at91samd: Bail early if trying to write to protected sector
[openocd.git] / src / flash / nor / at91samd.c
blobc0be3f7d1cac21975abdb3eea9645eca28f56b29
1 /***************************************************************************
2 * Copyright (C) 2013 by Andrey Yurovsky *
3 * Andrey Yurovsky <yurovsky@gmail.com> *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
19 ***************************************************************************/
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
25 #include "imp.h"
27 #define SAMD_NUM_SECTORS 16
29 #define SAMD_FLASH 0x00000000 /* physical Flash memory */
30 #define SAMD_DSU 0x41002000 /* Device Service Unit */
31 #define SAMD_NVMCTRL 0x41004000 /* Non-volatile memory controller */
33 #define SAMD_DSU_DID 0x18 /* Device ID register */
35 #define SAMD_NVMCTRL_CTRLA 0x00 /* NVM control A register */
36 #define SAMD_NVMCTRL_CTRLB 0x04 /* NVM control B register */
37 #define SAMD_NVMCTRL_PARAM 0x08 /* NVM parameters register */
38 #define SAMD_NVMCTRL_INTFLAG 0x18 /* NVM Interupt Flag Status & Clear */
39 #define SAMD_NVMCTRL_STATUS 0x18 /* NVM status register */
40 #define SAMD_NVMCTRL_ADDR 0x1C /* NVM address register */
41 #define SAMD_NVMCTRL_LOCK 0x20 /* NVM Lock section register */
43 #define SAMD_CMDEX_KEY 0xA5UL
44 #define SAMD_NVM_CMD(n) ((SAMD_CMDEX_KEY << 8) | (n & 0x7F))
46 /* NVMCTRL commands. See Table 20-4 in 42129F–SAM–10/2013 */
47 #define SAMD_NVM_CMD_ER 0x02 /* Erase Row */
48 #define SAMD_NVM_CMD_WP 0x04 /* Write Page */
49 #define SAMD_NVM_CMD_EAR 0x05 /* Erase Auxilary Row */
50 #define SAMD_NVM_CMD_WAP 0x06 /* Write Auxilary Page */
51 #define SAMD_NVM_CMD_LR 0x40 /* Lock Region */
52 #define SAMD_NVM_CMD_UR 0x41 /* Unlock Region */
53 #define SAMD_NVM_CMD_SPRM 0x42 /* Set Power Reduction Mode */
54 #define SAMD_NVM_CMD_CPRM 0x43 /* Clear Power Reduction Mode */
55 #define SAMD_NVM_CMD_PBC 0x44 /* Page Buffer Clear */
56 #define SAMD_NVM_CMD_SSB 0x45 /* Set Security Bit */
57 #define SAMD_NVM_CMD_INVALL 0x46 /* Invalidate all caches */
59 /* Known identifiers */
60 #define SAMD_PROCESSOR_M0 0x01
61 #define SAMD_FAMILY_D 0x00
62 #define SAMD_SERIES_20 0x00
63 #define SAMD_SERIES_21 0x01
65 struct samd_part {
66 uint8_t id;
67 const char *name;
68 uint32_t flash_kb;
69 uint32_t ram_kb;
72 /* Known SAMD20 parts. See Table 12-8 in 42129F–SAM–10/2013 */
73 static const struct samd_part samd20_parts[] = {
74 { 0x0, "SAMD20J18A", 256, 32 },
75 { 0x1, "SAMD20J17A", 128, 16 },
76 { 0x2, "SAMD20J16A", 64, 8 },
77 { 0x3, "SAMD20J15A", 32, 4 },
78 { 0x4, "SAMD20J14A", 16, 2 },
79 { 0x5, "SAMD20G18A", 256, 32 },
80 { 0x6, "SAMD20G17A", 128, 16 },
81 { 0x7, "SAMD20G16A", 64, 8 },
82 { 0x8, "SAMD20G15A", 32, 4 },
83 { 0x9, "SAMD20G14A", 16, 2 },
84 { 0xB, "SAMD20E17A", 128, 16 },
85 { 0xC, "SAMD20E16A", 64, 8 },
86 { 0xD, "SAMD20E15A", 32, 4 },
87 { 0xE, "SAMD20E14A", 16, 2 },
90 /* Known SAMD21 parts. */
91 static const struct samd_part samd21_parts[] = {
92 { 0x0, "SAMD21J18A", 256, 32 },
93 { 0x1, "SAMD21J17A", 128, 16 },
94 { 0x2, "SAMD21J16A", 64, 8 },
95 { 0x3, "SAMD21J15A", 32, 4 },
96 { 0x4, "SAMD21J14A", 16, 2 },
97 { 0x5, "SAMD21G18A", 256, 32 },
98 { 0x6, "SAMD21G17A", 128, 16 },
99 { 0x7, "SAMD21G16A", 64, 8 },
100 { 0x8, "SAMD21G15A", 32, 4 },
101 { 0x9, "SAMD21G14A", 16, 2 },
102 { 0xA, "SAMD21E18A", 256, 32 },
103 { 0xB, "SAMD21E17A", 128, 16 },
104 { 0xC, "SAMD21E16A", 64, 8 },
105 { 0xD, "SAMD21E15A", 32, 4 },
106 { 0xE, "SAMD21E14A", 16, 2 },
109 /* Each family of parts contains a parts table in the DEVSEL field of DID. The
110 * processor ID, family ID, and series ID are used to determine which exact
111 * family this is and then we can use the corresponding table. */
112 struct samd_family {
113 uint8_t processor;
114 uint8_t family;
115 uint8_t series;
116 const struct samd_part *parts;
117 size_t num_parts;
120 /* Known SAMD families */
121 static const struct samd_family samd_families[] = {
122 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_20,
123 samd20_parts, ARRAY_SIZE(samd20_parts) },
124 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
125 samd21_parts, ARRAY_SIZE(samd21_parts) },
128 struct samd_info {
129 uint32_t page_size;
130 int num_pages;
131 int sector_size;
133 bool probed;
134 struct target *target;
135 struct samd_info *next;
138 static struct samd_info *samd_chips;
140 static const struct samd_part *samd_find_part(uint32_t id)
142 uint8_t processor = (id >> 28);
143 uint8_t family = (id >> 24) & 0x0F;
144 uint8_t series = (id >> 16) & 0xFF;
145 uint8_t devsel = id & 0xFF;
147 for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
148 if (samd_families[i].processor == processor &&
149 samd_families[i].series == series &&
150 samd_families[i].family == family) {
151 for (unsigned j = 0; j < samd_families[i].num_parts; j++) {
152 if (samd_families[i].parts[j].id == devsel)
153 return &samd_families[i].parts[j];
158 return NULL;
161 static int samd_protect_check(struct flash_bank *bank)
163 int res;
164 uint16_t lock;
166 res = target_read_u16(bank->target,
167 SAMD_NVMCTRL + SAMD_NVMCTRL_LOCK, &lock);
168 if (res != ERROR_OK)
169 return res;
171 /* Lock bits are active-low */
172 for (int i = 0; i < bank->num_sectors; i++)
173 bank->sectors[i].is_protected = !(lock & (1<<i));
175 return ERROR_OK;
178 static int samd_probe(struct flash_bank *bank)
180 uint32_t id, param;
181 int res;
182 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
183 const struct samd_part *part;
185 if (chip->probed)
186 return ERROR_OK;
188 res = target_read_u32(bank->target, SAMD_DSU + SAMD_DSU_DID, &id);
189 if (res != ERROR_OK) {
190 LOG_ERROR("Couldn't read Device ID register");
191 return res;
194 part = samd_find_part(id);
195 if (part == NULL) {
196 LOG_ERROR("Couldn't find part correspoding to DID %08" PRIx32, id);
197 return ERROR_FAIL;
200 res = target_read_u32(bank->target,
201 SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, &param);
202 if (res != ERROR_OK) {
203 LOG_ERROR("Couldn't read NVM Parameters register");
204 return res;
207 bank->size = part->flash_kb * 1024;
209 chip->sector_size = bank->size / SAMD_NUM_SECTORS;
211 /* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n) so
212 * 0 is 8KB and 7 is 1024KB. */
213 chip->page_size = (8 << ((param >> 16) & 0x7));
214 /* The NVMP field (bits 15:0) indicates the total number of pages */
215 chip->num_pages = param & 0xFFFF;
217 /* Sanity check: the total flash size in the DSU should match the page size
218 * multiplied by the number of pages. */
219 if (bank->size != chip->num_pages * chip->page_size) {
220 LOG_WARNING("SAMD: bank size doesn't match NVM parameters. "
221 "Identified %uKB Flash but NVMCTRL reports %u %uB pages",
222 part->flash_kb, chip->num_pages, chip->page_size);
225 /* Allocate the sector table */
226 bank->num_sectors = SAMD_NUM_SECTORS;
227 bank->sectors = calloc(bank->num_sectors, sizeof((bank->sectors)[0]));
228 if (!bank->sectors)
229 return ERROR_FAIL;
231 /* Fill out the sector information: all SAMD sectors are the same size and
232 * there is always a fixed number of them. */
233 for (int i = 0; i < bank->num_sectors; i++) {
234 bank->sectors[i].size = chip->sector_size;
235 bank->sectors[i].offset = i * chip->sector_size;
236 /* mark as unknown */
237 bank->sectors[i].is_erased = -1;
238 bank->sectors[i].is_protected = -1;
241 samd_protect_check(bank);
243 /* Done */
244 chip->probed = true;
246 LOG_INFO("SAMD MCU: %s (%uKB Flash, %uKB RAM)", part->name,
247 part->flash_kb, part->ram_kb);
249 return ERROR_OK;
252 static int samd_protect(struct flash_bank *bank, int set, int first, int last)
254 int res;
255 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
257 for (int s = first; s <= last; s++) {
258 /* Load an address that is within this sector (we use offset 0) */
259 res = target_write_u32(bank->target, SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR,
260 s * chip->sector_size);
261 if (res != ERROR_OK)
262 return res;
264 /* Tell the controller to lock that sector */
265 res = target_write_u16(bank->target,
266 SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA,
267 SAMD_NVM_CMD(SAMD_NVM_CMD_LR));
268 if (res != ERROR_OK)
269 return res;
272 samd_protect_check(bank);
274 return ERROR_OK;
277 static bool samd_check_error(struct flash_bank *bank)
279 int ret;
280 bool error;
281 uint16_t status;
283 ret = target_read_u16(bank->target,
284 SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, &status);
285 if (ret != ERROR_OK) {
286 LOG_ERROR("Can't read NVM status");
287 return true;
290 if (status & 0x001C) {
291 if (status & (1 << 4)) /* NVME */
292 LOG_ERROR("SAMD: NVM Error");
293 if (status & (1 << 3)) /* LOCKE */
294 LOG_ERROR("SAMD: NVM lock error");
295 if (status & (1 << 2)) /* PROGE */
296 LOG_ERROR("SAMD: NVM programming error");
298 error = true;
299 } else {
300 error = false;
303 /* Clear the error conditions by writing a one to them */
304 ret = target_write_u16(bank->target,
305 SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, status);
306 if (ret != ERROR_OK)
307 LOG_ERROR("Can't clear NVM error conditions");
309 return error;
312 static int samd_erase_row(struct flash_bank *bank, uint32_t address)
314 int res;
315 bool error = false;
317 /* Set an address contained in the row to be erased */
318 res = target_write_u32(bank->target,
319 SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR, address >> 1);
320 if (res == ERROR_OK) {
321 /* Issue the Erase Row command to erase that row */
322 res = target_write_u16(bank->target,
323 SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA,
324 SAMD_NVM_CMD(SAMD_NVM_CMD_ER));
326 /* Check (and clear) error conditions */
327 error = samd_check_error(bank);
330 if (res != ERROR_OK || error) {
331 LOG_ERROR("Failed to erase row containing %08X" PRIx32, address);
332 return ERROR_FAIL;
335 return ERROR_OK;
338 static int samd_erase(struct flash_bank *bank, int first, int last)
340 int res;
341 int rows_in_sector;
342 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
344 if (bank->target->state != TARGET_HALTED) {
345 LOG_ERROR("Target not halted");
347 return ERROR_TARGET_NOT_HALTED;
350 if (!chip->probed) {
351 if (samd_probe(bank) != ERROR_OK)
352 return ERROR_FLASH_BANK_NOT_PROBED;
355 /* The SAMD NVM has row erase granularity. There are four pages in a row
356 * and the number of rows in a sector depends on the sector size, which in
357 * turn depends on the Flash capacity as there is a fixed number of
358 * sectors. */
359 rows_in_sector = chip->sector_size / (chip->page_size * 4);
361 /* For each sector to be erased */
362 for (int s = first; s <= last; s++) {
363 /* For each row in that sector */
364 for (int r = s * rows_in_sector; r < (s + 1) * rows_in_sector; r++) {
365 res = samd_erase_row(bank, r * chip->page_size * 4);
366 if (res != ERROR_OK) {
367 LOG_ERROR("SAMD: failed to erase sector %d", s);
368 return res;
372 bank->sectors[s].is_erased = 1;
375 return ERROR_OK;
378 static struct flash_sector *samd_find_sector_by_address(struct flash_bank *bank, uint32_t address)
380 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
382 for (int i = 0; i < bank->num_sectors; i++) {
383 if (bank->sectors[i].offset <= address &&
384 address < bank->sectors[i].offset + chip->sector_size)
385 return &bank->sectors[i];
387 return NULL;
390 /* Write an entire row (four pages) from host buffer 'buf' to row-aligned
391 * 'address' in the Flash. */
392 static int samd_write_row(struct flash_bank *bank, uint32_t address,
393 const uint8_t *buf)
395 int res;
396 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
398 struct flash_sector *sector = samd_find_sector_by_address(bank, address);
400 if (!sector) {
401 LOG_ERROR("Can't find sector corresponding to address 0x%08" PRIx32, address);
402 return ERROR_FLASH_OPERATION_FAILED;
405 if (sector->is_protected) {
406 LOG_ERROR("Trying to write to a protected sector at 0x%08" PRIx32, address);
407 return ERROR_FLASH_OPERATION_FAILED;
410 /* Erase the row that we'll be writing to */
411 res = samd_erase_row(bank, address);
412 if (res != ERROR_OK)
413 return res;
415 /* Now write the pages in this row. */
416 for (unsigned int i = 0; i < 4; i++) {
417 bool error;
419 /* Write the page contents to the target's page buffer. A page write
420 * is issued automatically once the last location is written in the
421 * page buffer (ie: a complete page has been written out). */
422 res = target_write_memory(bank->target, address, 4,
423 chip->page_size / 4, buf);
424 if (res != ERROR_OK) {
425 LOG_ERROR("%s: %d", __func__, __LINE__);
426 return res;
429 error = samd_check_error(bank);
430 if (error)
431 return ERROR_FAIL;
433 /* Next page */
434 address += chip->page_size;
435 buf += chip->page_size;
438 sector->is_erased = 0;
440 return res;
443 /* Write partial contents into row-aligned 'address' on the Flash from host
444 * buffer 'buf' by writing 'nb' of 'buf' at 'row_offset' into the Flash row. */
445 static int samd_write_row_partial(struct flash_bank *bank, uint32_t address,
446 const uint8_t *buf, uint32_t row_offset, uint32_t nb)
448 int res;
449 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
450 uint32_t row_size = chip->page_size * 4;
451 uint8_t *rb = malloc(row_size);
452 if (!rb)
453 return ERROR_FAIL;
455 assert(row_offset + nb < row_size);
456 assert((address % row_size) == 0);
458 /* Retrieve the full row contents from Flash */
459 res = target_read_memory(bank->target, address, 4, row_size / 4, rb);
460 if (res != ERROR_OK) {
461 free(rb);
462 return res;
465 /* Insert our partial row over the data from Flash */
466 memcpy(rb + (row_offset % row_size), buf, nb);
468 /* Write the row back out */
469 res = samd_write_row(bank, address, rb);
470 free(rb);
472 return res;
475 static int samd_write(struct flash_bank *bank, const uint8_t *buffer,
476 uint32_t offset, uint32_t count)
478 int res;
479 uint32_t address;
480 uint32_t nb = 0;
481 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
482 uint32_t row_size = chip->page_size * 4;
484 if (bank->target->state != TARGET_HALTED) {
485 LOG_ERROR("Target not halted");
487 return ERROR_TARGET_NOT_HALTED;
490 if (!chip->probed) {
491 if (samd_probe(bank) != ERROR_OK)
492 return ERROR_FLASH_BANK_NOT_PROBED;
495 if (offset % row_size) {
496 /* We're starting at an unaligned offset so we'll write a partial row
497 * comprising that offset and up to the end of that row. */
498 nb = row_size - (offset % row_size);
499 if (nb > count)
500 nb = count;
501 } else if (count < row_size) {
502 /* We're writing an aligned but partial row. */
503 nb = count;
506 address = (offset / row_size) * row_size + bank->base;
508 if (nb > 0) {
509 res = samd_write_row_partial(bank, address, buffer,
510 offset % row_size, nb);
511 if (res != ERROR_OK)
512 return res;
514 /* We're done with the row contents */
515 count -= nb;
516 offset += nb;
517 buffer += row_size;
520 /* There's at least one aligned row to write out. */
521 if (count >= row_size) {
522 int nr = count / row_size + ((count % row_size) ? 1 : 0);
523 unsigned int r = 0;
525 for (unsigned int i = address / row_size;
526 (i < (address / row_size) + nr) && count > 0; i++) {
527 address = (i * row_size) + bank->base;
529 if (count >= row_size) {
530 res = samd_write_row(bank, address, buffer + (r * row_size));
531 /* Advance one row */
532 offset += row_size;
533 count -= row_size;
534 } else {
535 res = samd_write_row_partial(bank, address,
536 buffer + (r * row_size), 0, count);
537 /* We're done after this. */
538 offset += count;
539 count = 0;
542 r++;
544 if (res != ERROR_OK)
545 return res;
549 return ERROR_OK;
552 FLASH_BANK_COMMAND_HANDLER(samd_flash_bank_command)
554 struct samd_info *chip = samd_chips;
556 while (chip) {
557 if (chip->target == bank->target)
558 break;
559 chip = chip->next;
562 if (!chip) {
563 /* Create a new chip */
564 chip = calloc(1, sizeof(*chip));
565 if (!chip)
566 return ERROR_FAIL;
568 chip->target = bank->target;
569 chip->probed = false;
571 bank->driver_priv = chip;
573 /* Insert it into the chips list (at head) */
574 chip->next = samd_chips;
575 samd_chips = chip;
578 if (bank->base != SAMD_FLASH) {
579 LOG_ERROR("Address 0x%08" PRIx32 " invalid bank address (try 0x%08" PRIx32
580 "[at91samd series] )",
581 bank->base, SAMD_FLASH);
582 return ERROR_FAIL;
585 return ERROR_OK;
588 COMMAND_HANDLER(samd_handle_info_command)
590 return ERROR_OK;
593 static const struct command_registration at91samd_exec_command_handlers[] = {
595 .name = "info",
596 .handler = samd_handle_info_command,
597 .mode = COMMAND_EXEC,
598 .help = "Print information about the current at91samd chip"
599 "and its flash configuration.",
601 COMMAND_REGISTRATION_DONE
604 static const struct command_registration at91samd_command_handlers[] = {
606 .name = "at91samd",
607 .mode = COMMAND_ANY,
608 .help = "at91samd flash command group",
609 .usage = "",
610 .chain = at91samd_exec_command_handlers,
612 COMMAND_REGISTRATION_DONE
615 struct flash_driver at91samd_flash = {
616 .name = "at91samd",
617 .commands = at91samd_command_handlers,
618 .flash_bank_command = samd_flash_bank_command,
619 .erase = samd_erase,
620 .protect = samd_protect,
621 .write = samd_write,
622 .read = default_flash_read,
623 .probe = samd_probe,
624 .auto_probe = samd_probe,
625 .erase_check = default_flash_blank_check,
626 .protect_check = samd_protect_check,