flash/nor/stm32f2x: Add STM32F469 part
[openocd.git] / src / flash / nor / stm32f2x.c
blob89fc75dcf3aa618466ada65baac7573a1ae28fcb
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 Øyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
25 ***************************************************************************/
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
36 /* Regarding performance:
38 * Short story - it might be best to leave the performance at
39 * current levels.
41 * You may see a jump in speed if you change to using
42 * 32bit words for the block programming.
44 * Its a shame you cannot use the double word as its
45 * even faster - but you require external VPP for that mode.
47 * Having said all that 16bit writes give us the widest vdd
48 * operating range, so may be worth adding a note to that effect.
52 /* Danger!!!! The STM32F1x and STM32F2x series actually have
53 * quite different flash controllers.
55 * What's more scary is that the names of the registers and their
56 * addresses are the same, but the actual bits and what they do are
57 * can be very different.
59 * To reduce testing complexity and dangers of regressions,
60 * a seperate file is used for stm32fx2x.
62 * Sector sizes in kiBytes:
63 * 1 MiByte part with 4 x 16, 1 x 64, 7 x 128.
64 * 2 MiByte part with 4 x 16, 1 x 64, 7 x 128, 4 x 16, 1 x 64, 7 x 128.
65 * 1 MiByte STM32F42x/43x part with DB1M Option set:
66 * 4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128.
68 * STM32F7
69 * 1 MiByte part with 4 x 32, 1 x 128, 3 x 256.
71 * Protection size is sector size.
73 * Tested with STM3220F-EVAL board.
75 * STM32F4xx series for reference.
77 * RM0090
78 * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf
80 * PM0059
81 * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
82 * PROGRAMMING_MANUAL/CD00233952.pdf
84 * STM32F7xx series for reference.
86 * RM0385
87 * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf
89 * STM32F1x series - notice that this code was copy, pasted and knocked
90 * into a stm32f2x driver, so in case something has been converted or
91 * bugs haven't been fixed, here are the original manuals:
93 * RM0008 - Reference manual
95 * RM0042, the Flash programming manual for low-, medium- high-density and
96 * connectivity line STM32F10x devices
98 * PM0068, the Flash programming manual for XL-density STM32F10x devices.
102 /* Erase time can be as high as 1000ms, 10x this and it's toast... */
103 #define FLASH_ERASE_TIMEOUT 10000
104 #define FLASH_WRITE_TIMEOUT 5
106 #define STM32_FLASH_BASE 0x40023c00
107 #define STM32_FLASH_ACR 0x40023c00
108 #define STM32_FLASH_KEYR 0x40023c04
109 #define STM32_FLASH_OPTKEYR 0x40023c08
110 #define STM32_FLASH_SR 0x40023c0C
111 #define STM32_FLASH_CR 0x40023c10
112 #define STM32_FLASH_OPTCR 0x40023c14
113 #define STM32_FLASH_OPTCR1 0x40023c18
115 /* FLASH_CR register bits */
117 #define FLASH_PG (1 << 0)
118 #define FLASH_SER (1 << 1)
119 #define FLASH_MER (1 << 2)
120 #define FLASH_MER1 (1 << 15)
121 #define FLASH_STRT (1 << 16)
122 #define FLASH_PSIZE_8 (0 << 8)
123 #define FLASH_PSIZE_16 (1 << 8)
124 #define FLASH_PSIZE_32 (2 << 8)
125 #define FLASH_PSIZE_64 (3 << 8)
126 /* The sector number encoding is not straight binary for dual bank flash.
127 * Warning: evaluates the argument multiple times */
128 #define FLASH_SNB(a) ((((a) >= 12) ? 0x10 | ((a) - 12) : (a)) << 3)
129 #define FLASH_LOCK (1 << 31)
131 /* FLASH_SR register bits */
133 #define FLASH_BSY (1 << 16)
134 #define FLASH_PGSERR (1 << 7) /* Programming sequence error */
135 #define FLASH_PGPERR (1 << 6) /* Programming parallelism error */
136 #define FLASH_PGAERR (1 << 5) /* Programming alignment error */
137 #define FLASH_WRPERR (1 << 4) /* Write protection error */
138 #define FLASH_OPERR (1 << 1) /* Operation error */
140 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
142 /* STM32_FLASH_OPTCR register bits */
144 #define OPT_LOCK (1 << 0)
145 #define OPT_START (1 << 1)
147 /* STM32_FLASH_OBR bit definitions (reading) */
149 #define OPT_ERROR 0
150 #define OPT_READOUT 1
151 #define OPT_RDWDGSW 2
152 #define OPT_RDRSTSTOP 3
153 #define OPT_RDRSTSTDBY 4
154 #define OPT_BFB2 5 /* dual flash bank only */
155 #define OPT_DB1M 14 /* 1 MiB devices dual flash bank option */
157 /* register unlock keys */
159 #define KEY1 0x45670123
160 #define KEY2 0xCDEF89AB
162 /* option register unlock key */
163 #define OPTKEY1 0x08192A3B
164 #define OPTKEY2 0x4C5D6E7F
166 struct stm32x_options {
167 uint8_t RDP;
168 uint8_t user_options;
169 uint32_t protection;
172 struct stm32x_flash_bank {
173 struct stm32x_options option_bytes;
174 int probed;
175 bool has_large_mem; /* stm32f42x/stm32f43x family */
176 uint32_t user_bank_size;
179 /* flash bank stm32x <base> <size> 0 0 <target#>
181 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
183 struct stm32x_flash_bank *stm32x_info;
185 if (CMD_ARGC < 6)
186 return ERROR_COMMAND_SYNTAX_ERROR;
188 stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
189 bank->driver_priv = stm32x_info;
191 stm32x_info->probed = 0;
192 stm32x_info->user_bank_size = bank->size;
194 return ERROR_OK;
197 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
199 return reg;
202 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
204 struct target *target = bank->target;
205 return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
208 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
210 struct target *target = bank->target;
211 uint32_t status;
212 int retval = ERROR_OK;
214 /* wait for busy to clear */
215 for (;;) {
216 retval = stm32x_get_flash_status(bank, &status);
217 if (retval != ERROR_OK)
218 return retval;
219 LOG_DEBUG("status: 0x%" PRIx32 "", status);
220 if ((status & FLASH_BSY) == 0)
221 break;
222 if (timeout-- <= 0) {
223 LOG_ERROR("timed out waiting for flash");
224 return ERROR_FAIL;
226 alive_sleep(1);
230 if (status & FLASH_WRPERR) {
231 LOG_ERROR("stm32x device protected");
232 retval = ERROR_FAIL;
235 /* Clear but report errors */
236 if (status & FLASH_ERROR) {
237 /* If this operation fails, we ignore it and report the original
238 * retval
240 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
241 status & FLASH_ERROR);
243 return retval;
246 static int stm32x_unlock_reg(struct target *target)
248 uint32_t ctrl;
250 /* first check if not already unlocked
251 * otherwise writing on STM32_FLASH_KEYR will fail
253 int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
254 if (retval != ERROR_OK)
255 return retval;
257 if ((ctrl & FLASH_LOCK) == 0)
258 return ERROR_OK;
260 /* unlock flash registers */
261 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
262 if (retval != ERROR_OK)
263 return retval;
265 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
266 if (retval != ERROR_OK)
267 return retval;
269 retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
270 if (retval != ERROR_OK)
271 return retval;
273 if (ctrl & FLASH_LOCK) {
274 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
275 return ERROR_TARGET_FAILURE;
278 return ERROR_OK;
281 static int stm32x_unlock_option_reg(struct target *target)
283 uint32_t ctrl;
285 int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
286 if (retval != ERROR_OK)
287 return retval;
289 if ((ctrl & OPT_LOCK) == 0)
290 return ERROR_OK;
292 /* unlock option registers */
293 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
294 if (retval != ERROR_OK)
295 return retval;
297 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
298 if (retval != ERROR_OK)
299 return retval;
301 retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
302 if (retval != ERROR_OK)
303 return retval;
305 if (ctrl & OPT_LOCK) {
306 LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: %" PRIx32, ctrl);
307 return ERROR_TARGET_FAILURE;
310 return ERROR_OK;
313 static int stm32x_read_options(struct flash_bank *bank)
315 uint32_t optiondata;
316 struct stm32x_flash_bank *stm32x_info = NULL;
317 struct target *target = bank->target;
319 stm32x_info = bank->driver_priv;
321 /* read current option bytes */
322 int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
323 if (retval != ERROR_OK)
324 return retval;
326 stm32x_info->option_bytes.user_options = optiondata & 0xec;
327 stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
328 stm32x_info->option_bytes.protection = (optiondata >> 16) & 0xfff;
330 if (stm32x_info->has_large_mem) {
332 retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
333 if (retval != ERROR_OK)
334 return retval;
336 /* append protection bits */
337 stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
340 if (stm32x_info->option_bytes.RDP != 0xAA)
341 LOG_INFO("Device Security Bit Set");
343 return ERROR_OK;
346 static int stm32x_write_options(struct flash_bank *bank)
348 struct stm32x_flash_bank *stm32x_info = NULL;
349 struct target *target = bank->target;
350 uint32_t optiondata;
352 stm32x_info = bank->driver_priv;
354 int retval = stm32x_unlock_option_reg(target);
355 if (retval != ERROR_OK)
356 return retval;
358 /* rebuild option data */
359 optiondata = stm32x_info->option_bytes.user_options;
360 optiondata |= stm32x_info->option_bytes.RDP << 8;
361 optiondata |= (stm32x_info->option_bytes.protection & 0x0fff) << 16;
363 /* program options */
364 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
365 if (retval != ERROR_OK)
366 return retval;
368 if (stm32x_info->has_large_mem) {
370 uint32_t optiondata2 = 0;
371 optiondata2 |= (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
372 retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
373 if (retval != ERROR_OK)
374 return retval;
377 /* start programming cycle */
378 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPT_START);
379 if (retval != ERROR_OK)
380 return retval;
382 /* wait for completion */
383 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
384 if (retval != ERROR_OK)
385 return retval;
387 /* relock registers */
388 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPT_LOCK);
389 if (retval != ERROR_OK)
390 return retval;
392 return ERROR_OK;
395 static int stm32x_protect_check(struct flash_bank *bank)
397 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
399 /* read write protection settings */
400 int retval = stm32x_read_options(bank);
401 if (retval != ERROR_OK) {
402 LOG_DEBUG("unable to read option bytes");
403 return retval;
406 for (int i = 0; i < bank->num_sectors; i++) {
407 if (stm32x_info->option_bytes.protection & (1 << i))
408 bank->sectors[i].is_protected = 0;
409 else
410 bank->sectors[i].is_protected = 1;
413 return ERROR_OK;
416 static int stm32x_erase(struct flash_bank *bank, int first, int last)
418 struct target *target = bank->target;
419 int i;
421 assert(first < bank->num_sectors);
422 assert(last < bank->num_sectors);
424 if (bank->target->state != TARGET_HALTED) {
425 LOG_ERROR("Target not halted");
426 return ERROR_TARGET_NOT_HALTED;
429 int retval;
430 retval = stm32x_unlock_reg(target);
431 if (retval != ERROR_OK)
432 return retval;
435 Sector Erase
436 To erase a sector, follow the procedure below:
437 1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
438 FLASH_SR register
439 2. Set the SER bit and select the sector
440 you wish to erase (SNB) in the FLASH_CR register
441 3. Set the STRT bit in the FLASH_CR register
442 4. Wait for the BSY bit to be cleared
445 for (i = first; i <= last; i++) {
446 retval = target_write_u32(target,
447 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(i) | FLASH_STRT);
448 if (retval != ERROR_OK)
449 return retval;
451 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
452 if (retval != ERROR_OK)
453 return retval;
455 bank->sectors[i].is_erased = 1;
458 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
459 if (retval != ERROR_OK)
460 return retval;
462 return ERROR_OK;
465 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
467 struct target *target = bank->target;
468 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
470 if (target->state != TARGET_HALTED) {
471 LOG_ERROR("Target not halted");
472 return ERROR_TARGET_NOT_HALTED;
475 /* read protection settings */
476 int retval = stm32x_read_options(bank);
477 if (retval != ERROR_OK) {
478 LOG_DEBUG("unable to read option bytes");
479 return retval;
482 for (int i = first; i <= last; i++) {
484 if (set)
485 stm32x_info->option_bytes.protection &= ~(1 << i);
486 else
487 stm32x_info->option_bytes.protection |= (1 << i);
490 retval = stm32x_write_options(bank);
491 if (retval != ERROR_OK)
492 return retval;
494 return ERROR_OK;
497 static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
498 uint32_t offset, uint32_t count)
500 struct target *target = bank->target;
501 uint32_t buffer_size = 16384;
502 struct working_area *write_algorithm;
503 struct working_area *source;
504 uint32_t address = bank->base + offset;
505 struct reg_param reg_params[5];
506 struct armv7m_algorithm armv7m_info;
507 int retval = ERROR_OK;
509 /* see contrib/loaders/flash/stm32f2x.S for src */
511 static const uint8_t stm32x_flash_write_code[] = {
512 /* wait_fifo: */
513 0xD0, 0xF8, 0x00, 0x80, /* ldr r8, [r0, #0] */
514 0xB8, 0xF1, 0x00, 0x0F, /* cmp r8, #0 */
515 0x1A, 0xD0, /* beq exit */
516 0x47, 0x68, /* ldr r7, [r0, #4] */
517 0x47, 0x45, /* cmp r7, r8 */
518 0xF7, 0xD0, /* beq wait_fifo */
520 0xDF, 0xF8, 0x34, 0x60, /* ldr r6, STM32_PROG16 */
521 0x26, 0x61, /* str r6, [r4, #STM32_FLASH_CR_OFFSET] */
522 0x37, 0xF8, 0x02, 0x6B, /* ldrh r6, [r7], #0x02 */
523 0x22, 0xF8, 0x02, 0x6B, /* strh r6, [r2], #0x02 */
524 0xBF, 0xF3, 0x4F, 0x8F, /* dsb sy */
525 /* busy: */
526 0xE6, 0x68, /* ldr r6, [r4, #STM32_FLASH_SR_OFFSET] */
527 0x16, 0xF4, 0x80, 0x3F, /* tst r6, #0x10000 */
528 0xFB, 0xD1, /* bne busy */
529 0x16, 0xF0, 0xF0, 0x0F, /* tst r6, #0xf0 */
530 0x07, 0xD1, /* bne error */
532 0x8F, 0x42, /* cmp r7, r1 */
533 0x28, 0xBF, /* it cs */
534 0x00, 0xF1, 0x08, 0x07, /* addcs r7, r0, #8 */
535 0x47, 0x60, /* str r7, [r0, #4] */
536 0x01, 0x3B, /* subs r3, r3, #1 */
537 0x13, 0xB1, /* cbz r3, exit */
538 0xDF, 0xE7, /* b wait_fifo */
539 /* error: */
540 0x00, 0x21, /* movs r1, #0 */
541 0x41, 0x60, /* str r1, [r0, #4] */
542 /* exit: */
543 0x30, 0x46, /* mov r0, r6 */
544 0x00, 0xBE, /* bkpt #0x00 */
546 /* <STM32_PROG16>: */
547 0x01, 0x01, 0x00, 0x00, /* .word 0x00000101 */
550 if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
551 &write_algorithm) != ERROR_OK) {
552 LOG_WARNING("no working area available, can't do block memory writes");
553 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
556 retval = target_write_buffer(target, write_algorithm->address,
557 sizeof(stm32x_flash_write_code),
558 stm32x_flash_write_code);
559 if (retval != ERROR_OK)
560 return retval;
562 /* memory buffer */
563 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
564 buffer_size /= 2;
565 if (buffer_size <= 256) {
566 /* we already allocated the writing code, but failed to get a
567 * buffer, free the algorithm */
568 target_free_working_area(target, write_algorithm);
570 LOG_WARNING("no large enough working area available, can't do block memory writes");
571 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
575 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
576 armv7m_info.core_mode = ARM_MODE_THREAD;
578 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
579 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
580 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
581 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (halfword-16bit) */
582 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* flash base */
584 buf_set_u32(reg_params[0].value, 0, 32, source->address);
585 buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
586 buf_set_u32(reg_params[2].value, 0, 32, address);
587 buf_set_u32(reg_params[3].value, 0, 32, count);
588 buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
590 retval = target_run_flash_async_algorithm(target, buffer, count, 2,
591 0, NULL,
592 5, reg_params,
593 source->address, source->size,
594 write_algorithm->address, 0,
595 &armv7m_info);
597 if (retval == ERROR_FLASH_OPERATION_FAILED) {
598 LOG_ERROR("error executing stm32x flash write algorithm");
600 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
602 if (error & FLASH_WRPERR)
603 LOG_ERROR("flash memory write protected");
605 if (error != 0) {
606 LOG_ERROR("flash write failed = %08" PRIx32, error);
607 /* Clear but report errors */
608 target_write_u32(target, STM32_FLASH_SR, error);
609 retval = ERROR_FAIL;
613 target_free_working_area(target, source);
614 target_free_working_area(target, write_algorithm);
616 destroy_reg_param(&reg_params[0]);
617 destroy_reg_param(&reg_params[1]);
618 destroy_reg_param(&reg_params[2]);
619 destroy_reg_param(&reg_params[3]);
620 destroy_reg_param(&reg_params[4]);
622 return retval;
625 static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
626 uint32_t offset, uint32_t count)
628 struct target *target = bank->target;
629 uint32_t words_remaining = (count / 2);
630 uint32_t bytes_remaining = (count & 0x00000001);
631 uint32_t address = bank->base + offset;
632 uint32_t bytes_written = 0;
633 int retval;
635 if (bank->target->state != TARGET_HALTED) {
636 LOG_ERROR("Target not halted");
637 return ERROR_TARGET_NOT_HALTED;
640 if (offset & 0x1) {
641 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
642 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
645 retval = stm32x_unlock_reg(target);
646 if (retval != ERROR_OK)
647 return retval;
649 /* multiple half words (2-byte) to be programmed? */
650 if (words_remaining > 0) {
651 /* try using a block write */
652 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
653 if (retval != ERROR_OK) {
654 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
655 /* if block write failed (no sufficient working area),
656 * we use normal (slow) single dword accesses */
657 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
659 } else {
660 buffer += words_remaining * 2;
661 address += words_remaining * 2;
662 words_remaining = 0;
666 if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
667 return retval;
670 Standard programming
671 The Flash memory programming sequence is as follows:
672 1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
673 FLASH_SR register.
674 2. Set the PG bit in the FLASH_CR register
675 3. Perform the data write operation(s) to the desired memory address (inside main
676 memory block or OTP area):
677 – – Half-word access in case of x16 parallelism
678 – Word access in case of x32 parallelism
679 –
681 Byte access in case of x8 parallelism
682 Double word access in case of x64 parallelism
683 Wait for the BSY bit to be cleared
685 while (words_remaining > 0) {
686 uint16_t value;
687 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
689 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
690 FLASH_PG | FLASH_PSIZE_16);
691 if (retval != ERROR_OK)
692 return retval;
694 retval = target_write_u16(target, address, value);
695 if (retval != ERROR_OK)
696 return retval;
698 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
699 if (retval != ERROR_OK)
700 return retval;
702 bytes_written += 2;
703 words_remaining--;
704 address += 2;
707 if (bytes_remaining) {
708 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
709 FLASH_PG | FLASH_PSIZE_8);
710 if (retval != ERROR_OK)
711 return retval;
712 retval = target_write_u8(target, address, buffer[bytes_written]);
713 if (retval != ERROR_OK)
714 return retval;
716 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
717 if (retval != ERROR_OK)
718 return retval;
721 return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
724 static void setup_sector(struct flash_bank *bank, int start, int num, int size)
726 for (int i = start; i < (start + num) ; i++) {
727 assert(i < bank->num_sectors);
728 bank->sectors[i].offset = bank->size;
729 bank->sectors[i].size = size;
730 bank->size += bank->sectors[i].size;
734 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
736 /* this checks for a stm32f4x errata issue where a
737 * stm32f2x DBGMCU_IDCODE is incorrectly returned.
738 * If the issue is detected target is forced to stm32f4x Rev A.
739 * Only effects Rev A silicon */
741 struct target *target = bank->target;
742 uint32_t cpuid;
744 /* read stm32 device id register */
745 int retval = target_read_u32(target, 0xE0042000, device_id);
746 if (retval != ERROR_OK)
747 return retval;
749 if ((*device_id & 0xfff) == 0x411) {
750 /* read CPUID reg to check core type */
751 retval = target_read_u32(target, 0xE000ED00, &cpuid);
752 if (retval != ERROR_OK)
753 return retval;
755 /* check for cortex_m4 */
756 if (((cpuid >> 4) & 0xFFF) == 0xC24) {
757 *device_id &= ~((0xFFFF << 16) | 0xfff);
758 *device_id |= (0x1000 << 16) | 0x413;
759 LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
762 return retval;
765 static int stm32x_probe(struct flash_bank *bank)
767 struct target *target = bank->target;
768 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
769 int i;
770 uint16_t flash_size_in_kb;
771 uint32_t flash_size_reg = 0x1FFF7A22;
772 uint16_t max_sector_size_in_kb = 128;
773 uint16_t max_flash_size_in_kb;
774 uint32_t device_id;
775 uint32_t base_address = 0x08000000;
777 stm32x_info->probed = 0;
778 stm32x_info->has_large_mem = false;
780 /* read stm32 device id register */
781 int retval = stm32x_get_device_id(bank, &device_id);
782 if (retval != ERROR_OK)
783 return retval;
784 LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
786 /* set max flash size depending on family */
787 switch (device_id & 0xfff) {
788 case 0x411:
789 case 0x413:
790 max_flash_size_in_kb = 1024;
791 break;
792 case 0x419:
793 case 0x434:
794 max_flash_size_in_kb = 2048;
795 break;
796 case 0x423:
797 max_flash_size_in_kb = 256;
798 break;
799 case 0x431:
800 case 0x433:
801 case 0x421:
802 max_flash_size_in_kb = 512;
803 break;
804 case 0x449:
805 max_flash_size_in_kb = 1024;
806 max_sector_size_in_kb = 256;
807 flash_size_reg = 0x1FF0F442;
808 break;
809 default:
810 LOG_WARNING("Cannot identify target as a STM32 family.");
811 return ERROR_FAIL;
814 /* get flash size from target. */
815 retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb);
817 /* failed reading flash size or flash size invalid (early silicon),
818 * default to max target family */
819 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
820 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
821 max_flash_size_in_kb);
822 flash_size_in_kb = max_flash_size_in_kb;
825 /* if the user sets the size manually then ignore the probed value
826 * this allows us to work around devices that have a invalid flash size register value */
827 if (stm32x_info->user_bank_size) {
828 LOG_INFO("ignoring flash probed value, using configured bank size");
829 flash_size_in_kb = stm32x_info->user_bank_size / 1024;
832 LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
834 /* did we assign flash size? */
835 assert(flash_size_in_kb != 0xffff);
837 /* calculate numbers of pages */
838 int num_pages = (flash_size_in_kb / max_sector_size_in_kb) + 4;
840 /* Devices with > 1024 kiByte always are dual-banked */
841 if (flash_size_in_kb > 1024)
842 stm32x_info->has_large_mem = true;
844 /* F42x/43x 1024 kiByte devices have a dual bank option */
845 if ((device_id & 0xfff) == 0x419 && (flash_size_in_kb == 1024)) {
846 uint32_t optiondata;
847 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
848 if (retval != ERROR_OK) {
849 LOG_DEBUG("unable to read option bytes");
850 return retval;
852 if (optiondata & (1 << OPT_DB1M)) {
853 stm32x_info->has_large_mem = true;
854 LOG_INFO("Dual Bank 1024 kiB STM32F42x/43x found");
858 /* check for dual-banked devices */
859 if (stm32x_info->has_large_mem)
860 num_pages += 4;
862 /* check that calculation result makes sense */
863 assert(num_pages > 0);
865 if (bank->sectors) {
866 free(bank->sectors);
867 bank->sectors = NULL;
870 bank->base = base_address;
871 bank->num_sectors = num_pages;
872 bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
873 bank->size = 0;
875 /* fixed memory */
876 setup_sector(bank, 0, 4, (max_sector_size_in_kb / 8) * 1024);
877 setup_sector(bank, 4, 1, (max_sector_size_in_kb / 2) * 1024);
879 if (stm32x_info->has_large_mem) {
880 if (flash_size_in_kb == 1024) {
881 setup_sector(bank, 5, 3, 128 * 1024);
882 setup_sector(bank, 12, 4, 16 * 1024);
883 setup_sector(bank, 16, 1, 64 * 1024);
884 setup_sector(bank, 17, 3, 128 * 1024);
885 } else {
886 setup_sector(bank, 5, 7, 128 * 1024);
887 setup_sector(bank, 12, 4, 16 * 1024);
888 setup_sector(bank, 16, 1, 64 * 1024);
889 setup_sector(bank, 17, 7, 128 * 1024);
891 } else {
892 setup_sector(bank, 4 + 1, MIN(12, num_pages) - 5,
893 max_sector_size_in_kb * 1024);
895 for (i = 0; i < num_pages; i++) {
896 bank->sectors[i].is_erased = -1;
897 bank->sectors[i].is_protected = 0;
900 stm32x_info->probed = 1;
902 return ERROR_OK;
905 static int stm32x_auto_probe(struct flash_bank *bank)
907 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
908 if (stm32x_info->probed)
909 return ERROR_OK;
910 return stm32x_probe(bank);
913 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
915 uint32_t dbgmcu_idcode;
917 /* read stm32 device id register */
918 int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
919 if (retval != ERROR_OK)
920 return retval;
922 uint16_t device_id = dbgmcu_idcode & 0xfff;
923 uint16_t rev_id = dbgmcu_idcode >> 16;
924 const char *device_str;
925 const char *rev_str = NULL;
927 switch (device_id) {
928 case 0x411:
929 device_str = "STM32F2xx";
931 switch (rev_id) {
932 case 0x1000:
933 rev_str = "A";
934 break;
936 case 0x2000:
937 rev_str = "B";
938 break;
940 case 0x1001:
941 rev_str = "Z";
942 break;
944 case 0x2001:
945 rev_str = "Y";
946 break;
948 case 0x2003:
949 rev_str = "X";
950 break;
952 break;
954 case 0x413:
955 case 0x419:
956 case 0x434:
957 device_str = "STM32F4xx";
959 switch (rev_id) {
960 case 0x1000:
961 rev_str = "A";
962 break;
964 case 0x1001:
965 rev_str = "Z";
966 break;
968 case 0x1003:
969 rev_str = "Y";
970 break;
972 case 0x1007:
973 rev_str = "1";
974 break;
976 case 0x2001:
977 rev_str = "3";
978 break;
980 break;
981 case 0x421:
982 device_str = "STM32F446";
984 switch (rev_id) {
985 case 0x1000:
986 rev_str = "A";
987 break;
989 break;
990 case 0x423:
991 case 0x431:
992 case 0x433:
993 device_str = "STM32F4xx (Low Power)";
995 switch (rev_id) {
996 case 0x1000:
997 rev_str = "A";
998 break;
1000 case 0x1001:
1001 rev_str = "Z";
1002 break;
1004 break;
1006 case 0x449:
1007 device_str = "STM32F7[4|5]x";
1009 switch (rev_id) {
1010 case 0x1000:
1011 rev_str = "A";
1012 break;
1014 case 0x1001:
1015 rev_str = "Z";
1016 break;
1018 break;
1020 default:
1021 snprintf(buf, buf_size, "Cannot identify target as a STM32F2/4/7\n");
1022 return ERROR_FAIL;
1025 if (rev_str != NULL)
1026 snprintf(buf, buf_size, "%s - Rev: %s", device_str, rev_str);
1027 else
1028 snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
1030 return ERROR_OK;
1033 COMMAND_HANDLER(stm32x_handle_lock_command)
1035 struct target *target = NULL;
1036 struct stm32x_flash_bank *stm32x_info = NULL;
1038 if (CMD_ARGC < 1)
1039 return ERROR_COMMAND_SYNTAX_ERROR;
1041 struct flash_bank *bank;
1042 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1043 if (ERROR_OK != retval)
1044 return retval;
1046 stm32x_info = bank->driver_priv;
1047 target = bank->target;
1049 if (target->state != TARGET_HALTED) {
1050 LOG_ERROR("Target not halted");
1051 return ERROR_TARGET_NOT_HALTED;
1054 if (stm32x_read_options(bank) != ERROR_OK) {
1055 command_print(CMD_CTX, "%s failed to read options", bank->driver->name);
1056 return ERROR_OK;
1059 /* set readout protection */
1060 stm32x_info->option_bytes.RDP = 0;
1062 if (stm32x_write_options(bank) != ERROR_OK) {
1063 command_print(CMD_CTX, "%s failed to lock device", bank->driver->name);
1064 return ERROR_OK;
1067 command_print(CMD_CTX, "%s locked", bank->driver->name);
1069 return ERROR_OK;
1072 COMMAND_HANDLER(stm32x_handle_unlock_command)
1074 struct target *target = NULL;
1075 struct stm32x_flash_bank *stm32x_info = NULL;
1077 if (CMD_ARGC < 1)
1078 return ERROR_COMMAND_SYNTAX_ERROR;
1080 struct flash_bank *bank;
1081 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1082 if (ERROR_OK != retval)
1083 return retval;
1085 stm32x_info = bank->driver_priv;
1086 target = bank->target;
1088 if (target->state != TARGET_HALTED) {
1089 LOG_ERROR("Target not halted");
1090 return ERROR_TARGET_NOT_HALTED;
1093 if (stm32x_read_options(bank) != ERROR_OK) {
1094 command_print(CMD_CTX, "%s failed to read options", bank->driver->name);
1095 return ERROR_OK;
1098 /* clear readout protection and complementary option bytes
1099 * this will also force a device unlock if set */
1100 stm32x_info->option_bytes.RDP = 0xAA;
1102 if (stm32x_write_options(bank) != ERROR_OK) {
1103 command_print(CMD_CTX, "%s failed to unlock device", bank->driver->name);
1104 return ERROR_OK;
1107 command_print(CMD_CTX, "%s unlocked.\n"
1108 "INFO: a reset or power cycle is required "
1109 "for the new settings to take effect.", bank->driver->name);
1111 return ERROR_OK;
1114 static int stm32x_mass_erase(struct flash_bank *bank)
1116 int retval;
1117 struct target *target = bank->target;
1118 struct stm32x_flash_bank *stm32x_info = NULL;
1120 if (target->state != TARGET_HALTED) {
1121 LOG_ERROR("Target not halted");
1122 return ERROR_TARGET_NOT_HALTED;
1125 stm32x_info = bank->driver_priv;
1127 retval = stm32x_unlock_reg(target);
1128 if (retval != ERROR_OK)
1129 return retval;
1131 /* mass erase flash memory */
1132 if (stm32x_info->has_large_mem)
1133 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER | FLASH_MER1);
1134 else
1135 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1136 if (retval != ERROR_OK)
1137 return retval;
1138 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1139 FLASH_MER | FLASH_STRT);
1140 if (retval != ERROR_OK)
1141 return retval;
1143 retval = stm32x_wait_status_busy(bank, 30000);
1144 if (retval != ERROR_OK)
1145 return retval;
1147 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1148 if (retval != ERROR_OK)
1149 return retval;
1151 return ERROR_OK;
1154 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1156 int i;
1158 if (CMD_ARGC < 1) {
1159 command_print(CMD_CTX, "stm32x mass_erase <bank>");
1160 return ERROR_COMMAND_SYNTAX_ERROR;
1163 struct flash_bank *bank;
1164 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1165 if (ERROR_OK != retval)
1166 return retval;
1168 retval = stm32x_mass_erase(bank);
1169 if (retval == ERROR_OK) {
1170 /* set all sectors as erased */
1171 for (i = 0; i < bank->num_sectors; i++)
1172 bank->sectors[i].is_erased = 1;
1174 command_print(CMD_CTX, "stm32x mass erase complete");
1175 } else {
1176 command_print(CMD_CTX, "stm32x mass erase failed");
1179 return retval;
1182 static const struct command_registration stm32x_exec_command_handlers[] = {
1184 .name = "lock",
1185 .handler = stm32x_handle_lock_command,
1186 .mode = COMMAND_EXEC,
1187 .usage = "bank_id",
1188 .help = "Lock entire flash device.",
1191 .name = "unlock",
1192 .handler = stm32x_handle_unlock_command,
1193 .mode = COMMAND_EXEC,
1194 .usage = "bank_id",
1195 .help = "Unlock entire protected flash device.",
1198 .name = "mass_erase",
1199 .handler = stm32x_handle_mass_erase_command,
1200 .mode = COMMAND_EXEC,
1201 .usage = "bank_id",
1202 .help = "Erase entire flash device.",
1204 COMMAND_REGISTRATION_DONE
1207 static const struct command_registration stm32x_command_handlers[] = {
1209 .name = "stm32f2x",
1210 .mode = COMMAND_ANY,
1211 .help = "stm32f2x flash command group",
1212 .usage = "",
1213 .chain = stm32x_exec_command_handlers,
1215 COMMAND_REGISTRATION_DONE
1218 struct flash_driver stm32f2x_flash = {
1219 .name = "stm32f2x",
1220 .commands = stm32x_command_handlers,
1221 .flash_bank_command = stm32x_flash_bank_command,
1222 .erase = stm32x_erase,
1223 .protect = stm32x_protect,
1224 .write = stm32x_write,
1225 .read = default_flash_read,
1226 .probe = stm32x_probe,
1227 .auto_probe = stm32x_auto_probe,
1228 .erase_check = default_flash_blank_check,
1229 .protect_check = stm32x_protect_check,
1230 .info = get_stm32x_info,