 LOG_ERROR("error allocating buffer for reset callback entry");
1361 return ERROR_COMMAND_SYNTAX_ERROR;
1364 entry->callback = callback;
1365 entry->priv = priv;
1366 list_add(&entry->list, &target_reset_callback_list);
1369 return ERROR_OK;
1372 int target_register_trace_callback(int (*callback)(struct target *target,
1373 size_t len, uint8_t *data, void *priv), void *priv)
1375 struct target_trace_callback *entry;
1377 if (callback == NULL)
1378 return ERROR_COMMAND_SYNTAX_ERROR;
1380 entry = malloc(sizeof(struct target_trace_callback));
1381 if (entry == NULL) {
1382 LOG_ERROR("error allocating buffer for trace callback entry");
1383 return ERROR_COMMAND_SYNTAX_ERROR;
1386 entry->callback = callback;
1387 entry->priv = priv;
1388 list_add(&entry->list, &target_trace_callback_list);
1391 return ERROR_OK;
1394 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1396 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1397 struct timeval now;
1399 if (callback == NULL)
1400 return ERROR_COMMAND_SYNTAX_ERROR;
1402 if (*callbacks_p) {
1403 while ((*callbacks_p)->next)
1404 callbacks_p = &((*callbacks_p)->next);
1405 callbacks_p = &((*callbacks_p)->next);
1408 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1409 (*callbacks_p)->callback = callback;
1410 (*callbacks_p)->periodic = periodic;
1411 (*callbacks_p)->time_ms = time_ms;
1412 (*callbacks_p)->removed = false;
1414 gettimeofday(&now, NULL);
1415 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1416 time_ms -= (time_ms % 1000);
1417 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1418 if ((*callbacks_p)->when.tv_usec > 1000000) {
1419 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1420 (*callbacks_p)->when.tv_sec += 1;
1423 (*callbacks_p)->priv = priv;
1424 (*callbacks_p)->next = NULL;
1426 return ERROR_OK;
1429 int target_unregister_event_callback(int (*callback)(struct target *target,
1430 enum target_event event, void *priv), void *priv)
1432 struct target_event_callback **p = &target_event_callbacks;
1433 struct target_event_callback *c = target_event_callbacks;
1435 if (callback == NULL)
1436 return ERROR_COMMAND_SYNTAX_ERROR;
1438 while (c) {
1439 struct target_event_callback *next = c->next;
1440 if ((c->callback == callback) && (c->priv == priv)) {
1441 *p = next;
1442 free(c);
1443 return ERROR_OK;
1444 } else
1445 p = &(c->next);
1446 c = next;
1449 return ERROR_OK;
1452 int target_unregister_reset_callback(int (*callback)(struct target *target,
1453 enum target_reset_mode reset_mode, void *priv), void *priv)
1455 struct target_reset_callback *entry;
1457 if (callback == NULL)
1458 return ERROR_COMMAND_SYNTAX_ERROR;
1460 list_for_each_entry(entry, &target_reset_callback_list, list) {
1461 if (entry->callback == callback && entry->priv == priv) {
1462 list_del(&entry->list);
1463 free(entry);
1464 break;
1468 return ERROR_OK;
1471 int target_unregister_trace_callback(int (*callback)(struct target *target,
1472 size_t len, uint8_t *data, void *priv), void *priv)
1474 struct target_trace_callback *entry;
1476 if (callback == NULL)
1477 return ERROR_COMMAND_SYNTAX_ERROR;
1479 list_for_each_entry(entry, &target_trace_callback_list, list) {
1480 if (entry->callback == callback && entry->priv == priv) {
1481 list_del(&entry->list);
1482 free(entry);
1483 break;
1487 return ERROR_OK;
1490 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1492 if (callback == NULL)
1493 return ERROR_COMMAND_SYNTAX_ERROR;
1495 for (struct target_timer_callback *c = target_timer_callbacks;
1496 c; c = c->next) {
1497 if ((c->callback == callback) && (c->priv == priv)) {
1498 c->removed = true;
1499 return ERROR_OK;
1503 return ERROR_FAIL;
1506 int target_call_event_callbacks(struct target *target, enum target_event event)
1508 struct target_event_callback *callback = target_event_callbacks;
1509 struct target_event_callback *next_callback;
1511 if (event == TARGET_EVENT_HALTED) {
1512 /* execute early halted first */
1513 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1516 LOG_DEBUG("target event %i (%s)", event,
1517 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1519 target_handle_event(target, event);
1521 while (callback) {
1522 next_callback = callback->next;
1523 callback->callback(target, event, callback->priv);
1524 callback = next_callback;
1527 return ERROR_OK;
1530 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1532 struct target_reset_callback *callback;
1534 LOG_DEBUG("target reset %i (%s)", reset_mode,
1535 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1537 list_for_each_entry(callback, &target_reset_callback_list, list)
1538 callback->callback(target, reset_mode, callback->priv);
1540 return ERROR_OK;
1543 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1545 struct target_trace_callback *callback;
1547 list_for_each_entry(callback, &target_trace_callback_list, list)
1548 callback->callback(target, len, data, callback->priv);
1550 return ERROR_OK;
1553 static int target_timer_callback_periodic_restart(
1554 struct target_timer_callback *cb, struct timeval *now)
1556 int time_ms = cb->time_ms;
1557 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1558 time_ms -= (time_ms % 1000);
1559 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1560 if (cb->when.tv_usec > 1000000) {
1561 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1562 cb->when.tv_sec += 1;
1564 return ERROR_OK;
1567 static int target_call_timer_callback(struct target_timer_callback *cb,
1568 struct timeval *now)
1570 cb->callback(cb->priv);
1572 if (cb->periodic)
1573 return target_timer_callback_periodic_restart(cb, now);
1575 return target_unregister_timer_callback(cb->callback, cb->priv);
1578 static int target_call_timer_callbacks_check_time(int checktime)
1580 static bool callback_processing;
1582 /* Do not allow nesting */
1583 if (callback_processing)
1584 return ERROR_OK;
1586 callback_processing = true;
1588 keep_alive();
1590 struct timeval now;
1591 gettimeofday(&now, NULL);
1593 /* Store an address of the place containing a pointer to the
1594 * next item; initially, that's a standalone "root of the
1595 * list" variable. */
1596 struct target_timer_callback **callback = &target_timer_callbacks;
1597 while (*callback) {
1598 if ((*callback)->removed) {
1599 struct target_timer_callback *p = *callback;
1600 *callback = (*callback)->next;
1601 free(p);
1602 continue;
1605 bool call_it = (*callback)->callback &&
1606 ((!checktime && (*callback)->periodic) ||
1607 now.tv_sec > (*callback)->when.tv_sec ||
1608 (now.tv_sec == (*callback)->when.tv_sec &&
1609 now.tv_usec >= (*callback)->when.tv_usec));
1611 if (call_it)
1612 target_call_timer_callback(*callback, &now);
1614 callback = &(*callback)->next;
1617 callback_processing = false;
1618 return ERROR_OK;
1621 int target_call_timer_callbacks(void)
1623 return target_call_timer_callbacks_check_time(1);
1626 /* invoke periodic callbacks immediately */
1627 int target_call_timer_callbacks_now(void)
1629 return target_call_timer_callbacks_check_time(0);
1632 /* Prints the working area layout for debug purposes */
1633 static void print_wa_layout(struct target *target)
1635 struct working_area *c = target->working_areas;
1637 while (c) {
1638 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1639 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1640 c->address, c->address + c->size - 1, c->size);
1641 c = c->next;
1645 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1646 static void target_split_working_area(struct working_area *area, uint32_t size)
1648 assert(area->free); /* Shouldn't split an allocated area */
1649 assert(size <= area->size); /* Caller should guarantee this */
1651 /* Split only if not already the right size */
1652 if (size < area->size) {
1653 struct working_area *new_wa = malloc(sizeof(*new_wa));
1655 if (new_wa == NULL)
1656 return;
1658 new_wa->next = area->next;
1659 new_wa->size = area->size - size;
1660 new_wa->address = area->address + size;
1661 new_wa->backup = NULL;
1662 new_wa->user = NULL;
1663 new_wa->free = true;
1665 area->next = new_wa;
1666 area->size = size;
1668 /* If backup memory was allocated to this area, it has the wrong size
1669 * now so free it and it will be reallocated if/when needed */
1670 if (area->backup) {
1671 free(area->backup);
1672 area->backup = NULL;
1677 /* Merge all adjacent free areas into one */
1678 static void target_merge_working_areas(struct target *target)
1680 struct working_area *c = target->working_areas;
1682 while (c && c->next) {
1683 assert(c->next->address == c->address + c->size); /* This is an invariant */
1685 /* Find two adjacent free areas */
1686 if (c->free && c->next->free) {
1687 /* Merge the last into the first */
1688 c->size += c->next->size;
1690 /* Remove the last */
1691 struct working_area *to_be_freed = c->next;
1692 c->next = c->next->next;
1693 if (to_be_freed->backup)
1694 free(to_be_freed->backup);
1695 free(to_be_freed);
1697 /* If backup memory was allocated to the remaining area, it's has
1698 * the wrong size now */
1699 if (c->backup) {
1700 free(c->backup);
1701 c->backup = NULL;
1703 } else {
1704 c = c->next;
1709 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1711 /* Reevaluate working area address based on MMU state*/
1712 if (target->working_areas == NULL) {
1713 int retval;
1714 int enabled;
1716 retval = target->type->mmu(target, &enabled);
1717 if (retval != ERROR_OK)
1718 return retval;
1720 if (!enabled) {
1721 if (target->working_area_phys_spec) {
1722 LOG_DEBUG("MMU disabled, using physical "
1723 "address for working memory 0x%08"PRIx32,
1724 target->working_area_phys);
1725 target->working_area = target->working_area_phys;
1726 } else {
1727 LOG_ERROR("No working memory available. "
1728 "Specify -work-area-phys to target.");
1729 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1731 } else {
1732 if (target->working_area_virt_spec) {
1733 LOG_DEBUG("MMU enabled, using virtual "
1734 "address for working memory 0x%08"PRIx32,
1735 target->working_area_virt);
1736 target->working_area = target->working_area_virt;
1737 } else {
1738 LOG_ERROR("No working memory available. "
1739 "Specify -work-area-virt to target.");
1740 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1744 /* Set up initial working area on first call */
1745 struct working_area *new_wa = malloc(sizeof(*new_wa));
1746 if (new_wa) {
1747 new_wa->next = NULL;
1748 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1749 new_wa->address = target->working_area;
1750 new_wa->backup = NULL;
1751 new_wa->user = NULL;
1752 new_wa->free = true;
1755 target->working_areas = new_wa;
1758 /* only allocate multiples of 4 byte */
1759 if (size % 4)
1760 size = (size + 3) & (~3UL);
1762 struct working_area *c = target->working_areas;
1764 /* Find the first large enough working area */
1765 while (c) {
1766 if (c->free && c->size >= size)
1767 break;
1768 c = c->next;
1771 if (c == NULL)
1772 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1774 /* Split the working area into the requested size */
1775 target_split_working_area(c, size);
1777 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1779 if (target->backup_working_area) {
1780 if (c->backup == NULL) {
1781 c->backup = malloc(c->size);
1782 if (c->backup == NULL)
1783 return ERROR_FAIL;
1786 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1787 if (retval != ERROR_OK)
1788 return retval;
1791 /* mark as used, and return the new (reused) area */
1792 c->free = false;
1793 *area = c;
1795 /* user pointer */
1796 c->user = area;
1798 print_wa_layout(target);
1800 return ERROR_OK;
1803 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1805 int retval;
1807 retval = target_alloc_working_area_try(target, size, area);
1808 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1809 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1810 return retval;
1814 static int target_restore_working_area(struct target *target, struct working_area *area)
1816 int retval = ERROR_OK;
1818 if (target->backup_working_area && area->backup != NULL) {
1819 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1820 if (retval != ERROR_OK)
1821 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1822 area->size, area->address);
1825 return retval;
1828 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1829 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1831 int retval = ERROR_OK;
1833 if (area->free)
1834 return retval;
1836 if (restore) {
1837 retval = target_restore_working_area(target, area);
1838 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1839 if (retval != ERROR_OK)
1840 return retval;
1843 area->free = true;
1845 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1846 area->size, area->address);
1848 /* mark user pointer invalid */
1849 /* TODO: Is this really safe? It points to some previous caller's memory.
1850 * How could we know that the area pointer is still in that place and not
1851 * some other vital data? What's the purpose of this, anyway? */
1852 *area->user = NULL;
1853 area->user = NULL;
1855 target_merge_working_areas(target);
1857 print_wa_layout(target);
1859 return retval;
1862 int target_free_working_area(struct target *target, struct working_area *area)
1864 return target_free_working_area_restore(target, area, 1);
1867 void target_quit(void)
1869 struct target_event_callback *pe = target_event_callbacks;
1870 while (pe) {
1871 struct target_event_callback *t = pe->next;
1872 free(pe);
1873 pe = t;
1875 target_event_callbacks = NULL;
1877 struct target_timer_callback *pt = target_timer_callbacks;
1878 while (pt) {
1879 struct target_timer_callback *t = pt->next;
1880 free(pt);
1881 pt = t;
1883 target_timer_callbacks = NULL;
1885 for (struct target *target = all_targets;
1886 target; target = target->next) {
1887 if (target->type->deinit_target)
1888 target->type->deinit_target(target);
1892 /* free resources and restore memory, if restoring memory fails,
1893 * free up resources anyway
1895 static void target_free_all_working_areas_restore(struct target *target, int restore)
1897 struct working_area *c = target->working_areas;
1899 LOG_DEBUG("freeing all working areas");
1901 /* Loop through all areas, restoring the allocated ones and marking them as free */
1902 while (c) {
1903 if (!c->free) {
1904 if (restore)
1905 target_restore_working_area(target, c);
1906 c->free = true;
1907 *c->user = NULL; /* Same as above */
1908 c->user = NULL;
1910 c = c->next;
1913 /* Run a merge pass to combine all areas into one */
1914 target_merge_working_areas(target);
1916 print_wa_layout(target);
1919 void target_free_all_working_areas(struct target *target)
1921 target_free_all_working_areas_restore(target, 1);
1924 /* Find the largest number of bytes that can be allocated */
1925 uint32_t target_get_working_area_avail(struct target *target)
1927 struct working_area *c = target->working_areas;
1928 uint32_t max_size = 0;
1930 if (c == NULL)
1931 return target->working_area_size;
1933 while (c) {
1934 if (c->free && max_size < c->size)
1935 max_size = c->size;
1937 c = c->next;
1940 return max_size;
1943 int target_arch_state(struct target *target)
1945 int retval;
1946 if (target == NULL) {
1947 LOG_WARNING("No target has been configured");
1948 return ERROR_OK;
1951 if (target->state != TARGET_HALTED)
1952 return ERROR_OK;
1954 retval = target->type->arch_state(target);
1955 return retval;
1958 static int target_get_gdb_fileio_info_default(struct target *target,
1959 struct gdb_fileio_info *fileio_info)
1961 /* If target does not support semi-hosting function, target
1962 has no need to provide .get_gdb_fileio_info callback.
1963 It just return ERROR_FAIL and gdb_server will return "Txx"
1964 as target halted every time. */
1965 return ERROR_FAIL;
1968 static int target_gdb_fileio_end_default(struct target *target,
1969 int retcode, int fileio_errno, bool ctrl_c)
1971 return ERROR_OK;
1974 static int target_profiling_default(struct target *target, uint32_t *samples,
1975 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1977 struct timeval timeout, now;
1979 gettimeofday(&timeout, NULL);
1980 timeval_add_time(&timeout, seconds, 0);
1982 LOG_INFO("Starting profiling. Halting and resuming the"
1983 " target as often as we can...");
1985 uint32_t sample_count = 0;
1986 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1987 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1989 int retval = ERROR_OK;
1990 for (;;) {
1991 target_poll(target);
1992 if (target->state == TARGET_HALTED) {
1993 uint32_t t = buf_get_u32(reg->value, 0, 32);
1994 samples[sample_count++] = t;
1995 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1996 retval = target_resume(target, 1, 0, 0, 0);
1997 target_poll(target);
1998 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1999 } else if (target->state == TARGET_RUNNING) {
2000 /* We want to quickly sample the PC. */
2001 retval = target_halt(target);
2002 } else {
2003 LOG_INFO("Target not halted or running");
2004 retval = ERROR_OK;
2005 break;
2008 if (retval != ERROR_OK)
2009 break;
2011 gettimeofday(&now, NULL);
2012 if ((sample_count >= max_num_samples) ||
2013 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2014 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2015 break;
2019 *num_samples = sample_count;
2020 return retval;
2023 /* Single aligned words are guaranteed to use 16 or 32 bit access
2024 * mode respectively, otherwise data is handled as quickly as
2025 * possible
2027 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
2029 LOG_DEBUG("writing buffer of %" PRIi32 " byte at 0x%8.8" PRIx32,
2030 size, address);
2032 if (!target_was_examined(target)) {
2033 LOG_ERROR("Target not examined yet");
2034 return ERROR_FAIL;
2037 if (size == 0)
2038 return ERROR_OK;
2040 if ((address + size - 1) < address) {
2041 /* GDB can request this when e.g. PC is 0xfffffffc */
2042 LOG_ERROR("address + size wrapped (0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2043 address,
2044 size);
2045 return ERROR_FAIL;
2048 return target->type->write_buffer(target, address, size, buffer);
2051 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
2053 uint32_t size;
2055 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2056 * will have something to do with the size we leave to it. */
2057 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2058 if (address & size) {
2059 int retval = target_write_memory(target, address, size, 1, buffer);
2060 if (retval != ERROR_OK)
2061 return retval;
2062 address += size;
2063 count -= size;
2064 buffer += size;
2068 /* Write the data with as large access size as possible. */
2069 for (; size > 0; size /= 2) {
2070 uint32_t aligned = count - count % size;
2071 if (aligned > 0) {
2072 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2073 if (retval != ERROR_OK)
2074 return retval;
2075 address += aligned;
2076 count -= aligned;
2077 buffer += aligned;
2081 return ERROR_OK;
2084 /* Single aligned words are guaranteed to use 16 or 32 bit access
2085 * mode respectively, otherwise data is handled as quickly as
2086 * possible
2088 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
2090 LOG_DEBUG("reading buffer of %" PRIi32 " byte at 0x%8.8" PRIx32,
2091 size, address);
2093 if (!target_was_examined(target)) {
2094 LOG_ERROR("Target not examined yet");
2095 return ERROR_FAIL;
2098 if (size == 0)
2099 return ERROR_OK;
2101 if ((address + size - 1) < address) {
2102 /* GDB can request this when e.g. PC is 0xfffffffc */
2103 LOG_ERROR("address + size wrapped (0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2104 address,
2105 size);
2106 return ERROR_FAIL;
2109 return target->type->read_buffer(target, address, size, buffer);
2112 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2114 uint32_t size;
2116 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2117 * will have something to do with the size we leave to it. */
2118 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2119 if (address & size) {
2120 int retval = target_read_memory(target, address, size, 1, buffer);
2121 if (retval != ERROR_OK)
2122 return retval;
2123 address += size;
2124 count -= size;
2125 buffer += size;
2129 /* Read the data with as large access size as possible. */
2130 for (; size > 0; size /= 2) {
2131 uint32_t aligned = count - count % size;
2132 if (aligned > 0) {
2133 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2134 if (retval != ERROR_OK)
2135 return retval;
2136 address += aligned;
2137 count -= aligned;
2138 buffer += aligned;
2142 return ERROR_OK;
2145 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
2147 uint8_t *buffer;
2148 int retval;
2149 uint32_t i;
2150 uint32_t checksum = 0;
2151 if (!target_was_examined(target)) {
2152 LOG_ERROR("Target not examined yet");
2153 return ERROR_FAIL;
2156 retval = target->type->checksum_memory(target, address, size, &checksum);
2157 if (retval != ERROR_OK) {
2158 buffer = malloc(size);
2159 if (buffer == NULL) {
2160 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2161 return ERROR_COMMAND_SYNTAX_ERROR;
2163 retval = target_read_buffer(target, address, size, buffer);
2164 if (retval != ERROR_OK) {
2165 free(buffer);
2166 return retval;
2169 /* convert to target endianness */
2170 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2171 uint32_t target_data;
2172 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2173 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2176 retval = image_calculate_checksum(buffer, size, &checksum);
2177 free(buffer);
2180 *crc = checksum;
2182 return retval;
2185 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank,
2186 uint8_t erased_value)
2188 int retval;
2189 if (!target_was_examined(target)) {
2190 LOG_ERROR("Target not examined yet");
2191 return ERROR_FAIL;
2194 if (target->type->blank_check_memory == 0)
2195 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2197 retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2199 return retval;
2202 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2204 uint8_t value_buf[8];
2205 if (!target_was_examined(target)) {
2206 LOG_ERROR("Target not examined yet");
2207 return ERROR_FAIL;
2210 int retval = target_read_memory(target, address, 8, 1, value_buf);
2212 if (retval == ERROR_OK) {
2213 *value = target_buffer_get_u64(target, value_buf);
2214 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2215 address,
2216 *value);
2217 } else {
2218 *value = 0x0;
2219 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2220 address);
2223 return retval;
2226 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2228 uint8_t value_buf[4];
2229 if (!target_was_examined(target)) {
2230 LOG_ERROR("Target not examined yet");
2231 return ERROR_FAIL;
2234 int retval = target_read_memory(target, address, 4, 1, value_buf);
2236 if (retval == ERROR_OK) {
2237 *value = target_buffer_get_u32(target, value_buf);
2238 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2239 address,
2240 *value);
2241 } else {
2242 *value = 0x0;
2243 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2244 address);
2247 return retval;
2250 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2252 uint8_t value_buf[2];
2253 if (!target_was_examined(target)) {
2254 LOG_ERROR("Target not examined yet");
2255 return ERROR_FAIL;
2258 int retval = target_read_memory(target, address, 2, 1, value_buf);
2260 if (retval == ERROR_OK) {
2261 *value = target_buffer_get_u16(target, value_buf);
2262 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4" PRIx16,
2263 address,
2264 *value);
2265 } else {
2266 *value = 0x0;
2267 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2268 address);
2271 return retval;
2274 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2276 if (!target_was_examined(target)) {
2277 LOG_ERROR("Target not examined yet");
2278 return ERROR_FAIL;
2281 int retval = target_read_memory(target, address, 1, 1, value);
2283 if (retval == ERROR_OK) {
2284 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2" PRIx8,
2285 address,
2286 *value);
2287 } else {
2288 *value = 0x0;
2289 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2290 address);
2293 return retval;
2296 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2298 int retval;
2299 uint8_t value_buf[8];
2300 if (!target_was_examined(target)) {
2301 LOG_ERROR("Target not examined yet");
2302 return ERROR_FAIL;
2305 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2306 address,
2307 value);
2309 target_buffer_set_u64(target, value_buf, value);
2310 retval = target_write_memory(target, address, 8, 1, value_buf);
2311 if (retval != ERROR_OK)
2312 LOG_DEBUG("failed: %i", retval);
2314 return retval;
2317 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2319 int retval;
2320 uint8_t value_buf[4];
2321 if (!target_was_examined(target)) {
2322 LOG_ERROR("Target not examined yet");
2323 return ERROR_FAIL;
2326 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2327 address,
2328 value);
2330 target_buffer_set_u32(target, value_buf, value);
2331 retval = target_write_memory(target, address, 4, 1, value_buf);
2332 if (retval != ERROR_OK)
2333 LOG_DEBUG("failed: %i", retval);
2335 return retval;
2338 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2340 int retval;
2341 uint8_t value_buf[2];
2342 if (!target_was_examined(target)) {
2343 LOG_ERROR("Target not examined yet");
2344 return ERROR_FAIL;
2347 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx16,
2348 address,
2349 value);
2351 target_buffer_set_u16(target, value_buf, value);
2352 retval = target_write_memory(target, address, 2, 1, value_buf);
2353 if (retval != ERROR_OK)
2354 LOG_DEBUG("failed: %i", retval);
2356 return retval;
2359 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2361 int retval;
2362 if (!target_was_examined(target)) {
2363 LOG_ERROR("Target not examined yet");
2364 return ERROR_FAIL;
2367 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2" PRIx8,
2368 address, value);
2370 retval = target_write_memory(target, address, 1, 1, &value);
2371 if (retval != ERROR_OK)
2372 LOG_DEBUG("failed: %i", retval);
2374 return retval;
2377 static int find_target(struct command_context *cmd_ctx, const char *name)
2379 struct target *target = get_target(name);
2380 if (target == NULL) {
2381 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2382 return ERROR_FAIL;
2384 if (!target->tap->enabled) {
2385 LOG_USER("Target: TAP %s is disabled, "
2386 "can't be the current target\n",
2387 target->tap->dotted_name);
2388 return ERROR_FAIL;
2391 cmd_ctx->current_target = target->target_number;
2392 return ERROR_OK;
2396 COMMAND_HANDLER(handle_targets_command)
2398 int retval = ERROR_OK;
2399 if (CMD_ARGC == 1) {
2400 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2401 if (retval == ERROR_OK) {
2402 /* we're done! */
2403 return retval;
2407 struct target *target = all_targets;
2408 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2409 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2410 while (target) {
2411 const char *state;
2412 char marker = ' ';
2414 if (target->tap->enabled)
2415 state = target_state_name(target);
2416 else
2417 state = "tap-disabled";
2419 if (CMD_CTX->current_target == target->target_number)
2420 marker = '*';
2422 /* keep columns lined up to match the headers above */
2423 command_print(CMD_CTX,
2424 "%2d%c %-18s %-10s %-6s %-18s %s",
2425 target->target_number,
2426 marker,
2427 target_name(target),
2428 target_type_name(target),
2429 Jim_Nvp_value2name_simple(nvp_target_endian,
2430 target->endianness)->name,
2431 target->tap->dotted_name,
2432 state);
2433 target = target->next;
2436 return retval;
2439 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2441 static int powerDropout;
2442 static int srstAsserted;
2444 static int runPowerRestore;
2445 static int runPowerDropout;
2446 static int runSrstAsserted;
2447 static int runSrstDeasserted;
2449 static int sense_handler(void)
2451 static int prevSrstAsserted;
2452 static int prevPowerdropout;
2454 int retval = jtag_power_dropout(&powerDropout);
2455 if (retval != ERROR_OK)
2456 return retval;
2458 int powerRestored;
2459 powerRestored = prevPowerdropout && !powerDropout;
2460 if (powerRestored)
2461 runPowerRestore = 1;
2463 int64_t current = timeval_ms();
2464 static int64_t lastPower;
2465 bool waitMore = lastPower + 2000 > current;
2466 if (powerDropout && !waitMore) {
2467 runPowerDropout = 1;
2468 lastPower = current;
2471 retval = jtag_srst_asserted(&srstAsserted);
2472 if (retval != ERROR_OK)
2473 return retval;
2475 int srstDeasserted;
2476 srstDeasserted = prevSrstAsserted && !srstAsserted;
2478 static int64_t lastSrst;
2479 waitMore = lastSrst + 2000 > current;
2480 if (srstDeasserted && !waitMore) {
2481 runSrstDeasserted = 1;
2482 lastSrst = current;
2485 if (!prevSrstAsserted && srstAsserted)
2486 runSrstAsserted = 1;
2488 prevSrstAsserted = srstAsserted;
2489 prevPowerdropout = powerDropout;
2491 if (srstDeasserted || powerRestored) {
2492 /* Other than logging the event we can't do anything here.
2493 * Issuing a reset is a particularly bad idea as we might
2494 * be inside a reset already.
2498 return ERROR_OK;
2501 /* process target state changes */
2502 static int handle_target(void *priv)
2504 Jim_Interp *interp = (Jim_Interp *)priv;
2505 int retval = ERROR_OK;
2507 if (!is_jtag_poll_safe()) {
2508 /* polling is disabled currently */
2509 return ERROR_OK;
2512 /* we do not want to recurse here... */
2513 static int recursive;
2514 if (!recursive) {
2515 recursive = 1;
2516 sense_handler();
2517 /* danger! running these procedures can trigger srst assertions and power dropouts.
2518 * We need to avoid an infinite loop/recursion here and we do that by
2519 * clearing the flags after running these events.
2521 int did_something = 0;
2522 if (runSrstAsserted) {
2523 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2524 Jim_Eval(interp, "srst_asserted");
2525 did_something = 1;
2527 if (runSrstDeasserted) {
2528 Jim_Eval(interp, "srst_deasserted");
2529 did_something = 1;
2531 if (runPowerDropout) {
2532 LOG_INFO("Power dropout detected, running power_dropout proc.");
2533 Jim_Eval(interp, "power_dropout");
2534 did_something = 1;
2536 if (runPowerRestore) {
2537 Jim_Eval(interp, "power_restore");
2538 did_something = 1;
2541 if (did_something) {
2542 /* clear detect flags */
2543 sense_handler();
2546 /* clear action flags */
2548 runSrstAsserted = 0;
2549 runSrstDeasserted = 0;
2550 runPowerRestore = 0;
2551 runPowerDropout = 0;
2553 recursive = 0;
2556 /* Poll targets for state changes unless that's globally disabled.
2557 * Skip targets that are currently disabled.
2559 for (struct target *target = all_targets;
2560 is_jtag_poll_safe() && target;
2561 target = target->next) {
2563 if (!target_was_examined(target))
2564 continue;
2566 if (!target->tap->enabled)
2567 continue;
2569 if (target->backoff.times > target->backoff.count) {
2570 /* do not poll this time as we failed previously */
2571 target->backoff.count++;
2572 continue;
2574 target->backoff.count = 0;
2576 /* only poll target if we've got power and srst isn't asserted */
2577 if (!powerDropout && !srstAsserted) {
2578 /* polling may fail silently until the target has been examined */
2579 retval = target_poll(target);
2580 if (retval != ERROR_OK) {
2581 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2582 if (target->backoff.times * polling_interval < 5000) {
2583 target->backoff.times *= 2;
2584 target->backoff.times++;
2587 /* Tell GDB to halt the debugger. This allows the user to
2588 * run monitor commands to handle the situation.
2590 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2592 if (target->backoff.times > 0) {
2593 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2594 target_reset_examined(target);
2595 retval = target_examine_one(target);
2596 /* Target examination could have failed due to unstable connection,
2597 * but we set the examined flag anyway to repoll it later */
2598 if (retval != ERROR_OK) {
2599 target->examined = true;
2600 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2601 target->backoff.times * polling_interval);
2602 return retval;
2606 /* Since we succeeded, we reset backoff count */
2607 target->backoff.times = 0;
2611 return retval;
2614 COMMAND_HANDLER(handle_reg_command)
2616 struct target *target;
2617 struct reg *reg = NULL;
2618 unsigned count = 0;
2619 char *value;
2621 LOG_DEBUG("-");
2623 target = get_current_target(CMD_CTX);
2625 /* list all available registers for the current target */
2626 if (CMD_ARGC == 0) {
2627 struct reg_cache *cache = target->reg_cache;
2629 count = 0;
2630 while (cache) {
2631 unsigned i;
2633 command_print(CMD_CTX, "===== %s", cache->name);
2635 for (i = 0, reg = cache->reg_list;
2636 i < cache->num_regs;
2637 i++, reg++, count++) {
2638 /* only print cached values if they are valid */
2639 if (reg->valid) {
2640 value = buf_to_str(reg->value,
2641 reg->size, 16);
2642 command_print(CMD_CTX,
2643 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2644 count, reg->name,
2645 reg->size, value,
2646 reg->dirty
2647 ? " (dirty)"
2648 : "");
2649 free(value);
2650 } else {
2651 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2652 count, reg->name,
2653 reg->size) ;
2656 cache = cache->next;
2659 return ERROR_OK;
2662 /* access a single register by its ordinal number */
2663 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2664 unsigned num;
2665 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2667 struct reg_cache *cache = target->reg_cache;
2668 count = 0;
2669 while (cache) {
2670 unsigned i;
2671 for (i = 0; i < cache->num_regs; i++) {
2672 if (count++ == num) {
2673 reg = &cache->reg_list[i];
2674 break;
2677 if (reg)
2678 break;
2679 cache = cache->next;
2682 if (!reg) {
2683 command_print(CMD_CTX, "%i is out of bounds, the current target "
2684 "has only %i registers (0 - %i)", num, count, count - 1);
2685 return ERROR_OK;
2687 } else {
2688 /* access a single register by its name */
2689 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2691 if (!reg) {
2692 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2693 return ERROR_OK;
2697 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2699 /* display a register */
2700 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2701 && (CMD_ARGV[1][0] <= '9')))) {
2702 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2703 reg->valid = 0;
2705 if (reg->valid == 0)
2706 reg->type->get(reg);
2707 value = buf_to_str(reg->value, reg->size, 16);
2708 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2709 free(value);
2710 return ERROR_OK;
2713 /* set register value */
2714 if (CMD_ARGC == 2) {
2715 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2716 if (buf == NULL)
2717 return ERROR_FAIL;
2718 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2720 reg->type->set(reg, buf);
2722 value = buf_to_str(reg->value, reg->size, 16);
2723 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2724 free(value);
2726 free(buf);
2728 return ERROR_OK;
2731 return ERROR_COMMAND_SYNTAX_ERROR;
2734 COMMAND_HANDLER(handle_poll_command)
2736 int retval = ERROR_OK;
2737 struct target *target = get_current_target(CMD_CTX);
2739 if (CMD_ARGC == 0) {
2740 command_print(CMD_CTX, "background polling: %s",
2741 jtag_poll_get_enabled() ? "on" : "off");
2742 command_print(CMD_CTX, "TAP: %s (%s)",
2743 target->tap->dotted_name,
2744 target->tap->enabled ? "enabled" : "disabled");
2745 if (!target->tap->enabled)
2746 return ERROR_OK;
2747 retval = target_poll(target);
2748 if (retval != ERROR_OK)
2749 return retval;
2750 retval = target_arch_state(target);
2751 if (retval != ERROR_OK)
2752 return retval;
2753 } else if (CMD_ARGC == 1) {
2754 bool enable;
2755 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2756 jtag_poll_set_enabled(enable);
2757 } else
2758 return ERROR_COMMAND_SYNTAX_ERROR;
2760 return retval;
2763 COMMAND_HANDLER(handle_wait_halt_command)
2765 if (CMD_ARGC > 1)
2766 return ERROR_COMMAND_SYNTAX_ERROR;
2768 unsigned ms = DEFAULT_HALT_TIMEOUT;
2769 if (1 == CMD_ARGC) {
2770 int retval = parse_uint(CMD_ARGV[0], &ms);
2771 if (ERROR_OK != retval)
2772 return ERROR_COMMAND_SYNTAX_ERROR;
2775 struct target *target = get_current_target(CMD_CTX);
2776 return target_wait_state(target, TARGET_HALTED, ms);
2779 /* wait for target state to change. The trick here is to have a low
2780 * latency for short waits and not to suck up all the CPU time
2781 * on longer waits.
2783 * After 500ms, keep_alive() is invoked
2785 int target_wait_state(struct target *target, enum target_state state, int ms)
2787 int retval;
2788 int64_t then = 0, cur;
2789 bool once = true;
2791 for (;;) {
2792 retval = target_poll(target);
2793 if (retval != ERROR_OK)
2794 return retval;
2795 if (target->state == state)
2796 break;
2797 cur = timeval_ms();
2798 if (once) {
2799 once = false;
2800 then = timeval_ms();
2801 LOG_DEBUG("waiting for target %s...",
2802 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2805 if (cur-then > 500)
2806 keep_alive();
2808 if ((cur-then) > ms) {
2809 LOG_ERROR("timed out while waiting for target %s",
2810 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2811 return ERROR_FAIL;
2815 return ERROR_OK;
2818 COMMAND_HANDLER(handle_halt_command)
2820 LOG_DEBUG("-");
2822 struct target *target = get_current_target(CMD_CTX);
2823 int retval = target_halt(target);
2824 if (ERROR_OK != retval)
2825 return retval;
2827 if (CMD_ARGC == 1) {
2828 unsigned wait_local;
2829 retval = parse_uint(CMD_ARGV[0], &wait_local);
2830 if (ERROR_OK != retval)
2831 return ERROR_COMMAND_SYNTAX_ERROR;
2832 if (!wait_local)
2833 return ERROR_OK;
2836 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2839 COMMAND_HANDLER(handle_soft_reset_halt_command)
2841 struct target *target = get_current_target(CMD_CTX);
2843 LOG_USER("requesting target halt and executing a soft reset");
2845 target_soft_reset_halt(target);
2847 return ERROR_OK;
2850 COMMAND_HANDLER(handle_reset_command)
2852 if (CMD_ARGC > 1)
2853 return ERROR_COMMAND_SYNTAX_ERROR;
2855 enum target_reset_mode reset_mode = RESET_RUN;
2856 if (CMD_ARGC == 1) {
2857 const Jim_Nvp *n;
2858 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2859 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2860 return ERROR_COMMAND_SYNTAX_ERROR;
2861 reset_mode = n->value;
2864 /* reset *all* targets */
2865 return target_process_reset(CMD_CTX, reset_mode);
2869 COMMAND_HANDLER(handle_resume_command)
2871 int current = 1;
2872 if (CMD_ARGC > 1)
2873 return ERROR_COMMAND_SYNTAX_ERROR;
2875 struct target *target = get_current_target(CMD_CTX);
2877 /* with no CMD_ARGV, resume from current pc, addr = 0,
2878 * with one arguments, addr = CMD_ARGV[0],
2879 * handle breakpoints, not debugging */
2880 uint32_t addr = 0;
2881 if (CMD_ARGC == 1) {
2882 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2883 current = 0;
2886 return target_resume(target, current, addr, 1, 0);
2889 COMMAND_HANDLER(handle_step_command)
2891 if (CMD_ARGC > 1)
2892 return ERROR_COMMAND_SYNTAX_ERROR;
2894 LOG_DEBUG("-");
2896 /* with no CMD_ARGV, step from current pc, addr = 0,
2897 * with one argument addr = CMD_ARGV[0],
2898 * handle breakpoints, debugging */
2899 uint32_t addr = 0;
2900 int current_pc = 1;
2901 if (CMD_ARGC == 1) {
2902 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2903 current_pc = 0;
2906 struct target *target = get_current_target(CMD_CTX);
2908 return target->type->step(target, current_pc, addr, 1);
2911 static void handle_md_output(struct command_context *cmd_ctx,
2912 struct target *target, uint32_t address, unsigned size,
2913 unsigned count, const uint8_t *buffer)
2915 const unsigned line_bytecnt = 32;
2916 unsigned line_modulo = line_bytecnt / size;
2918 char output[line_bytecnt * 4 + 1];
2919 unsigned output_len = 0;
2921 const char *value_fmt;
2922 switch (size) {
2923 case 4:
2924 value_fmt = "%8.8x ";
2925 break;
2926 case 2:
2927 value_fmt = "%4.4x ";
2928 break;
2929 case 1:
2930 value_fmt = "%2.2x ";
2931 break;
2932 default:
2933 /* "can't happen", caller checked */
2934 LOG_ERROR("invalid memory read size: %u", size);
2935 return;
2938 for (unsigned i = 0; i < count; i++) {
2939 if (i % line_modulo == 0) {
2940 output_len += snprintf(output + output_len,
2941 sizeof(output) - output_len,
2942 "0x%8.8x: ",
2943 (unsigned)(address + (i*size)));
2946 uint32_t value = 0;
2947 const uint8_t *value_ptr = buffer + i * size;
2948 switch (size) {
2949 case 4:
2950 value = target_buffer_get_u32(target, value_ptr);
2951 break;
2952 case 2:
2953 value = target_buffer_get_u16(target, value_ptr);
2954 break;
2955 case 1:
2956 value = *value_ptr;
2958 output_len += snprintf(output + output_len,
2959 sizeof(output) - output_len,
2960 value_fmt, value);
2962 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2963 command_print(cmd_ctx, "%s", output);
2964 output_len = 0;
2969 COMMAND_HANDLER(handle_md_command)
2971 if (CMD_ARGC < 1)
2972 return ERROR_COMMAND_SYNTAX_ERROR;
2974 unsigned size = 0;
2975 switch (CMD_NAME[2]) {
2976 case 'w':
2977 size = 4;
2978 break;
2979 case 'h':
2980 size = 2;
2981 break;
2982 case 'b':
2983 size = 1;
2984 break;
2985 default:
2986 return ERROR_COMMAND_SYNTAX_ERROR;
2989 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2990 int (*fn)(struct target *target,
2991 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2992 if (physical) {
2993 CMD_ARGC--;
2994 CMD_ARGV++;
2995 fn = target_read_phys_memory;
2996 } else
2997 fn = target_read_memory;
2998 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2999 return ERROR_COMMAND_SYNTAX_ERROR;
3001 uint32_t address;
3002 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3004 unsigned count = 1;
3005 if (CMD_ARGC == 2)
3006 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3008 uint8_t *buffer = calloc(count, size);
3010 struct target *target = get_current_target(CMD_CTX);
3011 int retval = fn(target, address, size, count, buffer);
3012 if (ERROR_OK == retval)
3013 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3015 free(buffer);
3017 return retval;
3020 typedef int (*target_write_fn)(struct target *target,
3021 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3023 static int target_fill_mem(struct target *target,
3024 uint32_t address,
3025 target_write_fn fn,
3026 unsigned data_size,
3027 /* value */
3028 uint32_t b,
3029 /* count */
3030 unsigned c)
3032 /* We have to write in reasonably large chunks to be able
3033 * to fill large memory areas with any sane speed */
3034 const unsigned chunk_size = 16384;
3035 uint8_t *target_buf = malloc(chunk_size * data_size);
3036 if (target_buf == NULL) {
3037 LOG_ERROR("Out of memory");
3038 return ERROR_FAIL;
3041 for (unsigned i = 0; i < chunk_size; i++) {
3042 switch (data_size) {
3043 case 4:
3044 target_buffer_set_u32(target, target_buf + i * data_size, b);
3045 break;
3046 case 2:
3047 target_buffer_set_u16(target, target_buf + i * data_size, b);
3048 break;
3049 case 1:
3050 target_buffer_set_u8(target, target_buf + i * data_size, b);
3051 break;
3052 default:
3053 exit(-1);
3057 int retval = ERROR_OK;
3059 for (unsigned x = 0; x < c; x += chunk_size) {
3060 unsigned current;
3061 current = c - x;
3062 if (current > chunk_size)
3063 current = chunk_size;
3064 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3065 if (retval != ERROR_OK)
3066 break;
3067 /* avoid GDB timeouts */
3068 keep_alive();
3070 free(target_buf);
3072 return retval;
3076 COMMAND_HANDLER(handle_mw_command)
3078 if (CMD_ARGC < 2)
3079 return ERROR_COMMAND_SYNTAX_ERROR;
3080 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3081 target_write_fn fn;
3082 if (physical) {
3083 CMD_ARGC--;
3084 CMD_ARGV++;
3085 fn = target_write_phys_memory;
3086 } else
3087 fn = target_write_memory;
3088 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3089 return ERROR_COMMAND_SYNTAX_ERROR;
3091 uint32_t address;
3092 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3094 uint32_t value;
3095 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
3097 unsigned count = 1;
3098 if (CMD_ARGC == 3)
3099 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3101 struct target *target = get_current_target(CMD_CTX);
3102 unsigned wordsize;
3103 switch (CMD_NAME[2]) {
3104 case 'w':
3105 wordsize = 4;
3106 break;
3107 case 'h':
3108 wordsize = 2;
3109 break;
3110 case 'b':
3111 wordsize = 1;
3112 break;
3113 default:
3114 return ERROR_COMMAND_SYNTAX_ERROR;
3117 return target_fill_mem(target, address, fn, wordsize, value, count);
3120 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3121 uint32_t *min_address, uint32_t *max_address)
3123 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3124 return ERROR_COMMAND_SYNTAX_ERROR;
3126 /* a base address isn't always necessary,
3127 * default to 0x0 (i.e. don't relocate) */
3128 if (CMD_ARGC >= 2) {
3129 uint32_t addr;
3130 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3131 image->base_address = addr;
3132 image->base_address_set = 1;
3133 } else
3134 image->base_address_set = 0;
3136 image->start_address_set = 0;
3138 if (CMD_ARGC >= 4)
3139 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
3140 if (CMD_ARGC == 5) {
3141 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
3142 /* use size (given) to find max (required) */
3143 *max_address += *min_address;
3146 if (*min_address > *max_address)
3147 return ERROR_COMMAND_SYNTAX_ERROR;
3149 return ERROR_OK;
3152 COMMAND_HANDLER(handle_load_image_command)
3154 uint8_t *buffer;
3155 size_t buf_cnt;
3156 uint32_t image_size;
3157 uint32_t min_address = 0;
3158 uint32_t max_address = 0xffffffff;
3159 int i;
3160 struct image image;
3162 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3163 &image, &min_address, &max_address);
3164 if (ERROR_OK != retval)
3165 return retval;
3167 struct target *target = get_current_target(CMD_CTX);
3169 struct duration bench;
3170 duration_start(&bench);
3172 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3173 return ERROR_FAIL;
3175 image_size = 0x0;
3176 retval = ERROR_OK;
3177 for (i = 0; i < image.num_sections; i++) {
3178 buffer = malloc(image.sections[i].size);
3179 if (buffer == NULL) {
3180 command_print(CMD_CTX,
3181 "error allocating buffer for section (%d bytes)",
3182 (int)(image.sections[i].size));
3183 retval = ERROR_FAIL;
3184 break;
3187 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3188 if (retval != ERROR_OK) {
3189 free(buffer);
3190 break;
3193 uint32_t offset = 0;
3194 uint32_t length = buf_cnt;
3196 /* DANGER!!! beware of unsigned comparision here!!! */
3198 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3199 (image.sections[i].base_address < max_address)) {
3201 if (image.sections[i].base_address < min_address) {
3202 /* clip addresses below */
3203 offset += min_address-image.sections[i].base_address;
3204 length -= offset;
3207 if (image.sections[i].base_address + buf_cnt > max_address)
3208 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3210 retval = target_write_buffer(target,
3211 image.sections[i].base_address + offset, length, buffer + offset);
3212 if (retval != ERROR_OK) {
3213 free(buffer);
3214 break;
3216 image_size += length;
3217 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3218 (unsigned int)length,
3219 image.sections[i].base_address + offset);
3222 free(buffer);
3225 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3226 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3227 "in %fs (%0.3f KiB/s)", image_size,
3228 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3231 image_close(&image);
3233 return retval;
3237 COMMAND_HANDLER(handle_dump_image_command)
3239 struct fileio *fileio;
3240 uint8_t *buffer;
3241 int retval, retvaltemp;
3242 uint32_t address, size;
3243 struct duration bench;
3244 struct target *target = get_current_target(CMD_CTX);
3246 if (CMD_ARGC != 3)
3247 return ERROR_COMMAND_SYNTAX_ERROR;
3249 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3250 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3252 uint32_t buf_size = (size > 4096) ? 4096 : size;
3253 buffer = malloc(buf_size);
3254 if (!buffer)
3255 return ERROR_FAIL;
3257 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3258 if (retval != ERROR_OK) {
3259 free(buffer);
3260 return retval;
3263 duration_start(&bench);
3265 while (size > 0) {
3266 size_t size_written;
3267 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3268 retval = target_read_buffer(target, address, this_run_size, buffer);
3269 if (retval != ERROR_OK)
3270 break;
3272 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3273 if (retval != ERROR_OK)
3274 break;
3276 size -= this_run_size;
3277 address += this_run_size;
3280 free(buffer);
3282 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3283 size_t filesize;
3284 retval = fileio_size(fileio, &filesize);
3285 if (retval != ERROR_OK)
3286 return retval;
3287 command_print(CMD_CTX,
3288 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3289 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3292 retvaltemp = fileio_close(fileio);
3293 if (retvaltemp != ERROR_OK)
3294 return retvaltemp;
3296 return retval;
3299 enum verify_mode {
3300 IMAGE_TEST = 0,
3301 IMAGE_VERIFY = 1,
3302 IMAGE_CHECKSUM_ONLY = 2
3305 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3307 uint8_t *buffer;
3308 size_t buf_cnt;
3309 uint32_t image_size;
3310 int i;
3311 int retval;
3312 uint32_t checksum = 0;
3313 uint32_t mem_checksum = 0;
3315 struct image image;
3317 struct target *target = get_current_target(CMD_CTX);
3319 if (CMD_ARGC < 1)
3320 return ERROR_COMMAND_SYNTAX_ERROR;
3322 if (!target) {
3323 LOG_ERROR("no target selected");
3324 return ERROR_FAIL;
3327 struct duration bench;
3328 duration_start(&bench);
3330 if (CMD_ARGC >= 2) {
3331 uint32_t addr;
3332 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3333 image.base_address = addr;
3334 image.base_address_set = 1;
3335 } else {
3336 image.base_address_set = 0;
3337 image.base_address = 0x0;
3340 image.start_address_set = 0;
3342 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3343 if (retval != ERROR_OK)
3344 return retval;
3346 image_size = 0x0;
3347 int diffs = 0;
3348 retval = ERROR_OK;
3349 for (i = 0; i < image.num_sections; i++) {
3350 buffer = malloc(image.sections[i].size);
3351 if (buffer == NULL) {
3352 command_print(CMD_CTX,
3353 "error allocating buffer for section (%d bytes)",
3354 (int)(image.sections[i].size));
3355 break;
3357 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3358 if (retval != ERROR_OK) {
3359 free(buffer);
3360 break;
3363 if (verify >= IMAGE_VERIFY) {
3364 /* calculate checksum of image */
3365 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3366 if (retval != ERROR_OK) {
3367 free(buffer);
3368 break;
3371 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3372 if (retval != ERROR_OK) {
3373 free(buffer);
3374 break;
3376 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3377 LOG_ERROR("checksum mismatch");
3378 free(buffer);
3379 retval = ERROR_FAIL;
3380 goto done;
3382 if (checksum != mem_checksum) {
3383 /* failed crc checksum, fall back to a binary compare */
3384 uint8_t *data;
3386 if (diffs == 0)
3387 LOG_ERROR("checksum mismatch - attempting binary compare");
3389 data = malloc(buf_cnt);
3391 /* Can we use 32bit word accesses? */
3392 int size = 1;
3393 int count = buf_cnt;
3394 if ((count % 4) == 0) {
3395 size *= 4;
3396 count /= 4;
3398 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3399 if (retval == ERROR_OK) {
3400 uint32_t t;
3401 for (t = 0; t < buf_cnt; t++) {
3402 if (data[t] != buffer[t]) {
3403 command_print(CMD_CTX,
3404 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3405 diffs,
3406 (unsigned)(t + image.sections[i].base_address),
3407 data[t],
3408 buffer[t]);
3409 if (diffs++ >= 127) {
3410 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3411 free(data);
3412 free(buffer);
3413 goto done;
3416 keep_alive();
3419 free(data);
3421 } else {
3422 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3423 image.sections[i].base_address,
3424 buf_cnt);
3427 free(buffer);
3428 image_size += buf_cnt;
3430 if (diffs > 0)
3431 command_print(CMD_CTX, "No more differences found.");
3432 done:
3433 if (diffs > 0)
3434 retval = ERROR_FAIL;
3435 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3436 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3437 "in %fs (%0.3f KiB/s)", image_size,
3438 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3441 image_close(&image);
3443 return retval;
3446 COMMAND_HANDLER(handle_verify_image_checksum_command)
3448 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3451 COMMAND_HANDLER(handle_verify_image_command)
3453 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3456 COMMAND_HANDLER(handle_test_image_command)
3458 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3461 static int handle_bp_command_list(struct command_context *cmd_ctx)
3463 struct target *target = get_current_target(cmd_ctx);
3464 struct breakpoint *breakpoint = target->breakpoints;
3465 while (breakpoint) {
3466 if (breakpoint->type == BKPT_SOFT) {
3467 char *buf = buf_to_str(breakpoint->orig_instr,
3468 breakpoint->length, 16);
3469 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3470 breakpoint->address,
3471 breakpoint->length,
3472 breakpoint->set, buf);
3473 free(buf);
3474 } else {
3475 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3476 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3477 breakpoint->asid,
3478 breakpoint->length, breakpoint->set);
3479 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3480 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3481 breakpoint->address,
3482 breakpoint->length, breakpoint->set);
3483 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3484 breakpoint->asid);
3485 } else
3486 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3487 breakpoint->address,
3488 breakpoint->length, breakpoint->set);
3491 breakpoint = breakpoint->next;
3493 return ERROR_OK;
3496 static int handle_bp_command_set(struct command_context *cmd_ctx,
3497 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3499 struct target *target = get_current_target(cmd_ctx);
3500 int retval;
3502 if (asid == 0) {
3503 retval = breakpoint_add(target, addr, length, hw);
3504 if (ERROR_OK == retval)
3505 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3506 else {
3507 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3508 return retval;
3510 } else if (addr == 0) {
3511 if (target->type->add_context_breakpoint == NULL) {
3512 LOG_WARNING("Context breakpoint not available");
3513 return ERROR_OK;
3515 retval = context_breakpoint_add(target, asid, length, hw);
3516 if (ERROR_OK == retval)
3517 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3518 else {
3519 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3520 return retval;
3522 } else {
3523 if (target->type->add_hybrid_breakpoint == NULL) {
3524 LOG_WARNING("Hybrid breakpoint not available");
3525 return ERROR_OK;
3527 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3528 if (ERROR_OK == retval)
3529 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3530 else {
3531 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3532 return retval;
3535 return ERROR_OK;
3538 COMMAND_HANDLER(handle_bp_command)
3540 uint32_t addr;
3541 uint32_t asid;
3542 uint32_t length;
3543 int hw = BKPT_SOFT;
3545 switch (CMD_ARGC) {
3546 case 0:
3547 return handle_bp_command_list(CMD_CTX);
3549 case 2:
3550 asid = 0;
3551 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3552 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3553 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3555 case 3:
3556 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3557 hw = BKPT_HARD;
3558 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3560 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3562 asid = 0;
3563 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3564 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3565 hw = BKPT_HARD;
3566 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3567 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3568 addr = 0;
3569 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3572 case 4:
3573 hw = BKPT_HARD;
3574 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3575 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3576 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3577 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3579 default:
3580 return ERROR_COMMAND_SYNTAX_ERROR;
3584 COMMAND_HANDLER(handle_rbp_command)
3586 if (CMD_ARGC != 1)
3587 return ERROR_COMMAND_SYNTAX_ERROR;
3589 uint32_t addr;
3590 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3592 struct target *target = get_current_target(CMD_CTX);
3593 breakpoint_remove(target, addr);
3595 return ERROR_OK;
3598 COMMAND_HANDLER(handle_wp_command)
3600 struct target *target = get_current_target(CMD_CTX);
3602 if (CMD_ARGC == 0) {
3603 struct watchpoint *watchpoint = target->watchpoints;
3605 while (watchpoint) {
3606 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3607 ", len: 0x%8.8" PRIx32
3608 ", r/w/a: %i, value: 0x%8.8" PRIx32
3609 ", mask: 0x%8.8" PRIx32,
3610 watchpoint->address,
3611 watchpoint->length,
3612 (int)watchpoint->rw,
3613 watchpoint->value,
3614 watchpoint->mask);
3615 watchpoint = watchpoint->next;
3617 return ERROR_OK;
3620 enum watchpoint_rw type = WPT_ACCESS;
3621 uint32_t addr = 0;
3622 uint32_t length = 0;
3623 uint32_t data_value = 0x0;
3624 uint32_t data_mask = 0xffffffff;
3626 switch (CMD_ARGC) {
3627 case 5:
3628 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3629 /* fall through */
3630 case 4:
3631 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3632 /* fall through */
3633 case 3:
3634 switch (CMD_ARGV[2][0]) {
3635 case 'r':
3636 type = WPT_READ;
3637 break;
3638 case 'w':
3639 type = WPT_WRITE;
3640 break;
3641 case 'a':
3642 type = WPT_ACCESS;
3643 break;
3644 default:
3645 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3646 return ERROR_COMMAND_SYNTAX_ERROR;
3648 /* fall through */
3649 case 2:
3650 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3651 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3652 break;
3654 default:
3655 return ERROR_COMMAND_SYNTAX_ERROR;
3658 int retval = watchpoint_add(target, addr, length, type,
3659 data_value, data_mask);
3660 if (ERROR_OK != retval)
3661 LOG_ERROR("Failure setting watchpoints");
3663 return retval;
3666 COMMAND_HANDLER(handle_rwp_command)
3668 if (CMD_ARGC != 1)
3669 return ERROR_COMMAND_SYNTAX_ERROR;
3671 uint32_t addr;
3672 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3674 struct target *target = get_current_target(CMD_CTX);
3675 watchpoint_remove(target, addr);
3677 return ERROR_OK;
3681 * Translate a virtual address to a physical address.
3683 * The low-level target implementation must have logged a detailed error
3684 * which is forwarded to telnet/GDB session.
3686 COMMAND_HANDLER(handle_virt2phys_command)
3688 if (CMD_ARGC != 1)
3689 return ERROR_COMMAND_SYNTAX_ERROR;
3691 uint32_t va;
3692 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3693 uint32_t pa;
3695 struct target *target = get_current_target(CMD_CTX);
3696 int retval = target->type->virt2phys(target, va, &pa);
3697 if (retval == ERROR_OK)
3698 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3700 return retval;
3703 static void writeData(FILE *f, const void *data, size_t len)
3705 size_t written = fwrite(data, 1, len, f);
3706 if (written != len)
3707 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3710 static void writeLong(FILE *f, int l, struct target *target)
3712 uint8_t val[4];
3714 target_buffer_set_u32(target, val, l);
3715 writeData(f, val, 4);
3718 static void writeString(FILE *f, char *s)
3720 writeData(f, s, strlen(s));
3723 typedef unsigned char UNIT[2]; /* unit of profiling */
3725 /* Dump a gmon.out histogram file. */
3726 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3727 uint32_t start_address, uint32_t end_address, struct target *target)
3729 uint32_t i;
3730 FILE *f = fopen(filename, "w");
3731 if (f == NULL)
3732 return;
3733 writeString(f, "gmon");
3734 writeLong(f, 0x00000001, target); /* Version */
3735 writeLong(f, 0, target); /* padding */
3736 writeLong(f, 0, target); /* padding */
3737 writeLong(f, 0, target); /* padding */
3739 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3740 writeData(f, &zero, 1);
3742 /* figure out bucket size */
3743 uint32_t min;
3744 uint32_t max;
3745 if (with_range) {
3746 min = start_address;
3747 max = end_address;
3748 } else {
3749 min = samples[0];
3750 max = samples[0];
3751 for (i = 0; i < sampleNum; i++) {
3752 if (min > samples[i])
3753 min = samples[i];
3754 if (max < samples[i])
3755 max = samples[i];
3758 /* max should be (largest sample + 1)
3759 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3760 max++;
3763 int addressSpace = max - min;
3764 assert(addressSpace >= 2);
3766 /* FIXME: What is the reasonable number of buckets?
3767 * The profiling result will be more accurate if there are enough buckets. */
3768 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3769 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3770 if (numBuckets > maxBuckets)
3771 numBuckets = maxBuckets;
3772 int *buckets = malloc(sizeof(int) * numBuckets);
3773 if (buckets == NULL) {
3774 fclose(f);
3775 return;
3777 memset(buckets, 0, sizeof(int) * numBuckets);
3778 for (i = 0; i < sampleNum; i++) {
3779 uint32_t address = samples[i];
3781 if ((address < min) || (max <= address))
3782 continue;
3784 long long a = address - min;
3785 long long b = numBuckets;
3786 long long c = addressSpace;
3787 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3788 buckets[index_t]++;
3791 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3792 writeLong(f, min, target); /* low_pc */
3793 writeLong(f, max, target); /* high_pc */
3794 writeLong(f, numBuckets, target); /* # of buckets */
3795 writeLong(f, 100, target); /* KLUDGE! We lie, ca. 100Hz best case. */
3796 writeString(f, "seconds");
3797 for (i = 0; i < (15-strlen("seconds")); i++)
3798 writeData(f, &zero, 1);
3799 writeString(f, "s");
3801 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3803 char *data = malloc(2 * numBuckets);
3804 if (data != NULL) {
3805 for (i = 0; i < numBuckets; i++) {
3806 int val;
3807 val = buckets[i];
3808 if (val > 65535)
3809 val = 65535;
3810 data[i * 2] = val&0xff;
3811 data[i * 2 + 1] = (val >> 8) & 0xff;
3813 free(buckets);
3814 writeData(f, data, numBuckets * 2);
3815 free(data);
3816 } else
3817 free(buckets);
3819 fclose(f);
3822 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3823 * which will be used as a random sampling of PC */
3824 COMMAND_HANDLER(handle_profile_command)
3826 struct target *target = get_current_target(CMD_CTX);
3828 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3829 return ERROR_COMMAND_SYNTAX_ERROR;
3831 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3832 uint32_t offset;
3833 uint32_t num_of_samples;
3834 int retval = ERROR_OK;
3836 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3838 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3839 if (samples == NULL) {
3840 LOG_ERROR("No memory to store samples.");
3841 return ERROR_FAIL;
3845 * Some cores let us sample the PC without the
3846 * annoying halt/resume step; for example, ARMv7 PCSR.
3847 * Provide a way to use that more efficient mechanism.
3849 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3850 &num_of_samples, offset);
3851 if (retval != ERROR_OK) {
3852 free(samples);
3853 return retval;
3856 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3858 retval = target_poll(target);
3859 if (retval != ERROR_OK) {
3860 free(samples);
3861 return retval;
3863 if (target->state == TARGET_RUNNING) {
3864 retval = target_halt(target);
3865 if (retval != ERROR_OK) {
3866 free(samples);
3867 return retval;
3871 retval = target_poll(target);
3872 if (retval != ERROR_OK) {
3873 free(samples);
3874 return retval;
3877 uint32_t start_address = 0;
3878 uint32_t end_address = 0;
3879 bool with_range = false;
3880 if (CMD_ARGC == 4) {
3881 with_range = true;
3882 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3883 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3886 write_gmon(samples, num_of_samples, CMD_ARGV[1],
3887 with_range, start_address, end_address, target);
3888 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3890 free(samples);
3891 return retval;
3894 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3896 char *namebuf;
3897 Jim_Obj *nameObjPtr, *valObjPtr;
3898 int result;
3900 namebuf = alloc_printf("%s(%d)", varname, idx);
3901 if (!namebuf)
3902 return JIM_ERR;
3904 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3905 valObjPtr = Jim_NewIntObj(interp, val);
3906 if (!nameObjPtr || !valObjPtr) {
3907 free(namebuf);
3908 return JIM_ERR;
3911 Jim_IncrRefCount(nameObjPtr);
3912 Jim_IncrRefCount(valObjPtr);
3913 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3914 Jim_DecrRefCount(interp, nameObjPtr);
3915 Jim_DecrRefCount(interp, valObjPtr);
3916 free(namebuf);
3917 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3918 return result;
3921 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3923 struct command_context *context;
3924 struct target *target;
3926 context = current_command_context(interp);
3927 assert(context != NULL);
3929 target = get_current_target(context);
3930 if (target == NULL) {
3931 LOG_ERROR("mem2array: no current target");
3932 return JIM_ERR;
3935 return target_mem2array(interp, target, argc - 1, argv + 1);
3938 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3940 long l;
3941 uint32_t width;
3942 int len;
3943 uint32_t addr;
3944 uint32_t count;
3945 uint32_t v;
3946 const char *varname;
3947 const char *phys;
3948 bool is_phys;
3949 int n, e, retval;
3950 uint32_t i;
3952 /* argv[1] = name of array to receive the data
3953 * argv[2] = desired width
3954 * argv[3] = memory address
3955 * argv[4] = count of times to read
3957 if (argc < 4 || argc > 5) {
3958 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
3959 return JIM_ERR;
3961 varname = Jim_GetString(argv[0], &len);
3962 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3964 e = Jim_GetLong(interp, argv[1], &l);
3965 width = l;
3966 if (e != JIM_OK)
3967 return e;
3969 e = Jim_GetLong(interp, argv[2], &l);
3970 addr = l;
3971 if (e != JIM_OK)
3972 return e;
3973 e = Jim_GetLong(interp, argv[3], &l);
3974 len = l;
3975 if (e != JIM_OK)
3976 return e;
3977 is_phys = false;
3978 if (argc > 4) {
3979 phys = Jim_GetString(argv[4], &n);
3980 if (!strncmp(phys, "phys", n))
3981 is_phys = true;
3982 else
3983 return JIM_ERR;
3985 switch (width) {
3986 case 8:
3987 width = 1;
3988 break;
3989 case 16:
3990 width = 2;
3991 break;
3992 case 32:
3993 width = 4;
3994 break;
3995 default:
3996 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3997 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3998 return JIM_ERR;
4000 if (len == 0) {
4001 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4002 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4003 return JIM_ERR;
4005 if ((addr + (len * width)) < addr) {
4006 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4007 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4008 return JIM_ERR;
4010 /* absurd transfer size? */
4011 if (len > 65536) {
4012 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4013 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4014 return JIM_ERR;
4017 if ((width == 1) ||
4018 ((width == 2) && ((addr & 1) == 0)) ||
4019 ((width == 4) && ((addr & 3) == 0))) {
4020 /* all is well */
4021 } else {
4022 char buf[100];
4023 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4024 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4025 addr,
4026 width);
4027 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4028 return JIM_ERR;
4031 /* Transfer loop */
4033 /* index counter */
4034 n = 0;
4036 size_t buffersize = 4096;
4037 uint8_t *buffer = malloc(buffersize);
4038 if (buffer == NULL)
4039 return JIM_ERR;
4041 /* assume ok */
4042 e = JIM_OK;
4043 while (len) {
4044 /* Slurp... in buffer size chunks */
4046 count = len; /* in objects.. */
4047 if (count > (buffersize / width))
4048 count = (buffersize / width);
4050 if (is_phys)
4051 retval = target_read_phys_memory(target, addr, width, count, buffer);
4052 else
4053 retval = target_read_memory(target, addr, width, count, buffer);
4054 if (retval != ERROR_OK) {
4055 /* BOO !*/
4056 LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4057 addr,
4058 width,
4059 count);
4060 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4061 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4062 e = JIM_ERR;
4063 break;
4064 } else {
4065 v = 0; /* shut up gcc */
4066 for (i = 0; i < count ; i++, n++) {
4067 switch (width) {
4068 case 4:
4069 v = target_buffer_get_u32(target, &buffer[i*width]);
4070 break;
4071 case 2:
4072 v = target_buffer_get_u16(target, &buffer[i*width]);
4073 break;
4074 case 1:
4075 v = buffer[i] & 0x0ff;
4076 break;
4078 new_int_array_element(interp, varname, n, v);
4080 len -= count;
4081 addr += count * width;
4085 free(buffer);
4087 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4089 return e;
4092 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4094 char *namebuf;
4095 Jim_Obj *nameObjPtr, *valObjPtr;
4096 int result;
4097 long l;
4099 namebuf = alloc_printf("%s(%d)", varname, idx);
4100 if (!namebuf)
4101 return JIM_ERR;
4103 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4104 if (!nameObjPtr) {
4105 free(namebuf);
4106 return JIM_ERR;
4109 Jim_IncrRefCount(nameObjPtr);
4110 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4111 Jim_DecrRefCount(interp, nameObjPtr);
4112 free(namebuf);
4113 if (valObjPtr == NULL)
4114 return JIM_ERR;
4116 result = Jim_GetLong(interp, valObjPtr, &l);
4117 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4118 *val = l;
4119 return result;
4122 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4124 struct command_context *context;
4125 struct target *target;
4127 context = current_command_context(interp);
4128 assert(context != NULL);
4130 target = get_current_target(context);
4131 if (target == NULL) {
4132 LOG_ERROR("array2mem: no current target");
4133 return JIM_ERR;
4136 return target_array2mem(interp, target, argc-1, argv + 1);
4139 static int target_array2mem(Jim_Interp *interp, struct target *target,
4140 int argc, Jim_Obj *const *argv)
4142 long l;
4143 uint32_t width;
4144 int len;
4145 uint32_t addr;
4146 uint32_t count;
4147 uint32_t v;
4148 const char *varname;
4149 const char *phys;
4150 bool is_phys;
4151 int n, e, retval;
4152 uint32_t i;
4154 /* argv[1] = name of array to get the data
4155 * argv[2] = desired width
4156 * argv[3] = memory address
4157 * argv[4] = count to write
4159 if (argc < 4 || argc > 5) {
4160 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4161 return JIM_ERR;
4163 varname = Jim_GetString(argv[0], &len);
4164 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4166 e = Jim_GetLong(interp, argv[1], &l);
4167 width = l;
4168 if (e != JIM_OK)
4169 return e;
4171 e = Jim_GetLong(interp, argv[2], &l);
4172 addr = l;
4173 if (e != JIM_OK)
4174 return e;
4175 e = Jim_GetLong(interp, argv[3], &l);
4176 len = l;
4177 if (e != JIM_OK)
4178 return e;
4179 is_phys = false;
4180 if (argc > 4) {
4181 phys = Jim_GetString(argv[4], &n);
4182 if (!strncmp(phys, "phys", n))
4183 is_phys = true;
4184 else
4185 return JIM_ERR;
4187 switch (width) {
4188 case 8:
4189 width = 1;
4190 break;
4191 case 16:
4192 width = 2;
4193 break;
4194 case 32:
4195 width = 4;
4196 break;
4197 default:
4198 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4199 Jim_AppendStrings(interp, Jim_GetResult(interp),
4200 "Invalid width param, must be 8/16/32", NULL);
4201 return JIM_ERR;
4203 if (len == 0) {
4204 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4205 Jim_AppendStrings(interp, Jim_GetResult(interp),
4206 "array2mem: zero width read?", NULL);
4207 return JIM_ERR;
4209 if ((addr + (len * width)) < addr) {
4210 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4211 Jim_AppendStrings(interp, Jim_GetResult(interp),
4212 "array2mem: addr + len - wraps to zero?", NULL);
4213 return JIM_ERR;
4215 /* absurd transfer size? */
4216 if (len > 65536) {
4217 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4218 Jim_AppendStrings(interp, Jim_GetResult(interp),
4219 "array2mem: absurd > 64K item request", NULL);
4220 return JIM_ERR;
4223 if ((width == 1) ||
4224 ((width == 2) && ((addr & 1) == 0)) ||
4225 ((width == 4) && ((addr & 3) == 0))) {
4226 /* all is well */
4227 } else {
4228 char buf[100];
4229 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4230 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4231 addr,
4232 width);
4233 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4234 return JIM_ERR;
4237 /* Transfer loop */
4239 /* index counter */
4240 n = 0;
4241 /* assume ok */
4242 e = JIM_OK;
4244 size_t buffersize = 4096;
4245 uint8_t *buffer = malloc(buffersize);
4246 if (buffer == NULL)
4247 return JIM_ERR;
4249 while (len) {
4250 /* Slurp... in buffer size chunks */
4252 count = len; /* in objects.. */
4253 if (count > (buffersize / width))
4254 count = (buffersize / width);
4256 v = 0; /* shut up gcc */
4257 for (i = 0; i < count; i++, n++) {
4258 get_int_array_element(interp, varname, n, &v);
4259 switch (width) {
4260 case 4:
4261 target_buffer_set_u32(target, &buffer[i * width], v);
4262 break;
4263 case 2:
4264 target_buffer_set_u16(target, &buffer[i * width], v);
4265 break;
4266 case 1:
4267 buffer[i] = v & 0x0ff;
4268 break;
4271 len -= count;
4273 if (is_phys)
4274 retval = target_write_phys_memory(target, addr, width, count, buffer);
4275 else
4276 retval = target_write_memory(target, addr, width, count, buffer);
4277 if (retval != ERROR_OK) {
4278 /* BOO !*/
4279 LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4280 addr,
4281 width,
4282 count);
4283 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4284 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4285 e = JIM_ERR;
4286 break;
4288 addr += count * width;
4291 free(buffer);
4293 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4295 return e;
4298 /* FIX? should we propagate errors here rather than printing them
4299 * and continuing?
4301 void target_handle_event(struct target *target, enum target_event e)
4303 struct target_event_action *teap;
4305 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4306 if (teap->event == e) {
4307 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4308 target->target_number,
4309 target_name(target),
4310 target_type_name(target),
4312 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4313 Jim_GetString(teap->body, NULL));
4314 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4315 Jim_MakeErrorMessage(teap->interp);
4316 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4323 * Returns true only if the target has a handler for the specified event.
4325 bool target_has_event_action(struct target *target, enum target_event event)
4327 struct target_event_action *teap;
4329 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4330 if (teap->event == event)
4331 return true;
4333 return false;
4336 enum target_cfg_param {
4337 TCFG_TYPE,
4338 TCFG_EVENT,
4339 TCFG_WORK_AREA_VIRT,
4340 TCFG_WORK_AREA_PHYS,
4341 TCFG_WORK_AREA_SIZE,
4342 TCFG_WORK_AREA_BACKUP,
4343 TCFG_ENDIAN,
4344 TCFG_COREID,
4345 TCFG_CHAIN_POSITION,
4346 TCFG_DBGBASE,
4347 TCFG_RTOS,
4348 TCFG_DEFER_EXAMINE,
4351 static Jim_Nvp nvp_config_opts[] = {
4352 { .name = "-type", .value = TCFG_TYPE },
4353 { .name = "-event", .value = TCFG_EVENT },
4354 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4355 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4356 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4357 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4358 { .name = "-endian" , .value = TCFG_ENDIAN },
4359 { .name = "-coreid", .value = TCFG_COREID },
4360 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4361 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4362 { .name = "-rtos", .value = TCFG_RTOS },
4363 { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4364 { .name = NULL, .value = -1 }
4367 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4369 Jim_Nvp *n;
4370 Jim_Obj *o;
4371 jim_wide w;
4372 int e;
4374 /* parse config or cget options ... */
4375 while (goi->argc > 0) {
4376 Jim_SetEmptyResult(goi->interp);
4377 /* Jim_GetOpt_Debug(goi); */
4379 if (target->type->target_jim_configure) {
4380 /* target defines a configure function */
4381 /* target gets first dibs on parameters */
4382 e = (*(target->type->target_jim_configure))(target, goi);
4383 if (e == JIM_OK) {
4384 /* more? */
4385 continue;
4387 if (e == JIM_ERR) {
4388 /* An error */
4389 return e;
4391 /* otherwise we 'continue' below */
4393 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4394 if (e != JIM_OK) {
4395 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4396 return e;
4398 switch (n->value) {
4399 case TCFG_TYPE:
4400 /* not setable */
4401 if (goi->isconfigure) {
4402 Jim_SetResultFormatted(goi->interp,
4403 "not settable: %s", n->name);
4404 return JIM_ERR;
4405 } else {
4406 no_params:
4407 if (goi->argc != 0) {
4408 Jim_WrongNumArgs(goi->interp,
4409 goi->argc, goi->argv,
4410 "NO PARAMS");
4411 return JIM_ERR;
4414 Jim_SetResultString(goi->interp,
4415 target_type_name(target), -1);
4416 /* loop for more */
4417 break;
4418 case TCFG_EVENT:
4419 if (goi->argc == 0) {
4420 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4421 return JIM_ERR;
4424 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4425 if (e != JIM_OK) {
4426 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4427 return e;
4430 if (goi->isconfigure) {
4431 if (goi->argc != 1) {
4432 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4433 return JIM_ERR;
4435 } else {
4436 if (goi->argc != 0) {
4437 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4438 return JIM_ERR;
4443 struct target_event_action *teap;
4445 teap = target->event_action;
4446 /* replace existing? */
4447 while (teap) {
4448 if (teap->event == (enum target_event)n->value)
4449 break;
4450 teap = teap->next;
4453 if (goi->isconfigure) {
4454 bool replace = true;
4455 if (teap == NULL) {
4456 /* create new */
4457 teap = calloc(1, sizeof(*teap));
4458 replace = false;
4460 teap->event = n->value;
4461 teap->interp = goi->interp;
4462 Jim_GetOpt_Obj(goi, &o);
4463 if (teap->body)
4464 Jim_DecrRefCount(teap->interp, teap->body);
4465 teap->body = Jim_DuplicateObj(goi->interp, o);
4467 * FIXME:
4468 * Tcl/TK - "tk events" have a nice feature.
4469 * See the "BIND" command.
4470 * We should support that here.
4471 * You can specify %X and %Y in the event code.
4472 * The idea is: %T - target name.
4473 * The idea is: %N - target number
4474 * The idea is: %E - event name.
4476 Jim_IncrRefCount(teap->body);
4478 if (!replace) {
4479 /* add to head of event list */
4480 teap->next = target->event_action;
4481 target->event_action = teap;
4483 Jim_SetEmptyResult(goi->interp);
4484 } else {
4485 /* get */
4486 if (teap == NULL)
4487 Jim_SetEmptyResult(goi->interp);
4488 else
4489 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4492 /* loop for more */
4493 break;
4495 case TCFG_WORK_AREA_VIRT:
4496 if (goi->isconfigure) {
4497 target_free_all_working_areas(target);
4498 e = Jim_GetOpt_Wide(goi, &w);
4499 if (e != JIM_OK)
4500 return e;
4501 target->working_area_virt = w;
4502 target->working_area_virt_spec = true;
4503 } else {
4504 if (goi->argc != 0)
4505 goto no_params;
4507 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4508 /* loop for more */
4509 break;
4511 case TCFG_WORK_AREA_PHYS:
4512 if (goi->isconfigure) {
4513 target_free_all_working_areas(target);
4514 e = Jim_GetOpt_Wide(goi, &w);
4515 if (e != JIM_OK)
4516 return e;
4517 target->working_area_phys = w;
4518 target->working_area_phys_spec = true;
4519 } else {
4520 if (goi->argc != 0)
4521 goto no_params;
4523 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4524 /* loop for more */
4525 break;
4527 case TCFG_WORK_AREA_SIZE:
4528 if (goi->isconfigure) {
4529 target_free_all_working_areas(target);
4530 e = Jim_GetOpt_Wide(goi, &w);
4531 if (e != JIM_OK)
4532 return e;
4533 target->working_area_size = w;
4534 } else {
4535 if (goi->argc != 0)
4536 goto no_params;
4538 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4539 /* loop for more */
4540 break;
4542 case TCFG_WORK_AREA_BACKUP:
4543 if (goi->isconfigure) {
4544 target_free_all_working_areas(target);
4545 e = Jim_GetOpt_Wide(goi, &w);
4546 if (e != JIM_OK)
4547 return e;
4548 /* make this exactly 1 or 0 */
4549 target->backup_working_area = (!!w);
4550 } else {
4551 if (goi->argc != 0)
4552 goto no_params;
4554 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4555 /* loop for more e*/
4556 break;
4559 case TCFG_ENDIAN:
4560 if (goi->isconfigure) {
4561 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4562 if (e != JIM_OK) {
4563 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4564 return e;
4566 target->endianness = n->value;
4567 } else {
4568 if (goi->argc != 0)
4569 goto no_params;
4571 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4572 if (n->name == NULL) {
4573 target->endianness = TARGET_LITTLE_ENDIAN;
4574 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4576 Jim_SetResultString(goi->interp, n->name, -1);
4577 /* loop for more */
4578 break;
4580 case TCFG_COREID:
4581 if (goi->isconfigure) {
4582 e = Jim_GetOpt_Wide(goi, &w);
4583 if (e != JIM_OK)
4584 return e;
4585 target->coreid = (int32_t)w;
4586 } else {
4587 if (goi->argc != 0)
4588 goto no_params;
4590 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4591 /* loop for more */
4592 break;
4594 case TCFG_CHAIN_POSITION:
4595 if (goi->isconfigure) {
4596 Jim_Obj *o_t;
4597 struct jtag_tap *tap;
4598 target_free_all_working_areas(target);
4599 e = Jim_GetOpt_Obj(goi, &o_t);
4600 if (e != JIM_OK)
4601 return e;
4602 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4603 if (tap == NULL)
4604 return JIM_ERR;
4605 /* make this exactly 1 or 0 */
4606 target->tap = tap;
4607 } else {
4608 if (goi->argc != 0)
4609 goto no_params;
4611 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4612 /* loop for more e*/
4613 break;
4614 case TCFG_DBGBASE:
4615 if (goi->isconfigure) {
4616 e = Jim_GetOpt_Wide(goi, &w);
4617 if (e != JIM_OK)
4618 return e;
4619 target->dbgbase = (uint32_t)w;
4620 target->dbgbase_set = true;
4621 } else {
4622 if (goi->argc != 0)
4623 goto no_params;
4625 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4626 /* loop for more */
4627 break;
4629 case TCFG_RTOS:
4630 /* RTOS */
4632 int result = rtos_create(goi, target);
4633 if (result != JIM_OK)
4634 return result;
4636 /* loop for more */
4637 break;
4639 case TCFG_DEFER_EXAMINE:
4640 /* DEFER_EXAMINE */
4641 target->defer_examine = true;
4642 /* loop for more */
4643 break;
4646 } /* while (goi->argc) */
4649 /* done - we return */
4650 return JIM_OK;
4653 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4655 Jim_GetOptInfo goi;
4657 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4658 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4659 if (goi.argc < 1) {
4660 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4661 "missing: -option ...");
4662 return JIM_ERR;
4664 struct target *target = Jim_CmdPrivData(goi.interp);
4665 return target_configure(&goi, target);
4668 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4670 const char *cmd_name = Jim_GetString(argv[0], NULL);
4672 Jim_GetOptInfo goi;
4673 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4675 if (goi.argc < 2 || goi.argc > 4) {
4676 Jim_SetResultFormatted(goi.interp,
4677 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4678 return JIM_ERR;
4681 target_write_fn fn;
4682 fn = target_write_memory;
4684 int e;
4685 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4686 /* consume it */
4687 struct Jim_Obj *obj;
4688 e = Jim_GetOpt_Obj(&goi, &obj);
4689 if (e != JIM_OK)
4690 return e;
4692 fn = target_write_phys_memory;
4695 jim_wide a;
4696 e = Jim_GetOpt_Wide(&goi, &a);
4697 if (e != JIM_OK)
4698 return e;
4700 jim_wide b;
4701 e = Jim_GetOpt_Wide(&goi, &b);
4702 if (e != JIM_OK)
4703 return e;
4705 jim_wide c = 1;
4706 if (goi.argc == 1) {
4707 e = Jim_GetOpt_Wide(&goi, &c);
4708 if (e != JIM_OK)
4709 return e;
4712 /* all args must be consumed */
4713 if (goi.argc != 0)
4714 return JIM_ERR;
4716 struct target *target = Jim_CmdPrivData(goi.interp);
4717 unsigned data_size;
4718 if (strcasecmp(cmd_name, "mww") == 0)
4719 data_size = 4;
4720 else if (strcasecmp(cmd_name, "mwh") == 0)
4721 data_size = 2;
4722 else if (strcasecmp(cmd_name, "mwb") == 0)
4723 data_size = 1;
4724 else {
4725 LOG_ERROR("command '%s' unknown: ", cmd_name);
4726 return JIM_ERR;
4729 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4733 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4735 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4736 * mdh [phys] <address> [<count>] - for 16 bit reads
4737 * mdb [phys] <address> [<count>] - for 8 bit reads
4739 * Count defaults to 1.
4741 * Calls target_read_memory or target_read_phys_memory depending on
4742 * the presence of the "phys" argument
4743 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4744 * to int representation in base16.
4745 * Also outputs read data in a human readable form using command_print
4747 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4748 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4749 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4750 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4751 * on success, with [<count>] number of elements.
4753 * In case of little endian target:
4754 * Example1: "mdw 0x00000000" returns "10123456"
4755 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4756 * Example3: "mdb 0x00000000" returns "56"
4757 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4758 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4760 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4762 const char *cmd_name = Jim_GetString(argv[0], NULL);
4764 Jim_GetOptInfo goi;
4765 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4767 if ((goi.argc < 1) || (goi.argc > 3)) {
4768 Jim_SetResultFormatted(goi.interp,
4769 "usage: %s [phys] <address> [<count>]", cmd_name);
4770 return JIM_ERR;
4773 int (*fn)(struct target *target,
4774 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4775 fn = target_read_memory;
4777 int e;
4778 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4779 /* consume it */
4780 struct Jim_Obj *obj;
4781 e = Jim_GetOpt_Obj(&goi, &obj);
4782 if (e != JIM_OK)
4783 return e;
4785 fn = target_read_phys_memory;
4788 /* Read address parameter */
4789 jim_wide addr;
4790 e = Jim_GetOpt_Wide(&goi, &addr);
4791 if (e != JIM_OK)
4792 return JIM_ERR;
4794 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4795 jim_wide count;
4796 if (goi.argc == 1) {
4797 e = Jim_GetOpt_Wide(&goi, &count);
4798 if (e != JIM_OK)
4799 return JIM_ERR;
4800 } else
4801 count = 1;
4803 /* all args must be consumed */
4804 if (goi.argc != 0)
4805 return JIM_ERR;
4807 jim_wide dwidth = 1; /* shut up gcc */
4808 if (strcasecmp(cmd_name, "mdw") == 0)
4809 dwidth = 4;
4810 else if (strcasecmp(cmd_name, "mdh") == 0)
4811 dwidth = 2;
4812 else if (strcasecmp(cmd_name, "mdb") == 0)
4813 dwidth = 1;
4814 else {
4815 LOG_ERROR("command '%s' unknown: ", cmd_name);
4816 return JIM_ERR;
4819 /* convert count to "bytes" */
4820 int bytes = count * dwidth;
4822 struct target *target = Jim_CmdPrivData(goi.interp);
4823 uint8_t target_buf[32];
4824 jim_wide x, y, z;
4825 while (bytes > 0) {
4826 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4828 /* Try to read out next block */
4829 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4831 if (e != ERROR_OK) {
4832 Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4833 return JIM_ERR;
4836 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4837 switch (dwidth) {
4838 case 4:
4839 for (x = 0; x < 16 && x < y; x += 4) {
4840 z = target_buffer_get_u32(target, &(target_buf[x]));
4841 command_print_sameline(NULL, "%08x ", (int)(z));
4843 for (; (x < 16) ; x += 4)
4844 command_print_sameline(NULL, " ");
4845 break;
4846 case 2:
4847 for (x = 0; x < 16 && x < y; x += 2) {
4848 z = target_buffer_get_u16(target, &(target_buf[x]));
4849 command_print_sameline(NULL, "%04x ", (int)(z));
4851 for (; (x < 16) ; x += 2)
4852 command_print_sameline(NULL, " ");
4853 break;
4854 case 1:
4855 default:
4856 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4857 z = target_buffer_get_u8(target, &(target_buf[x]));
4858 command_print_sameline(NULL, "%02x ", (int)(z));
4860 for (; (x < 16) ; x += 1)
4861 command_print_sameline(NULL, " ");
4862 break;
4864 /* ascii-ify the bytes */
4865 for (x = 0 ; x < y ; x++) {
4866 if ((target_buf[x] >= 0x20) &&
4867 (target_buf[x] <= 0x7e)) {
4868 /* good */
4869 } else {
4870 /* smack it */
4871 target_buf[x] = '.';
4874 /* space pad */
4875 while (x < 16) {
4876 target_buf[x] = ' ';
4877 x++;
4879 /* terminate */
4880 target_buf[16] = 0;
4881 /* print - with a newline */
4882 command_print_sameline(NULL, "%s\n", target_buf);
4883 /* NEXT... */
4884 bytes -= 16;
4885 addr += 16;
4887 return JIM_OK;
4890 static int jim_target_mem2array(Jim_Interp *interp,
4891 int argc, Jim_Obj *const *argv)
4893 struct target *target = Jim_CmdPrivData(interp);
4894 return target_mem2array(interp, target, argc - 1, argv + 1);
4897 static int jim_target_array2mem(Jim_Interp *interp,
4898 int argc, Jim_Obj *const *argv)
4900 struct target *target = Jim_CmdPrivData(interp);
4901 return target_array2mem(interp, target, argc - 1, argv + 1);
4904 static int jim_target_tap_disabled(Jim_Interp *interp)
4906 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4907 return JIM_ERR;
4910 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4912 bool allow_defer = false;
4914 Jim_GetOptInfo goi;
4915 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4916 if (goi.argc > 1) {
4917 const char *cmd_name = Jim_GetString(argv[0], NULL);
4918 Jim_SetResultFormatted(goi.interp,
4919 "usage: %s ['allow-defer']", cmd_name);
4920 return JIM_ERR;
4922 if (goi.argc > 0 &&
4923 strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
4924 /* consume it */
4925 struct Jim_Obj *obj;
4926 int e = Jim_GetOpt_Obj(&goi, &obj);
4927 if (e != JIM_OK)
4928 return e;
4929 allow_defer = true;
4932 struct target *target = Jim_CmdPrivData(interp);
4933 if (!target->tap->enabled)
4934 return jim_target_tap_disabled(interp);
4936 if (allow_defer && target->defer_examine) {
4937 LOG_INFO("Deferring arp_examine of %s", target_name(target));
4938 LOG_INFO("Use arp_examine command to examine it manually!");
4939 return JIM_OK;
4942 int e = target->type->examine(target);
4943 if (e != ERROR_OK)
4944 return JIM_ERR;
4945 return JIM_OK;
4948 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4950 struct target *target = Jim_CmdPrivData(interp);
4952 Jim_SetResultBool(interp, target_was_examined(target));
4953 return JIM_OK;
4956 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4958 struct target *target = Jim_CmdPrivData(interp);
4960 Jim_SetResultBool(interp, target->defer_examine);
4961 return JIM_OK;
4964 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4966 if (argc != 1) {
4967 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4968 return JIM_ERR;
4970 struct target *target = Jim_CmdPrivData(interp);
4972 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4973 return JIM_ERR;
4975 return JIM_OK;
4978 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4980 if (argc != 1) {
4981 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4982 return JIM_ERR;
4984 struct target *target = Jim_CmdPrivData(interp);
4985 if (!target->tap->enabled)
4986 return jim_target_tap_disabled(interp);
4988 int e;
4989 if (!(target_was_examined(target)))
4990 e = ERROR_TARGET_NOT_EXAMINED;
4991 else
4992 e = target->type->poll(target);
4993 if (e != ERROR_OK)
4994 return JIM_ERR;
4995 return JIM_OK;
4998 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5000 Jim_GetOptInfo goi;
5001 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5003 if (goi.argc != 2) {
5004 Jim_WrongNumArgs(interp, 0, argv,
5005 "([tT]|[fF]|assert|deassert) BOOL");
5006 return JIM_ERR;
5009 Jim_Nvp *n;
5010 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5011 if (e != JIM_OK) {
5012 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5013 return e;
5015 /* the halt or not param */
5016 jim_wide a;
5017 e = Jim_GetOpt_Wide(&goi, &a);
5018 if (e != JIM_OK)
5019 return e;
5021 struct target *target = Jim_CmdPrivData(goi.interp);
5022 if (!target->tap->enabled)
5023 return jim_target_tap_disabled(interp);
5025 if (!target->type->assert_reset || !target->type->deassert_reset) {
5026 Jim_SetResultFormatted(interp,
5027 "No target-specific reset for %s",
5028 target_name(target));
5029 return JIM_ERR;
5032 if (target->defer_examine)
5033 target_reset_examined(target);
5035 /* determine if we should halt or not. */
5036 target->reset_halt = !!a;
5037 /* When this happens - all workareas are invalid. */
5038 target_free_all_working_areas_restore(target, 0);
5040 /* do the assert */
5041 if (n->value == NVP_ASSERT)
5042 e = target->type->assert_reset(target);
5043 else
5044 e = target->type->deassert_reset(target);
5045 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5048 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5050 if (argc != 1) {
5051 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5052 return JIM_ERR;
5054 struct target *target = Jim_CmdPrivData(interp);
5055 if (!target->tap->enabled)
5056 return jim_target_tap_disabled(interp);
5057 int e = target->type->halt(target);
5058 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5061 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5063 Jim_GetOptInfo goi;
5064 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5066 /* params: <name> statename timeoutmsecs */
5067 if (goi.argc != 2) {
5068 const char *cmd_name = Jim_GetString(argv[0], NULL);
5069 Jim_SetResultFormatted(goi.interp,
5070 "%s <state_name> <timeout_in_msec>", cmd_name);
5071 return JIM_ERR;
5074 Jim_Nvp *n;
5075 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5076 if (e != JIM_OK) {
5077 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5078 return e;
5080 jim_wide a;
5081 e = Jim_GetOpt_Wide(&goi, &a);
5082 if (e != JIM_OK)
5083 return e;
5084 struct target *target = Jim_CmdPrivData(interp);
5085 if (!target->tap->enabled)
5086 return jim_target_tap_disabled(interp);
5088 e = target_wait_state(target, n->value, a);
5089 if (e != ERROR_OK) {
5090 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5091 Jim_SetResultFormatted(goi.interp,
5092 "target: %s wait %s fails (%#s) %s",
5093 target_name(target), n->name,
5094 eObj, target_strerror_safe(e));
5095 Jim_FreeNewObj(interp, eObj);
5096 return JIM_ERR;
5098 return JIM_OK;
5100 /* List for human, Events defined for this target.
5101 * scripts/programs should use 'name cget -event NAME'
5103 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5105 struct command_context *cmd_ctx = current_command_context(interp);
5106 assert(cmd_ctx != NULL);
5108 struct target *target = Jim_CmdPrivData(interp);
5109 struct target_event_action *teap = target->event_action;
5110 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5111 target->target_number,
5112 target_name(target));
5113 command_print(cmd_ctx, "%-25s | Body", "Event");
5114 command_print(cmd_ctx, "------------------------- | "
5115 "----------------------------------------");
5116 while (teap) {
5117 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5118 command_print(cmd_ctx, "%-25s | %s",
5119 opt->name, Jim_GetString(teap->body, NULL));
5120 teap = teap->next;
5122 command_print(cmd_ctx, "***END***");
5123 return JIM_OK;
5125 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5127 if (argc != 1) {
5128 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5129 return JIM_ERR;
5131 struct target *target = Jim_CmdPrivData(interp);
5132 Jim_SetResultString(interp, target_state_name(target), -1);
5133 return JIM_OK;
5135 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5137 Jim_GetOptInfo goi;
5138 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5139 if (goi.argc != 1) {
5140 const char *cmd_name = Jim_GetString(argv[0], NULL);
5141 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5142 return JIM_ERR;
5144 Jim_Nvp *n;
5145 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5146 if (e != JIM_OK) {
5147 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5148 return e;
5150 struct target *target = Jim_CmdPrivData(interp);
5151 target_handle_event(target, n->value);
5152 return JIM_OK;
5155 static const struct command_registration target_instance_command_handlers[] = {
5157 .name = "configure",
5158 .mode = COMMAND_CONFIG,
5159 .jim_handler = jim_target_configure,
5160 .help = "configure a new target for use",
5161 .usage = "[target_attribute ...]",
5164 .name = "cget",
5165 .mode = COMMAND_ANY,
5166 .jim_handler = jim_target_configure,
5167 .help = "returns the specified target attribute",
5168 .usage = "target_attribute",
5171 .name = "mww",
5172 .mode = COMMAND_EXEC,
5173 .jim_handler = jim_target_mw,
5174 .help = "Write 32-bit word(s) to target memory",
5175 .usage = "address data [count]",
5178 .name = "mwh",
5179 .mode = COMMAND_EXEC,
5180 .jim_handler = jim_target_mw,
5181 .help = "Write 16-bit half-word(s) to target memory",
5182 .usage = "address data [count]",
5185 .name = "mwb",
5186 .mode = COMMAND_EXEC,
5187 .jim_handler = jim_target_mw,
5188 .help = "Write byte(s) to target memory",
5189 .usage = "address data [count]",
5192 .name = "mdw",
5193 .mode = COMMAND_EXEC,
5194 .jim_handler = jim_target_md,
5195 .help = "Display target memory as 32-bit words",
5196 .usage = "address [count]",
5199 .name = "mdh",
5200 .mode = COMMAND_EXEC,
5201 .jim_handler = jim_target_md,
5202 .help = "Display target memory as 16-bit half-words",
5203 .usage = "address [count]",
5206 .name = "mdb",
5207 .mode = COMMAND_EXEC,
5208 .jim_handler = jim_target_md,
5209 .help = "Display target memory as 8-bit bytes",
5210 .usage = "address [count]",
5213 .name = "array2mem",
5214 .mode = COMMAND_EXEC,
5215 .jim_handler = jim_target_array2mem,
5216 .help = "Writes Tcl array of 8/16/32 bit numbers "
5217 "to target memory",
5218 .usage = "arrayname bitwidth address count",
5221 .name = "mem2array",
5222 .mode = COMMAND_EXEC,
5223 .jim_handler = jim_target_mem2array,
5224 .help = "Loads Tcl array of 8/16/32 bit numbers "
5225 "from target memory",
5226 .usage = "arrayname bitwidth address count",
5229 .name = "eventlist",
5230 .mode = COMMAND_EXEC,
5231 .jim_handler = jim_target_event_list,
5232 .help = "displays a table of events defined for this target",
5235 .name = "curstate",
5236 .mode = COMMAND_EXEC,
5237 .jim_handler = jim_target_current_state,
5238 .help = "displays the current state of this target",
5241 .name = "arp_examine",
5242 .mode = COMMAND_EXEC,
5243 .jim_handler = jim_target_examine,
5244 .help = "used internally for reset processing",
5245 .usage = "arp_examine ['allow-defer']",
5248 .name = "was_examined",
5249 .mode = COMMAND_EXEC,
5250 .jim_handler = jim_target_was_examined,
5251 .help = "used internally for reset processing",
5252 .usage = "was_examined",
5255 .name = "examine_deferred",
5256 .mode = COMMAND_EXEC,
5257 .jim_handler = jim_target_examine_deferred,
5258 .help = "used internally for reset processing",
5259 .usage = "examine_deferred",
5262 .name = "arp_halt_gdb",
5263 .mode = COMMAND_EXEC,
5264 .jim_handler = jim_target_halt_gdb,
5265 .help = "used internally for reset processing to halt GDB",
5268 .name = "arp_poll",
5269 .mode = COMMAND_EXEC,
5270 .jim_handler = jim_target_poll,
5271 .help = "used internally for reset processing",
5274 .name = "arp_reset",
5275 .mode = COMMAND_EXEC,
5276 .jim_handler = jim_target_reset,
5277 .help = "used internally for reset processing",
5280 .name = "arp_halt",
5281 .mode = COMMAND_EXEC,
5282 .jim_handler = jim_target_halt,
5283 .help = "used internally for reset processing",
5286 .name = "arp_waitstate",
5287 .mode = COMMAND_EXEC,
5288 .jim_handler = jim_target_wait_state,
5289 .help = "used internally for reset processing",
5292 .name = "invoke-event",
5293 .mode = COMMAND_EXEC,
5294 .jim_handler = jim_target_invoke_event,
5295 .help = "invoke handler for specified event",
5296 .usage = "event_name",
5298 COMMAND_REGISTRATION_DONE
5301 static int target_create(Jim_GetOptInfo *goi)
5303 Jim_Obj *new_cmd;
5304 Jim_Cmd *cmd;
5305 const char *cp;
5306 int e;
5307 int x;
5308 struct target *target;
5309 struct command_context *cmd_ctx;
5311 cmd_ctx = current_command_context(goi->interp);
5312 assert(cmd_ctx != NULL);
5314 if (goi->argc < 3) {
5315 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5316 return JIM_ERR;
5319 /* COMMAND */
5320 Jim_GetOpt_Obj(goi, &new_cmd);
5321 /* does this command exist? */
5322 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5323 if (cmd) {
5324 cp = Jim_GetString(new_cmd, NULL);
5325 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5326 return JIM_ERR;
5329 /* TYPE */
5330 e = Jim_GetOpt_String(goi, &cp, NULL);
5331 if (e != JIM_OK)
5332 return e;
5333 struct transport *tr = get_current_transport();
5334 if (tr->override_target) {
5335 e = tr->override_target(&cp);
5336 if (e != ERROR_OK) {
5337 LOG_ERROR("The selected transport doesn't support this target");
5338 return JIM_ERR;
5340 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5342 /* now does target type exist */
5343 for (x = 0 ; target_types[x] ; x++) {
5344 if (0 == strcmp(cp, target_types[x]->name)) {
5345 /* found */
5346 break;
5349 /* check for deprecated name */
5350 if (target_types[x]->deprecated_name) {
5351 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5352 /* found */
5353 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5354 break;
5358 if (target_types[x] == NULL) {
5359 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5360 for (x = 0 ; target_types[x] ; x++) {
5361 if (target_types[x + 1]) {
5362 Jim_AppendStrings(goi->interp,
5363 Jim_GetResult(goi->interp),
5364 target_types[x]->name,
5365 ", ", NULL);
5366 } else {
5367 Jim_AppendStrings(goi->interp,
5368 Jim_GetResult(goi->interp),
5369 " or ",
5370 target_types[x]->name, NULL);
5373 return JIM_ERR;
5376 /* Create it */
5377 target = calloc(1, sizeof(struct target));
5378 /* set target number */
5379 target->target_number = new_target_number();
5380 cmd_ctx->current_target = target->target_number;
5382 /* allocate memory for each unique target type */
5383 target->type = calloc(1, sizeof(struct target_type));
5385 memcpy(target->type, target_types[x], sizeof(struct target_type));
5387 /* will be set by "-endian" */
5388 target->endianness = TARGET_ENDIAN_UNKNOWN;
5390 /* default to first core, override with -coreid */
5391 target->coreid = 0;
5393 target->working_area = 0x0;
5394 target->working_area_size = 0x0;
5395 target->working_areas = NULL;
5396 target->backup_working_area = 0;
5398 target->state = TARGET_UNKNOWN;
5399 target->debug_reason = DBG_REASON_UNDEFINED;
5400 target->reg_cache = NULL;
5401 target->breakpoints = NULL;
5402 target->watchpoints = NULL;
5403 target->next = NULL;
5404 target->arch_info = NULL;
5406 target->display = 1;
5408 target->halt_issued = false;
5410 /* initialize trace information */
5411 target->trace_info = calloc(1, sizeof(struct trace));
5413 target->dbgmsg = NULL;
5414 target->dbg_msg_enabled = 0;
5416 target->endianness = TARGET_ENDIAN_UNKNOWN;
5418 target->rtos = NULL;
5419 target->rtos_auto_detect = false;
5421 /* Do the rest as "configure" options */
5422 goi->isconfigure = 1;
5423 e = target_configure(goi, target);
5425 if (target->tap == NULL) {
5426 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5427 e = JIM_ERR;
5430 if (e != JIM_OK) {
5431 free(target->type);
5432 free(target);
5433 return e;
5436 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5437 /* default endian to little if not specified */
5438 target->endianness = TARGET_LITTLE_ENDIAN;
5441 cp = Jim_GetString(new_cmd, NULL);
5442 target->cmd_name = strdup(cp);
5444 /* create the target specific commands */
5445 if (target->type->commands) {
5446 e = register_commands(cmd_ctx, NULL, target->type->commands);
5447 if (ERROR_OK != e)
5448 LOG_ERROR("unable to register '%s' commands", cp);
5450 if (target->type->target_create)
5451 (*(target->type->target_create))(target, goi->interp);
5453 /* append to end of list */
5455 struct target **tpp;
5456 tpp = &(all_targets);
5457 while (*tpp)
5458 tpp = &((*tpp)->next);
5459 *tpp = target;
5462 /* now - create the new target name command */
5463 const struct command_registration target_subcommands[] = {
5465 .chain = target_instance_command_handlers,
5468 .chain = target->type->commands,
5470 COMMAND_REGISTRATION_DONE
5472 const struct command_registration target_commands[] = {
5474 .name = cp,
5475 .mode = COMMAND_ANY,
5476 .help = "target command group",
5477 .usage = "",
5478 .chain = target_subcommands,
5480 COMMAND_REGISTRATION_DONE
5482 e = register_commands(cmd_ctx, NULL, target_commands);
5483 if (ERROR_OK != e)
5484 return JIM_ERR;
5486 struct command *c = command_find_in_context(cmd_ctx, cp);
5487 assert(c);
5488 command_set_handler_data(c, target);
5490 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5493 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5495 if (argc != 1) {
5496 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5497 return JIM_ERR;
5499 struct command_context *cmd_ctx = current_command_context(interp);
5500 assert(cmd_ctx != NULL);
5502 Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5503 return JIM_OK;
5506 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5508 if (argc != 1) {
5509 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5510 return JIM_ERR;
5512 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5513 for (unsigned x = 0; NULL != target_types[x]; x++) {
5514 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5515 Jim_NewStringObj(interp, target_types[x]->name, -1));
5517 return JIM_OK;
5520 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5522 if (argc != 1) {
5523 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5524 return JIM_ERR;
5526 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5527 struct target *target = all_targets;
5528 while (target) {
5529 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5530 Jim_NewStringObj(interp, target_name(target), -1));
5531 target = target->next;
5533 return JIM_OK;
5536 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5538 int i;
5539 const char *targetname;
5540 int retval, len;
5541 struct target *target = (struct target *) NULL;
5542 struct target_list *head, *curr, *new;
5543 curr = (struct target_list *) NULL;
5544 head = (struct target_list *) NULL;
5546 retval = 0;
5547 LOG_DEBUG("%d", argc);
5548 /* argv[1] = target to associate in smp
5549 * argv[2] = target to assoicate in smp
5550 * argv[3] ...
5553 for (i = 1; i < argc; i++) {
5555 targetname = Jim_GetString(argv[i], &len);
5556 target = get_target(targetname);
5557 LOG_DEBUG("%s ", targetname);
5558 if (target) {
5559 new = malloc(sizeof(struct target_list));
5560 new->target = target;
5561 new->next = (struct target_list *)NULL;
5562 if (head == (struct target_list *)NULL) {
5563 head = new;
5564 curr = head;
5565 } else {
5566 curr->next = new;
5567 curr = new;
5571 /* now parse the list of cpu and put the target in smp mode*/
5572 curr = head;
5574 while (curr != (struct target_list *)NULL) {
5575 target = curr->target;
5576 target->smp = 1;
5577 target->head = head;
5578 curr = curr->next;
5581 if (target && target->rtos)
5582 retval = rtos_smp_init(head->target);
5584 return retval;
5588 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5590 Jim_GetOptInfo goi;
5591 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5592 if (goi.argc < 3) {
5593 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5594 "<name> <target_type> [<target_options> ...]");
5595 return JIM_ERR;
5597 return target_create(&goi);
5600 static const struct command_registration target_subcommand_handlers[] = {
5602 .name = "init",
5603 .mode = COMMAND_CONFIG,
5604 .handler = handle_target_init_command,
5605 .help = "initialize targets",
5608 .name = "create",
5609 /* REVISIT this should be COMMAND_CONFIG ... */
5610 .mode = COMMAND_ANY,
5611 .jim_handler = jim_target_create,
5612 .usage = "name type '-chain-position' name [options ...]",
5613 .help = "Creates and selects a new target",
5616 .name = "current",
5617 .mode = COMMAND_ANY,
5618 .jim_handler = jim_target_current,
5619 .help = "Returns the currently selected target",
5622 .name = "types",
5623 .mode = COMMAND_ANY,
5624 .jim_handler = jim_target_types,
5625 .help = "Returns the available target types as "
5626 "a list of strings",
5629 .name = "names",
5630 .mode = COMMAND_ANY,
5631 .jim_handler = jim_target_names,
5632 .help = "Returns the names of all targets as a list of strings",
5635 .name = "smp",
5636 .mode = COMMAND_ANY,
5637 .jim_handler = jim_target_smp,
5638 .usage = "targetname1 targetname2 ...",
5639 .help = "gather several target in a smp list"
5642 COMMAND_REGISTRATION_DONE
5645 struct FastLoad {
5646 uint32_t address;
5647 uint8_t *data;
5648 int length;
5652 static int fastload_num;
5653 static struct FastLoad *fastload;
5655 static void free_fastload(void)
5657 if (fastload != NULL) {
5658 int i;
5659 for (i = 0; i < fastload_num; i++) {
5660 if (fastload[i].data)
5661 free(fastload[i].data);
5663 free(fastload);
5664 fastload = NULL;
5668 COMMAND_HANDLER(handle_fast_load_image_command)
5670 uint8_t *buffer;
5671 size_t buf_cnt;
5672 uint32_t image_size;
5673 uint32_t min_address = 0;
5674 uint32_t max_address = 0xffffffff;
5675 int i;
5677 struct image image;
5679 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5680 &image, &min_address, &max_address);
5681 if (ERROR_OK != retval)
5682 return retval;
5684 struct duration bench;
5685 duration_start(&bench);
5687 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5688 if (retval != ERROR_OK)
5689 return retval;
5691 image_size = 0x0;
5692 retval = ERROR_OK;
5693 fastload_num = image.num_sections;
5694 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5695 if (fastload == NULL) {
5696 command_print(CMD_CTX, "out of memory");
5697 image_close(&image);
5698 return ERROR_FAIL;
5700 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5701 for (i = 0; i < image.num_sections; i++) {
5702 buffer = malloc(image.sections[i].size);
5703 if (buffer == NULL) {
5704 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5705 (int)(image.sections[i].size));
5706 retval = ERROR_FAIL;
5707 break;
5710 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5711 if (retval != ERROR_OK) {
5712 free(buffer);
5713 break;
5716 uint32_t offset = 0;
5717 uint32_t length = buf_cnt;
5719 /* DANGER!!! beware of unsigned comparision here!!! */
5721 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5722 (image.sections[i].base_address < max_address)) {
5723 if (image.sections[i].base_address < min_address) {
5724 /* clip addresses below */
5725 offset += min_address-image.sections[i].base_address;
5726 length -= offset;
5729 if (image.sections[i].base_address + buf_cnt > max_address)
5730 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5732 fastload[i].address = image.sections[i].base_address + offset;
5733 fastload[i].data = malloc(length);
5734 if (fastload[i].data == NULL) {
5735 free(buffer);
5736 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5737 length);
5738 retval = ERROR_FAIL;
5739 break;
5741 memcpy(fastload[i].data, buffer + offset, length);
5742 fastload[i].length = length;
5744 image_size += length;
5745 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5746 (unsigned int)length,
5747 ((unsigned int)(image.sections[i].base_address + offset)));
5750 free(buffer);
5753 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5754 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5755 "in %fs (%0.3f KiB/s)", image_size,
5756 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5758 command_print(CMD_CTX,
5759 "WARNING: image has not been loaded to target!"
5760 "You can issue a 'fast_load' to finish loading.");
5763 image_close(&image);
5765 if (retval != ERROR_OK)
5766 free_fastload();
5768 return retval;
5771 COMMAND_HANDLER(handle_fast_load_command)
5773 if (CMD_ARGC > 0)
5774 return ERROR_COMMAND_SYNTAX_ERROR;
5775 if (fastload == NULL) {
5776 LOG_ERROR("No image in memory");
5777 return ERROR_FAIL;
5779 int i;
5780 int64_t ms = timeval_ms();
5781 int size = 0;
5782 int retval = ERROR_OK;
5783 for (i = 0; i < fastload_num; i++) {
5784 struct target *target = get_current_target(CMD_CTX);
5785 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5786 (unsigned int)(fastload[i].address),
5787 (unsigned int)(fastload[i].length));
5788 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5789 if (retval != ERROR_OK)
5790 break;
5791 size += fastload[i].length;
5793 if (retval == ERROR_OK) {
5794 int64_t after = timeval_ms();
5795 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5797 return retval;
5800 static const struct command_registration target_command_handlers[] = {
5802 .name = "targets",
5803 .handler = handle_targets_command,
5804 .mode = COMMAND_ANY,
5805 .help = "change current default target (one parameter) "
5806 "or prints table of all targets (no parameters)",
5807 .usage = "[target]",
5810 .name = "target",
5811 .mode = COMMAND_CONFIG,
5812 .help = "configure target",
5814 .chain = target_subcommand_handlers,
5816 COMMAND_REGISTRATION_DONE
5819 int target_register_commands(struct command_context *cmd_ctx)
5821 return register_commands(cmd_ctx, NULL, target_command_handlers);
5824 static bool target_reset_nag = true;
5826 bool get_target_reset_nag(void)
5828 return target_reset_nag;
5831 COMMAND_HANDLER(handle_target_reset_nag)
5833 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5834 &target_reset_nag, "Nag after each reset about options to improve "
5835 "performance");
5838 COMMAND_HANDLER(handle_ps_command)
5840 struct target *target = get_current_target(CMD_CTX);
5841 char *display;
5842 if (target->state != TARGET_HALTED) {
5843 LOG_INFO("target not halted !!");
5844 return ERROR_OK;
5847 if ((target->rtos) && (target->rtos->type)
5848 && (target->rtos->type->ps_command)) {
5849 display = target->rtos->type->ps_command(target);
5850 command_print(CMD_CTX, "%s", display);
5851 free(display);
5852 return ERROR_OK;
5853 } else {
5854 LOG_INFO("failed");
5855 return ERROR_TARGET_FAILURE;
5859 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5861 if (text != NULL)
5862 command_print_sameline(cmd_ctx, "%s", text);
5863 for (int i = 0; i < size; i++)
5864 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5865 command_print(cmd_ctx, " ");
5868 COMMAND_HANDLER(handle_test_mem_access_command)
5870 struct target *target = get_current_target(CMD_CTX);
5871 uint32_t test_size;
5872 int retval = ERROR_OK;
5874 if (target->state != TARGET_HALTED) {
5875 LOG_INFO("target not halted !!");
5876 return ERROR_FAIL;
5879 if (CMD_ARGC != 1)
5880 return ERROR_COMMAND_SYNTAX_ERROR;
5882 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5884 /* Test reads */
5885 size_t num_bytes = test_size + 4;
5887 struct working_area *wa = NULL;
5888 retval = target_alloc_working_area(target, num_bytes, &wa);
5889 if (retval != ERROR_OK) {
5890 LOG_ERROR("Not enough working area");
5891 return ERROR_FAIL;
5894 uint8_t *test_pattern = malloc(num_bytes);
5896 for (size_t i = 0; i < num_bytes; i++)
5897 test_pattern[i] = rand();
5899 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5900 if (retval != ERROR_OK) {
5901 LOG_ERROR("Test pattern write failed");
5902 goto out;
5905 for (int host_offset = 0; host_offset <= 1; host_offset++) {
5906 for (int size = 1; size <= 4; size *= 2) {
5907 for (int offset = 0; offset < 4; offset++) {
5908 uint32_t count = test_size / size;
5909 size_t host_bufsiz = (count + 2) * size + host_offset;
5910 uint8_t *read_ref = malloc(host_bufsiz);
5911 uint8_t *read_buf = malloc(host_bufsiz);
5913 for (size_t i = 0; i < host_bufsiz; i++) {
5914 read_ref[i] = rand();
5915 read_buf[i] = read_ref[i];
5917 command_print_sameline(CMD_CTX,
5918 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
5919 size, offset, host_offset ? "un" : "");
5921 struct duration bench;
5922 duration_start(&bench);
5924 retval = target_read_memory(target, wa->address + offset, size, count,
5925 read_buf + size + host_offset);
5927 duration_measure(&bench);
5929 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5930 command_print(CMD_CTX, "Unsupported alignment");
5931 goto next;
5932 } else if (retval != ERROR_OK) {
5933 command_print(CMD_CTX, "Memory read failed");
5934 goto next;
5937 /* replay on host */
5938 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5940 /* check result */
5941 int result = memcmp(read_ref, read_buf, host_bufsiz);
5942 if (result == 0) {
5943 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5944 duration_elapsed(&bench),
5945 duration_kbps(&bench, count * size));
5946 } else {
5947 command_print(CMD_CTX, "Compare failed");
5948 binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5949 binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5951 next:
5952 free(read_ref);
5953 free(read_buf);
5958 out:
5959 free(test_pattern);
5961 if (wa != NULL)
5962 target_free_working_area(target, wa);
5964 /* Test writes */
5965 num_bytes = test_size + 4 + 4 + 4;
5967 retval = target_alloc_working_area(target, num_bytes, &wa);
5968 if (retval != ERROR_OK) {
5969 LOG_ERROR("Not enough working area");
5970 return ERROR_FAIL;
5973 test_pattern = malloc(num_bytes);
5975 for (size_t i = 0; i < num_bytes; i++)
5976 test_pattern[i] = rand();
5978 for (int host_offset = 0; host_offset <= 1; host_offset++) {
5979 for (int size = 1; size <= 4; size *= 2) {
5980 for (int offset = 0; offset < 4; offset++) {
5981 uint32_t count = test_size / size;
5982 size_t host_bufsiz = count * size + host_offset;
5983 uint8_t *read_ref = malloc(num_bytes);
5984 uint8_t *read_buf = malloc(num_bytes);
5985 uint8_t *write_buf = malloc(host_bufsiz);
5987 for (size_t i = 0; i < host_bufsiz; i++)
5988 write_buf[i] = rand();
5989 command_print_sameline(CMD_CTX,
5990 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
5991 size, offset, host_offset ? "un" : "");
5993 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5994 if (retval != ERROR_OK) {
5995 command_print(CMD_CTX, "Test pattern write failed");
5996 goto nextw;
5999 /* replay on host */
6000 memcpy(read_ref, test_pattern, num_bytes);
6001 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6003 struct duration bench;
6004 duration_start(&bench);
6006 retval = target_write_memory(target, wa->address + size + offset, size, count,
6007 write_buf + host_offset);
6009 duration_measure(&bench);
6011 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6012 command_print(CMD_CTX, "Unsupported alignment");
6013 goto nextw;
6014 } else if (retval != ERROR_OK) {
6015 command_print(CMD_CTX, "Memory write failed");
6016 goto nextw;
6019 /* read back */
6020 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6021 if (retval != ERROR_OK) {
6022 command_print(CMD_CTX, "Test pattern write failed");
6023 goto nextw;
6026 /* check result */
6027 int result = memcmp(read_ref, read_buf, num_bytes);
6028 if (result == 0) {
6029 command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6030 duration_elapsed(&bench),
6031 duration_kbps(&bench, count * size));
6032 } else {
6033 command_print(CMD_CTX, "Compare failed");
6034 binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6035 binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6037 nextw:
6038 free(read_ref);
6039 free(read_buf);
6044 free(test_pattern);
6046 if (wa != NULL)
6047 target_free_working_area(target, wa);
6048 return retval;
6051 static const struct command_registration target_exec_command_handlers[] = {
6053 .name = "fast_load_image",
6054 .handler = handle_fast_load_image_command,
6055 .mode = COMMAND_ANY,
6056 .help = "Load image into server memory for later use by "
6057 "fast_load; primarily for profiling",
6058 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6059 "[min_address [max_length]]",
6062 .name = "fast_load",
6063 .handler = handle_fast_load_command,
6064 .mode = COMMAND_EXEC,
6065 .help = "loads active fast load image to current target "
6066 "- mainly for profiling purposes",
6067 .usage = "",
6070 .name = "profile",
6071 .handler = handle_profile_command,
6072 .mode = COMMAND_EXEC,
6073 .usage = "seconds filename [start end]",
6074 .help = "profiling samples the CPU PC",
6076 /** @todo don't register virt2phys() unless target supports it */
6078 .name = "virt2phys",
6079 .handler = handle_virt2phys_command,
6080 .mode = COMMAND_ANY,
6081 .help = "translate a virtual address into a physical address",
6082 .usage = "virtual_address",
6085 .name = "reg",
6086 .handler = handle_reg_command,
6087 .mode = COMMAND_EXEC,
6088 .help = "display (reread from target with \"force\") or set a register; "
6089 "with no arguments, displays all registers and their values",
6090 .usage = "[(register_number|register_name) [(value|'force')]]",
6093 .name = "poll",
6094 .handler = handle_poll_command,
6095 .mode = COMMAND_EXEC,
6096 .help = "poll target state; or reconfigure background polling",
6097 .usage = "['on'|'off']",
6100 .name = "wait_halt",
6101 .handler = handle_wait_halt_command,
6102 .mode = COMMAND_EXEC,
6103 .help = "wait up to the specified number of milliseconds "
6104 "(default 5000) for a previously requested halt",
6105 .usage = "[milliseconds]",
6108 .name = "halt",
6109 .handler = handle_halt_command,
6110 .mode = COMMAND_EXEC,
6111 .help = "request target to halt, then wait up to the specified"
6112 "number of milliseconds (default 5000) for it to complete",
6113 .usage = "[milliseconds]",
6116 .name = "resume",
6117 .handler = handle_resume_command,
6118 .mode = COMMAND_EXEC,
6119 .help = "resume target execution from current PC or address",
6120 .usage = "[address]",
6123 .name = "reset",
6124 .handler = handle_reset_command,
6125 .mode = COMMAND_EXEC,
6126 .usage = "[run|halt|init]",
6127 .help = "Reset all targets into the specified mode."
6128 "Default reset mode is run, if not given.",
6131 .name = "soft_reset_halt",
6132 .handler = handle_soft_reset_halt_command,
6133 .mode = COMMAND_EXEC,
6134 .usage = "",
6135 .help = "halt the target and do a soft reset",
6138 .name = "step",
6139 .handler = handle_step_command,
6140 .mode = COMMAND_EXEC,
6141 .help = "step one instruction from current PC or address",
6142 .usage = "[address]",
6145 .name = "mdw",
6146 .handler = handle_md_command,
6147 .mode = COMMAND_EXEC,
6148 .help = "display memory words",
6149 .usage = "['phys'] address [count]",
6152 .name = "mdh",
6153 .handler = handle_md_command,
6154 .mode = COMMAND_EXEC,
6155 .help = "display memory half-words",
6156 .usage = "['phys'] address [count]",
6159 .name = "mdb",
6160 .handler = handle_md_command,
6161 .mode = COMMAND_EXEC,
6162 .help = "display memory bytes",
6163 .usage = "['phys'] address [count]",
6166 .name = "mww",
6167 .handler = handle_mw_command,
6168 .mode = COMMAND_EXEC,
6169 .help = "write memory word",
6170 .usage = "['phys'] address value [count]",
6173 .name = "mwh",
6174 .handler = handle_mw_command,
6175 .mode = COMMAND_EXEC,
6176 .help = "write memory half-word",
6177 .usage = "['phys'] address value [count]",
6180 .name = "mwb",
6181 .handler = handle_mw_command,
6182 .mode = COMMAND_EXEC,
6183 .help = "write memory byte",
6184 .usage = "['phys'] address value [count]",
6187 .name = "bp",
6188 .handler = handle_bp_command,
6189 .mode = COMMAND_EXEC,
6190 .help = "list or set hardware or software breakpoint",
6191 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6194 .name = "rbp",
6195 .handler = handle_rbp_command,
6196 .mode = COMMAND_EXEC,
6197 .help = "remove breakpoint",
6198 .usage = "address",
6201 .name = "wp",
6202 .handler = handle_wp_command,
6203 .mode = COMMAND_EXEC,
6204 .help = "list (no params) or create watchpoints",
6205 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6208 .name = "rwp",
6209 .handler = handle_rwp_command,
6210 .mode = COMMAND_EXEC,
6211 .help = "remove watchpoint",
6212 .usage = "address",
6215 .name = "load_image",
6216 .handler = handle_load_image_command,
6217 .mode = COMMAND_EXEC,
6218 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6219 "[min_address] [max_length]",
6222 .name = "dump_image",
6223 .handler = handle_dump_image_command,
6224 .mode = COMMAND_EXEC,
6225 .usage = "filename address size",
6228 .name = "verify_image_checksum",
6229 .handler = handle_verify_image_checksum_command,
6230 .mode = COMMAND_EXEC,
6231 .usage = "filename [offset [type]]",
6234 .name = "verify_image",
6235 .handler = handle_verify_image_command,
6236 .mode = COMMAND_EXEC,
6237 .usage = "filename [offset [type]]",
6240 .name = "test_image",
6241 .handler = handle_test_image_command,
6242 .mode = COMMAND_EXEC,
6243 .usage = "filename [offset [type]]",
6246 .name = "mem2array",
6247 .mode = COMMAND_EXEC,
6248 .jim_handler = jim_mem2array,
6249 .help = "read 8/16/32 bit memory and return as a TCL array "
6250 "for script processing",
6251 .usage = "arrayname bitwidth address count",
6254 .name = "array2mem",
6255 .mode = COMMAND_EXEC,
6256 .jim_handler = jim_array2mem,
6257 .help = "convert a TCL array to memory locations "
6258 "and write the 8/16/32 bit values",
6259 .usage = "arrayname bitwidth address count",
6262 .name = "reset_nag",
6263 .handler = handle_target_reset_nag,
6264 .mode = COMMAND_ANY,
6265 .help = "Nag after each reset about options that could have been "
6266 "enabled to improve performance. ",
6267 .usage = "['enable'|'disable']",
6270 .name = "ps",
6271 .handler = handle_ps_command,
6272 .mode = COMMAND_EXEC,
6273 .help = "list all tasks ",
6274 .usage = " ",
6277 .name = "test_mem_access",
6278 .handler = handle_test_mem_access_command,
6279 .mode = COMMAND_EXEC,
6280 .help = "Test the target's memory access functions",
6281 .usage = "size",
6284 COMMAND_REGISTRATION_DONE
6286 static int target_register_user_commands(struct command_context *cmd_ctx)
6288 int retval = ERROR_OK;
6289 retval = target_request_register_commands(cmd_ctx);
6290 if (retval != ERROR_OK)
6291 return retval;
6293 retval = trace_register_commands(cmd_ctx);
6294 if (retval != ERROR_OK)
6295 return retval;
6298 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);