jtag: basic support for P&E Micro OSBDM (aka OSJTAG) adapter
[openocd.git] / src / target / target.h
blob9dc928fe8f339de70bb77e8367caafa6f984bd4b
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2011 by Broadcom Corporation *
12 * Evan Hunter - ehunter@broadcom.com *
13 * *
14 * Copyright (C) ST-Ericsson SA 2011 *
15 * michel.jaouen@stericsson.com : smp minimum support *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
33 #ifndef TARGET_H
34 #define TARGET_H
36 #include <helper/types.h>
38 struct reg;
39 struct trace;
40 struct command_context;
41 struct breakpoint;
42 struct watchpoint;
43 struct mem_param;
44 struct reg_param;
45 struct target_list;
48 * TARGET_UNKNOWN = 0: we don't know anything about the target yet
49 * TARGET_RUNNING = 1: the target is executing user code
50 * TARGET_HALTED = 2: the target is not executing code, and ready to talk to the
51 * debugger. on an xscale it means that the debug handler is executing
52 * TARGET_RESET = 3: the target is being held in reset (only a temporary state,
53 * not sure how this is used with all the recent changes)
54 * TARGET_DEBUG_RUNNING = 4: the target is running, but it is executing code on
55 * behalf of the debugger (e.g. algorithm for flashing)
57 * also see: target_state_name();
61 enum target_state {
62 TARGET_UNKNOWN = 0,
63 TARGET_RUNNING = 1,
64 TARGET_HALTED = 2,
65 TARGET_RESET = 3,
66 TARGET_DEBUG_RUNNING = 4,
69 enum nvp_assert {
70 NVP_DEASSERT,
71 NVP_ASSERT,
74 enum target_reset_mode {
75 RESET_UNKNOWN = 0,
76 RESET_RUN = 1, /* reset and let target run */
77 RESET_HALT = 2, /* reset and halt target out of reset */
78 RESET_INIT = 3, /* reset and halt target out of reset, then run init script */
81 enum target_debug_reason {
82 DBG_REASON_DBGRQ = 0,
83 DBG_REASON_BREAKPOINT = 1,
84 DBG_REASON_WATCHPOINT = 2,
85 DBG_REASON_WPTANDBKPT = 3,
86 DBG_REASON_SINGLESTEP = 4,
87 DBG_REASON_NOTHALTED = 5,
88 DBG_REASON_UNDEFINED = 6
91 enum target_endianness {
92 TARGET_ENDIAN_UNKNOWN = 0,
93 TARGET_BIG_ENDIAN = 1, TARGET_LITTLE_ENDIAN = 2
96 struct working_area {
97 uint32_t address;
98 uint32_t size;
99 bool free;
100 uint8_t *backup;
101 struct working_area **user;
102 struct working_area *next;
105 struct gdb_service {
106 struct target *target;
107 /* field for smp display */
108 /* element 0 coreid currently displayed ( 1 till n) */
109 /* element 1 coreid to be displayed at next resume 1 till n 0 means resume
110 * all cores core displayed */
111 int32_t core[2];
114 /* target_type.h contains the full definitionof struct targe_type */
115 struct target {
116 struct target_type *type; /* target type definition (name, access functions) */
117 const char *cmd_name; /* tcl Name of target */
118 int target_number; /* DO NOT USE! field to be removed in 2010 */
119 struct jtag_tap *tap; /* where on the jtag chain is this */
120 int32_t coreid; /* which device on the TAP? */
121 const char *variant; /* what variant of this chip is it? */
124 * Indicates whether this target has been examined.
126 * Do @b not access this field directly, use target_was_examined()
127 * or target_set_examined().
129 bool examined;
131 /** true iff the target is currently running a downloaded
132 * "algorithm" instetad of arbitrary user code. OpenOCD code
133 * invoking algorithms is trusted to maintain correctness of
134 * any cached state (e.g. for flash status), which arbitrary
135 * code will have no reason to know about.
137 bool running_alg;
139 struct target_event_action *event_action;
141 int reset_halt; /* attempt resetting the CPU into the halted mode? */
142 uint32_t working_area; /* working area (initialized RAM). Evaluated
143 * upon first allocation from virtual/physical address. */
144 bool working_area_virt_spec; /* virtual address specified? */
145 uint32_t working_area_virt; /* virtual address */
146 bool working_area_phys_spec; /* virtual address specified? */
147 uint32_t working_area_phys; /* physical address */
148 uint32_t working_area_size; /* size in bytes */
149 uint32_t backup_working_area; /* whether the content of the working area has to be preserved */
150 struct working_area *working_areas;/* list of allocated working areas */
151 enum target_debug_reason debug_reason;/* reason why the target entered debug state */
152 enum target_endianness endianness; /* target endianness */
153 /* also see: target_state_name() */
154 enum target_state state; /* the current backend-state (running, halted, ...) */
155 struct reg_cache *reg_cache; /* the first register cache of the target (core regs) */
156 struct breakpoint *breakpoints; /* list of breakpoints */
157 struct watchpoint *watchpoints; /* list of watchpoints */
158 struct trace *trace_info; /* generic trace information */
159 struct debug_msg_receiver *dbgmsg; /* list of debug message receivers */
160 uint32_t dbg_msg_enabled; /* debug message status */
161 void *arch_info; /* architecture specific information */
162 struct target *next; /* next target in list */
164 int display; /* display async info in telnet session. Do not display
165 * lots of halted/resumed info when stepping in debugger. */
166 bool halt_issued; /* did we transition to halted state? */
167 long long halt_issued_time; /* Note time when halt was issued */
169 bool dbgbase_set; /* By default the debug base is not set */
170 uint32_t dbgbase; /* Really a Cortex-A specific option, but there is no
171 system in place to support target specific options
172 currently. */
173 struct rtos *rtos; /* Instance of Real Time Operating System support */
174 bool rtos_auto_detect; /* A flag that indicates that the RTOS has been specified as "auto"
175 * and must be detected when symbols are offered */
177 int smp; /* add some target attributes for smp support */
178 struct target_list *head;
179 /* the gdb service is there in case of smp , we have only one gdb server
180 * for all smp target
181 * the target attached to the gdb is changing dynamically by changing
182 * gdb_service->target pointer */
183 struct gdb_service *gdb_service;
186 struct target_list {
187 struct target *target;
188 struct target_list *next;
191 /** Returns the instance-specific name of the specified target. */
192 static inline const char *target_name(struct target *target)
194 return target->cmd_name;
197 const char *debug_reason_name(struct target *t);
199 enum target_event {
200 /* LD historical names
201 * - Prior to the great TCL change
202 * - June/July/Aug 2008
203 * - Duane Ellis */
204 TARGET_EVENT_OLD_gdb_program_config,
205 TARGET_EVENT_OLD_pre_resume,
207 /* allow GDB to do stuff before others handle the halted event,
208 * this is in lieu of defining ordering of invocation of events,
209 * which would be more complicated
211 * Telling GDB to halt does not mean that the target stopped running,
212 * simply that we're dropping out of GDB's waiting for step or continue.
214 * This can be useful when e.g. detecting power dropout.
216 TARGET_EVENT_GDB_HALT,
217 TARGET_EVENT_HALTED, /* target entered debug state from normal execution or reset */
218 TARGET_EVENT_RESUMED, /* target resumed to normal execution */
219 TARGET_EVENT_RESUME_START,
220 TARGET_EVENT_RESUME_END,
222 TARGET_EVENT_GDB_START, /* debugger started execution (step/run) */
223 TARGET_EVENT_GDB_END, /* debugger stopped execution (step/run) */
225 TARGET_EVENT_RESET_START,
226 TARGET_EVENT_RESET_ASSERT_PRE,
227 TARGET_EVENT_RESET_ASSERT, /* C code uses this instead of SRST */
228 TARGET_EVENT_RESET_ASSERT_POST,
229 TARGET_EVENT_RESET_DEASSERT_PRE,
230 TARGET_EVENT_RESET_DEASSERT_POST,
231 TARGET_EVENT_RESET_HALT_PRE,
232 TARGET_EVENT_RESET_HALT_POST,
233 TARGET_EVENT_RESET_WAIT_PRE,
234 TARGET_EVENT_RESET_WAIT_POST,
235 TARGET_EVENT_RESET_INIT,
236 TARGET_EVENT_RESET_END,
238 TARGET_EVENT_DEBUG_HALTED, /* target entered debug state, but was executing on behalf of the debugger */
239 TARGET_EVENT_DEBUG_RESUMED, /* target resumed to execute on behalf of the debugger */
241 TARGET_EVENT_EXAMINE_START,
242 TARGET_EVENT_EXAMINE_END,
244 TARGET_EVENT_GDB_ATTACH,
245 TARGET_EVENT_GDB_DETACH,
247 TARGET_EVENT_GDB_FLASH_ERASE_START,
248 TARGET_EVENT_GDB_FLASH_ERASE_END,
249 TARGET_EVENT_GDB_FLASH_WRITE_START,
250 TARGET_EVENT_GDB_FLASH_WRITE_END,
253 struct target_event_action {
254 enum target_event event;
255 struct Jim_Interp *interp;
256 struct Jim_Obj *body;
257 int has_percent;
258 struct target_event_action *next;
261 bool target_has_event_action(struct target *target, enum target_event event);
263 struct target_event_callback {
264 int (*callback)(struct target *target, enum target_event event, void *priv);
265 void *priv;
266 struct target_event_callback *next;
269 struct target_timer_callback {
270 int (*callback)(void *priv);
271 int time_ms;
272 int periodic;
273 struct timeval when;
274 void *priv;
275 struct target_timer_callback *next;
278 int target_register_commands(struct command_context *cmd_ctx);
279 int target_examine(void);
281 int target_register_event_callback(
282 int (*callback)(struct target *target,
283 enum target_event event, void *priv),
284 void *priv);
285 int target_unregister_event_callback(
286 int (*callback)(struct target *target,
287 enum target_event event, void *priv),
288 void *priv);
289 /* Poll the status of the target, detect any error conditions and report them.
291 * Also note that this fn will clear such error conditions, so a subsequent
292 * invocation will then succeed.
294 * These error conditions can be "sticky" error conditions. E.g. writing
295 * to memory could be implemented as an open loop and if memory writes
296 * fails, then a note is made of it, the error is sticky, but the memory
297 * write loop still runs to completion. This improves performance in the
298 * normal case as there is no need to verify that every single write succeed,
299 * yet it is possible to detect error condtions.
301 int target_poll(struct target *target);
302 int target_resume(struct target *target, int current, uint32_t address,
303 int handle_breakpoints, int debug_execution);
304 int target_halt(struct target *target);
305 int target_call_event_callbacks(struct target *target, enum target_event event);
308 * The period is very approximate, the callback can happen much more often
309 * or much more rarely than specified
311 int target_register_timer_callback(int (*callback)(void *priv),
312 int time_ms, int periodic, void *priv);
314 int target_call_timer_callbacks(void);
316 * Invoke this to ensure that e.g. polling timer callbacks happen before
317 * a syncrhonous command completes.
319 int target_call_timer_callbacks_now(void);
321 struct target *get_current_target(struct command_context *cmd_ctx);
322 struct target *get_target(const char *id);
325 * Get the target type name.
327 * This routine is a wrapper for the target->type->name field.
328 * Note that this is not an instance-specific name for his target.
330 const char *target_type_name(struct target *target);
333 * Examine the specified @a target, letting it perform any
334 * initialization that requires JTAG access.
336 * This routine is a wrapper for target->type->examine.
338 int target_examine_one(struct target *target);
340 /** @returns @c true if target_set_examined() has been called. */
341 static inline bool target_was_examined(struct target *target)
343 return target->examined;
346 /** Sets the @c examined flag for the given target. */
347 /** Use in target->type->examine() after one-time setup is done. */
348 static inline void target_set_examined(struct target *target)
350 target->examined = true;
354 * Add the @a breakpoint for @a target.
356 * This routine is a wrapper for target->type->add_breakpoint.
358 int target_add_breakpoint(struct target *target,
359 struct breakpoint *breakpoint);
361 * Add the @a ContextID breakpoint for @a target.
363 * This routine is a wrapper for target->type->add_context_breakpoint.
365 int target_add_context_breakpoint(struct target *target,
366 struct breakpoint *breakpoint);
368 * Add the @a ContextID & IVA breakpoint for @a target.
370 * This routine is a wrapper for target->type->add_hybrid_breakpoint.
372 int target_add_hybrid_breakpoint(struct target *target,
373 struct breakpoint *breakpoint);
375 * Remove the @a breakpoint for @a target.
377 * This routine is a wrapper for target->type->remove_breakpoint.
380 int target_remove_breakpoint(struct target *target,
381 struct breakpoint *breakpoint);
383 * Add the @a watchpoint for @a target.
385 * This routine is a wrapper for target->type->add_watchpoint.
387 int target_add_watchpoint(struct target *target,
388 struct watchpoint *watchpoint);
390 * Remove the @a watchpoint for @a target.
392 * This routine is a wrapper for target->type->remove_watchpoint.
394 int target_remove_watchpoint(struct target *target,
395 struct watchpoint *watchpoint);
398 * Obtain the registers for GDB.
400 * This routine is a wrapper for target->type->get_gdb_reg_list.
402 int target_get_gdb_reg_list(struct target *target,
403 struct reg **reg_list[], int *reg_list_size);
406 * Step the target.
408 * This routine is a wrapper for target->type->step.
410 int target_step(struct target *target,
411 int current, uint32_t address, int handle_breakpoints);
413 * Run an algorithm on the @a target given.
415 * This routine is a wrapper for target->type->run_algorithm.
417 int target_run_algorithm(struct target *target,
418 int num_mem_params, struct mem_param *mem_params,
419 int num_reg_params, struct reg_param *reg_param,
420 uint32_t entry_point, uint32_t exit_point,
421 int timeout_ms, void *arch_info);
424 * Starts an algorithm in the background on the @a target given.
426 * This routine is a wrapper for target->type->start_algorithm.
428 int target_start_algorithm(struct target *target,
429 int num_mem_params, struct mem_param *mem_params,
430 int num_reg_params, struct reg_param *reg_params,
431 uint32_t entry_point, uint32_t exit_point,
432 void *arch_info);
435 * Wait for an algorithm on the @a target given.
437 * This routine is a wrapper for target->type->wait_algorithm.
439 int target_wait_algorithm(struct target *target,
440 int num_mem_params, struct mem_param *mem_params,
441 int num_reg_params, struct reg_param *reg_params,
442 uint32_t exit_point, int timeout_ms,
443 void *arch_info);
446 * This routine is a wrapper for asynchronous algorithms.
449 int target_run_flash_async_algorithm(struct target *target,
450 uint8_t *buffer, uint32_t count, int block_size,
451 int num_mem_params, struct mem_param *mem_params,
452 int num_reg_params, struct reg_param *reg_params,
453 uint32_t buffer_start, uint32_t buffer_size,
454 uint32_t entry_point, uint32_t exit_point,
455 void *arch_info);
458 * Read @a count items of @a size bytes from the memory of @a target at
459 * the @a address given.
461 * This routine is a wrapper for target->type->read_memory.
463 int target_read_memory(struct target *target,
464 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
466 * Write @a count items of @a size bytes to the memory of @a target at
467 * the @a address given. @a address must be aligned to @a size
468 * in target memory.
470 * The endianness is the same in the host and target memory for this
471 * function.
473 * \todo TODO:
474 * Really @a buffer should have been defined as "const void *" and
475 * @a buffer should have been aligned to @a size in the host memory.
477 * This is not enforced via e.g. assert's today and e.g. the
478 * target_write_buffer fn breaks this assumption.
480 * This routine is wrapper for target->type->write_memory.
482 int target_write_memory(struct target *target,
483 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
486 * Write @a count items of 4 bytes to the memory of @a target at
487 * the @a address given. Because it operates only on whole words,
488 * this should be faster than target_write_memory().
490 * This routine is wrapper for target->type->bulk_write_memory.
492 int target_bulk_write_memory(struct target *target,
493 uint32_t address, uint32_t count, const uint8_t *buffer);
496 * Write to target memory using the virtual address.
498 * Note that this fn is used to implement software breakpoints. Targets
499 * can implement support for software breakpoints to memory marked as read
500 * only by making this fn write to ram even if it is read only(MMU or
501 * MPUs).
503 * It is sufficient to implement for writing a single word(16 or 32 in
504 * ARM32/16 bit case) to write the breakpoint to ram.
506 * The target should also take care of "other things" to make sure that
507 * software breakpoints can be written using this function. E.g.
508 * when there is a separate instruction and data cache, this fn must
509 * make sure that the instruction cache is synced up to the potential
510 * code change that can happen as a result of the memory write(typically
511 * by invalidating the cache).
513 * The high level wrapper fn in target.c will break down this memory write
514 * request to multiple write requests to the target driver to e.g. guarantee
515 * that writing 4 bytes to an aligned address happens with a single 32 bit
516 * write operation, thus making this fn suitable to e.g. write to special
517 * peripheral registers which do not support byte operations.
519 int target_write_buffer(struct target *target,
520 uint32_t address, uint32_t size, const uint8_t *buffer);
521 int target_read_buffer(struct target *target,
522 uint32_t address, uint32_t size, uint8_t *buffer);
523 int target_checksum_memory(struct target *target,
524 uint32_t address, uint32_t size, uint32_t *crc);
525 int target_blank_check_memory(struct target *target,
526 uint32_t address, uint32_t size, uint32_t *blank);
527 int target_wait_state(struct target *target, enum target_state state, int ms);
529 /** Return the *name* of this targets current state */
530 const char *target_state_name(struct target *target);
532 /* DANGER!!!!!
534 * if "area" passed in to target_alloc_working_area() points to a memory
535 * location that goes out of scope (e.g. a pointer on the stack), then
536 * the caller of target_alloc_working_area() is responsible for invoking
537 * target_free_working_area() before "area" goes out of scope.
539 * target_free_all_working_areas() will NULL out the "area" pointer
540 * upon resuming or resetting the CPU.
543 int target_alloc_working_area(struct target *target,
544 uint32_t size, struct working_area **area);
545 /* Same as target_alloc_working_area, except that no error is logged
546 * when ERROR_TARGET_RESOURCE_NOT_AVAILABLE is returned.
548 * This allows the calling code to *try* to allocate target memory
549 * and have a fallback to another behavior(slower?).
551 int target_alloc_working_area_try(struct target *target,
552 uint32_t size, struct working_area **area);
553 int target_free_working_area(struct target *target, struct working_area *area);
554 void target_free_all_working_areas(struct target *target);
555 uint32_t target_get_working_area_avail(struct target *target);
557 extern struct target *all_targets;
559 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer);
560 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer);
561 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer);
562 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value);
563 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value);
564 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value);
566 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf);
567 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf);
568 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf);
569 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf);
571 int target_read_u32(struct target *target, uint32_t address, uint32_t *value);
572 int target_read_u16(struct target *target, uint32_t address, uint16_t *value);
573 int target_read_u8(struct target *target, uint32_t address, uint8_t *value);
574 int target_write_u32(struct target *target, uint32_t address, uint32_t value);
575 int target_write_u16(struct target *target, uint32_t address, uint16_t value);
576 int target_write_u8(struct target *target, uint32_t address, uint8_t value);
578 /* Issues USER() statements with target state information */
579 int target_arch_state(struct target *target);
581 void target_handle_event(struct target *t, enum target_event e);
583 #define ERROR_TARGET_INVALID (-300)
584 #define ERROR_TARGET_INIT_FAILED (-301)
585 #define ERROR_TARGET_TIMEOUT (-302)
586 #define ERROR_TARGET_NOT_HALTED (-304)
587 #define ERROR_TARGET_FAILURE (-305)
588 #define ERROR_TARGET_UNALIGNED_ACCESS (-306)
589 #define ERROR_TARGET_DATA_ABORT (-307)
590 #define ERROR_TARGET_RESOURCE_NOT_AVAILABLE (-308)
591 #define ERROR_TARGET_TRANSLATION_FAULT (-309)
592 #define ERROR_TARGET_NOT_RUNNING (-310)
593 #define ERROR_TARGET_NOT_EXAMINED (-311)
595 extern bool get_target_reset_nag(void);
597 #endif /* TARGET_H */