arm_adi_v5: add ap refcount and add get/put around ap use
[openocd.git] / src / flash / nor / kinetis.c
blobc1a49fd54acf624a3554af63dc331001cad0187d
1 /***************************************************************************
2 * Copyright (C) 2011 by Mathias Kuester *
3 * kesmtp@freenet.de *
4 * *
5 * Copyright (C) 2011 sleep(5) ltd *
6 * tomas@sleepfive.com *
7 * *
8 * Copyright (C) 2012 by Christopher D. Kilgour *
9 * techie at whiterocker.com *
10 * *
11 * Copyright (C) 2013 Nemui Trinomius *
12 * nemuisan_kawausogasuki@live.jp *
13 * *
14 * Copyright (C) 2015 Tomas Vanek *
15 * vanekt@fbl.cz *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
29 ***************************************************************************/
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
35 #include "jtag/interface.h"
36 #include "imp.h"
37 #include <helper/binarybuffer.h>
38 #include <helper/time_support.h>
39 #include <target/target_type.h>
40 #include <target/algorithm.h>
41 #include <target/arm_adi_v5.h>
42 #include <target/armv7m.h>
43 #include <target/cortex_m.h>
46 * Implementation Notes
48 * The persistent memories in the Kinetis chip families K10 through
49 * K70 are all manipulated with the Flash Memory Module. Some
50 * variants call this module the FTFE, others call it the FTFL. To
51 * indicate that both are considered here, we use FTFX.
53 * Within the module, according to the chip variant, the persistent
54 * memory is divided into what Freescale terms Program Flash, FlexNVM,
55 * and FlexRAM. All chip variants have Program Flash. Some chip
56 * variants also have FlexNVM and FlexRAM, which always appear
57 * together.
59 * A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map
60 * each block to a separate bank. Each block size varies by chip and
61 * may be determined by the read-only SIM_FCFG1 register. The sector
62 * size within each bank/block varies by chip, and may be 1, 2 or 4k.
63 * The sector size may be different for flash and FlexNVM.
65 * The first half of the flash (1 or 2 blocks) is always Program Flash
66 * and always starts at address 0x00000000. The "PFLSH" flag, bit 23
67 * of the read-only SIM_FCFG2 register, determines whether the second
68 * half of the flash is also Program Flash or FlexNVM+FlexRAM. When
69 * PFLSH is set, the second from the first half. When PFLSH is clear,
70 * the second half of flash is FlexNVM and always starts at address
71 * 0x10000000. FlexRAM, which is also present when PFLSH is clear,
72 * always starts at address 0x14000000.
74 * The Flash Memory Module provides a register set where flash
75 * commands are loaded to perform flash operations like erase and
76 * program. Different commands are available depending on whether
77 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
78 * the commands used are quite consistent between flash blocks, the
79 * parameters they accept differ according to the flash sector size.
83 /* Addresses */
84 #define FCF_ADDRESS 0x00000400
85 #define FCF_FPROT 0x8
86 #define FCF_FSEC 0xc
87 #define FCF_FOPT 0xd
88 #define FCF_FDPROT 0xf
89 #define FCF_SIZE 0x10
91 #define FLEXRAM 0x14000000
93 #define MSCM_OCMDR0 0x40001400
94 #define FMC_PFB01CR 0x4001f004
95 #define FTFX_FSTAT 0x40020000
96 #define FTFX_FCNFG 0x40020001
97 #define FTFX_FCCOB3 0x40020004
98 #define FTFX_FPROT3 0x40020010
99 #define FTFX_FDPROT 0x40020017
100 #define SIM_BASE 0x40047000
101 #define SIM_BASE_KL28 0x40074000
102 #define SIM_COPC 0x40048100
103 /* SIM_COPC does not exist on devices with changed SIM_BASE */
104 #define WDOG_BASE 0x40052000
105 #define WDOG32_KE1X 0x40052000
106 #define WDOG32_KL28 0x40076000
107 #define SMC_PMCTRL 0x4007E001
108 #define SMC_PMSTAT 0x4007E003
109 #define SMC32_PMCTRL 0x4007E00C
110 #define SMC32_PMSTAT 0x4007E014
111 #define MCM_PLACR 0xF000300C
113 /* Offsets */
114 #define SIM_SOPT1_OFFSET 0x0000
115 #define SIM_SDID_OFFSET 0x1024
116 #define SIM_FCFG1_OFFSET 0x104c
117 #define SIM_FCFG2_OFFSET 0x1050
119 #define WDOG_STCTRLH_OFFSET 0
120 #define WDOG32_CS_OFFSET 0
122 /* Values */
123 #define PM_STAT_RUN 0x01
124 #define PM_STAT_VLPR 0x04
125 #define PM_CTRL_RUNM_RUN 0x00
127 /* Commands */
128 #define FTFX_CMD_BLOCKSTAT 0x00
129 #define FTFX_CMD_SECTSTAT 0x01
130 #define FTFX_CMD_LWORDPROG 0x06
131 #define FTFX_CMD_SECTERASE 0x09
132 #define FTFX_CMD_SECTWRITE 0x0b
133 #define FTFX_CMD_MASSERASE 0x44
134 #define FTFX_CMD_PGMPART 0x80
135 #define FTFX_CMD_SETFLEXRAM 0x81
137 /* The older Kinetis K series uses the following SDID layout :
138 * Bit 31-16 : 0
139 * Bit 15-12 : REVID
140 * Bit 11-7 : DIEID
141 * Bit 6-4 : FAMID
142 * Bit 3-0 : PINID
144 * The newer Kinetis series uses the following SDID layout :
145 * Bit 31-28 : FAMID
146 * Bit 27-24 : SUBFAMID
147 * Bit 23-20 : SERIESID
148 * Bit 19-16 : SRAMSIZE
149 * Bit 15-12 : REVID
150 * Bit 6-4 : Reserved (0)
151 * Bit 3-0 : PINID
153 * We assume that if bits 31-16 are 0 then it's an older
154 * K-series MCU.
157 #define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000
158 #define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
160 #define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF
162 #define KINETIS_SDID_DIEID_MASK 0x00000F80
164 #define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */
165 #define KINETIS_SDID_DIEID_K22FN256 0x00000A80
166 #define KINETIS_SDID_DIEID_K22FN512 0x00000E80
167 #define KINETIS_SDID_DIEID_K24FN256 0x00000700
169 #define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */
171 /* We can't rely solely on the FAMID field to determine the MCU
172 * type since some FAMID values identify multiple MCUs with
173 * different flash sector sizes (K20 and K22 for instance).
174 * Therefore we combine it with the DIEID bits which may possibly
175 * break if Freescale bumps the DIEID for a particular MCU. */
176 #define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
177 #define KINETIS_K_SDID_K10_M50 0x00000000
178 #define KINETIS_K_SDID_K10_M72 0x00000080
179 #define KINETIS_K_SDID_K10_M100 0x00000100
180 #define KINETIS_K_SDID_K10_M120 0x00000180
181 #define KINETIS_K_SDID_K11 0x00000220
182 #define KINETIS_K_SDID_K12 0x00000200
183 #define KINETIS_K_SDID_K20_M50 0x00000010
184 #define KINETIS_K_SDID_K20_M72 0x00000090
185 #define KINETIS_K_SDID_K20_M100 0x00000110
186 #define KINETIS_K_SDID_K20_M120 0x00000190
187 #define KINETIS_K_SDID_K21_M50 0x00000230
188 #define KINETIS_K_SDID_K21_M120 0x00000330
189 #define KINETIS_K_SDID_K22_M50 0x00000210
190 #define KINETIS_K_SDID_K22_M120 0x00000310
191 #define KINETIS_K_SDID_K30_M72 0x000000A0
192 #define KINETIS_K_SDID_K30_M100 0x00000120
193 #define KINETIS_K_SDID_K40_M72 0x000000B0
194 #define KINETIS_K_SDID_K40_M100 0x00000130
195 #define KINETIS_K_SDID_K50_M72 0x000000E0
196 #define KINETIS_K_SDID_K51_M72 0x000000F0
197 #define KINETIS_K_SDID_K53 0x00000170
198 #define KINETIS_K_SDID_K60_M100 0x00000140
199 #define KINETIS_K_SDID_K60_M150 0x000001C0
200 #define KINETIS_K_SDID_K70_M150 0x000001D0
202 #define KINETIS_SDID_SERIESID_MASK 0x00F00000
203 #define KINETIS_SDID_SERIESID_K 0x00000000
204 #define KINETIS_SDID_SERIESID_KL 0x00100000
205 #define KINETIS_SDID_SERIESID_KE 0x00200000
206 #define KINETIS_SDID_SERIESID_KW 0x00500000
207 #define KINETIS_SDID_SERIESID_KV 0x00600000
209 #define KINETIS_SDID_SUBFAMID_SHIFT 24
210 #define KINETIS_SDID_SUBFAMID_MASK 0x0F000000
211 #define KINETIS_SDID_SUBFAMID_KX0 0x00000000
212 #define KINETIS_SDID_SUBFAMID_KX1 0x01000000
213 #define KINETIS_SDID_SUBFAMID_KX2 0x02000000
214 #define KINETIS_SDID_SUBFAMID_KX3 0x03000000
215 #define KINETIS_SDID_SUBFAMID_KX4 0x04000000
216 #define KINETIS_SDID_SUBFAMID_KX5 0x05000000
217 #define KINETIS_SDID_SUBFAMID_KX6 0x06000000
218 #define KINETIS_SDID_SUBFAMID_KX7 0x07000000
219 #define KINETIS_SDID_SUBFAMID_KX8 0x08000000
221 #define KINETIS_SDID_FAMILYID_SHIFT 28
222 #define KINETIS_SDID_FAMILYID_MASK 0xF0000000
223 #define KINETIS_SDID_FAMILYID_K0X 0x00000000
224 #define KINETIS_SDID_FAMILYID_K1X 0x10000000
225 #define KINETIS_SDID_FAMILYID_K2X 0x20000000
226 #define KINETIS_SDID_FAMILYID_K3X 0x30000000
227 #define KINETIS_SDID_FAMILYID_K4X 0x40000000
228 #define KINETIS_SDID_FAMILYID_K5X 0x50000000
229 #define KINETIS_SDID_FAMILYID_K6X 0x60000000
230 #define KINETIS_SDID_FAMILYID_K7X 0x70000000
231 #define KINETIS_SDID_FAMILYID_K8X 0x80000000
232 #define KINETIS_SDID_FAMILYID_KL8X 0x90000000
234 /* The field originally named DIEID has new name/meaning on KE1x */
235 #define KINETIS_SDID_PROJECTID_MASK KINETIS_SDID_DIEID_MASK
236 #define KINETIS_SDID_PROJECTID_KE1XF 0x00000080
237 #define KINETIS_SDID_PROJECTID_KE1XZ 0x00000100
239 struct kinetis_flash_bank {
240 struct kinetis_chip *k_chip;
241 bool probed;
242 unsigned bank_number; /* bank number in particular chip */
243 struct flash_bank *bank;
245 uint32_t sector_size;
246 uint32_t protection_size;
247 uint32_t prog_base; /* base address for FTFx operations */
248 /* usually same as bank->base for pflash, differs for FlexNVM */
249 uint32_t protection_block; /* number of first protection block in this bank */
251 enum {
252 FC_AUTO = 0,
253 FC_PFLASH,
254 FC_FLEX_NVM,
255 FC_FLEX_RAM,
256 } flash_class;
259 #define KINETIS_MAX_BANKS 4u
261 struct kinetis_chip {
262 struct target *target;
263 bool probed;
265 uint32_t sim_sdid;
266 uint32_t sim_fcfg1;
267 uint32_t sim_fcfg2;
268 uint32_t fcfg2_maxaddr0_shifted;
269 uint32_t fcfg2_maxaddr1_shifted;
271 unsigned num_pflash_blocks, num_nvm_blocks;
272 unsigned pflash_sector_size, nvm_sector_size;
273 unsigned max_flash_prog_size;
275 uint32_t pflash_base;
276 uint32_t pflash_size;
277 uint32_t nvm_base;
278 uint32_t nvm_size; /* whole FlexNVM */
279 uint32_t dflash_size; /* accessible rest of FlexNVM if EEPROM backup uses part of FlexNVM */
281 uint32_t progr_accel_ram;
282 uint32_t sim_base;
284 enum {
285 FS_PROGRAM_SECTOR = 1,
286 FS_PROGRAM_LONGWORD = 2,
287 FS_PROGRAM_PHRASE = 4, /* Unsupported */
289 FS_NO_CMD_BLOCKSTAT = 0x40,
290 FS_WIDTH_256BIT = 0x80,
291 FS_ECC = 0x100,
292 } flash_support;
294 enum {
295 KINETIS_CACHE_NONE,
296 KINETIS_CACHE_K, /* invalidate using FMC->PFB0CR/PFB01CR */
297 KINETIS_CACHE_L, /* invalidate using MCM->PLACR */
298 KINETIS_CACHE_MSCM, /* devices like KE1xF, invalidate MSCM->OCMDR0 */
299 } cache_type;
301 enum {
302 KINETIS_WDOG_NONE,
303 KINETIS_WDOG_K,
304 KINETIS_WDOG_COP,
305 KINETIS_WDOG32_KE1X,
306 KINETIS_WDOG32_KL28,
307 } watchdog_type;
309 enum {
310 KINETIS_SMC,
311 KINETIS_SMC32,
312 } sysmodectrlr_type;
314 char name[40];
316 unsigned num_banks;
317 struct kinetis_flash_bank banks[KINETIS_MAX_BANKS];
320 struct kinetis_type {
321 uint32_t sdid;
322 char *name;
325 static const struct kinetis_type kinetis_types_old[] = {
326 { KINETIS_K_SDID_K10_M50, "MK10D%s5" },
327 { KINETIS_K_SDID_K10_M72, "MK10D%s7" },
328 { KINETIS_K_SDID_K10_M100, "MK10D%s10" },
329 { KINETIS_K_SDID_K10_M120, "MK10F%s12" },
330 { KINETIS_K_SDID_K11, "MK11D%s5" },
331 { KINETIS_K_SDID_K12, "MK12D%s5" },
333 { KINETIS_K_SDID_K20_M50, "MK20D%s5" },
334 { KINETIS_K_SDID_K20_M72, "MK20D%s7" },
335 { KINETIS_K_SDID_K20_M100, "MK20D%s10" },
336 { KINETIS_K_SDID_K20_M120, "MK20F%s12" },
337 { KINETIS_K_SDID_K21_M50, "MK21D%s5" },
338 { KINETIS_K_SDID_K21_M120, "MK21F%s12" },
339 { KINETIS_K_SDID_K22_M50, "MK22D%s5" },
340 { KINETIS_K_SDID_K22_M120, "MK22F%s12" },
342 { KINETIS_K_SDID_K30_M72, "MK30D%s7" },
343 { KINETIS_K_SDID_K30_M100, "MK30D%s10" },
345 { KINETIS_K_SDID_K40_M72, "MK40D%s7" },
346 { KINETIS_K_SDID_K40_M100, "MK40D%s10" },
348 { KINETIS_K_SDID_K50_M72, "MK50D%s7" },
349 { KINETIS_K_SDID_K51_M72, "MK51D%s7" },
350 { KINETIS_K_SDID_K53, "MK53D%s10" },
352 { KINETIS_K_SDID_K60_M100, "MK60D%s10" },
353 { KINETIS_K_SDID_K60_M150, "MK60F%s15" },
355 { KINETIS_K_SDID_K70_M150, "MK70F%s15" },
359 #define MDM_AP 1
361 #define MDM_REG_STAT 0x00
362 #define MDM_REG_CTRL 0x04
363 #define MDM_REG_ID 0xfc
365 #define MDM_STAT_FMEACK (1<<0)
366 #define MDM_STAT_FREADY (1<<1)
367 #define MDM_STAT_SYSSEC (1<<2)
368 #define MDM_STAT_SYSRES (1<<3)
369 #define MDM_STAT_FMEEN (1<<5)
370 #define MDM_STAT_BACKDOOREN (1<<6)
371 #define MDM_STAT_LPEN (1<<7)
372 #define MDM_STAT_VLPEN (1<<8)
373 #define MDM_STAT_LLSMODEXIT (1<<9)
374 #define MDM_STAT_VLLSXMODEXIT (1<<10)
375 #define MDM_STAT_CORE_HALTED (1<<16)
376 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
377 #define MDM_STAT_CORESLEEPING (1<<18)
379 #define MDM_CTRL_FMEIP (1<<0)
380 #define MDM_CTRL_DBG_DIS (1<<1)
381 #define MDM_CTRL_DBG_REQ (1<<2)
382 #define MDM_CTRL_SYS_RES_REQ (1<<3)
383 #define MDM_CTRL_CORE_HOLD_RES (1<<4)
384 #define MDM_CTRL_VLLSX_DBG_REQ (1<<5)
385 #define MDM_CTRL_VLLSX_DBG_ACK (1<<6)
386 #define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
388 #define MDM_ACCESS_TIMEOUT 500 /* msec */
391 static bool allow_fcf_writes;
392 static uint8_t fcf_fopt = 0xff;
393 static bool create_banks;
396 const struct flash_driver kinetis_flash;
397 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
398 uint32_t offset, uint32_t count);
399 static int kinetis_probe_chip(struct kinetis_chip *k_chip);
400 static int kinetis_auto_probe(struct flash_bank *bank);
403 static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
405 LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
407 struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
408 if (!ap) {
409 LOG_DEBUG("MDM: failed to get AP");
410 return ERROR_FAIL;
413 int retval = dap_queue_ap_write(ap, reg, value);
414 if (retval != ERROR_OK) {
415 LOG_DEBUG("MDM: failed to queue a write request");
416 dap_put_ap(ap);
417 return retval;
420 retval = dap_run(dap);
421 dap_put_ap(ap);
422 if (retval != ERROR_OK) {
423 LOG_DEBUG("MDM: dap_run failed");
424 return retval;
428 return ERROR_OK;
431 static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
433 struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
434 if (!ap) {
435 LOG_DEBUG("MDM: failed to get AP");
436 return ERROR_FAIL;
439 int retval = dap_queue_ap_read(ap, reg, result);
440 if (retval != ERROR_OK) {
441 LOG_DEBUG("MDM: failed to queue a read request");
442 dap_put_ap(ap);
443 return retval;
446 retval = dap_run(dap);
447 dap_put_ap(ap);
448 if (retval != ERROR_OK) {
449 LOG_DEBUG("MDM: dap_run failed");
450 return retval;
453 LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
454 return ERROR_OK;
457 static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
458 uint32_t mask, uint32_t value, uint32_t timeout_ms)
460 uint32_t val;
461 int retval;
462 int64_t ms_timeout = timeval_ms() + timeout_ms;
464 do {
465 retval = kinetis_mdm_read_register(dap, reg, &val);
466 if (retval != ERROR_OK || (val & mask) == value)
467 return retval;
469 alive_sleep(1);
470 } while (timeval_ms() < ms_timeout);
472 LOG_DEBUG("MDM: polling timed out");
473 return ERROR_FAIL;
477 * This command can be used to break a watchdog reset loop when
478 * connecting to an unsecured target. Unlike other commands, halt will
479 * automatically retry as it does not know how far into the boot process
480 * it is when the command is called.
482 COMMAND_HANDLER(kinetis_mdm_halt)
484 struct target *target = get_current_target(CMD_CTX);
485 struct cortex_m_common *cortex_m = target_to_cm(target);
486 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
487 int retval;
488 int tries = 0;
489 uint32_t stat;
490 int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
492 if (!dap) {
493 LOG_ERROR("Cannot perform halt with a high-level adapter");
494 return ERROR_FAIL;
497 while (true) {
498 tries++;
500 kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
502 alive_sleep(1);
504 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
505 if (retval != ERROR_OK) {
506 LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
507 continue;
510 /* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
511 * reset with flash ready and without security
513 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
514 == (MDM_STAT_FREADY | MDM_STAT_SYSRES))
515 break;
517 if (timeval_ms() >= ms_timeout) {
518 LOG_ERROR("MDM: halt timed out");
519 return ERROR_FAIL;
523 LOG_DEBUG("MDM: halt succeeded after %d attempts.", tries);
525 target_poll(target);
526 /* enable polling in case kinetis_check_flash_security_status disabled it */
527 jtag_poll_set_enabled(true);
529 alive_sleep(100);
531 target->reset_halt = true;
532 target->type->assert_reset(target);
534 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
535 if (retval != ERROR_OK) {
536 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
537 return retval;
540 target->type->deassert_reset(target);
542 return ERROR_OK;
545 COMMAND_HANDLER(kinetis_mdm_reset)
547 struct target *target = get_current_target(CMD_CTX);
548 struct cortex_m_common *cortex_m = target_to_cm(target);
549 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
550 int retval;
552 if (!dap) {
553 LOG_ERROR("Cannot perform reset with a high-level adapter");
554 return ERROR_FAIL;
557 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
558 if (retval != ERROR_OK) {
559 LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
560 return retval;
563 retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
564 if (retval != ERROR_OK) {
565 LOG_ERROR("MDM: failed to assert reset");
566 return retval;
569 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
570 if (retval != ERROR_OK) {
571 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
572 return retval;
575 return ERROR_OK;
579 * This function implements the procedure to mass erase the flash via
580 * SWD/JTAG on Kinetis K and L series of devices as it is described in
581 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
582 * and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
583 * the core remains halted after this function completes as suggested
584 * by the application note.
586 COMMAND_HANDLER(kinetis_mdm_mass_erase)
588 struct target *target = get_current_target(CMD_CTX);
589 struct cortex_m_common *cortex_m = target_to_cm(target);
590 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
592 if (!dap) {
593 LOG_ERROR("Cannot perform mass erase with a high-level adapter");
594 return ERROR_FAIL;
597 int retval;
600 * ... Power on the processor, or if power has already been
601 * applied, assert the RESET pin to reset the processor. For
602 * devices that do not have a RESET pin, write the System
603 * Reset Request bit in the MDM-AP control register after
604 * establishing communication...
607 /* assert SRST if configured */
608 bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
609 if (has_srst)
610 adapter_assert_reset();
612 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
613 if (retval != ERROR_OK && !has_srst) {
614 LOG_ERROR("MDM: failed to assert reset");
615 goto deassert_reset_and_exit;
619 * ... Read the MDM-AP status register repeatedly and wait for
620 * stable conditions suitable for mass erase:
621 * - mass erase is enabled
622 * - flash is ready
623 * - reset is finished
625 * Mass erase is started as soon as all conditions are met in 32
626 * subsequent status reads.
628 * In case of not stable conditions (RESET/WDOG loop in secured device)
629 * the user is asked for manual pressing of RESET button
630 * as a last resort.
632 int cnt_mass_erase_disabled = 0;
633 int cnt_ready = 0;
634 int64_t ms_start = timeval_ms();
635 bool man_reset_requested = false;
637 do {
638 uint32_t stat = 0;
639 int64_t ms_elapsed = timeval_ms() - ms_start;
641 if (!man_reset_requested && ms_elapsed > 100) {
642 LOG_INFO("MDM: Press RESET button now if possible.");
643 man_reset_requested = true;
646 if (ms_elapsed > 3000) {
647 LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
648 LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
649 LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
650 goto deassert_reset_and_exit;
652 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
653 if (retval != ERROR_OK) {
654 cnt_ready = 0;
655 continue;
658 if (!(stat & MDM_STAT_FMEEN)) {
659 cnt_ready = 0;
660 cnt_mass_erase_disabled++;
661 if (cnt_mass_erase_disabled > 10) {
662 LOG_ERROR("MDM: mass erase is disabled");
663 goto deassert_reset_and_exit;
665 continue;
668 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
669 cnt_ready++;
670 else
671 cnt_ready = 0;
673 } while (cnt_ready < 32);
676 * ... Write the MDM-AP control register to set the Flash Mass
677 * Erase in Progress bit. This will start the mass erase
678 * process...
680 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
681 if (retval != ERROR_OK) {
682 LOG_ERROR("MDM: failed to start mass erase");
683 goto deassert_reset_and_exit;
687 * ... Read the MDM-AP control register until the Flash Mass
688 * Erase in Progress bit clears...
689 * Data sheed defines erase time <3.6 sec/512kB flash block.
690 * The biggest device has 4 pflash blocks => timeout 16 sec.
692 retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
693 if (retval != ERROR_OK) {
694 LOG_ERROR("MDM: mass erase timeout");
695 goto deassert_reset_and_exit;
698 target_poll(target);
699 /* enable polling in case kinetis_check_flash_security_status disabled it */
700 jtag_poll_set_enabled(true);
702 alive_sleep(100);
704 target->reset_halt = true;
705 target->type->assert_reset(target);
708 * ... Negate the RESET signal or clear the System Reset Request
709 * bit in the MDM-AP control register.
711 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
712 if (retval != ERROR_OK)
713 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
715 target->type->deassert_reset(target);
717 return retval;
719 deassert_reset_and_exit:
720 kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
721 if (has_srst)
722 adapter_deassert_reset();
723 return retval;
726 static const uint32_t kinetis_known_mdm_ids[] = {
727 0x001C0000, /* Kinetis-K Series */
728 0x001C0020, /* Kinetis-L/M/V/E Series */
729 0x001C0030, /* Kinetis with a Cortex-M7, in time of writing KV58 */
733 * This function implements the procedure to connect to
734 * SWD/JTAG on Kinetis K and L series of devices as it is described in
735 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
736 * and L-series MCUs" Section 4.1.1
738 COMMAND_HANDLER(kinetis_check_flash_security_status)
740 struct target *target = get_current_target(CMD_CTX);
741 struct cortex_m_common *cortex_m = target_to_cm(target);
742 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
744 if (!dap) {
745 LOG_WARNING("Cannot check flash security status with a high-level adapter");
746 return ERROR_OK;
749 if (!dap->ops)
750 return ERROR_OK; /* too early to check, in JTAG mode ops may not be initialised */
752 uint32_t val;
753 int retval;
756 * ... The MDM-AP ID register can be read to verify that the
757 * connection is working correctly...
759 retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
760 if (retval != ERROR_OK) {
761 LOG_ERROR("MDM: failed to read ID register");
762 return ERROR_OK;
765 if (val == 0)
766 return ERROR_OK; /* dap not yet initialised */
768 bool found = false;
769 for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
770 if (val == kinetis_known_mdm_ids[i]) {
771 found = true;
772 break;
776 if (!found)
777 LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
780 * ... Read the System Security bit to determine if security is enabled.
781 * If System Security = 0, then proceed. If System Security = 1, then
782 * communication with the internals of the processor, including the
783 * flash, will not be possible without issuing a mass erase command or
784 * unsecuring the part through other means (backdoor key unlock)...
786 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
787 if (retval != ERROR_OK) {
788 LOG_ERROR("MDM: failed to read MDM_REG_STAT");
789 return ERROR_OK;
793 * System Security bit is also active for short time during reset.
794 * If a MCU has blank flash and runs in RESET/WDOG loop,
795 * System Security bit is active most of time!
796 * We should observe Flash Ready bit and read status several times
797 * to avoid false detection of secured MCU
799 int secured_score = 0, flash_not_ready_score = 0;
801 if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
802 uint32_t stats[32];
803 struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
804 if (!ap) {
805 LOG_ERROR("MDM: failed to get AP");
806 return ERROR_OK;
809 for (unsigned int i = 0; i < 32; i++) {
810 stats[i] = MDM_STAT_FREADY;
811 dap_queue_ap_read(ap, MDM_REG_STAT, &stats[i]);
813 retval = dap_run(dap);
814 dap_put_ap(ap);
815 if (retval != ERROR_OK) {
816 LOG_DEBUG("MDM: dap_run failed when validating secured state");
817 return ERROR_OK;
819 for (unsigned int i = 0; i < 32; i++) {
820 if (stats[i] & MDM_STAT_SYSSEC)
821 secured_score++;
822 if (!(stats[i] & MDM_STAT_FREADY))
823 flash_not_ready_score++;
827 if (flash_not_ready_score <= 8 && secured_score > 24) {
828 jtag_poll_set_enabled(false);
830 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
831 LOG_WARNING("**** ****");
832 LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****");
833 LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****");
834 LOG_WARNING("**** interface will NOT work. In order to restore its ****");
835 LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****");
836 LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****");
837 LOG_WARNING("**** ****");
838 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
840 } else if (flash_not_ready_score > 24) {
841 jtag_poll_set_enabled(false);
842 LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
843 LOG_WARNING("**** Common reason is a blank flash (at least a reset vector). ****");
844 LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected ****");
845 LOG_WARNING("**** and configured, use 'reset halt' ****");
846 LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running ****");
847 LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase' ****");
849 } else {
850 LOG_INFO("MDM: Chip is unsecured. Continuing.");
851 jtag_poll_set_enabled(true);
854 return ERROR_OK;
858 static struct kinetis_chip *kinetis_get_chip(struct target *target)
860 struct flash_bank *bank_iter;
861 struct kinetis_flash_bank *k_bank;
863 /* iterate over all kinetis banks */
864 for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
865 if (bank_iter->driver != &kinetis_flash
866 || bank_iter->target != target)
867 continue;
869 k_bank = bank_iter->driver_priv;
870 if (!k_bank)
871 continue;
873 if (k_bank->k_chip)
874 return k_bank->k_chip;
876 return NULL;
879 static int kinetis_chip_options(struct kinetis_chip *k_chip, int argc, const char *argv[])
881 for (int i = 0; i < argc; i++) {
882 if (strcmp(argv[i], "-sim-base") == 0) {
883 if (i + 1 < argc)
884 k_chip->sim_base = strtoul(argv[++i], NULL, 0);
885 } else
886 LOG_ERROR("Unsupported flash bank option %s", argv[i]);
888 return ERROR_OK;
891 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
893 struct target *target = bank->target;
894 struct kinetis_chip *k_chip;
895 struct kinetis_flash_bank *k_bank;
896 int retval;
898 if (CMD_ARGC < 6)
899 return ERROR_COMMAND_SYNTAX_ERROR;
901 LOG_INFO("add flash_bank kinetis %s", bank->name);
903 k_chip = kinetis_get_chip(target);
905 if (!k_chip) {
906 k_chip = calloc(sizeof(struct kinetis_chip), 1);
907 if (!k_chip) {
908 LOG_ERROR("No memory");
909 return ERROR_FAIL;
912 k_chip->target = target;
914 /* only the first defined bank can define chip options */
915 retval = kinetis_chip_options(k_chip, CMD_ARGC - 6, CMD_ARGV + 6);
916 if (retval != ERROR_OK)
917 return retval;
920 if (k_chip->num_banks >= KINETIS_MAX_BANKS) {
921 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
922 return ERROR_FAIL;
925 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
926 k_bank->k_chip = k_chip;
927 k_bank->bank_number = k_chip->num_banks;
928 k_bank->bank = bank;
929 k_chip->num_banks++;
931 return ERROR_OK;
935 static void kinetis_free_driver_priv(struct flash_bank *bank)
937 struct kinetis_flash_bank *k_bank = bank->driver_priv;
938 if (!k_bank)
939 return;
941 struct kinetis_chip *k_chip = k_bank->k_chip;
942 if (!k_chip)
943 return;
945 k_chip->num_banks--;
946 if (k_chip->num_banks == 0)
947 free(k_chip);
951 static int kinetis_create_missing_banks(struct kinetis_chip *k_chip)
953 unsigned num_blocks;
954 struct kinetis_flash_bank *k_bank;
955 struct flash_bank *bank;
956 char base_name[69], name[80], num[4];
957 char *class, *p;
959 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
960 if (num_blocks > KINETIS_MAX_BANKS) {
961 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
962 return ERROR_FAIL;
965 bank = k_chip->banks[0].bank;
966 if (bank && bank->name) {
967 strncpy(base_name, bank->name, sizeof(base_name) - 1);
968 base_name[sizeof(base_name) - 1] = '\0';
969 p = strstr(base_name, ".pflash");
970 if (p) {
971 *p = '\0';
972 if (k_chip->num_pflash_blocks > 1) {
973 /* rename first bank if numbering is needed */
974 snprintf(name, sizeof(name), "%s.pflash0", base_name);
975 free(bank->name);
976 bank->name = strdup(name);
979 } else {
980 strncpy(base_name, target_name(k_chip->target), sizeof(base_name) - 1);
981 base_name[sizeof(base_name) - 1] = '\0';
982 p = strstr(base_name, ".cpu");
983 if (p)
984 *p = '\0';
987 for (unsigned int bank_idx = 1; bank_idx < num_blocks; bank_idx++) {
988 k_bank = &(k_chip->banks[bank_idx]);
989 bank = k_bank->bank;
991 if (bank)
992 continue;
994 num[0] = '\0';
996 if (bank_idx < k_chip->num_pflash_blocks) {
997 class = "pflash";
998 if (k_chip->num_pflash_blocks > 1)
999 snprintf(num, sizeof(num), "%u", bank_idx);
1000 } else {
1001 class = "flexnvm";
1002 if (k_chip->num_nvm_blocks > 1)
1003 snprintf(num, sizeof(num), "%u",
1004 bank_idx - k_chip->num_pflash_blocks);
1007 bank = calloc(sizeof(struct flash_bank), 1);
1008 if (!bank)
1009 return ERROR_FAIL;
1011 bank->target = k_chip->target;
1012 bank->driver = &kinetis_flash;
1013 bank->default_padded_value = bank->erased_value = 0xff;
1015 snprintf(name, sizeof(name), "%s.%s%s",
1016 base_name, class, num);
1017 bank->name = strdup(name);
1019 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
1020 k_bank->k_chip = k_chip;
1021 k_bank->bank_number = bank_idx;
1022 k_bank->bank = bank;
1023 if (k_chip->num_banks <= bank_idx)
1024 k_chip->num_banks = bank_idx + 1;
1026 flash_bank_add(bank);
1028 return ERROR_OK;
1032 static int kinetis_disable_wdog_algo(struct target *target, size_t code_size, const uint8_t *code, uint32_t wdog_base)
1034 struct working_area *wdog_algorithm;
1035 struct armv7m_algorithm armv7m_info;
1036 struct reg_param reg_params[1];
1037 int retval;
1039 if (target->state != TARGET_HALTED) {
1040 LOG_ERROR("Target not halted");
1041 return ERROR_TARGET_NOT_HALTED;
1044 retval = target_alloc_working_area(target, code_size, &wdog_algorithm);
1045 if (retval != ERROR_OK)
1046 return retval;
1048 retval = target_write_buffer(target, wdog_algorithm->address,
1049 code_size, code);
1050 if (retval == ERROR_OK) {
1051 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1052 armv7m_info.core_mode = ARM_MODE_THREAD;
1054 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1055 buf_set_u32(reg_params[0].value, 0, 32, wdog_base);
1057 retval = target_run_algorithm(target, 0, NULL, 1, reg_params,
1058 wdog_algorithm->address,
1059 wdog_algorithm->address + code_size - 2,
1060 500, &armv7m_info);
1062 destroy_reg_param(&reg_params[0]);
1064 if (retval != ERROR_OK)
1065 LOG_ERROR("Error executing Kinetis WDOG unlock algorithm");
1068 target_free_working_area(target, wdog_algorithm);
1070 return retval;
1073 /* Disable the watchdog on Kinetis devices
1074 * Standard Kx WDOG peripheral checks timing and therefore requires to run algo.
1076 static int kinetis_disable_wdog_kx(struct target *target)
1078 const uint32_t wdog_base = WDOG_BASE;
1079 uint16_t wdog;
1080 int retval;
1082 static const uint8_t kinetis_unlock_wdog_code[] = {
1083 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
1086 retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1087 if (retval != ERROR_OK)
1088 return retval;
1090 if ((wdog & 0x1) == 0) {
1091 /* watchdog already disabled */
1092 return ERROR_OK;
1094 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%04" PRIx16 ")", wdog);
1096 retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1097 if (retval != ERROR_OK)
1098 return retval;
1100 retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1101 if (retval != ERROR_OK)
1102 return retval;
1104 LOG_INFO("WDOG_STCTRLH = 0x%04" PRIx16, wdog);
1105 return (wdog & 0x1) ? ERROR_FAIL : ERROR_OK;
1108 static int kinetis_disable_wdog32(struct target *target, uint32_t wdog_base)
1110 uint32_t wdog_cs;
1111 int retval;
1113 static const uint8_t kinetis_unlock_wdog_code[] = {
1114 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog32.inc"
1117 retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1118 if (retval != ERROR_OK)
1119 return retval;
1121 if ((wdog_cs & 0x80) == 0)
1122 return ERROR_OK; /* watchdog already disabled */
1124 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_CS 0x%08" PRIx32 ")", wdog_cs);
1126 retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1127 if (retval != ERROR_OK)
1128 return retval;
1130 retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1131 if (retval != ERROR_OK)
1132 return retval;
1134 if ((wdog_cs & 0x80) == 0)
1135 return ERROR_OK; /* watchdog disabled successfully */
1137 LOG_ERROR("Cannot disable Kinetis watchdog (WDOG_CS 0x%08" PRIx32 "), issue 'reset init'", wdog_cs);
1138 return ERROR_FAIL;
1141 static int kinetis_disable_wdog(struct kinetis_chip *k_chip)
1143 struct target *target = k_chip->target;
1144 uint8_t sim_copc;
1145 int retval;
1147 if (!k_chip->probed) {
1148 retval = kinetis_probe_chip(k_chip);
1149 if (retval != ERROR_OK)
1150 return retval;
1153 switch (k_chip->watchdog_type) {
1154 case KINETIS_WDOG_K:
1155 return kinetis_disable_wdog_kx(target);
1157 case KINETIS_WDOG_COP:
1158 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1159 if (retval != ERROR_OK)
1160 return retval;
1162 if ((sim_copc & 0xc) == 0)
1163 return ERROR_OK; /* watchdog already disabled */
1165 LOG_INFO("Disabling Kinetis watchdog (initial SIM_COPC 0x%02" PRIx8 ")", sim_copc);
1166 retval = target_write_u8(target, SIM_COPC, sim_copc & ~0xc);
1167 if (retval != ERROR_OK)
1168 return retval;
1170 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1171 if (retval != ERROR_OK)
1172 return retval;
1174 if ((sim_copc & 0xc) == 0)
1175 return ERROR_OK; /* watchdog disabled successfully */
1177 LOG_ERROR("Cannot disable Kinetis watchdog (SIM_COPC 0x%02" PRIx8 "), issue 'reset init'", sim_copc);
1178 return ERROR_FAIL;
1180 case KINETIS_WDOG32_KE1X:
1181 return kinetis_disable_wdog32(target, WDOG32_KE1X);
1183 case KINETIS_WDOG32_KL28:
1184 return kinetis_disable_wdog32(target, WDOG32_KL28);
1186 default:
1187 return ERROR_OK;
1191 COMMAND_HANDLER(kinetis_disable_wdog_handler)
1193 int result;
1194 struct target *target = get_current_target(CMD_CTX);
1195 struct kinetis_chip *k_chip = kinetis_get_chip(target);
1197 if (!k_chip)
1198 return ERROR_FAIL;
1200 if (CMD_ARGC > 0)
1201 return ERROR_COMMAND_SYNTAX_ERROR;
1203 result = kinetis_disable_wdog(k_chip);
1204 return result;
1208 static int kinetis_ftfx_decode_error(uint8_t fstat)
1210 if (fstat & 0x20) {
1211 LOG_ERROR("Flash operation failed, illegal command");
1212 return ERROR_FLASH_OPER_UNSUPPORTED;
1214 } else if (fstat & 0x10)
1215 LOG_ERROR("Flash operation failed, protection violated");
1217 else if (fstat & 0x40)
1218 LOG_ERROR("Flash operation failed, read collision");
1220 else if (fstat & 0x80)
1221 return ERROR_OK;
1223 else
1224 LOG_ERROR("Flash operation timed out");
1226 return ERROR_FLASH_OPERATION_FAILED;
1229 static int kinetis_ftfx_clear_error(struct target *target)
1231 /* reset error flags */
1232 return target_write_u8(target, FTFX_FSTAT, 0x70);
1236 static int kinetis_ftfx_prepare(struct target *target)
1238 int result;
1239 uint8_t fstat;
1241 /* wait until busy */
1242 for (unsigned int i = 0; i < 50; i++) {
1243 result = target_read_u8(target, FTFX_FSTAT, &fstat);
1244 if (result != ERROR_OK)
1245 return result;
1247 if (fstat & 0x80)
1248 break;
1251 if ((fstat & 0x80) == 0) {
1252 LOG_ERROR("Flash controller is busy");
1253 return ERROR_FLASH_OPERATION_FAILED;
1255 if (fstat != 0x80) {
1256 /* reset error flags */
1257 result = kinetis_ftfx_clear_error(target);
1259 return result;
1262 /* Kinetis Program-LongWord Microcodes */
1263 static const uint8_t kinetis_flash_write_code[] = {
1264 #include "../../../contrib/loaders/flash/kinetis/kinetis_flash.inc"
1267 /* Program LongWord Block Write */
1268 static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
1269 uint32_t offset, uint32_t wcount)
1271 struct target *target = bank->target;
1272 uint32_t buffer_size;
1273 struct working_area *write_algorithm;
1274 struct working_area *source;
1275 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1276 uint32_t address = k_bank->prog_base + offset;
1277 uint32_t end_address;
1278 struct reg_param reg_params[5];
1279 struct armv7m_algorithm armv7m_info;
1280 int retval;
1281 uint8_t fstat;
1283 /* allocate working area with flash programming code */
1284 if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
1285 &write_algorithm) != ERROR_OK) {
1286 LOG_WARNING("no working area available, can't do block memory writes");
1287 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1290 retval = target_write_buffer(target, write_algorithm->address,
1291 sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
1292 if (retval != ERROR_OK)
1293 return retval;
1295 /* memory buffer, size *must* be multiple of word */
1296 buffer_size = target_get_working_area_avail(target) & ~(sizeof(uint32_t) - 1);
1297 if (buffer_size < 256) {
1298 LOG_WARNING("large enough working area not available, can't do block memory writes");
1299 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1300 } else if (buffer_size > 16384) {
1301 /* probably won't benefit from more than 16k ... */
1302 buffer_size = 16384;
1305 if (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
1306 LOG_ERROR("allocating working area failed");
1307 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1310 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1311 armv7m_info.core_mode = ARM_MODE_THREAD;
1313 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* address */
1314 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* word count */
1315 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1316 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1317 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1319 buf_set_u32(reg_params[0].value, 0, 32, address);
1320 buf_set_u32(reg_params[1].value, 0, 32, wcount);
1321 buf_set_u32(reg_params[2].value, 0, 32, source->address);
1322 buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
1323 buf_set_u32(reg_params[4].value, 0, 32, FTFX_FSTAT);
1325 retval = target_run_flash_async_algorithm(target, buffer, wcount, 4,
1326 0, NULL,
1327 5, reg_params,
1328 source->address, source->size,
1329 write_algorithm->address, 0,
1330 &armv7m_info);
1332 if (retval == ERROR_FLASH_OPERATION_FAILED) {
1333 end_address = buf_get_u32(reg_params[0].value, 0, 32);
1335 LOG_ERROR("Error writing flash at %08" PRIx32, end_address);
1337 retval = target_read_u8(target, FTFX_FSTAT, &fstat);
1338 if (retval == ERROR_OK) {
1339 retval = kinetis_ftfx_decode_error(fstat);
1341 /* reset error flags */
1342 target_write_u8(target, FTFX_FSTAT, 0x70);
1344 } else if (retval != ERROR_OK)
1345 LOG_ERROR("Error executing kinetis Flash programming algorithm");
1347 target_free_working_area(target, source);
1348 target_free_working_area(target, write_algorithm);
1350 destroy_reg_param(&reg_params[0]);
1351 destroy_reg_param(&reg_params[1]);
1352 destroy_reg_param(&reg_params[2]);
1353 destroy_reg_param(&reg_params[3]);
1354 destroy_reg_param(&reg_params[4]);
1356 return retval;
1359 static int kinetis_protect(struct flash_bank *bank, int set, unsigned int first,
1360 unsigned int last)
1362 if (allow_fcf_writes) {
1363 LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!");
1364 return ERROR_FAIL;
1367 if (!bank->prot_blocks || bank->num_prot_blocks == 0) {
1368 LOG_ERROR("No protection possible for current bank!");
1369 return ERROR_FLASH_BANK_INVALID;
1372 for (unsigned int i = first; i < bank->num_prot_blocks && i <= last; i++)
1373 bank->prot_blocks[i].is_protected = set;
1375 LOG_INFO("Protection bits will be written at the next FCF sector erase or write.");
1376 LOG_INFO("Do not issue 'flash info' command until protection is written,");
1377 LOG_INFO("doing so would re-read protection status from MCU.");
1379 return ERROR_OK;
1382 static int kinetis_protect_check(struct flash_bank *bank)
1384 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1385 int result;
1386 int b;
1387 uint32_t fprot;
1389 if (k_bank->flash_class == FC_PFLASH) {
1391 /* read protection register */
1392 result = target_read_u32(bank->target, FTFX_FPROT3, &fprot);
1393 if (result != ERROR_OK)
1394 return result;
1396 /* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
1398 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1399 uint8_t fdprot;
1401 /* read protection register */
1402 result = target_read_u8(bank->target, FTFX_FDPROT, &fdprot);
1403 if (result != ERROR_OK)
1404 return result;
1406 fprot = fdprot;
1408 } else {
1409 LOG_ERROR("Protection checks for FlexRAM not supported");
1410 return ERROR_FLASH_BANK_INVALID;
1413 b = k_bank->protection_block;
1414 for (unsigned int i = 0; i < bank->num_prot_blocks; i++) {
1415 if ((fprot >> b) & 1)
1416 bank->prot_blocks[i].is_protected = 0;
1417 else
1418 bank->prot_blocks[i].is_protected = 1;
1420 b++;
1423 return ERROR_OK;
1427 static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf)
1429 uint32_t fprot = 0xffffffff;
1430 uint8_t fsec = 0xfe; /* set MCU unsecure */
1431 uint8_t fdprot = 0xff;
1432 unsigned num_blocks;
1433 uint32_t pflash_bit;
1434 uint8_t dflash_bit;
1435 struct flash_bank *bank_iter;
1436 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1437 struct kinetis_chip *k_chip = k_bank->k_chip;
1439 memset(fcf, 0xff, FCF_SIZE);
1441 pflash_bit = 1;
1442 dflash_bit = 1;
1444 /* iterate over all kinetis banks */
1445 /* current bank is bank 0, it contains FCF */
1446 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
1447 for (unsigned int bank_idx = 0; bank_idx < num_blocks; bank_idx++) {
1448 k_bank = &(k_chip->banks[bank_idx]);
1449 bank_iter = k_bank->bank;
1451 if (!bank_iter) {
1452 LOG_WARNING("Missing bank %u configuration, FCF protection flags may be incomplete", bank_idx);
1453 continue;
1456 kinetis_auto_probe(bank_iter);
1458 assert(bank_iter->prot_blocks);
1460 if (k_bank->flash_class == FC_PFLASH) {
1461 for (unsigned int i = 0; i < bank_iter->num_prot_blocks; i++) {
1462 if (bank_iter->prot_blocks[i].is_protected == 1)
1463 fprot &= ~pflash_bit;
1465 pflash_bit <<= 1;
1468 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1469 for (unsigned int i = 0; i < bank_iter->num_prot_blocks; i++) {
1470 if (bank_iter->prot_blocks[i].is_protected == 1)
1471 fdprot &= ~dflash_bit;
1473 dflash_bit <<= 1;
1479 target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot);
1480 fcf[FCF_FSEC] = fsec;
1481 fcf[FCF_FOPT] = fcf_fopt;
1482 fcf[FCF_FDPROT] = fdprot;
1483 return ERROR_OK;
1486 static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
1487 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
1488 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
1489 uint8_t *ftfx_fstat)
1491 uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
1492 fccob7, fccob6, fccob5, fccob4,
1493 fccobb, fccoba, fccob9, fccob8};
1494 int result;
1495 uint8_t fstat;
1496 int64_t ms_timeout = timeval_ms() + 250;
1498 result = target_write_memory(target, FTFX_FCCOB3, 4, 3, command);
1499 if (result != ERROR_OK)
1500 return result;
1502 /* start command */
1503 result = target_write_u8(target, FTFX_FSTAT, 0x80);
1504 if (result != ERROR_OK)
1505 return result;
1507 /* wait for done */
1508 do {
1509 result = target_read_u8(target, FTFX_FSTAT, &fstat);
1511 if (result != ERROR_OK)
1512 return result;
1514 if (fstat & 0x80)
1515 break;
1517 } while (timeval_ms() < ms_timeout);
1519 if (ftfx_fstat)
1520 *ftfx_fstat = fstat;
1522 if ((fstat & 0xf0) != 0x80) {
1523 LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
1524 fstat, command[3], command[2], command[1], command[0],
1525 command[7], command[6], command[5], command[4],
1526 command[11], command[10], command[9], command[8]);
1528 return kinetis_ftfx_decode_error(fstat);
1531 return ERROR_OK;
1535 static int kinetis_read_pmstat(struct kinetis_chip *k_chip, uint8_t *pmstat)
1537 int result;
1538 uint32_t stat32;
1539 struct target *target = k_chip->target;
1541 switch (k_chip->sysmodectrlr_type) {
1542 case KINETIS_SMC:
1543 result = target_read_u8(target, SMC_PMSTAT, pmstat);
1544 return result;
1546 case KINETIS_SMC32:
1547 result = target_read_u32(target, SMC32_PMSTAT, &stat32);
1548 if (result == ERROR_OK)
1549 *pmstat = stat32 & 0xff;
1550 return result;
1552 return ERROR_FAIL;
1555 static int kinetis_check_run_mode(struct kinetis_chip *k_chip)
1557 int result;
1558 uint8_t pmstat;
1559 struct target *target;
1561 if (!k_chip) {
1562 LOG_ERROR("Chip not probed.");
1563 return ERROR_FAIL;
1565 target = k_chip->target;
1567 if (target->state != TARGET_HALTED) {
1568 LOG_ERROR("Target not halted");
1569 return ERROR_TARGET_NOT_HALTED;
1572 result = kinetis_read_pmstat(k_chip, &pmstat);
1573 if (result != ERROR_OK)
1574 return result;
1576 if (pmstat == PM_STAT_RUN)
1577 return ERROR_OK;
1579 if (pmstat == PM_STAT_VLPR) {
1580 /* It is safe to switch from VLPR to RUN mode without changing clock */
1581 LOG_INFO("Switching from VLPR to RUN mode.");
1583 switch (k_chip->sysmodectrlr_type) {
1584 case KINETIS_SMC:
1585 result = target_write_u8(target, SMC_PMCTRL, PM_CTRL_RUNM_RUN);
1586 break;
1588 case KINETIS_SMC32:
1589 result = target_write_u32(target, SMC32_PMCTRL, PM_CTRL_RUNM_RUN);
1590 break;
1592 if (result != ERROR_OK)
1593 return result;
1595 for (unsigned int i = 100; i > 0; i--) {
1596 result = kinetis_read_pmstat(k_chip, &pmstat);
1597 if (result != ERROR_OK)
1598 return result;
1600 if (pmstat == PM_STAT_RUN)
1601 return ERROR_OK;
1605 LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
1606 LOG_ERROR("Issue a 'reset init' command.");
1607 return ERROR_TARGET_NOT_HALTED;
1611 static void kinetis_invalidate_flash_cache(struct kinetis_chip *k_chip)
1613 struct target *target = k_chip->target;
1615 switch (k_chip->cache_type) {
1616 case KINETIS_CACHE_K:
1617 target_write_u8(target, FMC_PFB01CR + 2, 0xf0);
1618 /* Set CINV_WAY bits - request invalidate of all cache ways */
1619 /* FMC_PFB0CR has same address and CINV_WAY bits as FMC_PFB01CR */
1620 break;
1622 case KINETIS_CACHE_L:
1623 target_write_u8(target, MCM_PLACR + 1, 0x04);
1624 /* set bit CFCC - Clear Flash Controller Cache */
1625 break;
1627 case KINETIS_CACHE_MSCM:
1628 target_write_u32(target, MSCM_OCMDR0, 0x30);
1629 /* disable data prefetch and flash speculate */
1630 break;
1632 default:
1633 break;
1638 static int kinetis_erase(struct flash_bank *bank, unsigned int first,
1639 unsigned int last)
1641 int result;
1642 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1643 struct kinetis_chip *k_chip = k_bank->k_chip;
1645 result = kinetis_check_run_mode(k_chip);
1646 if (result != ERROR_OK)
1647 return result;
1649 /* reset error flags */
1650 result = kinetis_ftfx_prepare(bank->target);
1651 if (result != ERROR_OK)
1652 return result;
1654 if ((first > bank->num_sectors) || (last > bank->num_sectors))
1655 return ERROR_FLASH_OPERATION_FAILED;
1658 * FIXME: TODO: use the 'Erase Flash Block' command if the
1659 * requested erase is PFlash or NVM and encompasses the entire
1660 * block. Should be quicker.
1662 for (unsigned int i = first; i <= last; i++) {
1663 /* set command and sector address */
1664 result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTERASE, k_bank->prog_base + bank->sectors[i].offset,
1665 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1667 if (result != ERROR_OK) {
1668 LOG_WARNING("erase sector %u failed", i);
1669 return ERROR_FLASH_OPERATION_FAILED;
1672 if (k_bank->prog_base == 0
1673 && bank->sectors[i].offset <= FCF_ADDRESS
1674 && bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) {
1675 if (allow_fcf_writes) {
1676 LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device");
1677 LOG_WARNING("until correct FCF is programmed or MCU gets security lock.");
1678 } else {
1679 uint8_t fcf_buffer[FCF_SIZE];
1681 kinetis_fill_fcf(bank, fcf_buffer);
1682 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1683 if (result != ERROR_OK)
1684 LOG_WARNING("Flash Configuration Field write failed");
1685 else
1686 LOG_DEBUG("Generated FCF written");
1691 kinetis_invalidate_flash_cache(k_bank->k_chip);
1693 return ERROR_OK;
1696 static int kinetis_make_ram_ready(struct target *target)
1698 int result;
1699 uint8_t ftfx_fcnfg;
1701 /* check if ram ready */
1702 result = target_read_u8(target, FTFX_FCNFG, &ftfx_fcnfg);
1703 if (result != ERROR_OK)
1704 return result;
1706 if (ftfx_fcnfg & (1 << 1))
1707 return ERROR_OK; /* ram ready */
1709 /* make flex ram available */
1710 result = kinetis_ftfx_command(target, FTFX_CMD_SETFLEXRAM, 0x00ff0000,
1711 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1712 if (result != ERROR_OK)
1713 return ERROR_FLASH_OPERATION_FAILED;
1715 /* check again */
1716 result = target_read_u8(target, FTFX_FCNFG, &ftfx_fcnfg);
1717 if (result != ERROR_OK)
1718 return result;
1720 if (ftfx_fcnfg & (1 << 1))
1721 return ERROR_OK; /* ram ready */
1723 return ERROR_FLASH_OPERATION_FAILED;
1727 static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer,
1728 uint32_t offset, uint32_t count)
1730 int result = ERROR_OK;
1731 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1732 struct kinetis_chip *k_chip = k_bank->k_chip;
1733 uint8_t *buffer_aligned = NULL;
1735 * Kinetis uses different terms for the granularity of
1736 * sector writes, e.g. "phrase" or "128 bits". We use
1737 * the generic term "chunk". The largest possible
1738 * Kinetis "chunk" is 16 bytes (128 bits).
1740 uint32_t prog_section_chunk_bytes = k_bank->sector_size >> 8;
1741 uint32_t prog_size_bytes = k_chip->max_flash_prog_size;
1743 while (count > 0) {
1744 uint32_t size = prog_size_bytes - offset % prog_size_bytes;
1745 uint32_t align_begin = offset % prog_section_chunk_bytes;
1746 uint32_t align_end;
1747 uint32_t size_aligned;
1748 uint16_t chunk_count;
1749 uint8_t ftfx_fstat;
1751 if (size > count)
1752 size = count;
1754 align_end = (align_begin + size) % prog_section_chunk_bytes;
1755 if (align_end)
1756 align_end = prog_section_chunk_bytes - align_end;
1758 size_aligned = align_begin + size + align_end;
1759 chunk_count = size_aligned / prog_section_chunk_bytes;
1761 if (size != size_aligned) {
1762 /* aligned section: the first, the last or the only */
1763 if (!buffer_aligned)
1764 buffer_aligned = malloc(prog_size_bytes);
1766 memset(buffer_aligned, 0xff, size_aligned);
1767 memcpy(buffer_aligned + align_begin, buffer, size);
1769 result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1770 4, size_aligned / 4, buffer_aligned);
1772 LOG_DEBUG("section @ " TARGET_ADDR_FMT " aligned begin %" PRIu32
1773 ", end %" PRIu32,
1774 bank->base + offset, align_begin, align_end);
1775 } else
1776 result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1777 4, size_aligned / 4, buffer);
1779 LOG_DEBUG("write section @ " TARGET_ADDR_FMT " with length %" PRIu32
1780 " bytes",
1781 bank->base + offset, size);
1783 if (result != ERROR_OK) {
1784 LOG_ERROR("target_write_memory failed");
1785 break;
1788 /* execute section-write command */
1789 result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTWRITE,
1790 k_bank->prog_base + offset - align_begin,
1791 chunk_count>>8, chunk_count, 0, 0,
1792 0, 0, 0, 0, &ftfx_fstat);
1794 if (result != ERROR_OK) {
1795 LOG_ERROR("Error writing section at " TARGET_ADDR_FMT,
1796 bank->base + offset);
1797 break;
1800 if (ftfx_fstat & 0x01) {
1801 LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1802 bank->base + offset);
1803 if (k_bank->prog_base == 0 && offset == FCF_ADDRESS + FCF_SIZE
1804 && (k_chip->flash_support & FS_WIDTH_256BIT)) {
1805 LOG_ERROR("Flash write immediately after the end of Flash Config Field shows error");
1806 LOG_ERROR("because the flash memory is 256 bits wide (data were written correctly).");
1807 LOG_ERROR("Either change the linker script to add a gap of 16 bytes after FCF");
1808 LOG_ERROR("or set 'kinetis fcf_source write'");
1812 buffer += size;
1813 offset += size;
1814 count -= size;
1816 keep_alive();
1819 free(buffer_aligned);
1820 return result;
1824 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
1825 uint32_t offset, uint32_t count)
1827 int result;
1828 bool fallback = false;
1829 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1830 struct kinetis_chip *k_chip = k_bank->k_chip;
1832 if (!(k_chip->flash_support & FS_PROGRAM_SECTOR)) {
1833 /* fallback to longword write */
1834 fallback = true;
1835 LOG_INFO("This device supports Program Longword execution only.");
1836 } else {
1837 result = kinetis_make_ram_ready(bank->target);
1838 if (result != ERROR_OK) {
1839 fallback = true;
1840 LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
1844 LOG_DEBUG("flash write @ " TARGET_ADDR_FMT, bank->base + offset);
1846 if (!fallback) {
1847 /* program section command */
1848 kinetis_write_sections(bank, buffer, offset, count);
1849 } else if (k_chip->flash_support & FS_PROGRAM_LONGWORD) {
1850 /* program longword command, not supported in FTFE */
1851 uint8_t *new_buffer = NULL;
1853 /* check word alignment */
1854 if (offset & 0x3) {
1855 LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
1856 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
1859 if (count & 0x3) {
1860 uint32_t old_count = count;
1861 count = (old_count | 3) + 1;
1862 new_buffer = malloc(count);
1863 if (!new_buffer) {
1864 LOG_ERROR("odd number of bytes to write and no memory "
1865 "for padding buffer");
1866 return ERROR_FAIL;
1868 LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
1869 "and padding with 0xff", old_count, count);
1870 memset(new_buffer + old_count, 0xff, count - old_count);
1871 buffer = memcpy(new_buffer, buffer, old_count);
1874 uint32_t words_remaining = count / 4;
1876 kinetis_disable_wdog(k_chip);
1878 /* try using a block write */
1879 result = kinetis_write_block(bank, buffer, offset, words_remaining);
1881 if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1882 /* if block write failed (no sufficient working area),
1883 * we use normal (slow) single word accesses */
1884 LOG_WARNING("couldn't use block writes, falling back to single "
1885 "memory accesses");
1887 while (words_remaining) {
1888 uint8_t ftfx_fstat;
1890 LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
1892 result = kinetis_ftfx_command(bank->target, FTFX_CMD_LWORDPROG, k_bank->prog_base + offset,
1893 buffer[3], buffer[2], buffer[1], buffer[0],
1894 0, 0, 0, 0, &ftfx_fstat);
1896 if (result != ERROR_OK) {
1897 LOG_ERROR("Error writing longword at " TARGET_ADDR_FMT,
1898 bank->base + offset);
1899 break;
1902 if (ftfx_fstat & 0x01)
1903 LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1904 bank->base + offset);
1906 buffer += 4;
1907 offset += 4;
1908 words_remaining--;
1910 keep_alive();
1913 free(new_buffer);
1914 } else {
1915 LOG_ERROR("Flash write strategy not implemented");
1916 return ERROR_FLASH_OPERATION_FAILED;
1919 kinetis_invalidate_flash_cache(k_chip);
1920 return result;
1924 static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
1925 uint32_t offset, uint32_t count)
1927 int result;
1928 bool set_fcf = false;
1929 bool fcf_in_data_valid = false;
1930 bool fcf_differs = false;
1931 int sect = 0;
1932 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1933 struct kinetis_chip *k_chip = k_bank->k_chip;
1934 uint8_t fcf_buffer[FCF_SIZE];
1935 uint8_t fcf_current[FCF_SIZE];
1936 uint8_t fcf_in_data[FCF_SIZE];
1938 result = kinetis_check_run_mode(k_chip);
1939 if (result != ERROR_OK)
1940 return result;
1942 /* reset error flags */
1943 result = kinetis_ftfx_prepare(bank->target);
1944 if (result != ERROR_OK)
1945 return result;
1947 if (k_bank->prog_base == 0 && !allow_fcf_writes) {
1948 if (bank->sectors[1].offset <= FCF_ADDRESS)
1949 sect = 1; /* 1kb sector, FCF in 2nd sector */
1951 if (offset < bank->sectors[sect].offset + bank->sectors[sect].size
1952 && offset + count > bank->sectors[sect].offset)
1953 set_fcf = true; /* write to any part of sector with FCF */
1956 if (set_fcf) {
1957 kinetis_fill_fcf(bank, fcf_buffer);
1959 fcf_in_data_valid = offset <= FCF_ADDRESS
1960 && offset + count >= FCF_ADDRESS + FCF_SIZE;
1961 if (fcf_in_data_valid) {
1962 memcpy(fcf_in_data, buffer + FCF_ADDRESS - offset, FCF_SIZE);
1963 if (memcmp(fcf_in_data, fcf_buffer, 8)) {
1964 fcf_differs = true;
1965 LOG_INFO("Setting of backdoor key is not supported in mode 'kinetis fcf_source protection'.");
1967 if (memcmp(fcf_in_data + FCF_FPROT, fcf_buffer + FCF_FPROT, 4)) {
1968 fcf_differs = true;
1969 LOG_INFO("Flash protection requested in the programmed file differs from current setting.");
1971 if (fcf_in_data[FCF_FDPROT] != fcf_buffer[FCF_FDPROT]) {
1972 fcf_differs = true;
1973 LOG_INFO("Data flash protection requested in the programmed file differs from current setting.");
1975 if ((fcf_in_data[FCF_FSEC] & 3) != 2) {
1976 fcf_in_data_valid = false;
1977 LOG_INFO("Device security requested in the programmed file! Write denied.");
1978 } else if (fcf_in_data[FCF_FSEC] != fcf_buffer[FCF_FSEC]) {
1979 fcf_differs = true;
1980 LOG_INFO("Strange unsecure mode 0x%02" PRIx8
1981 " requested in the programmed file, set FSEC = 0x%02" PRIx8
1982 " in the startup code!",
1983 fcf_in_data[FCF_FSEC], fcf_buffer[FCF_FSEC]);
1985 if (fcf_in_data[FCF_FOPT] != fcf_buffer[FCF_FOPT]) {
1986 fcf_differs = true;
1987 LOG_INFO("FOPT requested in the programmed file differs from current setting, set 'kinetis fopt 0x%02"
1988 PRIx8 "'.", fcf_in_data[FCF_FOPT]);
1991 /* If the device has ECC flash, then we cannot re-program FCF */
1992 if (fcf_differs) {
1993 if (k_chip->flash_support & FS_ECC) {
1994 fcf_in_data_valid = false;
1995 LOG_INFO("Cannot re-program FCF. Expect verify errors at FCF (0x400-0x40f).");
1996 } else {
1997 LOG_INFO("Trying to re-program FCF.");
1998 if (!(k_chip->flash_support & FS_PROGRAM_LONGWORD))
1999 LOG_INFO("Flash re-programming may fail on this device!");
2005 if (set_fcf && !fcf_in_data_valid) {
2006 if (offset < FCF_ADDRESS) {
2007 /* write part preceding FCF */
2008 result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset);
2009 if (result != ERROR_OK)
2010 return result;
2013 result = target_read_memory(bank->target, bank->base + FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current);
2014 if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0)
2015 set_fcf = false;
2017 if (set_fcf) {
2018 /* write FCF if differs from flash - eliminate multiple writes */
2019 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
2020 if (result != ERROR_OK)
2021 return result;
2024 LOG_WARNING("Flash Configuration Field written.");
2025 LOG_WARNING("Reset or power off the device to make settings effective.");
2027 if (offset + count > FCF_ADDRESS + FCF_SIZE) {
2028 uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset;
2029 /* write part after FCF */
2030 result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta);
2032 return result;
2034 } else {
2035 /* no FCF fiddling, normal write */
2036 return kinetis_write_inner(bank, buffer, offset, count);
2041 static int kinetis_probe_chip(struct kinetis_chip *k_chip)
2043 int result;
2044 uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
2045 uint8_t fcfg2_pflsh;
2046 uint32_t ee_size = 0;
2047 uint32_t pflash_size_k, nvm_size_k, dflash_size_k;
2048 uint32_t pflash_size_m;
2049 unsigned num_blocks = 0;
2050 unsigned maxaddr_shift = 13;
2051 struct target *target = k_chip->target;
2053 unsigned familyid = 0, subfamid = 0;
2054 unsigned cpu_mhz = 120;
2055 bool use_nvm_marking = false;
2056 char flash_marking[12], nvm_marking[2];
2057 char name[40];
2059 k_chip->probed = false;
2060 k_chip->pflash_sector_size = 0;
2061 k_chip->pflash_base = 0;
2062 k_chip->nvm_base = 0x10000000;
2063 k_chip->progr_accel_ram = FLEXRAM;
2065 name[0] = '\0';
2067 if (k_chip->sim_base)
2068 result = target_read_u32(target, k_chip->sim_base + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2069 else {
2070 result = target_read_u32(target, SIM_BASE + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2071 if (result == ERROR_OK)
2072 k_chip->sim_base = SIM_BASE;
2073 else {
2074 result = target_read_u32(target, SIM_BASE_KL28 + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2075 if (result == ERROR_OK)
2076 k_chip->sim_base = SIM_BASE_KL28;
2079 if (result != ERROR_OK)
2080 return result;
2082 if ((k_chip->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
2083 /* older K-series MCU */
2084 uint32_t mcu_type = k_chip->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
2085 k_chip->cache_type = KINETIS_CACHE_K;
2086 k_chip->watchdog_type = KINETIS_WDOG_K;
2088 switch (mcu_type) {
2089 case KINETIS_K_SDID_K10_M50:
2090 case KINETIS_K_SDID_K20_M50:
2091 /* 1kB sectors */
2092 k_chip->pflash_sector_size = 1<<10;
2093 k_chip->nvm_sector_size = 1<<10;
2094 num_blocks = 2;
2095 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2096 break;
2097 case KINETIS_K_SDID_K10_M72:
2098 case KINETIS_K_SDID_K20_M72:
2099 case KINETIS_K_SDID_K30_M72:
2100 case KINETIS_K_SDID_K30_M100:
2101 case KINETIS_K_SDID_K40_M72:
2102 case KINETIS_K_SDID_K40_M100:
2103 case KINETIS_K_SDID_K50_M72:
2104 /* 2kB sectors, 1kB FlexNVM sectors */
2105 k_chip->pflash_sector_size = 2<<10;
2106 k_chip->nvm_sector_size = 1<<10;
2107 num_blocks = 2;
2108 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2109 k_chip->max_flash_prog_size = 1<<10;
2110 break;
2111 case KINETIS_K_SDID_K10_M100:
2112 case KINETIS_K_SDID_K20_M100:
2113 case KINETIS_K_SDID_K11:
2114 case KINETIS_K_SDID_K12:
2115 case KINETIS_K_SDID_K21_M50:
2116 case KINETIS_K_SDID_K22_M50:
2117 case KINETIS_K_SDID_K51_M72:
2118 case KINETIS_K_SDID_K53:
2119 case KINETIS_K_SDID_K60_M100:
2120 /* 2kB sectors */
2121 k_chip->pflash_sector_size = 2<<10;
2122 k_chip->nvm_sector_size = 2<<10;
2123 num_blocks = 2;
2124 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2125 break;
2126 case KINETIS_K_SDID_K21_M120:
2127 case KINETIS_K_SDID_K22_M120:
2128 /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
2129 k_chip->pflash_sector_size = 4<<10;
2130 k_chip->max_flash_prog_size = 1<<10;
2131 k_chip->nvm_sector_size = 4<<10;
2132 num_blocks = 2;
2133 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2134 break;
2135 case KINETIS_K_SDID_K10_M120:
2136 case KINETIS_K_SDID_K20_M120:
2137 case KINETIS_K_SDID_K60_M150:
2138 case KINETIS_K_SDID_K70_M150:
2139 /* 4kB sectors */
2140 k_chip->pflash_sector_size = 4<<10;
2141 k_chip->nvm_sector_size = 4<<10;
2142 num_blocks = 4;
2143 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2144 break;
2145 default:
2146 LOG_ERROR("Unsupported K-family FAMID");
2149 for (size_t idx = 0; idx < ARRAY_SIZE(kinetis_types_old); idx++) {
2150 if (kinetis_types_old[idx].sdid == mcu_type) {
2151 strcpy(name, kinetis_types_old[idx].name);
2152 use_nvm_marking = true;
2153 break;
2157 } else {
2158 /* Newer K-series or KL series MCU */
2159 familyid = (k_chip->sim_sdid & KINETIS_SDID_FAMILYID_MASK) >> KINETIS_SDID_FAMILYID_SHIFT;
2160 subfamid = (k_chip->sim_sdid & KINETIS_SDID_SUBFAMID_MASK) >> KINETIS_SDID_SUBFAMID_SHIFT;
2162 switch (k_chip->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
2163 case KINETIS_SDID_SERIESID_K:
2164 use_nvm_marking = true;
2165 k_chip->cache_type = KINETIS_CACHE_K;
2166 k_chip->watchdog_type = KINETIS_WDOG_K;
2168 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2169 case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
2170 /* K02FN64, K02FN128: FTFA, 2kB sectors */
2171 k_chip->pflash_sector_size = 2<<10;
2172 num_blocks = 1;
2173 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2174 cpu_mhz = 100;
2175 break;
2177 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
2178 /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
2179 uint32_t sopt1;
2180 result = target_read_u32(target, k_chip->sim_base + SIM_SOPT1_OFFSET, &sopt1);
2181 if (result != ERROR_OK)
2182 return result;
2184 if (((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
2185 ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
2186 /* MK24FN1M */
2187 k_chip->pflash_sector_size = 4<<10;
2188 num_blocks = 2;
2189 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2190 k_chip->max_flash_prog_size = 1<<10;
2191 subfamid = 4; /* errata 1N83J fix */
2192 break;
2194 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
2195 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
2196 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
2197 /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
2198 k_chip->pflash_sector_size = 2<<10;
2199 /* autodetect 1 or 2 blocks */
2200 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2201 break;
2203 LOG_ERROR("Unsupported Kinetis K22 DIEID");
2204 break;
2206 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
2207 k_chip->pflash_sector_size = 4<<10;
2208 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
2209 /* K24FN256 - smaller pflash with FTFA */
2210 num_blocks = 1;
2211 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2212 break;
2214 /* K24FN1M without errata 7534 */
2215 num_blocks = 2;
2216 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2217 k_chip->max_flash_prog_size = 1<<10;
2218 break;
2220 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */
2221 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */
2222 subfamid += 2; /* errata 7534 fix */
2223 /* fallthrough */
2224 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
2225 /* K63FN1M0 */
2226 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
2227 /* K64FN1M0, K64FX512 */
2228 k_chip->pflash_sector_size = 4<<10;
2229 k_chip->nvm_sector_size = 4<<10;
2230 k_chip->max_flash_prog_size = 1<<10;
2231 num_blocks = 2;
2232 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2233 break;
2235 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
2236 /* K26FN2M0 */
2237 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
2238 /* K66FN2M0, K66FX1M0 */
2239 k_chip->pflash_sector_size = 4<<10;
2240 k_chip->nvm_sector_size = 4<<10;
2241 k_chip->max_flash_prog_size = 1<<10;
2242 num_blocks = 4;
2243 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2244 cpu_mhz = 180;
2245 break;
2247 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX7:
2248 /* K27FN2M0 */
2249 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2250 /* K28FN2M0 */
2251 k_chip->pflash_sector_size = 4<<10;
2252 k_chip->max_flash_prog_size = 1<<10;
2253 num_blocks = 4;
2254 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2255 cpu_mhz = 150;
2256 break;
2258 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX0:
2259 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX1:
2260 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX2:
2261 /* K80FN256, K81FN256, K82FN256 */
2262 k_chip->pflash_sector_size = 4<<10;
2263 num_blocks = 1;
2264 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2265 cpu_mhz = 150;
2266 break;
2268 case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX1:
2269 case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX2:
2270 /* KL81Z128, KL82Z128 */
2271 k_chip->pflash_sector_size = 2<<10;
2272 num_blocks = 1;
2273 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2274 k_chip->cache_type = KINETIS_CACHE_L;
2276 use_nvm_marking = false;
2277 snprintf(name, sizeof(name), "MKL8%uZ%%s7",
2278 subfamid);
2279 break;
2281 default:
2282 LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
2285 if (name[0] == '\0')
2286 snprintf(name, sizeof(name), "MK%u%uF%%s%u",
2287 familyid, subfamid, cpu_mhz / 10);
2288 break;
2290 case KINETIS_SDID_SERIESID_KL:
2291 /* KL-series */
2292 k_chip->pflash_sector_size = 1<<10;
2293 k_chip->nvm_sector_size = 1<<10;
2294 /* autodetect 1 or 2 blocks */
2295 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2296 k_chip->cache_type = KINETIS_CACHE_L;
2297 k_chip->watchdog_type = KINETIS_WDOG_COP;
2299 cpu_mhz = 48;
2300 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2301 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX3:
2302 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX3:
2303 subfamid = 7;
2304 break;
2306 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2307 cpu_mhz = 72;
2308 k_chip->pflash_sector_size = 2<<10;
2309 num_blocks = 2;
2310 k_chip->watchdog_type = KINETIS_WDOG32_KL28;
2311 k_chip->sysmodectrlr_type = KINETIS_SMC32;
2312 break;
2315 snprintf(name, sizeof(name), "MKL%u%uZ%%s%u",
2316 familyid, subfamid, cpu_mhz / 10);
2317 break;
2319 case KINETIS_SDID_SERIESID_KW:
2320 /* Newer KW-series (all KW series except KW2xD, KW01Z) */
2321 cpu_mhz = 48;
2322 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2323 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX0:
2324 /* KW40Z */
2325 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2326 /* KW30Z */
2327 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX0:
2328 /* KW20Z */
2329 /* FTFA, 1kB sectors */
2330 k_chip->pflash_sector_size = 1<<10;
2331 k_chip->nvm_sector_size = 1<<10;
2332 /* autodetect 1 or 2 blocks */
2333 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2334 k_chip->cache_type = KINETIS_CACHE_L;
2335 k_chip->watchdog_type = KINETIS_WDOG_COP;
2336 break;
2337 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX1:
2338 /* KW41Z */
2339 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2340 /* KW31Z */
2341 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX1:
2342 /* KW21Z */
2343 /* FTFA, 2kB sectors */
2344 k_chip->pflash_sector_size = 2<<10;
2345 k_chip->nvm_sector_size = 2<<10;
2346 /* autodetect 1 or 2 blocks */
2347 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2348 k_chip->cache_type = KINETIS_CACHE_L;
2349 k_chip->watchdog_type = KINETIS_WDOG_COP;
2350 break;
2351 default:
2352 LOG_ERROR("Unsupported KW FAMILYID SUBFAMID");
2354 snprintf(name, sizeof(name), "MKW%u%uZ%%s%u",
2355 familyid, subfamid, cpu_mhz / 10);
2356 break;
2358 case KINETIS_SDID_SERIESID_KV:
2359 /* KV-series */
2360 k_chip->watchdog_type = KINETIS_WDOG_K;
2361 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2362 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
2363 /* KV10: FTFA, 1kB sectors */
2364 k_chip->pflash_sector_size = 1<<10;
2365 num_blocks = 1;
2366 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2367 k_chip->cache_type = KINETIS_CACHE_L;
2368 strcpy(name, "MKV10Z%s7");
2369 break;
2371 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
2372 /* KV11: FTFA, 2kB sectors */
2373 k_chip->pflash_sector_size = 2<<10;
2374 num_blocks = 1;
2375 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2376 k_chip->cache_type = KINETIS_CACHE_L;
2377 strcpy(name, "MKV11Z%s7");
2378 break;
2380 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2381 /* KV30: FTFA, 2kB sectors, 1 block */
2382 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2383 /* KV31: FTFA, 2kB sectors, 2 blocks */
2384 k_chip->pflash_sector_size = 2<<10;
2385 /* autodetect 1 or 2 blocks */
2386 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2387 k_chip->cache_type = KINETIS_CACHE_K;
2388 break;
2390 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
2391 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
2392 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
2393 /* KV4x: FTFA, 4kB sectors */
2394 k_chip->pflash_sector_size = 4<<10;
2395 num_blocks = 1;
2396 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2397 k_chip->cache_type = KINETIS_CACHE_K;
2398 cpu_mhz = 168;
2399 break;
2401 case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX6:
2402 case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX8:
2403 /* KV5x: FTFE, 8kB sectors */
2404 k_chip->pflash_sector_size = 8<<10;
2405 k_chip->max_flash_prog_size = 1<<10;
2406 num_blocks = 1;
2407 maxaddr_shift = 14;
2408 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_WIDTH_256BIT | FS_ECC;
2409 k_chip->pflash_base = 0x10000000;
2410 k_chip->progr_accel_ram = 0x18000000;
2411 cpu_mhz = 240;
2412 break;
2414 default:
2415 LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
2418 if (name[0] == '\0')
2419 snprintf(name, sizeof(name), "MKV%u%uF%%s%u",
2420 familyid, subfamid, cpu_mhz / 10);
2421 break;
2423 case KINETIS_SDID_SERIESID_KE:
2424 /* KE1x-series */
2425 k_chip->watchdog_type = KINETIS_WDOG32_KE1X;
2426 switch (k_chip->sim_sdid &
2427 (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK | KINETIS_SDID_PROJECTID_MASK)) {
2428 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1XZ:
2429 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX5 | KINETIS_SDID_PROJECTID_KE1XZ:
2430 /* KE1xZ: FTFE, 2kB sectors */
2431 k_chip->pflash_sector_size = 2<<10;
2432 k_chip->nvm_sector_size = 2<<10;
2433 k_chip->max_flash_prog_size = 1<<9;
2434 num_blocks = 2;
2435 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2436 k_chip->cache_type = KINETIS_CACHE_L;
2438 cpu_mhz = 72;
2439 snprintf(name, sizeof(name), "MKE%u%uZ%%s%u",
2440 familyid, subfamid, cpu_mhz / 10);
2441 break;
2443 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1XF:
2444 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX6 | KINETIS_SDID_PROJECTID_KE1XF:
2445 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX8 | KINETIS_SDID_PROJECTID_KE1XF:
2446 /* KE1xF: FTFE, 4kB sectors */
2447 k_chip->pflash_sector_size = 4<<10;
2448 k_chip->nvm_sector_size = 2<<10;
2449 k_chip->max_flash_prog_size = 1<<10;
2450 num_blocks = 2;
2451 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2452 k_chip->cache_type = KINETIS_CACHE_MSCM;
2454 cpu_mhz = 168;
2455 snprintf(name, sizeof(name), "MKE%u%uF%%s%u",
2456 familyid, subfamid, cpu_mhz / 10);
2457 break;
2459 default:
2460 LOG_ERROR("Unsupported KE FAMILYID SUBFAMID");
2462 break;
2464 default:
2465 LOG_ERROR("Unsupported K-series");
2469 if (k_chip->pflash_sector_size == 0) {
2470 LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, k_chip->sim_sdid);
2471 return ERROR_FLASH_OPER_UNSUPPORTED;
2474 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &k_chip->sim_fcfg1);
2475 if (result != ERROR_OK)
2476 return result;
2478 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG2_OFFSET, &k_chip->sim_fcfg2);
2479 if (result != ERROR_OK)
2480 return result;
2482 LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, k_chip->sim_sdid,
2483 k_chip->sim_fcfg1, k_chip->sim_fcfg2);
2485 fcfg1_nvmsize = (uint8_t)((k_chip->sim_fcfg1 >> 28) & 0x0f);
2486 fcfg1_pfsize = (uint8_t)((k_chip->sim_fcfg1 >> 24) & 0x0f);
2487 fcfg1_eesize = (uint8_t)((k_chip->sim_fcfg1 >> 16) & 0x0f);
2488 fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2490 fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2491 k_chip->fcfg2_maxaddr0_shifted = ((k_chip->sim_fcfg2 >> 24) & 0x7f) << maxaddr_shift;
2492 k_chip->fcfg2_maxaddr1_shifted = ((k_chip->sim_fcfg2 >> 16) & 0x7f) << maxaddr_shift;
2494 if (num_blocks == 0)
2495 num_blocks = k_chip->fcfg2_maxaddr1_shifted ? 2 : 1;
2496 else if (k_chip->fcfg2_maxaddr1_shifted == 0 && num_blocks >= 2 && fcfg2_pflsh) {
2497 /* fcfg2_maxaddr1 may be zero due to partitioning whole NVM as EEPROM backup
2498 * Do not adjust block count in this case! */
2499 num_blocks = 1;
2500 LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
2501 } else if (k_chip->fcfg2_maxaddr1_shifted != 0 && num_blocks == 1) {
2502 num_blocks = 2;
2503 LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
2506 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
2507 if (!fcfg2_pflsh) {
2508 switch (fcfg1_nvmsize) {
2509 case 0x03:
2510 case 0x05:
2511 case 0x07:
2512 case 0x09:
2513 case 0x0b:
2514 k_chip->nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
2515 break;
2516 case 0x0f:
2517 if (k_chip->pflash_sector_size >= 4<<10)
2518 k_chip->nvm_size = 512<<10;
2519 else
2520 /* K20_100 */
2521 k_chip->nvm_size = 256<<10;
2522 break;
2523 default:
2524 k_chip->nvm_size = 0;
2525 break;
2528 switch (fcfg1_eesize) {
2529 case 0x00:
2530 case 0x01:
2531 case 0x02:
2532 case 0x03:
2533 case 0x04:
2534 case 0x05:
2535 case 0x06:
2536 case 0x07:
2537 case 0x08:
2538 case 0x09:
2539 ee_size = (16 << (10 - fcfg1_eesize));
2540 break;
2541 default:
2542 ee_size = 0;
2543 break;
2546 switch (fcfg1_depart) {
2547 case 0x01:
2548 case 0x02:
2549 case 0x03:
2550 case 0x04:
2551 case 0x05:
2552 case 0x06:
2553 k_chip->dflash_size = k_chip->nvm_size - (4096 << fcfg1_depart);
2554 break;
2555 case 0x07:
2556 case 0x08:
2557 k_chip->dflash_size = 0;
2558 break;
2559 case 0x09:
2560 case 0x0a:
2561 case 0x0b:
2562 case 0x0c:
2563 case 0x0d:
2564 k_chip->dflash_size = 4096 << (fcfg1_depart & 0x7);
2565 break;
2566 default:
2567 k_chip->dflash_size = k_chip->nvm_size;
2568 break;
2572 switch (fcfg1_pfsize) {
2573 case 0x00:
2574 k_chip->pflash_size = 8192;
2575 break;
2576 case 0x01:
2577 case 0x03:
2578 case 0x05:
2579 case 0x07:
2580 case 0x09:
2581 case 0x0b:
2582 case 0x0d:
2583 k_chip->pflash_size = 1 << (14 + (fcfg1_pfsize >> 1));
2584 break;
2585 case 0x0f:
2586 /* a peculiar case: Freescale states different sizes for 0xf
2587 * KL03P24M48SF0RM 32 KB .... duplicate of code 0x3
2588 * K02P64M100SFARM 128 KB ... duplicate of code 0x7
2589 * K22P121M120SF8RM 256 KB ... duplicate of code 0x9
2590 * K22P121M120SF7RM 512 KB ... duplicate of code 0xb
2591 * K22P100M120SF5RM 1024 KB ... duplicate of code 0xd
2592 * K26P169M180SF5RM 2048 KB ... the only unique value
2593 * fcfg2_maxaddr0 seems to be the only clue to pflash_size
2594 * Checking fcfg2_maxaddr0 in bank probe is pointless then
2596 if (fcfg2_pflsh)
2597 k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks;
2598 else
2599 k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks / 2;
2600 if (k_chip->pflash_size != 2048<<10)
2601 LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %" PRIu32 " KB", k_chip->pflash_size>>10);
2603 break;
2604 default:
2605 k_chip->pflash_size = 0;
2606 break;
2609 if (k_chip->flash_support & FS_PROGRAM_SECTOR && k_chip->max_flash_prog_size == 0) {
2610 k_chip->max_flash_prog_size = k_chip->pflash_sector_size;
2611 /* Program section size is equal to sector size by default */
2614 if (fcfg2_pflsh) {
2615 k_chip->num_pflash_blocks = num_blocks;
2616 k_chip->num_nvm_blocks = 0;
2617 } else {
2618 k_chip->num_pflash_blocks = (num_blocks + 1) / 2;
2619 k_chip->num_nvm_blocks = num_blocks - k_chip->num_pflash_blocks;
2622 if (use_nvm_marking) {
2623 nvm_marking[0] = k_chip->num_nvm_blocks ? 'X' : 'N';
2624 nvm_marking[1] = '\0';
2625 } else
2626 nvm_marking[0] = '\0';
2628 pflash_size_k = k_chip->pflash_size / 1024;
2629 pflash_size_m = pflash_size_k / 1024;
2630 if (pflash_size_m)
2631 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "M0xxx", nvm_marking, pflash_size_m);
2632 else
2633 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "xxx", nvm_marking, pflash_size_k);
2635 snprintf(k_chip->name, sizeof(k_chip->name), name, flash_marking);
2636 LOG_INFO("Kinetis %s detected: %u flash blocks", k_chip->name, num_blocks);
2637 LOG_INFO("%u PFlash banks: %" PRIu32 "k total", k_chip->num_pflash_blocks, pflash_size_k);
2638 if (k_chip->num_nvm_blocks) {
2639 nvm_size_k = k_chip->nvm_size / 1024;
2640 dflash_size_k = k_chip->dflash_size / 1024;
2641 LOG_INFO("%u FlexNVM banks: %" PRIu32 "k total, %" PRIu32 "k available as data flash, %" PRIu32 "bytes FlexRAM",
2642 k_chip->num_nvm_blocks, nvm_size_k, dflash_size_k, ee_size);
2645 k_chip->probed = true;
2647 if (create_banks)
2648 kinetis_create_missing_banks(k_chip);
2650 return ERROR_OK;
2653 static int kinetis_probe(struct flash_bank *bank)
2655 int result;
2656 uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
2657 unsigned num_blocks, first_nvm_bank;
2658 uint32_t size_k;
2659 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2660 struct kinetis_chip *k_chip;
2662 assert(k_bank);
2663 k_chip = k_bank->k_chip;
2665 k_bank->probed = false;
2667 if (!k_chip->probed) {
2668 result = kinetis_probe_chip(k_chip);
2669 if (result != ERROR_OK)
2670 return result;
2673 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2674 first_nvm_bank = k_chip->num_pflash_blocks;
2676 if (k_bank->bank_number < k_chip->num_pflash_blocks) {
2677 /* pflash, banks start at address zero */
2678 k_bank->flash_class = FC_PFLASH;
2679 bank->size = (k_chip->pflash_size / k_chip->num_pflash_blocks);
2680 bank->base = k_chip->pflash_base + bank->size * k_bank->bank_number;
2681 k_bank->prog_base = 0x00000000 + bank->size * k_bank->bank_number;
2682 k_bank->sector_size = k_chip->pflash_sector_size;
2683 /* pflash is divided into 32 protection areas for
2684 * parts with more than 32K of PFlash. For parts with
2685 * less the protection unit is set to 1024 bytes */
2686 k_bank->protection_size = MAX(k_chip->pflash_size / 32, 1024);
2687 bank->num_prot_blocks = bank->size / k_bank->protection_size;
2688 k_bank->protection_block = bank->num_prot_blocks * k_bank->bank_number;
2690 size_k = bank->size / 1024;
2691 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k PFlash, FTFx base 0x%08" PRIx32 ", sect %" PRIu32,
2692 k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2694 } else if (k_bank->bank_number < num_blocks) {
2695 /* nvm, banks start at address 0x10000000 */
2696 unsigned nvm_ord = k_bank->bank_number - first_nvm_bank;
2697 uint32_t limit;
2699 k_bank->flash_class = FC_FLEX_NVM;
2700 bank->size = k_chip->nvm_size / k_chip->num_nvm_blocks;
2701 bank->base = k_chip->nvm_base + bank->size * nvm_ord;
2702 k_bank->prog_base = 0x00800000 + bank->size * nvm_ord;
2703 k_bank->sector_size = k_chip->nvm_sector_size;
2704 if (k_chip->dflash_size == 0) {
2705 k_bank->protection_size = 0;
2706 } else {
2707 int i;
2708 for (i = k_chip->dflash_size; ~i & 1; i >>= 1)
2710 if (i == 1)
2711 k_bank->protection_size = k_chip->dflash_size / 8; /* data flash size = 2^^n */
2712 else
2713 k_bank->protection_size = k_chip->nvm_size / 8; /* TODO: verify on SF1, not documented in RM */
2715 bank->num_prot_blocks = 8 / k_chip->num_nvm_blocks;
2716 k_bank->protection_block = bank->num_prot_blocks * nvm_ord;
2718 /* EEPROM backup part of FlexNVM is not accessible, use dflash_size as a limit */
2719 if (k_chip->dflash_size > bank->size * nvm_ord)
2720 limit = k_chip->dflash_size - bank->size * nvm_ord;
2721 else
2722 limit = 0;
2724 if (bank->size > limit) {
2725 bank->size = limit;
2726 LOG_DEBUG("FlexNVM bank %u limited to 0x%08" PRIx32 " due to active EEPROM backup",
2727 k_bank->bank_number, limit);
2730 size_k = bank->size / 1024;
2731 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k FlexNVM, FTFx base 0x%08" PRIx32 ", sect %" PRIu32,
2732 k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2734 } else {
2735 LOG_ERROR("Cannot determine parameters for bank %u, only %u banks on device",
2736 k_bank->bank_number, num_blocks);
2737 return ERROR_FLASH_BANK_INVALID;
2740 fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2741 fcfg2_maxaddr0 = (uint8_t)((k_chip->sim_fcfg2 >> 24) & 0x7f);
2742 fcfg2_maxaddr1 = (uint8_t)((k_chip->sim_fcfg2 >> 16) & 0x7f);
2744 if (k_bank->bank_number == 0 && k_chip->fcfg2_maxaddr0_shifted != bank->size)
2745 LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
2746 " please report to OpenOCD mailing list", fcfg2_maxaddr0);
2748 if (fcfg2_pflsh) {
2749 if (k_bank->bank_number == 1 && k_chip->fcfg2_maxaddr1_shifted != bank->size)
2750 LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
2751 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2752 } else {
2753 if (k_bank->bank_number == first_nvm_bank
2754 && k_chip->fcfg2_maxaddr1_shifted != k_chip->dflash_size)
2755 LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
2756 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2759 free(bank->sectors);
2760 bank->sectors = NULL;
2762 free(bank->prot_blocks);
2763 bank->prot_blocks = NULL;
2765 if (k_bank->sector_size == 0) {
2766 LOG_ERROR("Unknown sector size for bank %u", bank->bank_number);
2767 return ERROR_FLASH_BANK_INVALID;
2770 bank->num_sectors = bank->size / k_bank->sector_size;
2772 if (bank->num_sectors > 0) {
2773 /* FlexNVM bank can be used for EEPROM backup therefore zero sized */
2774 bank->sectors = alloc_block_array(0, k_bank->sector_size, bank->num_sectors);
2775 if (!bank->sectors)
2776 return ERROR_FAIL;
2778 bank->prot_blocks = alloc_block_array(0, k_bank->protection_size, bank->num_prot_blocks);
2779 if (!bank->prot_blocks)
2780 return ERROR_FAIL;
2782 } else {
2783 bank->num_prot_blocks = 0;
2786 k_bank->probed = true;
2788 return ERROR_OK;
2791 static int kinetis_auto_probe(struct flash_bank *bank)
2793 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2795 if (k_bank && k_bank->probed)
2796 return ERROR_OK;
2798 return kinetis_probe(bank);
2801 static int kinetis_info(struct flash_bank *bank, struct command_invocation *cmd)
2803 const char *bank_class_names[] = {
2804 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
2807 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2808 struct kinetis_chip *k_chip = k_bank->k_chip;
2809 uint32_t size_k = bank->size / 1024;
2811 command_print_sameline(cmd,
2812 "%s %s: %" PRIu32 "k %s bank %s at " TARGET_ADDR_FMT,
2813 bank->driver->name, k_chip->name,
2814 size_k, bank_class_names[k_bank->flash_class],
2815 bank->name, bank->base);
2817 return ERROR_OK;
2820 static int kinetis_blank_check(struct flash_bank *bank)
2822 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2823 struct kinetis_chip *k_chip = k_bank->k_chip;
2824 int result;
2826 /* surprisingly blank check does not work in VLPR and HSRUN modes */
2827 result = kinetis_check_run_mode(k_chip);
2828 if (result != ERROR_OK)
2829 return result;
2831 /* reset error flags */
2832 result = kinetis_ftfx_prepare(bank->target);
2833 if (result != ERROR_OK)
2834 return result;
2836 if (k_bank->flash_class == FC_PFLASH || k_bank->flash_class == FC_FLEX_NVM) {
2837 bool block_dirty = true;
2838 bool use_block_cmd = !(k_chip->flash_support & FS_NO_CMD_BLOCKSTAT);
2839 uint8_t ftfx_fstat;
2841 if (use_block_cmd && k_bank->flash_class == FC_FLEX_NVM) {
2842 uint8_t fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2843 /* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
2844 if (fcfg1_depart != 0xf && fcfg1_depart != 0)
2845 use_block_cmd = false;
2848 if (use_block_cmd) {
2849 /* check if whole bank is blank */
2850 result = kinetis_ftfx_command(bank->target, FTFX_CMD_BLOCKSTAT, k_bank->prog_base,
2851 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
2853 if (result != ERROR_OK)
2854 kinetis_ftfx_clear_error(bank->target);
2855 else if ((ftfx_fstat & 0x01) == 0)
2856 block_dirty = false;
2859 if (block_dirty) {
2860 /* the whole bank is not erased, check sector-by-sector */
2861 for (unsigned int i = 0; i < bank->num_sectors; i++) {
2862 /* normal margin */
2863 result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTSTAT,
2864 k_bank->prog_base + bank->sectors[i].offset,
2865 1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
2867 if (result == ERROR_OK) {
2868 bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
2869 } else {
2870 LOG_DEBUG("Ignoring error on PFlash sector blank-check");
2871 kinetis_ftfx_clear_error(bank->target);
2872 bank->sectors[i].is_erased = -1;
2875 } else {
2876 /* the whole bank is erased, update all sectors */
2877 for (unsigned int i = 0; i < bank->num_sectors; i++)
2878 bank->sectors[i].is_erased = 1;
2880 } else {
2881 LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
2882 return ERROR_FLASH_OPERATION_FAILED;
2885 return ERROR_OK;
2889 COMMAND_HANDLER(kinetis_nvm_partition)
2891 int result;
2892 unsigned bank_idx;
2893 unsigned num_blocks, first_nvm_bank;
2894 unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
2895 enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
2896 bool enable;
2897 uint8_t load_flex_ram = 1;
2898 uint8_t ee_size_code = 0x3f;
2899 uint8_t flex_nvm_partition_code = 0;
2900 uint8_t ee_split = 3;
2901 struct target *target = get_current_target(CMD_CTX);
2902 struct kinetis_chip *k_chip;
2903 uint32_t sim_fcfg1;
2905 k_chip = kinetis_get_chip(target);
2907 if (CMD_ARGC >= 2) {
2908 if (strcmp(CMD_ARGV[0], "dataflash") == 0)
2909 sz_type = DF_SIZE;
2910 else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
2911 sz_type = EEBKP_SIZE;
2913 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], par);
2914 while (par >> (log2 + 3))
2915 log2++;
2917 switch (sz_type) {
2918 case SHOW_INFO:
2919 if (!k_chip) {
2920 LOG_ERROR("Chip not probed.");
2921 return ERROR_FAIL;
2923 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &sim_fcfg1);
2924 if (result != ERROR_OK)
2925 return result;
2927 flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
2928 switch (flex_nvm_partition_code) {
2929 case 0:
2930 command_print(CMD, "No EEPROM backup, data flash only");
2931 break;
2932 case 1:
2933 case 2:
2934 case 3:
2935 case 4:
2936 case 5:
2937 case 6:
2938 command_print(CMD, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
2939 break;
2940 case 8:
2941 command_print(CMD, "No data flash, EEPROM backup only");
2942 break;
2943 case 0x9:
2944 case 0xA:
2945 case 0xB:
2946 case 0xC:
2947 case 0xD:
2948 case 0xE:
2949 command_print(CMD, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
2950 break;
2951 case 0xf:
2952 command_print(CMD, "No EEPROM backup, data flash only (DEPART not set)");
2953 break;
2954 default:
2955 command_print(CMD, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
2957 return ERROR_OK;
2959 case DF_SIZE:
2960 flex_nvm_partition_code = 0x8 | log2;
2961 break;
2963 case EEBKP_SIZE:
2964 flex_nvm_partition_code = log2;
2965 break;
2968 if (CMD_ARGC == 3) {
2969 unsigned long eex;
2970 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[2], eex);
2971 ee1 = ee2 = eex / 2;
2972 } else if (CMD_ARGC >= 4) {
2973 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[2], ee1);
2974 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[3], ee2);
2977 enable = ee1 + ee2 > 0;
2978 if (enable) {
2979 for (log2 = 2; ; log2++) {
2980 if (ee1 + ee2 == (16u << 10) >> log2)
2981 break;
2982 if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
2983 LOG_ERROR("Unsupported EEPROM size");
2984 return ERROR_FLASH_OPERATION_FAILED;
2988 if (ee1 * 3 == ee2)
2989 ee_split = 1;
2990 else if (ee1 * 7 == ee2)
2991 ee_split = 0;
2992 else if (ee1 != ee2) {
2993 LOG_ERROR("Unsupported EEPROM sizes ratio");
2994 return ERROR_FLASH_OPERATION_FAILED;
2997 ee_size_code = log2 | ee_split << 4;
3000 if (CMD_ARGC >= 5)
3001 COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
3002 if (enable)
3003 load_flex_ram = 0;
3005 LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
3006 flex_nvm_partition_code, ee_size_code);
3008 result = kinetis_check_run_mode(k_chip);
3009 if (result != ERROR_OK)
3010 return result;
3012 /* reset error flags */
3013 result = kinetis_ftfx_prepare(target);
3014 if (result != ERROR_OK)
3015 return result;
3017 result = kinetis_ftfx_command(target, FTFX_CMD_PGMPART, load_flex_ram,
3018 ee_size_code, flex_nvm_partition_code, 0, 0,
3019 0, 0, 0, 0, NULL);
3020 if (result != ERROR_OK)
3021 return result;
3023 command_print(CMD, "FlexNVM partition set. Please reset MCU.");
3025 if (k_chip) {
3026 first_nvm_bank = k_chip->num_pflash_blocks;
3027 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
3028 for (bank_idx = first_nvm_bank; bank_idx < num_blocks; bank_idx++)
3029 k_chip->banks[bank_idx].probed = false; /* re-probe before next use */
3030 k_chip->probed = false;
3033 command_print(CMD, "FlexNVM banks will be re-probed to set new data flash size.");
3034 return ERROR_OK;
3037 COMMAND_HANDLER(kinetis_fcf_source_handler)
3039 if (CMD_ARGC > 1)
3040 return ERROR_COMMAND_SYNTAX_ERROR;
3042 if (CMD_ARGC == 1) {
3043 if (strcmp(CMD_ARGV[0], "write") == 0)
3044 allow_fcf_writes = true;
3045 else if (strcmp(CMD_ARGV[0], "protection") == 0)
3046 allow_fcf_writes = false;
3047 else
3048 return ERROR_COMMAND_SYNTAX_ERROR;
3051 if (allow_fcf_writes) {
3052 command_print(CMD, "Arbitrary Flash Configuration Field writes enabled.");
3053 command_print(CMD, "Protection info writes to FCF disabled.");
3054 LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device.");
3055 } else {
3056 command_print(CMD, "Protection info writes to Flash Configuration Field enabled.");
3057 command_print(CMD, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device.");
3060 return ERROR_OK;
3063 COMMAND_HANDLER(kinetis_fopt_handler)
3065 if (CMD_ARGC > 1)
3066 return ERROR_COMMAND_SYNTAX_ERROR;
3068 if (CMD_ARGC == 1) {
3069 COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], fcf_fopt);
3070 } else {
3071 command_print(CMD, "FCF_FOPT 0x%02" PRIx8, fcf_fopt);
3074 return ERROR_OK;
3077 COMMAND_HANDLER(kinetis_create_banks_handler)
3079 if (CMD_ARGC > 0)
3080 return ERROR_COMMAND_SYNTAX_ERROR;
3082 create_banks = true;
3084 return ERROR_OK;
3088 static const struct command_registration kinetis_security_command_handlers[] = {
3090 .name = "check_security",
3091 .mode = COMMAND_EXEC,
3092 .help = "Check status of device security lock",
3093 .usage = "",
3094 .handler = kinetis_check_flash_security_status,
3097 .name = "halt",
3098 .mode = COMMAND_EXEC,
3099 .help = "Issue a halt via the MDM-AP",
3100 .usage = "",
3101 .handler = kinetis_mdm_halt,
3104 .name = "mass_erase",
3105 .mode = COMMAND_EXEC,
3106 .help = "Issue a complete flash erase via the MDM-AP",
3107 .usage = "",
3108 .handler = kinetis_mdm_mass_erase,
3111 .name = "reset",
3112 .mode = COMMAND_EXEC,
3113 .help = "Issue a reset via the MDM-AP",
3114 .usage = "",
3115 .handler = kinetis_mdm_reset,
3117 COMMAND_REGISTRATION_DONE
3120 static const struct command_registration kinetis_exec_command_handlers[] = {
3122 .name = "mdm",
3123 .mode = COMMAND_ANY,
3124 .help = "MDM-AP command group",
3125 .usage = "",
3126 .chain = kinetis_security_command_handlers,
3129 .name = "disable_wdog",
3130 .mode = COMMAND_EXEC,
3131 .help = "Disable the watchdog timer",
3132 .usage = "",
3133 .handler = kinetis_disable_wdog_handler,
3136 .name = "nvm_partition",
3137 .mode = COMMAND_EXEC,
3138 .help = "Show/set data flash or EEPROM backup size in kilobytes,"
3139 " set two EEPROM sizes in bytes and FlexRAM loading during reset",
3140 .usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
3141 .handler = kinetis_nvm_partition,
3144 .name = "fcf_source",
3145 .mode = COMMAND_EXEC,
3146 .help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF"
3147 " Mode 'protection' is safe from unwanted locking of the device.",
3148 .usage = "['protection'|'write']",
3149 .handler = kinetis_fcf_source_handler,
3152 .name = "fopt",
3153 .mode = COMMAND_EXEC,
3154 .help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode",
3155 .usage = "[num]",
3156 .handler = kinetis_fopt_handler,
3159 .name = "create_banks",
3160 .mode = COMMAND_CONFIG,
3161 .help = "Driver creates additional banks if device with two/four flash blocks is probed",
3162 .handler = kinetis_create_banks_handler,
3163 .usage = "",
3165 COMMAND_REGISTRATION_DONE
3168 static const struct command_registration kinetis_command_handler[] = {
3170 .name = "kinetis",
3171 .mode = COMMAND_ANY,
3172 .help = "Kinetis flash controller commands",
3173 .usage = "",
3174 .chain = kinetis_exec_command_handlers,
3176 COMMAND_REGISTRATION_DONE
3181 const struct flash_driver kinetis_flash = {
3182 .name = "kinetis",
3183 .commands = kinetis_command_handler,
3184 .flash_bank_command = kinetis_flash_bank_command,
3185 .erase = kinetis_erase,
3186 .protect = kinetis_protect,
3187 .write = kinetis_write,
3188 .read = default_flash_read,
3189 .probe = kinetis_probe,
3190 .auto_probe = kinetis_auto_probe,
3191 .erase_check = kinetis_blank_check,
3192 .protect_check = kinetis_protect_check,
3193 .info = kinetis_info,
3194 .free_driver_priv = kinetis_free_driver_priv,