1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
40 ***************************************************************************/
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
57 #include "rtos/rtos.h"
59 static int target_read_buffer_default(struct target
*target
, uint32_t address
,
60 uint32_t size
, uint8_t *buffer
);
61 static int target_write_buffer_default(struct target
*target
, uint32_t address
,
62 uint32_t size
, const uint8_t *buffer
);
63 static int target_array2mem(Jim_Interp
*interp
, struct target
*target
,
64 int argc
, Jim_Obj
* const *argv
);
65 static int target_mem2array(Jim_Interp
*interp
, struct target
*target
,
66 int argc
, Jim_Obj
* const *argv
);
67 static int target_register_user_commands(struct command_context
*cmd_ctx
);
70 extern struct target_type arm7tdmi_target
;
71 extern struct target_type arm720t_target
;
72 extern struct target_type arm9tdmi_target
;
73 extern struct target_type arm920t_target
;
74 extern struct target_type arm966e_target
;
75 extern struct target_type arm946e_target
;
76 extern struct target_type arm926ejs_target
;
77 extern struct target_type fa526_target
;
78 extern struct target_type feroceon_target
;
79 extern struct target_type dragonite_target
;
80 extern struct target_type xscale_target
;
81 extern struct target_type cortexm3_target
;
82 extern struct target_type cortexa8_target
;
83 extern struct target_type arm11_target
;
84 extern struct target_type mips_m4k_target
;
85 extern struct target_type avr_target
;
86 extern struct target_type dsp563xx_target
;
87 extern struct target_type dsp5680xx_target
;
88 extern struct target_type testee_target
;
89 extern struct target_type avr32_ap7k_target
;
90 extern struct target_type stm32_stlink_target
;
92 static struct target_type
*target_types
[] = {
113 &stm32_stlink_target
,
117 struct target
*all_targets
;
118 static struct target_event_callback
*target_event_callbacks
;
119 static struct target_timer_callback
*target_timer_callbacks
;
120 static const int polling_interval
= 100;
122 static const Jim_Nvp nvp_assert
[] = {
123 { .name
= "assert", NVP_ASSERT
},
124 { .name
= "deassert", NVP_DEASSERT
},
125 { .name
= "T", NVP_ASSERT
},
126 { .name
= "F", NVP_DEASSERT
},
127 { .name
= "t", NVP_ASSERT
},
128 { .name
= "f", NVP_DEASSERT
},
129 { .name
= NULL
, .value
= -1 }
132 static const Jim_Nvp nvp_error_target
[] = {
133 { .value
= ERROR_TARGET_INVALID
, .name
= "err-invalid" },
134 { .value
= ERROR_TARGET_INIT_FAILED
, .name
= "err-init-failed" },
135 { .value
= ERROR_TARGET_TIMEOUT
, .name
= "err-timeout" },
136 { .value
= ERROR_TARGET_NOT_HALTED
, .name
= "err-not-halted" },
137 { .value
= ERROR_TARGET_FAILURE
, .name
= "err-failure" },
138 { .value
= ERROR_TARGET_UNALIGNED_ACCESS
, .name
= "err-unaligned-access" },
139 { .value
= ERROR_TARGET_DATA_ABORT
, .name
= "err-data-abort" },
140 { .value
= ERROR_TARGET_RESOURCE_NOT_AVAILABLE
, .name
= "err-resource-not-available" },
141 { .value
= ERROR_TARGET_TRANSLATION_FAULT
, .name
= "err-translation-fault" },
142 { .value
= ERROR_TARGET_NOT_RUNNING
, .name
= "err-not-running" },
143 { .value
= ERROR_TARGET_NOT_EXAMINED
, .name
= "err-not-examined" },
144 { .value
= -1, .name
= NULL
}
147 static const char *target_strerror_safe(int err
)
151 n
= Jim_Nvp_value2name_simple(nvp_error_target
, err
);
158 static const Jim_Nvp nvp_target_event
[] = {
159 { .value
= TARGET_EVENT_OLD_gdb_program_config
, .name
= "old-gdb_program_config" },
160 { .value
= TARGET_EVENT_OLD_pre_resume
, .name
= "old-pre_resume" },
162 { .value
= TARGET_EVENT_GDB_HALT
, .name
= "gdb-halt" },
163 { .value
= TARGET_EVENT_HALTED
, .name
= "halted" },
164 { .value
= TARGET_EVENT_RESUMED
, .name
= "resumed" },
165 { .value
= TARGET_EVENT_RESUME_START
, .name
= "resume-start" },
166 { .value
= TARGET_EVENT_RESUME_END
, .name
= "resume-end" },
168 { .name
= "gdb-start", .value
= TARGET_EVENT_GDB_START
},
169 { .name
= "gdb-end", .value
= TARGET_EVENT_GDB_END
},
171 /* historical name */
173 { .value
= TARGET_EVENT_RESET_START
, .name
= "reset-start" },
175 { .value
= TARGET_EVENT_RESET_ASSERT_PRE
, .name
= "reset-assert-pre" },
176 { .value
= TARGET_EVENT_RESET_ASSERT
, .name
= "reset-assert" },
177 { .value
= TARGET_EVENT_RESET_ASSERT_POST
, .name
= "reset-assert-post" },
178 { .value
= TARGET_EVENT_RESET_DEASSERT_PRE
, .name
= "reset-deassert-pre" },
179 { .value
= TARGET_EVENT_RESET_DEASSERT_POST
, .name
= "reset-deassert-post" },
180 { .value
= TARGET_EVENT_RESET_HALT_PRE
, .name
= "reset-halt-pre" },
181 { .value
= TARGET_EVENT_RESET_HALT_POST
, .name
= "reset-halt-post" },
182 { .value
= TARGET_EVENT_RESET_WAIT_PRE
, .name
= "reset-wait-pre" },
183 { .value
= TARGET_EVENT_RESET_WAIT_POST
, .name
= "reset-wait-post" },
184 { .value
= TARGET_EVENT_RESET_INIT
, .name
= "reset-init" },
185 { .value
= TARGET_EVENT_RESET_END
, .name
= "reset-end" },
187 { .value
= TARGET_EVENT_EXAMINE_START
, .name
= "examine-start" },
188 { .value
= TARGET_EVENT_EXAMINE_END
, .name
= "examine-end" },
190 { .value
= TARGET_EVENT_DEBUG_HALTED
, .name
= "debug-halted" },
191 { .value
= TARGET_EVENT_DEBUG_RESUMED
, .name
= "debug-resumed" },
193 { .value
= TARGET_EVENT_GDB_ATTACH
, .name
= "gdb-attach" },
194 { .value
= TARGET_EVENT_GDB_DETACH
, .name
= "gdb-detach" },
196 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_START
, .name
= "gdb-flash-write-start" },
197 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_END
, .name
= "gdb-flash-write-end" },
199 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_START
, .name
= "gdb-flash-erase-start" },
200 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_END
, .name
= "gdb-flash-erase-end" },
202 { .value
= TARGET_EVENT_RESUME_START
, .name
= "resume-start" },
203 { .value
= TARGET_EVENT_RESUMED
, .name
= "resume-ok" },
204 { .value
= TARGET_EVENT_RESUME_END
, .name
= "resume-end" },
206 { .name
= NULL
, .value
= -1 }
209 static const Jim_Nvp nvp_target_state
[] = {
210 { .name
= "unknown", .value
= TARGET_UNKNOWN
},
211 { .name
= "running", .value
= TARGET_RUNNING
},
212 { .name
= "halted", .value
= TARGET_HALTED
},
213 { .name
= "reset", .value
= TARGET_RESET
},
214 { .name
= "debug-running", .value
= TARGET_DEBUG_RUNNING
},
215 { .name
= NULL
, .value
= -1 },
218 static const Jim_Nvp nvp_target_debug_reason
[] = {
219 { .name
= "debug-request" , .value
= DBG_REASON_DBGRQ
},
220 { .name
= "breakpoint" , .value
= DBG_REASON_BREAKPOINT
},
221 { .name
= "watchpoint" , .value
= DBG_REASON_WATCHPOINT
},
222 { .name
= "watchpoint-and-breakpoint", .value
= DBG_REASON_WPTANDBKPT
},
223 { .name
= "single-step" , .value
= DBG_REASON_SINGLESTEP
},
224 { .name
= "target-not-halted" , .value
= DBG_REASON_NOTHALTED
},
225 { .name
= "undefined" , .value
= DBG_REASON_UNDEFINED
},
226 { .name
= NULL
, .value
= -1 },
229 static const Jim_Nvp nvp_target_endian
[] = {
230 { .name
= "big", .value
= TARGET_BIG_ENDIAN
},
231 { .name
= "little", .value
= TARGET_LITTLE_ENDIAN
},
232 { .name
= "be", .value
= TARGET_BIG_ENDIAN
},
233 { .name
= "le", .value
= TARGET_LITTLE_ENDIAN
},
234 { .name
= NULL
, .value
= -1 },
237 static const Jim_Nvp nvp_reset_modes
[] = {
238 { .name
= "unknown", .value
= RESET_UNKNOWN
},
239 { .name
= "run" , .value
= RESET_RUN
},
240 { .name
= "halt" , .value
= RESET_HALT
},
241 { .name
= "init" , .value
= RESET_INIT
},
242 { .name
= NULL
, .value
= -1 },
245 const char *debug_reason_name(struct target
*t
)
249 cp
= Jim_Nvp_value2name_simple(nvp_target_debug_reason
,
250 t
->debug_reason
)->name
;
252 LOG_ERROR("Invalid debug reason: %d", (int)(t
->debug_reason
));
253 cp
= "(*BUG*unknown*BUG*)";
258 const char *target_state_name(struct target
*t
)
261 cp
= Jim_Nvp_value2name_simple(nvp_target_state
, t
->state
)->name
;
263 LOG_ERROR("Invalid target state: %d", (int)(t
->state
));
264 cp
= "(*BUG*unknown*BUG*)";
269 /* determine the number of the new target */
270 static int new_target_number(void)
275 /* number is 0 based */
279 if (x
< t
->target_number
)
280 x
= t
->target_number
;
286 /* read a uint32_t from a buffer in target memory endianness */
287 uint32_t target_buffer_get_u32(struct target
*target
, const uint8_t *buffer
)
289 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
290 return le_to_h_u32(buffer
);
292 return be_to_h_u32(buffer
);
295 /* read a uint24_t from a buffer in target memory endianness */
296 uint32_t target_buffer_get_u24(struct target
*target
, const uint8_t *buffer
)
298 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
299 return le_to_h_u24(buffer
);
301 return be_to_h_u24(buffer
);
304 /* read a uint16_t from a buffer in target memory endianness */
305 uint16_t target_buffer_get_u16(struct target
*target
, const uint8_t *buffer
)
307 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
308 return le_to_h_u16(buffer
);
310 return be_to_h_u16(buffer
);
313 /* read a uint8_t from a buffer in target memory endianness */
314 static uint8_t target_buffer_get_u8(struct target
*target
, const uint8_t *buffer
)
316 return *buffer
& 0x0ff;
319 /* write a uint32_t to a buffer in target memory endianness */
320 void target_buffer_set_u32(struct target
*target
, uint8_t *buffer
, uint32_t value
)
322 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
323 h_u32_to_le(buffer
, value
);
325 h_u32_to_be(buffer
, value
);
328 /* write a uint24_t to a buffer in target memory endianness */
329 void target_buffer_set_u24(struct target
*target
, uint8_t *buffer
, uint32_t value
)
331 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
332 h_u24_to_le(buffer
, value
);
334 h_u24_to_be(buffer
, value
);
337 /* write a uint16_t to a buffer in target memory endianness */
338 void target_buffer_set_u16(struct target
*target
, uint8_t *buffer
, uint16_t value
)
340 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
341 h_u16_to_le(buffer
, value
);
343 h_u16_to_be(buffer
, value
);
346 /* write a uint8_t to a buffer in target memory endianness */
347 static void target_buffer_set_u8(struct target
*target
, uint8_t *buffer
, uint8_t value
)
352 /* write a uint32_t array to a buffer in target memory endianness */
353 void target_buffer_get_u32_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint32_t *dstbuf
)
356 for (i
= 0; i
< count
; i
++)
357 dstbuf
[i
] = target_buffer_get_u32(target
, &buffer
[i
* 4]);
360 /* write a uint16_t array to a buffer in target memory endianness */
361 void target_buffer_get_u16_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint16_t *dstbuf
)
364 for (i
= 0; i
< count
; i
++)
365 dstbuf
[i
] = target_buffer_get_u16(target
, &buffer
[i
* 2]);
368 /* write a uint32_t array to a buffer in target memory endianness */
369 void target_buffer_set_u32_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, uint32_t *srcbuf
)
372 for (i
= 0; i
< count
; i
++)
373 target_buffer_set_u32(target
, &buffer
[i
* 4], srcbuf
[i
]);
376 /* write a uint16_t array to a buffer in target memory endianness */
377 void target_buffer_set_u16_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, uint16_t *srcbuf
)
380 for (i
= 0; i
< count
; i
++)
381 target_buffer_set_u16(target
, &buffer
[i
* 2], srcbuf
[i
]);
384 /* return a pointer to a configured target; id is name or number */
385 struct target
*get_target(const char *id
)
387 struct target
*target
;
389 /* try as tcltarget name */
390 for (target
= all_targets
; target
; target
= target
->next
) {
391 if (target
->cmd_name
== NULL
)
393 if (strcmp(id
, target
->cmd_name
) == 0)
397 /* It's OK to remove this fallback sometime after August 2010 or so */
399 /* no match, try as number */
401 if (parse_uint(id
, &num
) != ERROR_OK
)
404 for (target
= all_targets
; target
; target
= target
->next
) {
405 if (target
->target_number
== (int)num
) {
406 LOG_WARNING("use '%s' as target identifier, not '%u'",
407 target
->cmd_name
, num
);
415 /* returns a pointer to the n-th configured target */
416 static struct target
*get_target_by_num(int num
)
418 struct target
*target
= all_targets
;
421 if (target
->target_number
== num
)
423 target
= target
->next
;
429 struct target
*get_current_target(struct command_context
*cmd_ctx
)
431 struct target
*target
= get_target_by_num(cmd_ctx
->current_target
);
433 if (target
== NULL
) {
434 LOG_ERROR("BUG: current_target out of bounds");
441 int target_poll(struct target
*target
)
445 /* We can't poll until after examine */
446 if (!target_was_examined(target
)) {
447 /* Fail silently lest we pollute the log */
451 retval
= target
->type
->poll(target
);
452 if (retval
!= ERROR_OK
)
455 if (target
->halt_issued
) {
456 if (target
->state
== TARGET_HALTED
)
457 target
->halt_issued
= false;
459 long long t
= timeval_ms() - target
->halt_issued_time
;
461 target
->halt_issued
= false;
462 LOG_INFO("Halt timed out, wake up GDB.");
463 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
471 int target_halt(struct target
*target
)
474 /* We can't poll until after examine */
475 if (!target_was_examined(target
)) {
476 LOG_ERROR("Target not examined yet");
480 retval
= target
->type
->halt(target
);
481 if (retval
!= ERROR_OK
)
484 target
->halt_issued
= true;
485 target
->halt_issued_time
= timeval_ms();
491 * Make the target (re)start executing using its saved execution
492 * context (possibly with some modifications).
494 * @param target Which target should start executing.
495 * @param current True to use the target's saved program counter instead
496 * of the address parameter
497 * @param address Optionally used as the program counter.
498 * @param handle_breakpoints True iff breakpoints at the resumption PC
499 * should be skipped. (For example, maybe execution was stopped by
500 * such a breakpoint, in which case it would be counterprodutive to
502 * @param debug_execution False if all working areas allocated by OpenOCD
503 * should be released and/or restored to their original contents.
504 * (This would for example be true to run some downloaded "helper"
505 * algorithm code, which resides in one such working buffer and uses
506 * another for data storage.)
508 * @todo Resolve the ambiguity about what the "debug_execution" flag
509 * signifies. For example, Target implementations don't agree on how
510 * it relates to invalidation of the register cache, or to whether
511 * breakpoints and watchpoints should be enabled. (It would seem wrong
512 * to enable breakpoints when running downloaded "helper" algorithms
513 * (debug_execution true), since the breakpoints would be set to match
514 * target firmware being debugged, not the helper algorithm.... and
515 * enabling them could cause such helpers to malfunction (for example,
516 * by overwriting data with a breakpoint instruction. On the other
517 * hand the infrastructure for running such helpers might use this
518 * procedure but rely on hardware breakpoint to detect termination.)
520 int target_resume(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
, int debug_execution
)
524 /* We can't poll until after examine */
525 if (!target_was_examined(target
)) {
526 LOG_ERROR("Target not examined yet");
530 /* note that resume *must* be asynchronous. The CPU can halt before
531 * we poll. The CPU can even halt at the current PC as a result of
532 * a software breakpoint being inserted by (a bug?) the application.
534 retval
= target
->type
->resume(target
, current
, address
, handle_breakpoints
, debug_execution
);
535 if (retval
!= ERROR_OK
)
541 static int target_process_reset(struct command_context
*cmd_ctx
, enum target_reset_mode reset_mode
)
546 n
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
);
547 if (n
->name
== NULL
) {
548 LOG_ERROR("invalid reset mode");
552 /* disable polling during reset to make reset event scripts
553 * more predictable, i.e. dr/irscan & pathmove in events will
554 * not have JTAG operations injected into the middle of a sequence.
556 bool save_poll
= jtag_poll_get_enabled();
558 jtag_poll_set_enabled(false);
560 sprintf(buf
, "ocd_process_reset %s", n
->name
);
561 retval
= Jim_Eval(cmd_ctx
->interp
, buf
);
563 jtag_poll_set_enabled(save_poll
);
565 if (retval
!= JIM_OK
) {
566 Jim_MakeErrorMessage(cmd_ctx
->interp
);
567 command_print(NULL
, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx
->interp
), NULL
));
571 /* We want any events to be processed before the prompt */
572 retval
= target_call_timer_callbacks_now();
574 struct target
*target
;
575 for (target
= all_targets
; target
; target
= target
->next
)
576 target
->type
->check_reset(target
);
581 static int identity_virt2phys(struct target
*target
,
582 uint32_t virtual, uint32_t *physical
)
588 static int no_mmu(struct target
*target
, int *enabled
)
594 static int default_examine(struct target
*target
)
596 target_set_examined(target
);
600 /* no check by default */
601 static int default_check_reset(struct target
*target
)
606 int target_examine_one(struct target
*target
)
608 return target
->type
->examine(target
);
611 static int jtag_enable_callback(enum jtag_event event
, void *priv
)
613 struct target
*target
= priv
;
615 if (event
!= JTAG_TAP_EVENT_ENABLE
|| !target
->tap
->enabled
)
618 jtag_unregister_event_callback(jtag_enable_callback
, target
);
619 return target_examine_one(target
);
623 /* Targets that correctly implement init + examine, i.e.
624 * no communication with target during init:
628 int target_examine(void)
630 int retval
= ERROR_OK
;
631 struct target
*target
;
633 for (target
= all_targets
; target
; target
= target
->next
) {
634 /* defer examination, but don't skip it */
635 if (!target
->tap
->enabled
) {
636 jtag_register_event_callback(jtag_enable_callback
,
640 retval
= target_examine_one(target
);
641 if (retval
!= ERROR_OK
)
646 const char *target_type_name(struct target
*target
)
648 return target
->type
->name
;
651 static int target_write_memory_imp(struct target
*target
, uint32_t address
,
652 uint32_t size
, uint32_t count
, const uint8_t *buffer
)
654 if (!target_was_examined(target
)) {
655 LOG_ERROR("Target not examined yet");
658 return target
->type
->write_memory_imp(target
, address
, size
, count
, buffer
);
661 static int target_read_memory_imp(struct target
*target
, uint32_t address
,
662 uint32_t size
, uint32_t count
, uint8_t *buffer
)
664 if (!target_was_examined(target
)) {
665 LOG_ERROR("Target not examined yet");
668 return target
->type
->read_memory_imp(target
, address
, size
, count
, buffer
);
671 static int target_soft_reset_halt_imp(struct target
*target
)
673 if (!target_was_examined(target
)) {
674 LOG_ERROR("Target not examined yet");
677 if (!target
->type
->soft_reset_halt_imp
) {
678 LOG_ERROR("Target %s does not support soft_reset_halt",
679 target_name(target
));
682 return target
->type
->soft_reset_halt_imp(target
);
686 * Downloads a target-specific native code algorithm to the target,
687 * and executes it. * Note that some targets may need to set up, enable,
688 * and tear down a breakpoint (hard or * soft) to detect algorithm
689 * termination, while others may support lower overhead schemes where
690 * soft breakpoints embedded in the algorithm automatically terminate the
693 * @param target used to run the algorithm
694 * @param arch_info target-specific description of the algorithm.
696 int target_run_algorithm(struct target
*target
,
697 int num_mem_params
, struct mem_param
*mem_params
,
698 int num_reg_params
, struct reg_param
*reg_param
,
699 uint32_t entry_point
, uint32_t exit_point
,
700 int timeout_ms
, void *arch_info
)
702 int retval
= ERROR_FAIL
;
704 if (!target_was_examined(target
)) {
705 LOG_ERROR("Target not examined yet");
708 if (!target
->type
->run_algorithm
) {
709 LOG_ERROR("Target type '%s' does not support %s",
710 target_type_name(target
), __func__
);
714 target
->running_alg
= true;
715 retval
= target
->type
->run_algorithm(target
,
716 num_mem_params
, mem_params
,
717 num_reg_params
, reg_param
,
718 entry_point
, exit_point
, timeout_ms
, arch_info
);
719 target
->running_alg
= false;
726 * Downloads a target-specific native code algorithm to the target,
727 * executes and leaves it running.
729 * @param target used to run the algorithm
730 * @param arch_info target-specific description of the algorithm.
732 int target_start_algorithm(struct target
*target
,
733 int num_mem_params
, struct mem_param
*mem_params
,
734 int num_reg_params
, struct reg_param
*reg_params
,
735 uint32_t entry_point
, uint32_t exit_point
,
738 int retval
= ERROR_FAIL
;
740 if (!target_was_examined(target
)) {
741 LOG_ERROR("Target not examined yet");
744 if (!target
->type
->start_algorithm
) {
745 LOG_ERROR("Target type '%s' does not support %s",
746 target_type_name(target
), __func__
);
749 if (target
->running_alg
) {
750 LOG_ERROR("Target is already running an algorithm");
754 target
->running_alg
= true;
755 retval
= target
->type
->start_algorithm(target
,
756 num_mem_params
, mem_params
,
757 num_reg_params
, reg_params
,
758 entry_point
, exit_point
, arch_info
);
765 * Waits for an algorithm started with target_start_algorithm() to complete.
767 * @param target used to run the algorithm
768 * @param arch_info target-specific description of the algorithm.
770 int target_wait_algorithm(struct target
*target
,
771 int num_mem_params
, struct mem_param
*mem_params
,
772 int num_reg_params
, struct reg_param
*reg_params
,
773 uint32_t exit_point
, int timeout_ms
,
776 int retval
= ERROR_FAIL
;
778 if (!target
->type
->wait_algorithm
) {
779 LOG_ERROR("Target type '%s' does not support %s",
780 target_type_name(target
), __func__
);
783 if (!target
->running_alg
) {
784 LOG_ERROR("Target is not running an algorithm");
788 retval
= target
->type
->wait_algorithm(target
,
789 num_mem_params
, mem_params
,
790 num_reg_params
, reg_params
,
791 exit_point
, timeout_ms
, arch_info
);
792 if (retval
!= ERROR_TARGET_TIMEOUT
)
793 target
->running_alg
= false;
800 * Executes a target-specific native code algorithm in the target.
801 * It differs from target_run_algorithm in that the algorithm is asynchronous.
802 * Because of this it requires an compliant algorithm:
803 * see contrib/loaders/flash/stm32f1x.S for example.
805 * @param target used to run the algorithm
808 int target_run_flash_async_algorithm(struct target
*target
,
809 uint8_t *buffer
, uint32_t count
, int block_size
,
810 int num_mem_params
, struct mem_param
*mem_params
,
811 int num_reg_params
, struct reg_param
*reg_params
,
812 uint32_t buffer_start
, uint32_t buffer_size
,
813 uint32_t entry_point
, uint32_t exit_point
, void *arch_info
)
817 /* Set up working area. First word is write pointer, second word is read pointer,
818 * rest is fifo data area. */
819 uint32_t wp_addr
= buffer_start
;
820 uint32_t rp_addr
= buffer_start
+ 4;
821 uint32_t fifo_start_addr
= buffer_start
+ 8;
822 uint32_t fifo_end_addr
= buffer_start
+ buffer_size
;
824 uint32_t wp
= fifo_start_addr
;
825 uint32_t rp
= fifo_start_addr
;
827 /* validate block_size is 2^n */
828 assert(!block_size
|| !(block_size
& (block_size
- 1)));
830 retval
= target_write_u32(target
, wp_addr
, wp
);
831 if (retval
!= ERROR_OK
)
833 retval
= target_write_u32(target
, rp_addr
, rp
);
834 if (retval
!= ERROR_OK
)
837 /* Start up algorithm on target and let it idle while writing the first chunk */
838 retval
= target_start_algorithm(target
, num_mem_params
, mem_params
,
839 num_reg_params
, reg_params
,
844 if (retval
!= ERROR_OK
) {
845 LOG_ERROR("error starting target flash write algorithm");
851 retval
= target_read_u32(target
, rp_addr
, &rp
);
852 if (retval
!= ERROR_OK
) {
853 LOG_ERROR("failed to get read pointer");
857 LOG_DEBUG("count 0x%" PRIx32
" wp 0x%" PRIx32
" rp 0x%" PRIx32
, count
, wp
, rp
);
860 LOG_ERROR("flash write algorithm aborted by target");
861 retval
= ERROR_FLASH_OPERATION_FAILED
;
865 if ((rp
& (block_size
- 1)) || rp
< fifo_start_addr
|| rp
>= fifo_end_addr
) {
866 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32
, rp
);
870 /* Count the number of bytes available in the fifo without
871 * crossing the wrap around. Make sure to not fill it completely,
872 * because that would make wp == rp and that's the empty condition. */
873 uint32_t thisrun_bytes
;
875 thisrun_bytes
= rp
- wp
- block_size
;
876 else if (rp
> fifo_start_addr
)
877 thisrun_bytes
= fifo_end_addr
- wp
;
879 thisrun_bytes
= fifo_end_addr
- wp
- block_size
;
881 if (thisrun_bytes
== 0) {
882 /* Throttle polling a bit if transfer is (much) faster than flash
883 * programming. The exact delay shouldn't matter as long as it's
884 * less than buffer size / flash speed. This is very unlikely to
885 * run when using high latency connections such as USB. */
890 /* Limit to the amount of data we actually want to write */
891 if (thisrun_bytes
> count
* block_size
)
892 thisrun_bytes
= count
* block_size
;
894 /* Write data to fifo */
895 retval
= target_write_buffer(target
, wp
, thisrun_bytes
, buffer
);
896 if (retval
!= ERROR_OK
)
899 /* Update counters and wrap write pointer */
900 buffer
+= thisrun_bytes
;
901 count
-= thisrun_bytes
/ block_size
;
903 if (wp
>= fifo_end_addr
)
904 wp
= fifo_start_addr
;
906 /* Store updated write pointer to target */
907 retval
= target_write_u32(target
, wp_addr
, wp
);
908 if (retval
!= ERROR_OK
)
912 if (retval
!= ERROR_OK
) {
913 /* abort flash write algorithm on target */
914 target_write_u32(target
, wp_addr
, 0);
917 int retval2
= target_wait_algorithm(target
, num_mem_params
, mem_params
,
918 num_reg_params
, reg_params
,
923 if (retval2
!= ERROR_OK
) {
924 LOG_ERROR("error waiting for target flash write algorithm");
931 int target_read_memory(struct target
*target
,
932 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
934 return target
->type
->read_memory(target
, address
, size
, count
, buffer
);
937 static int target_read_phys_memory(struct target
*target
,
938 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
940 return target
->type
->read_phys_memory(target
, address
, size
, count
, buffer
);
943 int target_write_memory(struct target
*target
,
944 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
946 return target
->type
->write_memory(target
, address
, size
, count
, buffer
);
949 static int target_write_phys_memory(struct target
*target
,
950 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
952 return target
->type
->write_phys_memory(target
, address
, size
, count
, buffer
);
955 int target_bulk_write_memory(struct target
*target
,
956 uint32_t address
, uint32_t count
, const uint8_t *buffer
)
958 return target
->type
->bulk_write_memory(target
, address
, count
, buffer
);
961 int target_add_breakpoint(struct target
*target
,
962 struct breakpoint
*breakpoint
)
964 if ((target
->state
!= TARGET_HALTED
) && (breakpoint
->type
!= BKPT_HARD
)) {
965 LOG_WARNING("target %s is not halted", target
->cmd_name
);
966 return ERROR_TARGET_NOT_HALTED
;
968 return target
->type
->add_breakpoint(target
, breakpoint
);
971 int target_add_context_breakpoint(struct target
*target
,
972 struct breakpoint
*breakpoint
)
974 if (target
->state
!= TARGET_HALTED
) {
975 LOG_WARNING("target %s is not halted", target
->cmd_name
);
976 return ERROR_TARGET_NOT_HALTED
;
978 return target
->type
->add_context_breakpoint(target
, breakpoint
);
981 int target_add_hybrid_breakpoint(struct target
*target
,
982 struct breakpoint
*breakpoint
)
984 if (target
->state
!= TARGET_HALTED
) {
985 LOG_WARNING("target %s is not halted", target
->cmd_name
);
986 return ERROR_TARGET_NOT_HALTED
;
988 return target
->type
->add_hybrid_breakpoint(target
, breakpoint
);
991 int target_remove_breakpoint(struct target
*target
,
992 struct breakpoint
*breakpoint
)
994 return target
->type
->remove_breakpoint(target
, breakpoint
);
997 int target_add_watchpoint(struct target
*target
,
998 struct watchpoint
*watchpoint
)
1000 if (target
->state
!= TARGET_HALTED
) {
1001 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1002 return ERROR_TARGET_NOT_HALTED
;
1004 return target
->type
->add_watchpoint(target
, watchpoint
);
1006 int target_remove_watchpoint(struct target
*target
,
1007 struct watchpoint
*watchpoint
)
1009 return target
->type
->remove_watchpoint(target
, watchpoint
);
1012 int target_get_gdb_reg_list(struct target
*target
,
1013 struct reg
**reg_list
[], int *reg_list_size
)
1015 return target
->type
->get_gdb_reg_list(target
, reg_list
, reg_list_size
);
1017 int target_step(struct target
*target
,
1018 int current
, uint32_t address
, int handle_breakpoints
)
1020 return target
->type
->step(target
, current
, address
, handle_breakpoints
);
1024 * Reset the @c examined flag for the given target.
1025 * Pure paranoia -- targets are zeroed on allocation.
1027 static void target_reset_examined(struct target
*target
)
1029 target
->examined
= false;
1032 static int err_read_phys_memory(struct target
*target
, uint32_t address
,
1033 uint32_t size
, uint32_t count
, uint8_t *buffer
)
1035 LOG_ERROR("Not implemented: %s", __func__
);
1039 static int err_write_phys_memory(struct target
*target
, uint32_t address
,
1040 uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1042 LOG_ERROR("Not implemented: %s", __func__
);
1046 static int handle_target(void *priv
);
1048 static int target_init_one(struct command_context
*cmd_ctx
,
1049 struct target
*target
)
1051 target_reset_examined(target
);
1053 struct target_type
*type
= target
->type
;
1054 if (type
->examine
== NULL
)
1055 type
->examine
= default_examine
;
1057 if (type
->check_reset
== NULL
)
1058 type
->check_reset
= default_check_reset
;
1060 assert(type
->init_target
!= NULL
);
1062 int retval
= type
->init_target(cmd_ctx
, target
);
1063 if (ERROR_OK
!= retval
) {
1064 LOG_ERROR("target '%s' init failed", target_name(target
));
1069 * @todo get rid of those *memory_imp() methods, now that all
1070 * callers are using target_*_memory() accessors ... and make
1071 * sure the "physical" paths handle the same issues.
1073 /* a non-invasive way(in terms of patches) to add some code that
1074 * runs before the type->write/read_memory implementation
1076 type
->write_memory_imp
= target
->type
->write_memory
;
1077 type
->write_memory
= target_write_memory_imp
;
1079 type
->read_memory_imp
= target
->type
->read_memory
;
1080 type
->read_memory
= target_read_memory_imp
;
1082 type
->soft_reset_halt_imp
= target
->type
->soft_reset_halt
;
1083 type
->soft_reset_halt
= target_soft_reset_halt_imp
;
1085 /* Sanity-check MMU support ... stub in what we must, to help
1086 * implement it in stages, but warn if we need to do so.
1089 if (type
->write_phys_memory
== NULL
) {
1090 LOG_ERROR("type '%s' is missing write_phys_memory",
1092 type
->write_phys_memory
= err_write_phys_memory
;
1094 if (type
->read_phys_memory
== NULL
) {
1095 LOG_ERROR("type '%s' is missing read_phys_memory",
1097 type
->read_phys_memory
= err_read_phys_memory
;
1099 if (type
->virt2phys
== NULL
) {
1100 LOG_ERROR("type '%s' is missing virt2phys", type
->name
);
1101 type
->virt2phys
= identity_virt2phys
;
1104 /* Make sure no-MMU targets all behave the same: make no
1105 * distinction between physical and virtual addresses, and
1106 * ensure that virt2phys() is always an identity mapping.
1108 if (type
->write_phys_memory
|| type
->read_phys_memory
|| type
->virt2phys
)
1109 LOG_WARNING("type '%s' has bad MMU hooks", type
->name
);
1112 type
->write_phys_memory
= type
->write_memory
;
1113 type
->read_phys_memory
= type
->read_memory
;
1114 type
->virt2phys
= identity_virt2phys
;
1117 if (target
->type
->read_buffer
== NULL
)
1118 target
->type
->read_buffer
= target_read_buffer_default
;
1120 if (target
->type
->write_buffer
== NULL
)
1121 target
->type
->write_buffer
= target_write_buffer_default
;
1126 static int target_init(struct command_context
*cmd_ctx
)
1128 struct target
*target
;
1131 for (target
= all_targets
; target
; target
= target
->next
) {
1132 retval
= target_init_one(cmd_ctx
, target
);
1133 if (ERROR_OK
!= retval
)
1140 retval
= target_register_user_commands(cmd_ctx
);
1141 if (ERROR_OK
!= retval
)
1144 retval
= target_register_timer_callback(&handle_target
,
1145 polling_interval
, 1, cmd_ctx
->interp
);
1146 if (ERROR_OK
!= retval
)
1152 COMMAND_HANDLER(handle_target_init_command
)
1157 return ERROR_COMMAND_SYNTAX_ERROR
;
1159 static bool target_initialized
;
1160 if (target_initialized
) {
1161 LOG_INFO("'target init' has already been called");
1164 target_initialized
= true;
1166 retval
= command_run_line(CMD_CTX
, "init_targets");
1167 if (ERROR_OK
!= retval
)
1170 retval
= command_run_line(CMD_CTX
, "init_board");
1171 if (ERROR_OK
!= retval
)
1174 LOG_DEBUG("Initializing targets...");
1175 return target_init(CMD_CTX
);
1178 int target_register_event_callback(int (*callback
)(struct target
*target
,
1179 enum target_event event
, void *priv
), void *priv
)
1181 struct target_event_callback
**callbacks_p
= &target_event_callbacks
;
1183 if (callback
== NULL
)
1184 return ERROR_COMMAND_SYNTAX_ERROR
;
1187 while ((*callbacks_p
)->next
)
1188 callbacks_p
= &((*callbacks_p
)->next
);
1189 callbacks_p
= &((*callbacks_p
)->next
);
1192 (*callbacks_p
) = malloc(sizeof(struct target_event_callback
));
1193 (*callbacks_p
)->callback
= callback
;
1194 (*callbacks_p
)->priv
= priv
;
1195 (*callbacks_p
)->next
= NULL
;
1200 int target_register_timer_callback(int (*callback
)(void *priv
), int time_ms
, int periodic
, void *priv
)
1202 struct target_timer_callback
**callbacks_p
= &target_timer_callbacks
;
1205 if (callback
== NULL
)
1206 return ERROR_COMMAND_SYNTAX_ERROR
;
1209 while ((*callbacks_p
)->next
)
1210 callbacks_p
= &((*callbacks_p
)->next
);
1211 callbacks_p
= &((*callbacks_p
)->next
);
1214 (*callbacks_p
) = malloc(sizeof(struct target_timer_callback
));
1215 (*callbacks_p
)->callback
= callback
;
1216 (*callbacks_p
)->periodic
= periodic
;
1217 (*callbacks_p
)->time_ms
= time_ms
;
1219 gettimeofday(&now
, NULL
);
1220 (*callbacks_p
)->when
.tv_usec
= now
.tv_usec
+ (time_ms
% 1000) * 1000;
1221 time_ms
-= (time_ms
% 1000);
1222 (*callbacks_p
)->when
.tv_sec
= now
.tv_sec
+ (time_ms
/ 1000);
1223 if ((*callbacks_p
)->when
.tv_usec
> 1000000) {
1224 (*callbacks_p
)->when
.tv_usec
= (*callbacks_p
)->when
.tv_usec
- 1000000;
1225 (*callbacks_p
)->when
.tv_sec
+= 1;
1228 (*callbacks_p
)->priv
= priv
;
1229 (*callbacks_p
)->next
= NULL
;
1234 int target_unregister_event_callback(int (*callback
)(struct target
*target
,
1235 enum target_event event
, void *priv
), void *priv
)
1237 struct target_event_callback
**p
= &target_event_callbacks
;
1238 struct target_event_callback
*c
= target_event_callbacks
;
1240 if (callback
== NULL
)
1241 return ERROR_COMMAND_SYNTAX_ERROR
;
1244 struct target_event_callback
*next
= c
->next
;
1245 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1257 static int target_unregister_timer_callback(int (*callback
)(void *priv
), void *priv
)
1259 struct target_timer_callback
**p
= &target_timer_callbacks
;
1260 struct target_timer_callback
*c
= target_timer_callbacks
;
1262 if (callback
== NULL
)
1263 return ERROR_COMMAND_SYNTAX_ERROR
;
1266 struct target_timer_callback
*next
= c
->next
;
1267 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1279 int target_call_event_callbacks(struct target
*target
, enum target_event event
)
1281 struct target_event_callback
*callback
= target_event_callbacks
;
1282 struct target_event_callback
*next_callback
;
1284 if (event
== TARGET_EVENT_HALTED
) {
1285 /* execute early halted first */
1286 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
1289 LOG_DEBUG("target event %i (%s)", event
,
1290 Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
);
1292 target_handle_event(target
, event
);
1295 next_callback
= callback
->next
;
1296 callback
->callback(target
, event
, callback
->priv
);
1297 callback
= next_callback
;
1303 static int target_timer_callback_periodic_restart(
1304 struct target_timer_callback
*cb
, struct timeval
*now
)
1306 int time_ms
= cb
->time_ms
;
1307 cb
->when
.tv_usec
= now
->tv_usec
+ (time_ms
% 1000) * 1000;
1308 time_ms
-= (time_ms
% 1000);
1309 cb
->when
.tv_sec
= now
->tv_sec
+ time_ms
/ 1000;
1310 if (cb
->when
.tv_usec
> 1000000) {
1311 cb
->when
.tv_usec
= cb
->when
.tv_usec
- 1000000;
1312 cb
->when
.tv_sec
+= 1;
1317 static int target_call_timer_callback(struct target_timer_callback
*cb
,
1318 struct timeval
*now
)
1320 cb
->callback(cb
->priv
);
1323 return target_timer_callback_periodic_restart(cb
, now
);
1325 return target_unregister_timer_callback(cb
->callback
, cb
->priv
);
1328 static int target_call_timer_callbacks_check_time(int checktime
)
1333 gettimeofday(&now
, NULL
);
1335 struct target_timer_callback
*callback
= target_timer_callbacks
;
1337 /* cleaning up may unregister and free this callback */
1338 struct target_timer_callback
*next_callback
= callback
->next
;
1340 bool call_it
= callback
->callback
&&
1341 ((!checktime
&& callback
->periodic
) ||
1342 now
.tv_sec
> callback
->when
.tv_sec
||
1343 (now
.tv_sec
== callback
->when
.tv_sec
&&
1344 now
.tv_usec
>= callback
->when
.tv_usec
));
1347 int retval
= target_call_timer_callback(callback
, &now
);
1348 if (retval
!= ERROR_OK
)
1352 callback
= next_callback
;
1358 int target_call_timer_callbacks(void)
1360 return target_call_timer_callbacks_check_time(1);
1363 /* invoke periodic callbacks immediately */
1364 int target_call_timer_callbacks_now(void)
1366 return target_call_timer_callbacks_check_time(0);
1369 /* Prints the working area layout for debug purposes */
1370 static void print_wa_layout(struct target
*target
)
1372 struct working_area
*c
= target
->working_areas
;
1375 LOG_DEBUG("%c%c 0x%08"PRIx32
"-0x%08"PRIx32
" (%"PRIu32
" bytes)",
1376 c
->backup
? 'b' : ' ', c
->free
? ' ' : '*',
1377 c
->address
, c
->address
+ c
->size
- 1, c
->size
);
1382 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1383 static void target_split_working_area(struct working_area
*area
, uint32_t size
)
1385 assert(area
->free
); /* Shouldn't split an allocated area */
1386 assert(size
<= area
->size
); /* Caller should guarantee this */
1388 /* Split only if not already the right size */
1389 if (size
< area
->size
) {
1390 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1395 new_wa
->next
= area
->next
;
1396 new_wa
->size
= area
->size
- size
;
1397 new_wa
->address
= area
->address
+ size
;
1398 new_wa
->backup
= NULL
;
1399 new_wa
->user
= NULL
;
1400 new_wa
->free
= true;
1402 area
->next
= new_wa
;
1405 /* If backup memory was allocated to this area, it has the wrong size
1406 * now so free it and it will be reallocated if/when needed */
1409 area
->backup
= NULL
;
1414 /* Merge all adjacent free areas into one */
1415 static void target_merge_working_areas(struct target
*target
)
1417 struct working_area
*c
= target
->working_areas
;
1419 while (c
&& c
->next
) {
1420 assert(c
->next
->address
== c
->address
+ c
->size
); /* This is an invariant */
1422 /* Find two adjacent free areas */
1423 if (c
->free
&& c
->next
->free
) {
1424 /* Merge the last into the first */
1425 c
->size
+= c
->next
->size
;
1427 /* Remove the last */
1428 struct working_area
*to_be_freed
= c
->next
;
1429 c
->next
= c
->next
->next
;
1430 if (to_be_freed
->backup
)
1431 free(to_be_freed
->backup
);
1434 /* If backup memory was allocated to the remaining area, it's has
1435 * the wrong size now */
1446 int target_alloc_working_area_try(struct target
*target
, uint32_t size
, struct working_area
**area
)
1448 /* Reevaluate working area address based on MMU state*/
1449 if (target
->working_areas
== NULL
) {
1453 retval
= target
->type
->mmu(target
, &enabled
);
1454 if (retval
!= ERROR_OK
)
1458 if (target
->working_area_phys_spec
) {
1459 LOG_DEBUG("MMU disabled, using physical "
1460 "address for working memory 0x%08"PRIx32
,
1461 target
->working_area_phys
);
1462 target
->working_area
= target
->working_area_phys
;
1464 LOG_ERROR("No working memory available. "
1465 "Specify -work-area-phys to target.");
1466 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1469 if (target
->working_area_virt_spec
) {
1470 LOG_DEBUG("MMU enabled, using virtual "
1471 "address for working memory 0x%08"PRIx32
,
1472 target
->working_area_virt
);
1473 target
->working_area
= target
->working_area_virt
;
1475 LOG_ERROR("No working memory available. "
1476 "Specify -work-area-virt to target.");
1477 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1481 /* Set up initial working area on first call */
1482 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1484 new_wa
->next
= NULL
;
1485 new_wa
->size
= target
->working_area_size
& ~3UL; /* 4-byte align */
1486 new_wa
->address
= target
->working_area
;
1487 new_wa
->backup
= NULL
;
1488 new_wa
->user
= NULL
;
1489 new_wa
->free
= true;
1492 target
->working_areas
= new_wa
;
1495 /* only allocate multiples of 4 byte */
1497 size
= (size
+ 3) & (~3UL);
1499 struct working_area
*c
= target
->working_areas
;
1501 /* Find the first large enough working area */
1503 if (c
->free
&& c
->size
>= size
)
1509 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1511 /* Split the working area into the requested size */
1512 target_split_working_area(c
, size
);
1514 LOG_DEBUG("allocated new working area of %"PRIu32
" bytes at address 0x%08"PRIx32
, size
, c
->address
);
1516 if (target
->backup_working_area
) {
1517 if (c
->backup
== NULL
) {
1518 c
->backup
= malloc(c
->size
);
1519 if (c
->backup
== NULL
)
1523 int retval
= target_read_memory(target
, c
->address
, 4, c
->size
/ 4, c
->backup
);
1524 if (retval
!= ERROR_OK
)
1528 /* mark as used, and return the new (reused) area */
1535 print_wa_layout(target
);
1540 int target_alloc_working_area(struct target
*target
, uint32_t size
, struct working_area
**area
)
1544 retval
= target_alloc_working_area_try(target
, size
, area
);
1545 if (retval
== ERROR_TARGET_RESOURCE_NOT_AVAILABLE
)
1546 LOG_WARNING("not enough working area available(requested %"PRIu32
")", size
);
1551 static int target_restore_working_area(struct target
*target
, struct working_area
*area
)
1553 int retval
= ERROR_OK
;
1555 if (target
->backup_working_area
&& area
->backup
!= NULL
) {
1556 retval
= target_write_memory(target
, area
->address
, 4, area
->size
/ 4, area
->backup
);
1557 if (retval
!= ERROR_OK
)
1558 LOG_ERROR("failed to restore %"PRIu32
" bytes of working area at address 0x%08"PRIx32
,
1559 area
->size
, area
->address
);
1565 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1566 static int target_free_working_area_restore(struct target
*target
, struct working_area
*area
, int restore
)
1568 int retval
= ERROR_OK
;
1574 retval
= target_restore_working_area(target
, area
);
1575 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1576 if (retval
!= ERROR_OK
)
1582 LOG_DEBUG("freed %"PRIu32
" bytes of working area at address 0x%08"PRIx32
,
1583 area
->size
, area
->address
);
1585 /* mark user pointer invalid */
1586 /* TODO: Is this really safe? It points to some previous caller's memory.
1587 * How could we know that the area pointer is still in that place and not
1588 * some other vital data? What's the purpose of this, anyway? */
1592 target_merge_working_areas(target
);
1594 print_wa_layout(target
);
1599 int target_free_working_area(struct target
*target
, struct working_area
*area
)
1601 return target_free_working_area_restore(target
, area
, 1);
1604 /* free resources and restore memory, if restoring memory fails,
1605 * free up resources anyway
1607 static void target_free_all_working_areas_restore(struct target
*target
, int restore
)
1609 struct working_area
*c
= target
->working_areas
;
1611 LOG_DEBUG("freeing all working areas");
1613 /* Loop through all areas, restoring the allocated ones and marking them as free */
1617 target_restore_working_area(target
, c
);
1619 *c
->user
= NULL
; /* Same as above */
1625 /* Run a merge pass to combine all areas into one */
1626 target_merge_working_areas(target
);
1628 print_wa_layout(target
);
1631 void target_free_all_working_areas(struct target
*target
)
1633 target_free_all_working_areas_restore(target
, 1);
1636 /* Find the largest number of bytes that can be allocated */
1637 uint32_t target_get_working_area_avail(struct target
*target
)
1639 struct working_area
*c
= target
->working_areas
;
1640 uint32_t max_size
= 0;
1643 return target
->working_area_size
;
1646 if (c
->free
&& max_size
< c
->size
)
1655 int target_arch_state(struct target
*target
)
1658 if (target
== NULL
) {
1659 LOG_USER("No target has been configured");
1663 LOG_USER("target state: %s", target_state_name(target
));
1665 if (target
->state
!= TARGET_HALTED
)
1668 retval
= target
->type
->arch_state(target
);
1672 /* Single aligned words are guaranteed to use 16 or 32 bit access
1673 * mode respectively, otherwise data is handled as quickly as
1676 int target_write_buffer(struct target
*target
, uint32_t address
, uint32_t size
, const uint8_t *buffer
)
1678 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1679 (int)size
, (unsigned)address
);
1681 if (!target_was_examined(target
)) {
1682 LOG_ERROR("Target not examined yet");
1689 if ((address
+ size
- 1) < address
) {
1690 /* GDB can request this when e.g. PC is 0xfffffffc*/
1691 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1697 return target
->type
->write_buffer(target
, address
, size
, buffer
);
1700 static int target_write_buffer_default(struct target
*target
, uint32_t address
, uint32_t size
, const uint8_t *buffer
)
1702 int retval
= ERROR_OK
;
1704 if (((address
% 2) == 0) && (size
== 2))
1705 return target_write_memory(target
, address
, 2, 1, buffer
);
1707 /* handle unaligned head bytes */
1709 uint32_t unaligned
= 4 - (address
% 4);
1711 if (unaligned
> size
)
1714 retval
= target_write_memory(target
, address
, 1, unaligned
, buffer
);
1715 if (retval
!= ERROR_OK
)
1718 buffer
+= unaligned
;
1719 address
+= unaligned
;
1723 /* handle aligned words */
1725 int aligned
= size
- (size
% 4);
1727 /* use bulk writes above a certain limit. This may have to be changed */
1728 if (aligned
> 128) {
1729 retval
= target
->type
->bulk_write_memory(target
, address
, aligned
/ 4, buffer
);
1730 if (retval
!= ERROR_OK
)
1733 retval
= target_write_memory(target
, address
, 4, aligned
/ 4, buffer
);
1734 if (retval
!= ERROR_OK
)
1743 /* handle tail writes of less than 4 bytes */
1745 retval
= target_write_memory(target
, address
, 1, size
, buffer
);
1746 if (retval
!= ERROR_OK
)
1753 /* Single aligned words are guaranteed to use 16 or 32 bit access
1754 * mode respectively, otherwise data is handled as quickly as
1757 int target_read_buffer(struct target
*target
, uint32_t address
, uint32_t size
, uint8_t *buffer
)
1759 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1760 (int)size
, (unsigned)address
);
1762 if (!target_was_examined(target
)) {
1763 LOG_ERROR("Target not examined yet");
1770 if ((address
+ size
- 1) < address
) {
1771 /* GDB can request this when e.g. PC is 0xfffffffc*/
1772 LOG_ERROR("address + size wrapped(0x%08" PRIx32
", 0x%08" PRIx32
")",
1778 return target
->type
->read_buffer(target
, address
, size
, buffer
);
1781 static int target_read_buffer_default(struct target
*target
, uint32_t address
, uint32_t size
, uint8_t *buffer
)
1783 int retval
= ERROR_OK
;
1785 if (((address
% 2) == 0) && (size
== 2))
1786 return target_read_memory(target
, address
, 2, 1, buffer
);
1788 /* handle unaligned head bytes */
1790 uint32_t unaligned
= 4 - (address
% 4);
1792 if (unaligned
> size
)
1795 retval
= target_read_memory(target
, address
, 1, unaligned
, buffer
);
1796 if (retval
!= ERROR_OK
)
1799 buffer
+= unaligned
;
1800 address
+= unaligned
;
1804 /* handle aligned words */
1806 int aligned
= size
- (size
% 4);
1808 retval
= target_read_memory(target
, address
, 4, aligned
/ 4, buffer
);
1809 if (retval
!= ERROR_OK
)
1817 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1819 int aligned
= size
- (size
% 2);
1820 retval
= target_read_memory(target
, address
, 2, aligned
/ 2, buffer
);
1821 if (retval
!= ERROR_OK
)
1828 /* handle tail writes of less than 4 bytes */
1830 retval
= target_read_memory(target
, address
, 1, size
, buffer
);
1831 if (retval
!= ERROR_OK
)
1838 int target_checksum_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t* crc
)
1843 uint32_t checksum
= 0;
1844 if (!target_was_examined(target
)) {
1845 LOG_ERROR("Target not examined yet");
1849 retval
= target
->type
->checksum_memory(target
, address
, size
, &checksum
);
1850 if (retval
!= ERROR_OK
) {
1851 buffer
= malloc(size
);
1852 if (buffer
== NULL
) {
1853 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size
);
1854 return ERROR_COMMAND_SYNTAX_ERROR
;
1856 retval
= target_read_buffer(target
, address
, size
, buffer
);
1857 if (retval
!= ERROR_OK
) {
1862 /* convert to target endianness */
1863 for (i
= 0; i
< (size
/sizeof(uint32_t)); i
++) {
1864 uint32_t target_data
;
1865 target_data
= target_buffer_get_u32(target
, &buffer
[i
*sizeof(uint32_t)]);
1866 target_buffer_set_u32(target
, &buffer
[i
*sizeof(uint32_t)], target_data
);
1869 retval
= image_calculate_checksum(buffer
, size
, &checksum
);
1878 int target_blank_check_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t* blank
)
1881 if (!target_was_examined(target
)) {
1882 LOG_ERROR("Target not examined yet");
1886 if (target
->type
->blank_check_memory
== 0)
1887 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1889 retval
= target
->type
->blank_check_memory(target
, address
, size
, blank
);
1894 int target_read_u32(struct target
*target
, uint32_t address
, uint32_t *value
)
1896 uint8_t value_buf
[4];
1897 if (!target_was_examined(target
)) {
1898 LOG_ERROR("Target not examined yet");
1902 int retval
= target_read_memory(target
, address
, 4, 1, value_buf
);
1904 if (retval
== ERROR_OK
) {
1905 *value
= target_buffer_get_u32(target
, value_buf
);
1906 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx32
"",
1911 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
1918 int target_read_u16(struct target
*target
, uint32_t address
, uint16_t *value
)
1920 uint8_t value_buf
[2];
1921 if (!target_was_examined(target
)) {
1922 LOG_ERROR("Target not examined yet");
1926 int retval
= target_read_memory(target
, address
, 2, 1, value_buf
);
1928 if (retval
== ERROR_OK
) {
1929 *value
= target_buffer_get_u16(target
, value_buf
);
1930 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%4.4x",
1935 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
1942 int target_read_u8(struct target
*target
, uint32_t address
, uint8_t *value
)
1944 int retval
= target_read_memory(target
, address
, 1, 1, value
);
1945 if (!target_was_examined(target
)) {
1946 LOG_ERROR("Target not examined yet");
1950 if (retval
== ERROR_OK
) {
1951 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%2.2x",
1956 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
1963 int target_write_u32(struct target
*target
, uint32_t address
, uint32_t value
)
1966 uint8_t value_buf
[4];
1967 if (!target_was_examined(target
)) {
1968 LOG_ERROR("Target not examined yet");
1972 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx32
"",
1976 target_buffer_set_u32(target
, value_buf
, value
);
1977 retval
= target_write_memory(target
, address
, 4, 1, value_buf
);
1978 if (retval
!= ERROR_OK
)
1979 LOG_DEBUG("failed: %i", retval
);
1984 int target_write_u16(struct target
*target
, uint32_t address
, uint16_t value
)
1987 uint8_t value_buf
[2];
1988 if (!target_was_examined(target
)) {
1989 LOG_ERROR("Target not examined yet");
1993 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8x",
1997 target_buffer_set_u16(target
, value_buf
, value
);
1998 retval
= target_write_memory(target
, address
, 2, 1, value_buf
);
1999 if (retval
!= ERROR_OK
)
2000 LOG_DEBUG("failed: %i", retval
);
2005 int target_write_u8(struct target
*target
, uint32_t address
, uint8_t value
)
2008 if (!target_was_examined(target
)) {
2009 LOG_ERROR("Target not examined yet");
2013 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%2.2x",
2016 retval
= target_write_memory(target
, address
, 1, 1, &value
);
2017 if (retval
!= ERROR_OK
)
2018 LOG_DEBUG("failed: %i", retval
);
2023 static int find_target(struct command_context
*cmd_ctx
, const char *name
)
2025 struct target
*target
= get_target(name
);
2026 if (target
== NULL
) {
2027 LOG_ERROR("Target: %s is unknown, try one of:\n", name
);
2030 if (!target
->tap
->enabled
) {
2031 LOG_USER("Target: TAP %s is disabled, "
2032 "can't be the current target\n",
2033 target
->tap
->dotted_name
);
2037 cmd_ctx
->current_target
= target
->target_number
;
2042 COMMAND_HANDLER(handle_targets_command
)
2044 int retval
= ERROR_OK
;
2045 if (CMD_ARGC
== 1) {
2046 retval
= find_target(CMD_CTX
, CMD_ARGV
[0]);
2047 if (retval
== ERROR_OK
) {
2053 struct target
*target
= all_targets
;
2054 command_print(CMD_CTX
, " TargetName Type Endian TapName State ");
2055 command_print(CMD_CTX
, "-- ------------------ ---------- ------ ------------------ ------------");
2060 if (target
->tap
->enabled
)
2061 state
= target_state_name(target
);
2063 state
= "tap-disabled";
2065 if (CMD_CTX
->current_target
== target
->target_number
)
2068 /* keep columns lined up to match the headers above */
2069 command_print(CMD_CTX
,
2070 "%2d%c %-18s %-10s %-6s %-18s %s",
2071 target
->target_number
,
2073 target_name(target
),
2074 target_type_name(target
),
2075 Jim_Nvp_value2name_simple(nvp_target_endian
,
2076 target
->endianness
)->name
,
2077 target
->tap
->dotted_name
,
2079 target
= target
->next
;
2085 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2087 static int powerDropout
;
2088 static int srstAsserted
;
2090 static int runPowerRestore
;
2091 static int runPowerDropout
;
2092 static int runSrstAsserted
;
2093 static int runSrstDeasserted
;
2095 static int sense_handler(void)
2097 static int prevSrstAsserted
;
2098 static int prevPowerdropout
;
2100 int retval
= jtag_power_dropout(&powerDropout
);
2101 if (retval
!= ERROR_OK
)
2105 powerRestored
= prevPowerdropout
&& !powerDropout
;
2107 runPowerRestore
= 1;
2109 long long current
= timeval_ms();
2110 static long long lastPower
;
2111 int waitMore
= lastPower
+ 2000 > current
;
2112 if (powerDropout
&& !waitMore
) {
2113 runPowerDropout
= 1;
2114 lastPower
= current
;
2117 retval
= jtag_srst_asserted(&srstAsserted
);
2118 if (retval
!= ERROR_OK
)
2122 srstDeasserted
= prevSrstAsserted
&& !srstAsserted
;
2124 static long long lastSrst
;
2125 waitMore
= lastSrst
+ 2000 > current
;
2126 if (srstDeasserted
&& !waitMore
) {
2127 runSrstDeasserted
= 1;
2131 if (!prevSrstAsserted
&& srstAsserted
)
2132 runSrstAsserted
= 1;
2134 prevSrstAsserted
= srstAsserted
;
2135 prevPowerdropout
= powerDropout
;
2137 if (srstDeasserted
|| powerRestored
) {
2138 /* Other than logging the event we can't do anything here.
2139 * Issuing a reset is a particularly bad idea as we might
2140 * be inside a reset already.
2147 static int backoff_times
;
2148 static int backoff_count
;
2150 /* process target state changes */
2151 static int handle_target(void *priv
)
2153 Jim_Interp
*interp
= (Jim_Interp
*)priv
;
2154 int retval
= ERROR_OK
;
2156 if (!is_jtag_poll_safe()) {
2157 /* polling is disabled currently */
2161 /* we do not want to recurse here... */
2162 static int recursive
;
2166 /* danger! running these procedures can trigger srst assertions and power dropouts.
2167 * We need to avoid an infinite loop/recursion here and we do that by
2168 * clearing the flags after running these events.
2170 int did_something
= 0;
2171 if (runSrstAsserted
) {
2172 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2173 Jim_Eval(interp
, "srst_asserted");
2176 if (runSrstDeasserted
) {
2177 Jim_Eval(interp
, "srst_deasserted");
2180 if (runPowerDropout
) {
2181 LOG_INFO("Power dropout detected, running power_dropout proc.");
2182 Jim_Eval(interp
, "power_dropout");
2185 if (runPowerRestore
) {
2186 Jim_Eval(interp
, "power_restore");
2190 if (did_something
) {
2191 /* clear detect flags */
2195 /* clear action flags */
2197 runSrstAsserted
= 0;
2198 runSrstDeasserted
= 0;
2199 runPowerRestore
= 0;
2200 runPowerDropout
= 0;
2205 if (backoff_times
> backoff_count
) {
2206 /* do not poll this time as we failed previously */
2212 /* Poll targets for state changes unless that's globally disabled.
2213 * Skip targets that are currently disabled.
2215 for (struct target
*target
= all_targets
;
2216 is_jtag_poll_safe() && target
;
2217 target
= target
->next
) {
2218 if (!target
->tap
->enabled
)
2221 /* only poll target if we've got power and srst isn't asserted */
2222 if (!powerDropout
&& !srstAsserted
) {
2223 /* polling may fail silently until the target has been examined */
2224 retval
= target_poll(target
);
2225 if (retval
!= ERROR_OK
) {
2226 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2227 if (backoff_times
* polling_interval
< 5000) {
2231 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms",
2232 backoff_times
* polling_interval
);
2234 /* Tell GDB to halt the debugger. This allows the user to
2235 * run monitor commands to handle the situation.
2237 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
2240 /* Since we succeeded, we reset backoff count */
2241 if (backoff_times
> 0)
2242 LOG_USER("Polling succeeded again");
2250 COMMAND_HANDLER(handle_reg_command
)
2252 struct target
*target
;
2253 struct reg
*reg
= NULL
;
2259 target
= get_current_target(CMD_CTX
);
2261 /* list all available registers for the current target */
2262 if (CMD_ARGC
== 0) {
2263 struct reg_cache
*cache
= target
->reg_cache
;
2269 command_print(CMD_CTX
, "===== %s", cache
->name
);
2271 for (i
= 0, reg
= cache
->reg_list
;
2272 i
< cache
->num_regs
;
2273 i
++, reg
++, count
++) {
2274 /* only print cached values if they are valid */
2276 value
= buf_to_str(reg
->value
,
2278 command_print(CMD_CTX
,
2279 "(%i) %s (/%" PRIu32
"): 0x%s%s",
2287 command_print(CMD_CTX
, "(%i) %s (/%" PRIu32
")",
2292 cache
= cache
->next
;
2298 /* access a single register by its ordinal number */
2299 if ((CMD_ARGV
[0][0] >= '0') && (CMD_ARGV
[0][0] <= '9')) {
2301 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[0], num
);
2303 struct reg_cache
*cache
= target
->reg_cache
;
2307 for (i
= 0; i
< cache
->num_regs
; i
++) {
2308 if (count
++ == num
) {
2309 reg
= &cache
->reg_list
[i
];
2315 cache
= cache
->next
;
2319 command_print(CMD_CTX
, "%i is out of bounds, the current target "
2320 "has only %i registers (0 - %i)", num
, count
, count
- 1);
2324 /* access a single register by its name */
2325 reg
= register_get_by_name(target
->reg_cache
, CMD_ARGV
[0], 1);
2328 command_print(CMD_CTX
, "register %s not found in current target", CMD_ARGV
[0]);
2333 assert(reg
!= NULL
); /* give clang a hint that we *know* reg is != NULL here */
2335 /* display a register */
2336 if ((CMD_ARGC
== 1) || ((CMD_ARGC
== 2) && !((CMD_ARGV
[1][0] >= '0')
2337 && (CMD_ARGV
[1][0] <= '9')))) {
2338 if ((CMD_ARGC
== 2) && (strcmp(CMD_ARGV
[1], "force") == 0))
2341 if (reg
->valid
== 0)
2342 reg
->type
->get(reg
);
2343 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2344 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2349 /* set register value */
2350 if (CMD_ARGC
== 2) {
2351 uint8_t *buf
= malloc(DIV_ROUND_UP(reg
->size
, 8));
2354 str_to_buf(CMD_ARGV
[1], strlen(CMD_ARGV
[1]), buf
, reg
->size
, 0);
2356 reg
->type
->set(reg
, buf
);
2358 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2359 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2367 return ERROR_COMMAND_SYNTAX_ERROR
;
2370 COMMAND_HANDLER(handle_poll_command
)
2372 int retval
= ERROR_OK
;
2373 struct target
*target
= get_current_target(CMD_CTX
);
2375 if (CMD_ARGC
== 0) {
2376 command_print(CMD_CTX
, "background polling: %s",
2377 jtag_poll_get_enabled() ? "on" : "off");
2378 command_print(CMD_CTX
, "TAP: %s (%s)",
2379 target
->tap
->dotted_name
,
2380 target
->tap
->enabled
? "enabled" : "disabled");
2381 if (!target
->tap
->enabled
)
2383 retval
= target_poll(target
);
2384 if (retval
!= ERROR_OK
)
2386 retval
= target_arch_state(target
);
2387 if (retval
!= ERROR_OK
)
2389 } else if (CMD_ARGC
== 1) {
2391 COMMAND_PARSE_ON_OFF(CMD_ARGV
[0], enable
);
2392 jtag_poll_set_enabled(enable
);
2394 return ERROR_COMMAND_SYNTAX_ERROR
;
2399 COMMAND_HANDLER(handle_wait_halt_command
)
2402 return ERROR_COMMAND_SYNTAX_ERROR
;
2405 if (1 == CMD_ARGC
) {
2406 int retval
= parse_uint(CMD_ARGV
[0], &ms
);
2407 if (ERROR_OK
!= retval
)
2408 return ERROR_COMMAND_SYNTAX_ERROR
;
2409 /* convert seconds (given) to milliseconds (needed) */
2413 struct target
*target
= get_current_target(CMD_CTX
);
2414 return target_wait_state(target
, TARGET_HALTED
, ms
);
2417 /* wait for target state to change. The trick here is to have a low
2418 * latency for short waits and not to suck up all the CPU time
2421 * After 500ms, keep_alive() is invoked
2423 int target_wait_state(struct target
*target
, enum target_state state
, int ms
)
2426 long long then
= 0, cur
;
2430 retval
= target_poll(target
);
2431 if (retval
!= ERROR_OK
)
2433 if (target
->state
== state
)
2438 then
= timeval_ms();
2439 LOG_DEBUG("waiting for target %s...",
2440 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2446 if ((cur
-then
) > ms
) {
2447 LOG_ERROR("timed out while waiting for target %s",
2448 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2456 COMMAND_HANDLER(handle_halt_command
)
2460 struct target
*target
= get_current_target(CMD_CTX
);
2461 int retval
= target_halt(target
);
2462 if (ERROR_OK
!= retval
)
2465 if (CMD_ARGC
== 1) {
2466 unsigned wait_local
;
2467 retval
= parse_uint(CMD_ARGV
[0], &wait_local
);
2468 if (ERROR_OK
!= retval
)
2469 return ERROR_COMMAND_SYNTAX_ERROR
;
2474 return CALL_COMMAND_HANDLER(handle_wait_halt_command
);
2477 COMMAND_HANDLER(handle_soft_reset_halt_command
)
2479 struct target
*target
= get_current_target(CMD_CTX
);
2481 LOG_USER("requesting target halt and executing a soft reset");
2483 target
->type
->soft_reset_halt(target
);
2488 COMMAND_HANDLER(handle_reset_command
)
2491 return ERROR_COMMAND_SYNTAX_ERROR
;
2493 enum target_reset_mode reset_mode
= RESET_RUN
;
2494 if (CMD_ARGC
== 1) {
2496 n
= Jim_Nvp_name2value_simple(nvp_reset_modes
, CMD_ARGV
[0]);
2497 if ((n
->name
== NULL
) || (n
->value
== RESET_UNKNOWN
))
2498 return ERROR_COMMAND_SYNTAX_ERROR
;
2499 reset_mode
= n
->value
;
2502 /* reset *all* targets */
2503 return target_process_reset(CMD_CTX
, reset_mode
);
2507 COMMAND_HANDLER(handle_resume_command
)
2511 return ERROR_COMMAND_SYNTAX_ERROR
;
2513 struct target
*target
= get_current_target(CMD_CTX
);
2514 target_handle_event(target
, TARGET_EVENT_OLD_pre_resume
);
2516 /* with no CMD_ARGV, resume from current pc, addr = 0,
2517 * with one arguments, addr = CMD_ARGV[0],
2518 * handle breakpoints, not debugging */
2520 if (CMD_ARGC
== 1) {
2521 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
2525 return target_resume(target
, current
, addr
, 1, 0);
2528 COMMAND_HANDLER(handle_step_command
)
2531 return ERROR_COMMAND_SYNTAX_ERROR
;
2535 /* with no CMD_ARGV, step from current pc, addr = 0,
2536 * with one argument addr = CMD_ARGV[0],
2537 * handle breakpoints, debugging */
2540 if (CMD_ARGC
== 1) {
2541 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
2545 struct target
*target
= get_current_target(CMD_CTX
);
2547 return target
->type
->step(target
, current_pc
, addr
, 1);
2550 static void handle_md_output(struct command_context
*cmd_ctx
,
2551 struct target
*target
, uint32_t address
, unsigned size
,
2552 unsigned count
, const uint8_t *buffer
)
2554 const unsigned line_bytecnt
= 32;
2555 unsigned line_modulo
= line_bytecnt
/ size
;
2557 char output
[line_bytecnt
* 4 + 1];
2558 unsigned output_len
= 0;
2560 const char *value_fmt
;
2563 value_fmt
= "%8.8x ";
2566 value_fmt
= "%4.4x ";
2569 value_fmt
= "%2.2x ";
2572 /* "can't happen", caller checked */
2573 LOG_ERROR("invalid memory read size: %u", size
);
2577 for (unsigned i
= 0; i
< count
; i
++) {
2578 if (i
% line_modulo
== 0) {
2579 output_len
+= snprintf(output
+ output_len
,
2580 sizeof(output
) - output_len
,
2582 (unsigned)(address
+ (i
*size
)));
2586 const uint8_t *value_ptr
= buffer
+ i
* size
;
2589 value
= target_buffer_get_u32(target
, value_ptr
);
2592 value
= target_buffer_get_u16(target
, value_ptr
);
2597 output_len
+= snprintf(output
+ output_len
,
2598 sizeof(output
) - output_len
,
2601 if ((i
% line_modulo
== line_modulo
- 1) || (i
== count
- 1)) {
2602 command_print(cmd_ctx
, "%s", output
);
2608 COMMAND_HANDLER(handle_md_command
)
2611 return ERROR_COMMAND_SYNTAX_ERROR
;
2614 switch (CMD_NAME
[2]) {
2625 return ERROR_COMMAND_SYNTAX_ERROR
;
2628 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
2629 int (*fn
)(struct target
*target
,
2630 uint32_t address
, uint32_t size_value
, uint32_t count
, uint8_t *buffer
);
2634 fn
= target_read_phys_memory
;
2636 fn
= target_read_memory
;
2637 if ((CMD_ARGC
< 1) || (CMD_ARGC
> 2))
2638 return ERROR_COMMAND_SYNTAX_ERROR
;
2641 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], address
);
2645 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[1], count
);
2647 uint8_t *buffer
= calloc(count
, size
);
2649 struct target
*target
= get_current_target(CMD_CTX
);
2650 int retval
= fn(target
, address
, size
, count
, buffer
);
2651 if (ERROR_OK
== retval
)
2652 handle_md_output(CMD_CTX
, target
, address
, size
, count
, buffer
);
2659 typedef int (*target_write_fn
)(struct target
*target
,
2660 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
);
2662 static int target_write_memory_fast(struct target
*target
,
2663 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
2665 return target_write_buffer(target
, address
, size
* count
, buffer
);
2668 static int target_fill_mem(struct target
*target
,
2677 /* We have to write in reasonably large chunks to be able
2678 * to fill large memory areas with any sane speed */
2679 const unsigned chunk_size
= 16384;
2680 uint8_t *target_buf
= malloc(chunk_size
* data_size
);
2681 if (target_buf
== NULL
) {
2682 LOG_ERROR("Out of memory");
2686 for (unsigned i
= 0; i
< chunk_size
; i
++) {
2687 switch (data_size
) {
2689 target_buffer_set_u32(target
, target_buf
+ i
* data_size
, b
);
2692 target_buffer_set_u16(target
, target_buf
+ i
* data_size
, b
);
2695 target_buffer_set_u8(target
, target_buf
+ i
* data_size
, b
);
2702 int retval
= ERROR_OK
;
2704 for (unsigned x
= 0; x
< c
; x
+= chunk_size
) {
2707 if (current
> chunk_size
)
2708 current
= chunk_size
;
2709 retval
= fn(target
, address
+ x
* data_size
, data_size
, current
, target_buf
);
2710 if (retval
!= ERROR_OK
)
2712 /* avoid GDB timeouts */
2721 COMMAND_HANDLER(handle_mw_command
)
2724 return ERROR_COMMAND_SYNTAX_ERROR
;
2725 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
2730 fn
= target_write_phys_memory
;
2732 fn
= target_write_memory_fast
;
2733 if ((CMD_ARGC
< 2) || (CMD_ARGC
> 3))
2734 return ERROR_COMMAND_SYNTAX_ERROR
;
2737 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], address
);
2740 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], value
);
2744 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[2], count
);
2746 struct target
*target
= get_current_target(CMD_CTX
);
2748 switch (CMD_NAME
[2]) {
2759 return ERROR_COMMAND_SYNTAX_ERROR
;
2762 return target_fill_mem(target
, address
, fn
, wordsize
, value
, count
);
2765 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV
, struct image
*image
,
2766 uint32_t *min_address
, uint32_t *max_address
)
2768 if (CMD_ARGC
< 1 || CMD_ARGC
> 5)
2769 return ERROR_COMMAND_SYNTAX_ERROR
;
2771 /* a base address isn't always necessary,
2772 * default to 0x0 (i.e. don't relocate) */
2773 if (CMD_ARGC
>= 2) {
2775 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], addr
);
2776 image
->base_address
= addr
;
2777 image
->base_address_set
= 1;
2779 image
->base_address_set
= 0;
2781 image
->start_address_set
= 0;
2784 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[3], *min_address
);
2785 if (CMD_ARGC
== 5) {
2786 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[4], *max_address
);
2787 /* use size (given) to find max (required) */
2788 *max_address
+= *min_address
;
2791 if (*min_address
> *max_address
)
2792 return ERROR_COMMAND_SYNTAX_ERROR
;
2797 COMMAND_HANDLER(handle_load_image_command
)
2801 uint32_t image_size
;
2802 uint32_t min_address
= 0;
2803 uint32_t max_address
= 0xffffffff;
2807 int retval
= CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV
,
2808 &image
, &min_address
, &max_address
);
2809 if (ERROR_OK
!= retval
)
2812 struct target
*target
= get_current_target(CMD_CTX
);
2814 struct duration bench
;
2815 duration_start(&bench
);
2817 if (image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
>= 3) ? CMD_ARGV
[2] : NULL
) != ERROR_OK
)
2822 for (i
= 0; i
< image
.num_sections
; i
++) {
2823 buffer
= malloc(image
.sections
[i
].size
);
2824 if (buffer
== NULL
) {
2825 command_print(CMD_CTX
,
2826 "error allocating buffer for section (%d bytes)",
2827 (int)(image
.sections
[i
].size
));
2831 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
2832 if (retval
!= ERROR_OK
) {
2837 uint32_t offset
= 0;
2838 uint32_t length
= buf_cnt
;
2840 /* DANGER!!! beware of unsigned comparision here!!! */
2842 if ((image
.sections
[i
].base_address
+ buf_cnt
>= min_address
) &&
2843 (image
.sections
[i
].base_address
< max_address
)) {
2845 if (image
.sections
[i
].base_address
< min_address
) {
2846 /* clip addresses below */
2847 offset
+= min_address
-image
.sections
[i
].base_address
;
2851 if (image
.sections
[i
].base_address
+ buf_cnt
> max_address
)
2852 length
-= (image
.sections
[i
].base_address
+ buf_cnt
)-max_address
;
2854 retval
= target_write_buffer(target
,
2855 image
.sections
[i
].base_address
+ offset
, length
, buffer
+ offset
);
2856 if (retval
!= ERROR_OK
) {
2860 image_size
+= length
;
2861 command_print(CMD_CTX
, "%u bytes written at address 0x%8.8" PRIx32
"",
2862 (unsigned int)length
,
2863 image
.sections
[i
].base_address
+ offset
);
2869 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
2870 command_print(CMD_CTX
, "downloaded %" PRIu32
" bytes "
2871 "in %fs (%0.3f KiB/s)", image_size
,
2872 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
2875 image_close(&image
);
2881 COMMAND_HANDLER(handle_dump_image_command
)
2883 struct fileio fileio
;
2885 int retval
, retvaltemp
;
2886 uint32_t address
, size
;
2887 struct duration bench
;
2888 struct target
*target
= get_current_target(CMD_CTX
);
2891 return ERROR_COMMAND_SYNTAX_ERROR
;
2893 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], address
);
2894 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[2], size
);
2896 uint32_t buf_size
= (size
> 4096) ? 4096 : size
;
2897 buffer
= malloc(buf_size
);
2901 retval
= fileio_open(&fileio
, CMD_ARGV
[0], FILEIO_WRITE
, FILEIO_BINARY
);
2902 if (retval
!= ERROR_OK
) {
2907 duration_start(&bench
);
2910 size_t size_written
;
2911 uint32_t this_run_size
= (size
> buf_size
) ? buf_size
: size
;
2912 retval
= target_read_buffer(target
, address
, this_run_size
, buffer
);
2913 if (retval
!= ERROR_OK
)
2916 retval
= fileio_write(&fileio
, this_run_size
, buffer
, &size_written
);
2917 if (retval
!= ERROR_OK
)
2920 size
-= this_run_size
;
2921 address
+= this_run_size
;
2926 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
2928 retval
= fileio_size(&fileio
, &filesize
);
2929 if (retval
!= ERROR_OK
)
2931 command_print(CMD_CTX
,
2932 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize
,
2933 duration_elapsed(&bench
), duration_kbps(&bench
, filesize
));
2936 retvaltemp
= fileio_close(&fileio
);
2937 if (retvaltemp
!= ERROR_OK
)
2943 static COMMAND_HELPER(handle_verify_image_command_internal
, int verify
)
2947 uint32_t image_size
;
2950 uint32_t checksum
= 0;
2951 uint32_t mem_checksum
= 0;
2955 struct target
*target
= get_current_target(CMD_CTX
);
2958 return ERROR_COMMAND_SYNTAX_ERROR
;
2961 LOG_ERROR("no target selected");
2965 struct duration bench
;
2966 duration_start(&bench
);
2968 if (CMD_ARGC
>= 2) {
2970 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], addr
);
2971 image
.base_address
= addr
;
2972 image
.base_address_set
= 1;
2974 image
.base_address_set
= 0;
2975 image
.base_address
= 0x0;
2978 image
.start_address_set
= 0;
2980 retval
= image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
== 3) ? CMD_ARGV
[2] : NULL
);
2981 if (retval
!= ERROR_OK
)
2987 for (i
= 0; i
< image
.num_sections
; i
++) {
2988 buffer
= malloc(image
.sections
[i
].size
);
2989 if (buffer
== NULL
) {
2990 command_print(CMD_CTX
,
2991 "error allocating buffer for section (%d bytes)",
2992 (int)(image
.sections
[i
].size
));
2995 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
2996 if (retval
!= ERROR_OK
) {
3002 /* calculate checksum of image */
3003 retval
= image_calculate_checksum(buffer
, buf_cnt
, &checksum
);
3004 if (retval
!= ERROR_OK
) {
3009 retval
= target_checksum_memory(target
, image
.sections
[i
].base_address
, buf_cnt
, &mem_checksum
);
3010 if (retval
!= ERROR_OK
) {
3015 if (checksum
!= mem_checksum
) {
3016 /* failed crc checksum, fall back to a binary compare */
3020 LOG_ERROR("checksum mismatch - attempting binary compare");
3022 data
= (uint8_t *)malloc(buf_cnt
);
3024 /* Can we use 32bit word accesses? */
3026 int count
= buf_cnt
;
3027 if ((count
% 4) == 0) {
3031 retval
= target_read_memory(target
, image
.sections
[i
].base_address
, size
, count
, data
);
3032 if (retval
== ERROR_OK
) {
3034 for (t
= 0; t
< buf_cnt
; t
++) {
3035 if (data
[t
] != buffer
[t
]) {
3036 command_print(CMD_CTX
,
3037 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3039 (unsigned)(t
+ image
.sections
[i
].base_address
),
3042 if (diffs
++ >= 127) {
3043 command_print(CMD_CTX
, "More than 128 errors, the rest are not printed.");
3055 command_print(CMD_CTX
, "address 0x%08" PRIx32
" length 0x%08zx",
3056 image
.sections
[i
].base_address
,
3061 image_size
+= buf_cnt
;
3064 command_print(CMD_CTX
, "No more differences found.");
3067 retval
= ERROR_FAIL
;
3068 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3069 command_print(CMD_CTX
, "verified %" PRIu32
" bytes "
3070 "in %fs (%0.3f KiB/s)", image_size
,
3071 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
3074 image_close(&image
);
3079 COMMAND_HANDLER(handle_verify_image_command
)
3081 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, 1);
3084 COMMAND_HANDLER(handle_test_image_command
)
3086 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, 0);
3089 static int handle_bp_command_list(struct command_context
*cmd_ctx
)
3091 struct target
*target
= get_current_target(cmd_ctx
);
3092 struct breakpoint
*breakpoint
= target
->breakpoints
;
3093 while (breakpoint
) {
3094 if (breakpoint
->type
== BKPT_SOFT
) {
3095 char *buf
= buf_to_str(breakpoint
->orig_instr
,
3096 breakpoint
->length
, 16);
3097 command_print(cmd_ctx
, "IVA breakpoint: 0x%8.8" PRIx32
", 0x%x, %i, 0x%s",
3098 breakpoint
->address
,
3100 breakpoint
->set
, buf
);
3103 if ((breakpoint
->address
== 0) && (breakpoint
->asid
!= 0))
3104 command_print(cmd_ctx
, "Context breakpoint: 0x%8.8" PRIx32
", 0x%x, %i",
3106 breakpoint
->length
, breakpoint
->set
);
3107 else if ((breakpoint
->address
!= 0) && (breakpoint
->asid
!= 0)) {
3108 command_print(cmd_ctx
, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32
", 0x%x, %i",
3109 breakpoint
->address
,
3110 breakpoint
->length
, breakpoint
->set
);
3111 command_print(cmd_ctx
, "\t|--->linked with ContextID: 0x%8.8" PRIx32
,
3114 command_print(cmd_ctx
, "Breakpoint(IVA): 0x%8.8" PRIx32
", 0x%x, %i",
3115 breakpoint
->address
,
3116 breakpoint
->length
, breakpoint
->set
);
3119 breakpoint
= breakpoint
->next
;
3124 static int handle_bp_command_set(struct command_context
*cmd_ctx
,
3125 uint32_t addr
, uint32_t asid
, uint32_t length
, int hw
)
3127 struct target
*target
= get_current_target(cmd_ctx
);
3130 int retval
= breakpoint_add(target
, addr
, length
, hw
);
3131 if (ERROR_OK
== retval
)
3132 command_print(cmd_ctx
, "breakpoint set at 0x%8.8" PRIx32
"", addr
);
3134 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3137 } else if (addr
== 0) {
3138 int retval
= context_breakpoint_add(target
, asid
, length
, hw
);
3139 if (ERROR_OK
== retval
)
3140 command_print(cmd_ctx
, "Context breakpoint set at 0x%8.8" PRIx32
"", asid
);
3142 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3146 int retval
= hybrid_breakpoint_add(target
, addr
, asid
, length
, hw
);
3147 if (ERROR_OK
== retval
)
3148 command_print(cmd_ctx
, "Hybrid breakpoint set at 0x%8.8" PRIx32
"", asid
);
3150 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3157 COMMAND_HANDLER(handle_bp_command
)
3166 return handle_bp_command_list(CMD_CTX
);
3170 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3171 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3172 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3175 if (strcmp(CMD_ARGV
[2], "hw") == 0) {
3177 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3179 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3182 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3183 } else if (strcmp(CMD_ARGV
[2], "hw_ctx") == 0) {
3185 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], asid
);
3186 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3188 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3193 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3194 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], asid
);
3195 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[2], length
);
3196 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3199 return ERROR_COMMAND_SYNTAX_ERROR
;
3203 COMMAND_HANDLER(handle_rbp_command
)
3206 return ERROR_COMMAND_SYNTAX_ERROR
;
3209 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3211 struct target
*target
= get_current_target(CMD_CTX
);
3212 breakpoint_remove(target
, addr
);
3217 COMMAND_HANDLER(handle_wp_command
)
3219 struct target
*target
= get_current_target(CMD_CTX
);
3221 if (CMD_ARGC
== 0) {
3222 struct watchpoint
*watchpoint
= target
->watchpoints
;
3224 while (watchpoint
) {
3225 command_print(CMD_CTX
, "address: 0x%8.8" PRIx32
3226 ", len: 0x%8.8" PRIx32
3227 ", r/w/a: %i, value: 0x%8.8" PRIx32
3228 ", mask: 0x%8.8" PRIx32
,
3229 watchpoint
->address
,
3231 (int)watchpoint
->rw
,
3234 watchpoint
= watchpoint
->next
;
3239 enum watchpoint_rw type
= WPT_ACCESS
;
3241 uint32_t length
= 0;
3242 uint32_t data_value
= 0x0;
3243 uint32_t data_mask
= 0xffffffff;
3247 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[4], data_mask
);
3250 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[3], data_value
);
3253 switch (CMD_ARGV
[2][0]) {
3264 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV
[2][0]);
3265 return ERROR_COMMAND_SYNTAX_ERROR
;
3269 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3270 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3274 return ERROR_COMMAND_SYNTAX_ERROR
;
3277 int retval
= watchpoint_add(target
, addr
, length
, type
,
3278 data_value
, data_mask
);
3279 if (ERROR_OK
!= retval
)
3280 LOG_ERROR("Failure setting watchpoints");
3285 COMMAND_HANDLER(handle_rwp_command
)
3288 return ERROR_COMMAND_SYNTAX_ERROR
;
3291 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3293 struct target
*target
= get_current_target(CMD_CTX
);
3294 watchpoint_remove(target
, addr
);
3300 * Translate a virtual address to a physical address.
3302 * The low-level target implementation must have logged a detailed error
3303 * which is forwarded to telnet/GDB session.
3305 COMMAND_HANDLER(handle_virt2phys_command
)
3308 return ERROR_COMMAND_SYNTAX_ERROR
;
3311 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], va
);
3314 struct target
*target
= get_current_target(CMD_CTX
);
3315 int retval
= target
->type
->virt2phys(target
, va
, &pa
);
3316 if (retval
== ERROR_OK
)
3317 command_print(CMD_CTX
, "Physical address 0x%08" PRIx32
"", pa
);
3322 static void writeData(FILE *f
, const void *data
, size_t len
)
3324 size_t written
= fwrite(data
, 1, len
, f
);
3326 LOG_ERROR("failed to write %zu bytes: %s", len
, strerror(errno
));
3329 static void writeLong(FILE *f
, int l
)
3332 for (i
= 0; i
< 4; i
++) {
3333 char c
= (l
>> (i
*8))&0xff;
3334 writeData(f
, &c
, 1);
3339 static void writeString(FILE *f
, char *s
)
3341 writeData(f
, s
, strlen(s
));
3344 /* Dump a gmon.out histogram file. */
3345 static void writeGmon(uint32_t *samples
, uint32_t sampleNum
, const char *filename
)
3348 FILE *f
= fopen(filename
, "w");
3351 writeString(f
, "gmon");
3352 writeLong(f
, 0x00000001); /* Version */
3353 writeLong(f
, 0); /* padding */
3354 writeLong(f
, 0); /* padding */
3355 writeLong(f
, 0); /* padding */
3357 uint8_t zero
= 0; /* GMON_TAG_TIME_HIST */
3358 writeData(f
, &zero
, 1);
3360 /* figure out bucket size */
3361 uint32_t min
= samples
[0];
3362 uint32_t max
= samples
[0];
3363 for (i
= 0; i
< sampleNum
; i
++) {
3364 if (min
> samples
[i
])
3366 if (max
< samples
[i
])
3370 int addressSpace
= (max
- min
+ 1);
3371 assert(addressSpace
>= 2);
3373 static const uint32_t maxBuckets
= 16 * 1024; /* maximum buckets. */
3374 uint32_t length
= addressSpace
;
3375 if (length
> maxBuckets
)
3376 length
= maxBuckets
;
3377 int *buckets
= malloc(sizeof(int)*length
);
3378 if (buckets
== NULL
) {
3382 memset(buckets
, 0, sizeof(int) * length
);
3383 for (i
= 0; i
< sampleNum
; i
++) {
3384 uint32_t address
= samples
[i
];
3385 long long a
= address
- min
;
3386 long long b
= length
- 1;
3387 long long c
= addressSpace
- 1;
3388 int index_t
= (a
* b
) / c
; /* danger!!!! int32 overflows */
3392 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3393 writeLong(f
, min
); /* low_pc */
3394 writeLong(f
, max
); /* high_pc */
3395 writeLong(f
, length
); /* # of samples */
3396 writeLong(f
, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3397 writeString(f
, "seconds");
3398 for (i
= 0; i
< (15-strlen("seconds")); i
++)
3399 writeData(f
, &zero
, 1);
3400 writeString(f
, "s");
3402 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3404 char *data
= malloc(2 * length
);
3406 for (i
= 0; i
< length
; i
++) {
3411 data
[i
* 2] = val
&0xff;
3412 data
[i
* 2 + 1] = (val
>> 8) & 0xff;
3415 writeData(f
, data
, length
* 2);
3423 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3424 * which will be used as a random sampling of PC */
3425 COMMAND_HANDLER(handle_profile_command
)
3427 struct target
*target
= get_current_target(CMD_CTX
);
3428 struct timeval timeout
, now
;
3430 gettimeofday(&timeout
, NULL
);
3432 return ERROR_COMMAND_SYNTAX_ERROR
;
3434 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[0], offset
);
3436 timeval_add_time(&timeout
, offset
, 0);
3439 * @todo: Some cores let us sample the PC without the
3440 * annoying halt/resume step; for example, ARMv7 PCSR.
3441 * Provide a way to use that more efficient mechanism.
3444 command_print(CMD_CTX
, "Starting profiling. Halting and resuming the target as often as we can...");
3446 static const int maxSample
= 10000;
3447 uint32_t *samples
= malloc(sizeof(uint32_t)*maxSample
);
3448 if (samples
== NULL
)
3452 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3453 struct reg
*reg
= register_get_by_name(target
->reg_cache
, "pc", 1);
3455 int retval
= ERROR_OK
;
3457 target_poll(target
);
3458 if (target
->state
== TARGET_HALTED
) {
3459 uint32_t t
= *((uint32_t *)reg
->value
);
3460 samples
[numSamples
++] = t
;
3461 /* current pc, addr = 0, do not handle breakpoints, not debugging */
3462 retval
= target_resume(target
, 1, 0, 0, 0);
3463 target_poll(target
);
3464 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3465 } else if (target
->state
== TARGET_RUNNING
) {
3466 /* We want to quickly sample the PC. */
3467 retval
= target_halt(target
);
3468 if (retval
!= ERROR_OK
) {
3473 command_print(CMD_CTX
, "Target not halted or running");
3477 if (retval
!= ERROR_OK
)
3480 gettimeofday(&now
, NULL
);
3481 if ((numSamples
>= maxSample
) || ((now
.tv_sec
>= timeout
.tv_sec
)
3482 && (now
.tv_usec
>= timeout
.tv_usec
))) {
3483 command_print(CMD_CTX
, "Profiling completed. %d samples.", numSamples
);
3484 retval
= target_poll(target
);
3485 if (retval
!= ERROR_OK
) {
3489 if (target
->state
== TARGET_HALTED
) {
3490 /* current pc, addr = 0, do not handle
3491 * breakpoints, not debugging */
3492 target_resume(target
, 1, 0, 0, 0);
3494 retval
= target_poll(target
);
3495 if (retval
!= ERROR_OK
) {
3499 writeGmon(samples
, numSamples
, CMD_ARGV
[1]);
3500 command_print(CMD_CTX
, "Wrote %s", CMD_ARGV
[1]);
3509 static int new_int_array_element(Jim_Interp
*interp
, const char *varname
, int idx
, uint32_t val
)
3512 Jim_Obj
*nameObjPtr
, *valObjPtr
;
3515 namebuf
= alloc_printf("%s(%d)", varname
, idx
);
3519 nameObjPtr
= Jim_NewStringObj(interp
, namebuf
, -1);
3520 valObjPtr
= Jim_NewIntObj(interp
, val
);
3521 if (!nameObjPtr
|| !valObjPtr
) {
3526 Jim_IncrRefCount(nameObjPtr
);
3527 Jim_IncrRefCount(valObjPtr
);
3528 result
= Jim_SetVariable(interp
, nameObjPtr
, valObjPtr
);
3529 Jim_DecrRefCount(interp
, nameObjPtr
);
3530 Jim_DecrRefCount(interp
, valObjPtr
);
3532 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3536 static int jim_mem2array(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
3538 struct command_context
*context
;
3539 struct target
*target
;
3541 context
= current_command_context(interp
);
3542 assert(context
!= NULL
);
3544 target
= get_current_target(context
);
3545 if (target
== NULL
) {
3546 LOG_ERROR("mem2array: no current target");
3550 return target_mem2array(interp
, target
, argc
- 1, argv
+ 1);
3553 static int target_mem2array(Jim_Interp
*interp
, struct target
*target
, int argc
, Jim_Obj
*const *argv
)
3561 const char *varname
;
3565 /* argv[1] = name of array to receive the data
3566 * argv[2] = desired width
3567 * argv[3] = memory address
3568 * argv[4] = count of times to read
3571 Jim_WrongNumArgs(interp
, 1, argv
, "varname width addr nelems");
3574 varname
= Jim_GetString(argv
[0], &len
);
3575 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3577 e
= Jim_GetLong(interp
, argv
[1], &l
);
3582 e
= Jim_GetLong(interp
, argv
[2], &l
);
3586 e
= Jim_GetLong(interp
, argv
[3], &l
);
3601 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3602 Jim_AppendStrings(interp
, Jim_GetResult(interp
), "Invalid width param, must be 8/16/32", NULL
);
3606 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3607 Jim_AppendStrings(interp
, Jim_GetResult(interp
), "mem2array: zero width read?", NULL
);
3610 if ((addr
+ (len
* width
)) < addr
) {
3611 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3612 Jim_AppendStrings(interp
, Jim_GetResult(interp
), "mem2array: addr + len - wraps to zero?", NULL
);
3615 /* absurd transfer size? */
3617 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3618 Jim_AppendStrings(interp
, Jim_GetResult(interp
), "mem2array: absurd > 64K item request", NULL
);
3623 ((width
== 2) && ((addr
& 1) == 0)) ||
3624 ((width
== 4) && ((addr
& 3) == 0))) {
3628 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3629 sprintf(buf
, "mem2array address: 0x%08" PRIx32
" is not aligned for %" PRId32
" byte reads",
3632 Jim_AppendStrings(interp
, Jim_GetResult(interp
), buf
, NULL
);
3641 size_t buffersize
= 4096;
3642 uint8_t *buffer
= malloc(buffersize
);
3649 /* Slurp... in buffer size chunks */
3651 count
= len
; /* in objects.. */
3652 if (count
> (buffersize
/ width
))
3653 count
= (buffersize
/ width
);
3655 retval
= target_read_memory(target
, addr
, width
, count
, buffer
);
3656 if (retval
!= ERROR_OK
) {
3658 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3662 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3663 Jim_AppendStrings(interp
, Jim_GetResult(interp
), "mem2array: cannot read memory", NULL
);
3667 v
= 0; /* shut up gcc */
3668 for (i
= 0; i
< count
; i
++, n
++) {
3671 v
= target_buffer_get_u32(target
, &buffer
[i
*width
]);
3674 v
= target_buffer_get_u16(target
, &buffer
[i
*width
]);
3677 v
= buffer
[i
] & 0x0ff;
3680 new_int_array_element(interp
, varname
, n
, v
);
3688 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3693 static int get_int_array_element(Jim_Interp
*interp
, const char *varname
, int idx
, uint32_t *val
)
3696 Jim_Obj
*nameObjPtr
, *valObjPtr
;
3700 namebuf
= alloc_printf("%s(%d)", varname
, idx
);
3704 nameObjPtr
= Jim_NewStringObj(interp
, namebuf
, -1);
3710 Jim_IncrRefCount(nameObjPtr
);
3711 valObjPtr
= Jim_GetVariable(interp
, nameObjPtr
, JIM_ERRMSG
);
3712 Jim_DecrRefCount(interp
, nameObjPtr
);
3714 if (valObjPtr
== NULL
)
3717 result
= Jim_GetLong(interp
, valObjPtr
, &l
);
3718 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3723 static int jim_array2mem(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
3725 struct command_context
*context
;
3726 struct target
*target
;
3728 context
= current_command_context(interp
);
3729 assert(context
!= NULL
);
3731 target
= get_current_target(context
);
3732 if (target
== NULL
) {
3733 LOG_ERROR("array2mem: no current target");
3737 return target_array2mem(interp
, target
, argc
-1, argv
+ 1);
3740 static int target_array2mem(Jim_Interp
*interp
, struct target
*target
,
3741 int argc
, Jim_Obj
*const *argv
)
3749 const char *varname
;
3753 /* argv[1] = name of array to get the data
3754 * argv[2] = desired width
3755 * argv[3] = memory address
3756 * argv[4] = count to write
3759 Jim_WrongNumArgs(interp
, 0, argv
, "varname width addr nelems");
3762 varname
= Jim_GetString(argv
[0], &len
);
3763 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3765 e
= Jim_GetLong(interp
, argv
[1], &l
);
3770 e
= Jim_GetLong(interp
, argv
[2], &l
);
3774 e
= Jim_GetLong(interp
, argv
[3], &l
);
3789 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3790 Jim_AppendStrings(interp
, Jim_GetResult(interp
),
3791 "Invalid width param, must be 8/16/32", NULL
);
3795 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3796 Jim_AppendStrings(interp
, Jim_GetResult(interp
),
3797 "array2mem: zero width read?", NULL
);
3800 if ((addr
+ (len
* width
)) < addr
) {
3801 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3802 Jim_AppendStrings(interp
, Jim_GetResult(interp
),
3803 "array2mem: addr + len - wraps to zero?", NULL
);
3806 /* absurd transfer size? */
3808 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3809 Jim_AppendStrings(interp
, Jim_GetResult(interp
),
3810 "array2mem: absurd > 64K item request", NULL
);
3815 ((width
== 2) && ((addr
& 1) == 0)) ||
3816 ((width
== 4) && ((addr
& 3) == 0))) {
3820 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3821 sprintf(buf
, "array2mem address: 0x%08x is not aligned for %d byte reads",
3824 Jim_AppendStrings(interp
, Jim_GetResult(interp
), buf
, NULL
);
3835 size_t buffersize
= 4096;
3836 uint8_t *buffer
= malloc(buffersize
);
3841 /* Slurp... in buffer size chunks */
3843 count
= len
; /* in objects.. */
3844 if (count
> (buffersize
/ width
))
3845 count
= (buffersize
/ width
);
3847 v
= 0; /* shut up gcc */
3848 for (i
= 0; i
< count
; i
++, n
++) {
3849 get_int_array_element(interp
, varname
, n
, &v
);
3852 target_buffer_set_u32(target
, &buffer
[i
* width
], v
);
3855 target_buffer_set_u16(target
, &buffer
[i
* width
], v
);
3858 buffer
[i
] = v
& 0x0ff;
3864 retval
= target_write_memory(target
, addr
, width
, count
, buffer
);
3865 if (retval
!= ERROR_OK
) {
3867 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3871 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3872 Jim_AppendStrings(interp
, Jim_GetResult(interp
), "array2mem: cannot read memory", NULL
);
3880 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3885 /* FIX? should we propagate errors here rather than printing them
3888 void target_handle_event(struct target
*target
, enum target_event e
)
3890 struct target_event_action
*teap
;
3892 for (teap
= target
->event_action
; teap
!= NULL
; teap
= teap
->next
) {
3893 if (teap
->event
== e
) {
3894 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3895 target
->target_number
,
3896 target_name(target
),
3897 target_type_name(target
),
3899 Jim_Nvp_value2name_simple(nvp_target_event
, e
)->name
,
3900 Jim_GetString(teap
->body
, NULL
));
3901 if (Jim_EvalObj(teap
->interp
, teap
->body
) != JIM_OK
) {
3902 Jim_MakeErrorMessage(teap
->interp
);
3903 command_print(NULL
, "%s\n", Jim_GetString(Jim_GetResult(teap
->interp
), NULL
));
3910 * Returns true only if the target has a handler for the specified event.
3912 bool target_has_event_action(struct target
*target
, enum target_event event
)
3914 struct target_event_action
*teap
;
3916 for (teap
= target
->event_action
; teap
!= NULL
; teap
= teap
->next
) {
3917 if (teap
->event
== event
)
3923 enum target_cfg_param
{
3926 TCFG_WORK_AREA_VIRT
,
3927 TCFG_WORK_AREA_PHYS
,
3928 TCFG_WORK_AREA_SIZE
,
3929 TCFG_WORK_AREA_BACKUP
,
3933 TCFG_CHAIN_POSITION
,
3938 static Jim_Nvp nvp_config_opts
[] = {
3939 { .name
= "-type", .value
= TCFG_TYPE
},
3940 { .name
= "-event", .value
= TCFG_EVENT
},
3941 { .name
= "-work-area-virt", .value
= TCFG_WORK_AREA_VIRT
},
3942 { .name
= "-work-area-phys", .value
= TCFG_WORK_AREA_PHYS
},
3943 { .name
= "-work-area-size", .value
= TCFG_WORK_AREA_SIZE
},
3944 { .name
= "-work-area-backup", .value
= TCFG_WORK_AREA_BACKUP
},
3945 { .name
= "-endian" , .value
= TCFG_ENDIAN
},
3946 { .name
= "-variant", .value
= TCFG_VARIANT
},
3947 { .name
= "-coreid", .value
= TCFG_COREID
},
3948 { .name
= "-chain-position", .value
= TCFG_CHAIN_POSITION
},
3949 { .name
= "-dbgbase", .value
= TCFG_DBGBASE
},
3950 { .name
= "-rtos", .value
= TCFG_RTOS
},
3951 { .name
= NULL
, .value
= -1 }
3954 static int target_configure(Jim_GetOptInfo
*goi
, struct target
*target
)
3962 /* parse config or cget options ... */
3963 while (goi
->argc
> 0) {
3964 Jim_SetEmptyResult(goi
->interp
);
3965 /* Jim_GetOpt_Debug(goi); */
3967 if (target
->type
->target_jim_configure
) {
3968 /* target defines a configure function */
3969 /* target gets first dibs on parameters */
3970 e
= (*(target
->type
->target_jim_configure
))(target
, goi
);
3979 /* otherwise we 'continue' below */
3981 e
= Jim_GetOpt_Nvp(goi
, nvp_config_opts
, &n
);
3983 Jim_GetOpt_NvpUnknown(goi
, nvp_config_opts
, 0);
3989 if (goi
->isconfigure
) {
3990 Jim_SetResultFormatted(goi
->interp
,
3991 "not settable: %s", n
->name
);
3995 if (goi
->argc
!= 0) {
3996 Jim_WrongNumArgs(goi
->interp
,
3997 goi
->argc
, goi
->argv
,
4002 Jim_SetResultString(goi
->interp
,
4003 target_type_name(target
), -1);
4007 if (goi
->argc
== 0) {
4008 Jim_WrongNumArgs(goi
->interp
, goi
->argc
, goi
->argv
, "-event ?event-name? ...");
4012 e
= Jim_GetOpt_Nvp(goi
, nvp_target_event
, &n
);
4014 Jim_GetOpt_NvpUnknown(goi
, nvp_target_event
, 1);
4018 if (goi
->isconfigure
) {
4019 if (goi
->argc
!= 1) {
4020 Jim_WrongNumArgs(goi
->interp
, goi
->argc
, goi
->argv
, "-event ?event-name? ?EVENT-BODY?");
4024 if (goi
->argc
!= 0) {
4025 Jim_WrongNumArgs(goi
->interp
, goi
->argc
, goi
->argv
, "-event ?event-name?");
4031 struct target_event_action
*teap
;
4033 teap
= target
->event_action
;
4034 /* replace existing? */
4036 if (teap
->event
== (enum target_event
)n
->value
)
4041 if (goi
->isconfigure
) {
4042 bool replace
= true;
4045 teap
= calloc(1, sizeof(*teap
));
4048 teap
->event
= n
->value
;
4049 teap
->interp
= goi
->interp
;
4050 Jim_GetOpt_Obj(goi
, &o
);
4052 Jim_DecrRefCount(teap
->interp
, teap
->body
);
4053 teap
->body
= Jim_DuplicateObj(goi
->interp
, o
);
4056 * Tcl/TK - "tk events" have a nice feature.
4057 * See the "BIND" command.
4058 * We should support that here.
4059 * You can specify %X and %Y in the event code.
4060 * The idea is: %T - target name.
4061 * The idea is: %N - target number
4062 * The idea is: %E - event name.
4064 Jim_IncrRefCount(teap
->body
);
4067 /* add to head of event list */
4068 teap
->next
= target
->event_action
;
4069 target
->event_action
= teap
;
4071 Jim_SetEmptyResult(goi
->interp
);
4075 Jim_SetEmptyResult(goi
->interp
);
4077 Jim_SetResult(goi
->interp
, Jim_DuplicateObj(goi
->interp
, teap
->body
));
4083 case TCFG_WORK_AREA_VIRT
:
4084 if (goi
->isconfigure
) {
4085 target_free_all_working_areas(target
);
4086 e
= Jim_GetOpt_Wide(goi
, &w
);
4089 target
->working_area_virt
= w
;
4090 target
->working_area_virt_spec
= true;
4095 Jim_SetResult(goi
->interp
, Jim_NewIntObj(goi
->interp
, target
->working_area_virt
));
4099 case TCFG_WORK_AREA_PHYS
:
4100 if (goi
->isconfigure
) {
4101 target_free_all_working_areas(target
);
4102 e
= Jim_GetOpt_Wide(goi
, &w
);
4105 target
->working_area_phys
= w
;
4106 target
->working_area_phys_spec
= true;
4111 Jim_SetResult(goi
->interp
, Jim_NewIntObj(goi
->interp
, target
->working_area_phys
));
4115 case TCFG_WORK_AREA_SIZE
:
4116 if (goi
->isconfigure
) {
4117 target_free_all_working_areas(target
);
4118 e
= Jim_GetOpt_Wide(goi
, &w
);
4121 target
->working_area_size
= w
;
4126 Jim_SetResult(goi
->interp
, Jim_NewIntObj(goi
->interp
, target
->working_area_size
));
4130 case TCFG_WORK_AREA_BACKUP
:
4131 if (goi
->isconfigure
) {
4132 target_free_all_working_areas(target
);
4133 e
= Jim_GetOpt_Wide(goi
, &w
);
4136 /* make this exactly 1 or 0 */
4137 target
->backup_working_area
= (!!w
);
4142 Jim_SetResult(goi
->interp
, Jim_NewIntObj(goi
->interp
, target
->backup_working_area
));
4143 /* loop for more e*/
4148 if (goi
->isconfigure
) {
4149 e
= Jim_GetOpt_Nvp(goi
, nvp_target_endian
, &n
);
4151 Jim_GetOpt_NvpUnknown(goi
, nvp_target_endian
, 1);
4154 target
->endianness
= n
->value
;
4159 n
= Jim_Nvp_value2name_simple(nvp_target_endian
, target
->endianness
);
4160 if (n
->name
== NULL
) {
4161 target
->endianness
= TARGET_LITTLE_ENDIAN
;
4162 n
= Jim_Nvp_value2name_simple(nvp_target_endian
, target
->endianness
);
4164 Jim_SetResultString(goi
->interp
, n
->name
, -1);
4169 if (goi
->isconfigure
) {
4170 if (goi
->argc
< 1) {
4171 Jim_SetResultFormatted(goi
->interp
,
4176 if (target
->variant
)
4177 free((void *)(target
->variant
));
4178 e
= Jim_GetOpt_String(goi
, &cp
, NULL
);
4181 target
->variant
= strdup(cp
);
4186 Jim_SetResultString(goi
->interp
, target
->variant
, -1);
4191 if (goi
->isconfigure
) {
4192 e
= Jim_GetOpt_Wide(goi
, &w
);
4195 target
->coreid
= (int32_t)w
;
4200 Jim_SetResult(goi
->interp
, Jim_NewIntObj(goi
->interp
, target
->working_area_size
));
4204 case TCFG_CHAIN_POSITION
:
4205 if (goi
->isconfigure
) {
4207 struct jtag_tap
*tap
;
4208 target_free_all_working_areas(target
);
4209 e
= Jim_GetOpt_Obj(goi
, &o_t
);
4212 tap
= jtag_tap_by_jim_obj(goi
->interp
, o_t
);
4215 /* make this exactly 1 or 0 */
4221 Jim_SetResultString(goi
->interp
, target
->tap
->dotted_name
, -1);
4222 /* loop for more e*/
4225 if (goi
->isconfigure
) {
4226 e
= Jim_GetOpt_Wide(goi
, &w
);
4229 target
->dbgbase
= (uint32_t)w
;
4230 target
->dbgbase_set
= true;
4235 Jim_SetResult(goi
->interp
, Jim_NewIntObj(goi
->interp
, target
->dbgbase
));
4242 int result
= rtos_create(goi
, target
);
4243 if (result
!= JIM_OK
)
4249 } /* while (goi->argc) */
4252 /* done - we return */
4256 static int jim_target_configure(Jim_Interp
*interp
, int argc
, Jim_Obj
* const *argv
)
4260 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
4261 goi
.isconfigure
= !strcmp(Jim_GetString(argv
[0], NULL
), "configure");
4262 int need_args
= 1 + goi
.isconfigure
;
4263 if (goi
.argc
< need_args
) {
4264 Jim_WrongNumArgs(goi
.interp
, goi
.argc
, goi
.argv
,
4266 ? "missing: -option VALUE ..."
4267 : "missing: -option ...");
4270 struct target
*target
= Jim_CmdPrivData(goi
.interp
);
4271 return target_configure(&goi
, target
);
4274 static int jim_target_mw(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4276 const char *cmd_name
= Jim_GetString(argv
[0], NULL
);
4279 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
4281 if (goi
.argc
< 2 || goi
.argc
> 4) {
4282 Jim_SetResultFormatted(goi
.interp
,
4283 "usage: %s [phys] <address> <data> [<count>]", cmd_name
);
4288 fn
= target_write_memory_fast
;
4291 if (strcmp(Jim_GetString(argv
[1], NULL
), "phys") == 0) {
4293 struct Jim_Obj
*obj
;
4294 e
= Jim_GetOpt_Obj(&goi
, &obj
);
4298 fn
= target_write_phys_memory
;
4302 e
= Jim_GetOpt_Wide(&goi
, &a
);
4307 e
= Jim_GetOpt_Wide(&goi
, &b
);
4312 if (goi
.argc
== 1) {
4313 e
= Jim_GetOpt_Wide(&goi
, &c
);
4318 /* all args must be consumed */
4322 struct target
*target
= Jim_CmdPrivData(goi
.interp
);
4324 if (strcasecmp(cmd_name
, "mww") == 0)
4326 else if (strcasecmp(cmd_name
, "mwh") == 0)
4328 else if (strcasecmp(cmd_name
, "mwb") == 0)
4331 LOG_ERROR("command '%s' unknown: ", cmd_name
);
4335 return (target_fill_mem(target
, a
, fn
, data_size
, b
, c
) == ERROR_OK
) ? JIM_OK
: JIM_ERR
;
4338 static int jim_target_md(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4340 const char *cmd_name
= Jim_GetString(argv
[0], NULL
);
4343 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
4345 if ((goi
.argc
< 1) || (goi
.argc
> 3)) {
4346 Jim_SetResultFormatted(goi
.interp
,
4347 "usage: %s [phys] <address> [<count>]", cmd_name
);
4351 int (*fn
)(struct target
*target
,
4352 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
);
4353 fn
= target_read_memory
;
4356 if (strcmp(Jim_GetString(argv
[1], NULL
), "phys") == 0) {
4358 struct Jim_Obj
*obj
;
4359 e
= Jim_GetOpt_Obj(&goi
, &obj
);
4363 fn
= target_read_phys_memory
;
4367 e
= Jim_GetOpt_Wide(&goi
, &a
);
4371 if (goi
.argc
== 1) {
4372 e
= Jim_GetOpt_Wide(&goi
, &c
);
4378 /* all args must be consumed */
4382 jim_wide b
= 1; /* shut up gcc */
4383 if (strcasecmp(cmd_name
, "mdw") == 0)
4385 else if (strcasecmp(cmd_name
, "mdh") == 0)
4387 else if (strcasecmp(cmd_name
, "mdb") == 0)
4390 LOG_ERROR("command '%s' unknown: ", cmd_name
);
4394 /* convert count to "bytes" */
4397 struct target
*target
= Jim_CmdPrivData(goi
.interp
);
4398 uint8_t target_buf
[32];
4404 e
= fn(target
, a
, b
, y
/ b
, target_buf
);
4405 if (e
!= ERROR_OK
) {
4407 snprintf(tmp
, sizeof(tmp
), "%08lx", (long)a
);
4408 Jim_SetResultFormatted(interp
, "error reading target @ 0x%s", tmp
);
4412 command_print(NULL
, "0x%08x ", (int)(a
));
4415 for (x
= 0; x
< 16 && x
< y
; x
+= 4) {
4416 z
= target_buffer_get_u32(target
, &(target_buf
[x
]));
4417 command_print(NULL
, "%08x ", (int)(z
));
4419 for (; (x
< 16) ; x
+= 4)
4420 command_print(NULL
, " ");
4423 for (x
= 0; x
< 16 && x
< y
; x
+= 2) {
4424 z
= target_buffer_get_u16(target
, &(target_buf
[x
]));
4425 command_print(NULL
, "%04x ", (int)(z
));
4427 for (; (x
< 16) ; x
+= 2)
4428 command_print(NULL
, " ");
4432 for (x
= 0 ; (x
< 16) && (x
< y
) ; x
+= 1) {
4433 z
= target_buffer_get_u8(target
, &(target_buf
[x
]));
4434 command_print(NULL
, "%02x ", (int)(z
));
4436 for (; (x
< 16) ; x
+= 1)
4437 command_print(NULL
, " ");
4440 /* ascii-ify the bytes */
4441 for (x
= 0 ; x
< y
; x
++) {
4442 if ((target_buf
[x
] >= 0x20) &&
4443 (target_buf
[x
] <= 0x7e)) {
4447 target_buf
[x
] = '.';
4452 target_buf
[x
] = ' ';
4457 /* print - with a newline */
4458 command_print(NULL
, "%s\n", target_buf
);
4466 static int jim_target_mem2array(Jim_Interp
*interp
,
4467 int argc
, Jim_Obj
*const *argv
)
4469 struct target
*target
= Jim_CmdPrivData(interp
);
4470 return target_mem2array(interp
, target
, argc
- 1, argv
+ 1);
4473 static int jim_target_array2mem(Jim_Interp
*interp
,
4474 int argc
, Jim_Obj
*const *argv
)
4476 struct target
*target
= Jim_CmdPrivData(interp
);
4477 return target_array2mem(interp
, target
, argc
- 1, argv
+ 1);
4480 static int jim_target_tap_disabled(Jim_Interp
*interp
)
4482 Jim_SetResultFormatted(interp
, "[TAP is disabled]");
4486 static int jim_target_examine(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4489 Jim_WrongNumArgs(interp
, 1, argv
, "[no parameters]");
4492 struct target
*target
= Jim_CmdPrivData(interp
);
4493 if (!target
->tap
->enabled
)
4494 return jim_target_tap_disabled(interp
);
4496 int e
= target
->type
->examine(target
);
4502 static int jim_target_halt_gdb(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4505 Jim_WrongNumArgs(interp
, 1, argv
, "[no parameters]");
4508 struct target
*target
= Jim_CmdPrivData(interp
);
4510 if (target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
) != ERROR_OK
)
4516 static int jim_target_poll(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4519 Jim_WrongNumArgs(interp
, 1, argv
, "[no parameters]");
4522 struct target
*target
= Jim_CmdPrivData(interp
);
4523 if (!target
->tap
->enabled
)
4524 return jim_target_tap_disabled(interp
);
4527 if (!(target_was_examined(target
)))
4528 e
= ERROR_TARGET_NOT_EXAMINED
;
4530 e
= target
->type
->poll(target
);
4536 static int jim_target_reset(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4539 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
4541 if (goi
.argc
!= 2) {
4542 Jim_WrongNumArgs(interp
, 0, argv
,
4543 "([tT]|[fF]|assert|deassert) BOOL");
4548 int e
= Jim_GetOpt_Nvp(&goi
, nvp_assert
, &n
);
4550 Jim_GetOpt_NvpUnknown(&goi
, nvp_assert
, 1);
4553 /* the halt or not param */
4555 e
= Jim_GetOpt_Wide(&goi
, &a
);
4559 struct target
*target
= Jim_CmdPrivData(goi
.interp
);
4560 if (!target
->tap
->enabled
)
4561 return jim_target_tap_disabled(interp
);
4562 if (!(target_was_examined(target
))) {
4563 LOG_ERROR("Target not examined yet");
4564 return ERROR_TARGET_NOT_EXAMINED
;
4566 if (!target
->type
->assert_reset
|| !target
->type
->deassert_reset
) {
4567 Jim_SetResultFormatted(interp
,
4568 "No target-specific reset for %s",
4569 target_name(target
));
4572 /* determine if we should halt or not. */
4573 target
->reset_halt
= !!a
;
4574 /* When this happens - all workareas are invalid. */
4575 target_free_all_working_areas_restore(target
, 0);
4578 if (n
->value
== NVP_ASSERT
)
4579 e
= target
->type
->assert_reset(target
);
4581 e
= target
->type
->deassert_reset(target
);
4582 return (e
== ERROR_OK
) ? JIM_OK
: JIM_ERR
;
4585 static int jim_target_halt(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4588 Jim_WrongNumArgs(interp
, 1, argv
, "[no parameters]");
4591 struct target
*target
= Jim_CmdPrivData(interp
);
4592 if (!target
->tap
->enabled
)
4593 return jim_target_tap_disabled(interp
);
4594 int e
= target
->type
->halt(target
);
4595 return (e
== ERROR_OK
) ? JIM_OK
: JIM_ERR
;
4598 static int jim_target_wait_state(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4601 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
4603 /* params: <name> statename timeoutmsecs */
4604 if (goi
.argc
!= 2) {
4605 const char *cmd_name
= Jim_GetString(argv
[0], NULL
);
4606 Jim_SetResultFormatted(goi
.interp
,
4607 "%s <state_name> <timeout_in_msec>", cmd_name
);
4612 int e
= Jim_GetOpt_Nvp(&goi
, nvp_target_state
, &n
);
4614 Jim_GetOpt_NvpUnknown(&goi
, nvp_target_state
, 1);
4618 e
= Jim_GetOpt_Wide(&goi
, &a
);
4621 struct target
*target
= Jim_CmdPrivData(interp
);
4622 if (!target
->tap
->enabled
)
4623 return jim_target_tap_disabled(interp
);
4625 e
= target_wait_state(target
, n
->value
, a
);
4626 if (e
!= ERROR_OK
) {
4627 Jim_Obj
*eObj
= Jim_NewIntObj(interp
, e
);
4628 Jim_SetResultFormatted(goi
.interp
,
4629 "target: %s wait %s fails (%#s) %s",
4630 target_name(target
), n
->name
,
4631 eObj
, target_strerror_safe(e
));
4632 Jim_FreeNewObj(interp
, eObj
);
4637 /* List for human, Events defined for this target.
4638 * scripts/programs should use 'name cget -event NAME'
4640 static int jim_target_event_list(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4642 struct command_context
*cmd_ctx
= current_command_context(interp
);
4643 assert(cmd_ctx
!= NULL
);
4645 struct target
*target
= Jim_CmdPrivData(interp
);
4646 struct target_event_action
*teap
= target
->event_action
;
4647 command_print(cmd_ctx
, "Event actions for target (%d) %s\n",
4648 target
->target_number
,
4649 target_name(target
));
4650 command_print(cmd_ctx
, "%-25s | Body", "Event");
4651 command_print(cmd_ctx
, "------------------------- | "
4652 "----------------------------------------");
4654 Jim_Nvp
*opt
= Jim_Nvp_value2name_simple(nvp_target_event
, teap
->event
);
4655 command_print(cmd_ctx
, "%-25s | %s",
4656 opt
->name
, Jim_GetString(teap
->body
, NULL
));
4659 command_print(cmd_ctx
, "***END***");
4662 static int jim_target_current_state(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4665 Jim_WrongNumArgs(interp
, 1, argv
, "[no parameters]");
4668 struct target
*target
= Jim_CmdPrivData(interp
);
4669 Jim_SetResultString(interp
, target_state_name(target
), -1);
4672 static int jim_target_invoke_event(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4675 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
4676 if (goi
.argc
!= 1) {
4677 const char *cmd_name
= Jim_GetString(argv
[0], NULL
);
4678 Jim_SetResultFormatted(goi
.interp
, "%s <eventname>", cmd_name
);
4682 int e
= Jim_GetOpt_Nvp(&goi
, nvp_target_event
, &n
);
4684 Jim_GetOpt_NvpUnknown(&goi
, nvp_target_event
, 1);
4687 struct target
*target
= Jim_CmdPrivData(interp
);
4688 target_handle_event(target
, n
->value
);
4692 static const struct command_registration target_instance_command_handlers
[] = {
4694 .name
= "configure",
4695 .mode
= COMMAND_CONFIG
,
4696 .jim_handler
= jim_target_configure
,
4697 .help
= "configure a new target for use",
4698 .usage
= "[target_attribute ...]",
4702 .mode
= COMMAND_ANY
,
4703 .jim_handler
= jim_target_configure
,
4704 .help
= "returns the specified target attribute",
4705 .usage
= "target_attribute",
4709 .mode
= COMMAND_EXEC
,
4710 .jim_handler
= jim_target_mw
,
4711 .help
= "Write 32-bit word(s) to target memory",
4712 .usage
= "address data [count]",
4716 .mode
= COMMAND_EXEC
,
4717 .jim_handler
= jim_target_mw
,
4718 .help
= "Write 16-bit half-word(s) to target memory",
4719 .usage
= "address data [count]",
4723 .mode
= COMMAND_EXEC
,
4724 .jim_handler
= jim_target_mw
,
4725 .help
= "Write byte(s) to target memory",
4726 .usage
= "address data [count]",
4730 .mode
= COMMAND_EXEC
,
4731 .jim_handler
= jim_target_md
,
4732 .help
= "Display target memory as 32-bit words",
4733 .usage
= "address [count]",
4737 .mode
= COMMAND_EXEC
,
4738 .jim_handler
= jim_target_md
,
4739 .help
= "Display target memory as 16-bit half-words",
4740 .usage
= "address [count]",
4744 .mode
= COMMAND_EXEC
,
4745 .jim_handler
= jim_target_md
,
4746 .help
= "Display target memory as 8-bit bytes",
4747 .usage
= "address [count]",
4750 .name
= "array2mem",
4751 .mode
= COMMAND_EXEC
,
4752 .jim_handler
= jim_target_array2mem
,
4753 .help
= "Writes Tcl array of 8/16/32 bit numbers "
4755 .usage
= "arrayname bitwidth address count",
4758 .name
= "mem2array",
4759 .mode
= COMMAND_EXEC
,
4760 .jim_handler
= jim_target_mem2array
,
4761 .help
= "Loads Tcl array of 8/16/32 bit numbers "
4762 "from target memory",
4763 .usage
= "arrayname bitwidth address count",
4766 .name
= "eventlist",
4767 .mode
= COMMAND_EXEC
,
4768 .jim_handler
= jim_target_event_list
,
4769 .help
= "displays a table of events defined for this target",
4773 .mode
= COMMAND_EXEC
,
4774 .jim_handler
= jim_target_current_state
,
4775 .help
= "displays the current state of this target",
4778 .name
= "arp_examine",
4779 .mode
= COMMAND_EXEC
,
4780 .jim_handler
= jim_target_examine
,
4781 .help
= "used internally for reset processing",
4784 .name
= "arp_halt_gdb",
4785 .mode
= COMMAND_EXEC
,
4786 .jim_handler
= jim_target_halt_gdb
,
4787 .help
= "used internally for reset processing to halt GDB",
4791 .mode
= COMMAND_EXEC
,
4792 .jim_handler
= jim_target_poll
,
4793 .help
= "used internally for reset processing",
4796 .name
= "arp_reset",
4797 .mode
= COMMAND_EXEC
,
4798 .jim_handler
= jim_target_reset
,
4799 .help
= "used internally for reset processing",
4803 .mode
= COMMAND_EXEC
,
4804 .jim_handler
= jim_target_halt
,
4805 .help
= "used internally for reset processing",
4808 .name
= "arp_waitstate",
4809 .mode
= COMMAND_EXEC
,
4810 .jim_handler
= jim_target_wait_state
,
4811 .help
= "used internally for reset processing",
4814 .name
= "invoke-event",
4815 .mode
= COMMAND_EXEC
,
4816 .jim_handler
= jim_target_invoke_event
,
4817 .help
= "invoke handler for specified event",
4818 .usage
= "event_name",
4820 COMMAND_REGISTRATION_DONE
4823 static int target_create(Jim_GetOptInfo
*goi
)
4831 struct target
*target
;
4832 struct command_context
*cmd_ctx
;
4834 cmd_ctx
= current_command_context(goi
->interp
);
4835 assert(cmd_ctx
!= NULL
);
4837 if (goi
->argc
< 3) {
4838 Jim_WrongNumArgs(goi
->interp
, 1, goi
->argv
, "?name? ?type? ..options...");
4843 Jim_GetOpt_Obj(goi
, &new_cmd
);
4844 /* does this command exist? */
4845 cmd
= Jim_GetCommand(goi
->interp
, new_cmd
, JIM_ERRMSG
);
4847 cp
= Jim_GetString(new_cmd
, NULL
);
4848 Jim_SetResultFormatted(goi
->interp
, "Command/target: %s Exists", cp
);
4853 e
= Jim_GetOpt_String(goi
, &cp2
, NULL
);
4857 /* now does target type exist */
4858 for (x
= 0 ; target_types
[x
] ; x
++) {
4859 if (0 == strcmp(cp
, target_types
[x
]->name
)) {
4864 if (target_types
[x
] == NULL
) {
4865 Jim_SetResultFormatted(goi
->interp
, "Unknown target type %s, try one of ", cp
);
4866 for (x
= 0 ; target_types
[x
] ; x
++) {
4867 if (target_types
[x
+ 1]) {
4868 Jim_AppendStrings(goi
->interp
,
4869 Jim_GetResult(goi
->interp
),
4870 target_types
[x
]->name
,
4873 Jim_AppendStrings(goi
->interp
,
4874 Jim_GetResult(goi
->interp
),
4876 target_types
[x
]->name
, NULL
);
4883 target
= calloc(1, sizeof(struct target
));
4884 /* set target number */
4885 target
->target_number
= new_target_number();
4887 /* allocate memory for each unique target type */
4888 target
->type
= (struct target_type
*)calloc(1, sizeof(struct target_type
));
4890 memcpy(target
->type
, target_types
[x
], sizeof(struct target_type
));
4892 /* will be set by "-endian" */
4893 target
->endianness
= TARGET_ENDIAN_UNKNOWN
;
4895 /* default to first core, override with -coreid */
4898 target
->working_area
= 0x0;
4899 target
->working_area_size
= 0x0;
4900 target
->working_areas
= NULL
;
4901 target
->backup_working_area
= 0;
4903 target
->state
= TARGET_UNKNOWN
;
4904 target
->debug_reason
= DBG_REASON_UNDEFINED
;
4905 target
->reg_cache
= NULL
;
4906 target
->breakpoints
= NULL
;
4907 target
->watchpoints
= NULL
;
4908 target
->next
= NULL
;
4909 target
->arch_info
= NULL
;
4911 target
->display
= 1;
4913 target
->halt_issued
= false;
4915 /* initialize trace information */
4916 target
->trace_info
= malloc(sizeof(struct trace
));
4917 target
->trace_info
->num_trace_points
= 0;
4918 target
->trace_info
->trace_points_size
= 0;
4919 target
->trace_info
->trace_points
= NULL
;
4920 target
->trace_info
->trace_history_size
= 0;
4921 target
->trace_info
->trace_history
= NULL
;
4922 target
->trace_info
->trace_history_pos
= 0;
4923 target
->trace_info
->trace_history_overflowed
= 0;
4925 target
->dbgmsg
= NULL
;
4926 target
->dbg_msg_enabled
= 0;
4928 target
->endianness
= TARGET_ENDIAN_UNKNOWN
;
4930 target
->rtos
= NULL
;
4931 target
->rtos_auto_detect
= false;
4933 /* Do the rest as "configure" options */
4934 goi
->isconfigure
= 1;
4935 e
= target_configure(goi
, target
);
4937 if (target
->tap
== NULL
) {
4938 Jim_SetResultString(goi
->interp
, "-chain-position required when creating target", -1);
4948 if (target
->endianness
== TARGET_ENDIAN_UNKNOWN
) {
4949 /* default endian to little if not specified */
4950 target
->endianness
= TARGET_LITTLE_ENDIAN
;
4953 /* incase variant is not set */
4954 if (!target
->variant
)
4955 target
->variant
= strdup("");
4957 cp
= Jim_GetString(new_cmd
, NULL
);
4958 target
->cmd_name
= strdup(cp
);
4960 /* create the target specific commands */
4961 if (target
->type
->commands
) {
4962 e
= register_commands(cmd_ctx
, NULL
, target
->type
->commands
);
4964 LOG_ERROR("unable to register '%s' commands", cp
);
4966 if (target
->type
->target_create
)
4967 (*(target
->type
->target_create
))(target
, goi
->interp
);
4969 /* append to end of list */
4971 struct target
**tpp
;
4972 tpp
= &(all_targets
);
4974 tpp
= &((*tpp
)->next
);
4978 /* now - create the new target name command */
4979 const const struct command_registration target_subcommands
[] = {
4981 .chain
= target_instance_command_handlers
,
4984 .chain
= target
->type
->commands
,
4986 COMMAND_REGISTRATION_DONE
4988 const const struct command_registration target_commands
[] = {
4991 .mode
= COMMAND_ANY
,
4992 .help
= "target command group",
4994 .chain
= target_subcommands
,
4996 COMMAND_REGISTRATION_DONE
4998 e
= register_commands(cmd_ctx
, NULL
, target_commands
);
5002 struct command
*c
= command_find_in_context(cmd_ctx
, cp
);
5004 command_set_handler_data(c
, target
);
5006 return (ERROR_OK
== e
) ? JIM_OK
: JIM_ERR
;
5009 static int jim_target_current(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
5012 Jim_WrongNumArgs(interp
, 1, argv
, "Too many parameters");
5015 struct command_context
*cmd_ctx
= current_command_context(interp
);
5016 assert(cmd_ctx
!= NULL
);
5018 Jim_SetResultString(interp
, get_current_target(cmd_ctx
)->cmd_name
, -1);
5022 static int jim_target_types(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
5025 Jim_WrongNumArgs(interp
, 1, argv
, "Too many parameters");
5028 Jim_SetResult(interp
, Jim_NewListObj(interp
, NULL
, 0));
5029 for (unsigned x
= 0; NULL
!= target_types
[x
]; x
++) {
5030 Jim_ListAppendElement(interp
, Jim_GetResult(interp
),
5031 Jim_NewStringObj(interp
, target_types
[x
]->name
, -1));
5036 static int jim_target_names(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
5039 Jim_WrongNumArgs(interp
, 1, argv
, "Too many parameters");
5042 Jim_SetResult(interp
, Jim_NewListObj(interp
, NULL
, 0));
5043 struct target
*target
= all_targets
;
5045 Jim_ListAppendElement(interp
, Jim_GetResult(interp
),
5046 Jim_NewStringObj(interp
, target_name(target
), -1));
5047 target
= target
->next
;
5052 static int jim_target_smp(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
5055 const char *targetname
;
5057 struct target
*target
= (struct target
*) NULL
;
5058 struct target_list
*head
, *curr
, *new;
5059 curr
= (struct target_list
*) NULL
;
5060 head
= (struct target_list
*) NULL
;
5061 new = (struct target_list
*) NULL
;
5064 LOG_DEBUG("%d", argc
);
5065 /* argv[1] = target to associate in smp
5066 * argv[2] = target to assoicate in smp
5070 for (i
= 1; i
< argc
; i
++) {
5072 targetname
= Jim_GetString(argv
[i
], &len
);
5073 target
= get_target(targetname
);
5074 LOG_DEBUG("%s ", targetname
);
5076 new = malloc(sizeof(struct target_list
));
5077 new->target
= target
;
5078 new->next
= (struct target_list
*)NULL
;
5079 if (head
== (struct target_list
*)NULL
) {
5088 /* now parse the list of cpu and put the target in smp mode*/
5091 while (curr
!= (struct target_list
*)NULL
) {
5092 target
= curr
->target
;
5094 target
->head
= head
;
5098 retval
= rtos_smp_init(head
->target
);
5103 static int jim_target_create(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
5106 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
5108 Jim_WrongNumArgs(goi
.interp
, goi
.argc
, goi
.argv
,
5109 "<name> <target_type> [<target_options> ...]");
5112 return target_create(&goi
);
5115 static int jim_target_number(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
5118 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
5120 /* It's OK to remove this mechanism sometime after August 2010 or so */
5121 LOG_WARNING("don't use numbers as target identifiers; use names");
5122 if (goi
.argc
!= 1) {
5123 Jim_SetResultFormatted(goi
.interp
, "usage: target number <number>");
5127 int e
= Jim_GetOpt_Wide(&goi
, &w
);
5131 struct target
*target
;
5132 for (target
= all_targets
; NULL
!= target
; target
= target
->next
) {
5133 if (target
->target_number
!= w
)
5136 Jim_SetResultString(goi
.interp
, target_name(target
), -1);
5140 Jim_Obj
*wObj
= Jim_NewIntObj(goi
.interp
, w
);
5141 Jim_SetResultFormatted(goi
.interp
,
5142 "Target: number %#s does not exist", wObj
);
5143 Jim_FreeNewObj(interp
, wObj
);
5148 static int jim_target_count(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
5151 Jim_WrongNumArgs(interp
, 1, argv
, "<no parameters>");
5155 struct target
*target
= all_targets
;
5156 while (NULL
!= target
) {
5157 target
= target
->next
;
5160 Jim_SetResult(interp
, Jim_NewIntObj(interp
, count
));
5164 static const struct command_registration target_subcommand_handlers
[] = {
5167 .mode
= COMMAND_CONFIG
,
5168 .handler
= handle_target_init_command
,
5169 .help
= "initialize targets",
5173 /* REVISIT this should be COMMAND_CONFIG ... */
5174 .mode
= COMMAND_ANY
,
5175 .jim_handler
= jim_target_create
,
5176 .usage
= "name type '-chain-position' name [options ...]",
5177 .help
= "Creates and selects a new target",
5181 .mode
= COMMAND_ANY
,
5182 .jim_handler
= jim_target_current
,
5183 .help
= "Returns the currently selected target",
5187 .mode
= COMMAND_ANY
,
5188 .jim_handler
= jim_target_types
,
5189 .help
= "Returns the available target types as "
5190 "a list of strings",
5194 .mode
= COMMAND_ANY
,
5195 .jim_handler
= jim_target_names
,
5196 .help
= "Returns the names of all targets as a list of strings",
5200 .mode
= COMMAND_ANY
,
5201 .jim_handler
= jim_target_number
,
5203 .help
= "Returns the name of the numbered target "
5208 .mode
= COMMAND_ANY
,
5209 .jim_handler
= jim_target_count
,
5210 .help
= "Returns the number of targets as an integer "
5215 .mode
= COMMAND_ANY
,
5216 .jim_handler
= jim_target_smp
,
5217 .usage
= "targetname1 targetname2 ...",
5218 .help
= "gather several target in a smp list"
5221 COMMAND_REGISTRATION_DONE
5231 static int fastload_num
;
5232 static struct FastLoad
*fastload
;
5234 static void free_fastload(void)
5236 if (fastload
!= NULL
) {
5238 for (i
= 0; i
< fastload_num
; i
++) {
5239 if (fastload
[i
].data
)
5240 free(fastload
[i
].data
);
5247 COMMAND_HANDLER(handle_fast_load_image_command
)
5251 uint32_t image_size
;
5252 uint32_t min_address
= 0;
5253 uint32_t max_address
= 0xffffffff;
5258 int retval
= CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV
,
5259 &image
, &min_address
, &max_address
);
5260 if (ERROR_OK
!= retval
)
5263 struct duration bench
;
5264 duration_start(&bench
);
5266 retval
= image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
>= 3) ? CMD_ARGV
[2] : NULL
);
5267 if (retval
!= ERROR_OK
)
5272 fastload_num
= image
.num_sections
;
5273 fastload
= (struct FastLoad
*)malloc(sizeof(struct FastLoad
)*image
.num_sections
);
5274 if (fastload
== NULL
) {
5275 command_print(CMD_CTX
, "out of memory");
5276 image_close(&image
);
5279 memset(fastload
, 0, sizeof(struct FastLoad
)*image
.num_sections
);
5280 for (i
= 0; i
< image
.num_sections
; i
++) {
5281 buffer
= malloc(image
.sections
[i
].size
);
5282 if (buffer
== NULL
) {
5283 command_print(CMD_CTX
, "error allocating buffer for section (%d bytes)",
5284 (int)(image
.sections
[i
].size
));
5285 retval
= ERROR_FAIL
;
5289 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
5290 if (retval
!= ERROR_OK
) {
5295 uint32_t offset
= 0;
5296 uint32_t length
= buf_cnt
;
5298 /* DANGER!!! beware of unsigned comparision here!!! */
5300 if ((image
.sections
[i
].base_address
+ buf_cnt
>= min_address
) &&
5301 (image
.sections
[i
].base_address
< max_address
)) {
5302 if (image
.sections
[i
].base_address
< min_address
) {
5303 /* clip addresses below */
5304 offset
+= min_address
-image
.sections
[i
].base_address
;
5308 if (image
.sections
[i
].base_address
+ buf_cnt
> max_address
)
5309 length
-= (image
.sections
[i
].base_address
+ buf_cnt
)-max_address
;
5311 fastload
[i
].address
= image
.sections
[i
].base_address
+ offset
;
5312 fastload
[i
].data
= malloc(length
);
5313 if (fastload
[i
].data
== NULL
) {
5315 command_print(CMD_CTX
, "error allocating buffer for section (%d bytes)",
5317 retval
= ERROR_FAIL
;
5320 memcpy(fastload
[i
].data
, buffer
+ offset
, length
);
5321 fastload
[i
].length
= length
;
5323 image_size
+= length
;
5324 command_print(CMD_CTX
, "%u bytes written at address 0x%8.8x",
5325 (unsigned int)length
,
5326 ((unsigned int)(image
.sections
[i
].base_address
+ offset
)));
5332 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
5333 command_print(CMD_CTX
, "Loaded %" PRIu32
" bytes "
5334 "in %fs (%0.3f KiB/s)", image_size
,
5335 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
5337 command_print(CMD_CTX
,
5338 "WARNING: image has not been loaded to target!"
5339 "You can issue a 'fast_load' to finish loading.");
5342 image_close(&image
);
5344 if (retval
!= ERROR_OK
)
5350 COMMAND_HANDLER(handle_fast_load_command
)
5353 return ERROR_COMMAND_SYNTAX_ERROR
;
5354 if (fastload
== NULL
) {
5355 LOG_ERROR("No image in memory");
5359 int ms
= timeval_ms();
5361 int retval
= ERROR_OK
;
5362 for (i
= 0; i
< fastload_num
; i
++) {
5363 struct target
*target
= get_current_target(CMD_CTX
);
5364 command_print(CMD_CTX
, "Write to 0x%08x, length 0x%08x",
5365 (unsigned int)(fastload
[i
].address
),
5366 (unsigned int)(fastload
[i
].length
));
5367 retval
= target_write_buffer(target
, fastload
[i
].address
, fastload
[i
].length
, fastload
[i
].data
);
5368 if (retval
!= ERROR_OK
)
5370 size
+= fastload
[i
].length
;
5372 if (retval
== ERROR_OK
) {
5373 int after
= timeval_ms();
5374 command_print(CMD_CTX
, "Loaded image %f kBytes/s", (float)(size
/1024.0)/((float)(after
-ms
)/1000.0));
5379 static const struct command_registration target_command_handlers
[] = {
5382 .handler
= handle_targets_command
,
5383 .mode
= COMMAND_ANY
,
5384 .help
= "change current default target (one parameter) "
5385 "or prints table of all targets (no parameters)",
5386 .usage
= "[target]",
5390 .mode
= COMMAND_CONFIG
,
5391 .help
= "configure target",
5393 .chain
= target_subcommand_handlers
,
5395 COMMAND_REGISTRATION_DONE
5398 int target_register_commands(struct command_context
*cmd_ctx
)
5400 return register_commands(cmd_ctx
, NULL
, target_command_handlers
);
5403 static bool target_reset_nag
= true;
5405 bool get_target_reset_nag(void)
5407 return target_reset_nag
;
5410 COMMAND_HANDLER(handle_target_reset_nag
)
5412 return CALL_COMMAND_HANDLER(handle_command_parse_bool
,
5413 &target_reset_nag
, "Nag after each reset about options to improve "
5417 COMMAND_HANDLER(handle_ps_command
)
5419 struct target
*target
= get_current_target(CMD_CTX
);
5421 if (target
->state
!= TARGET_HALTED
) {
5422 LOG_INFO("target not halted !!");
5426 if ((target
->rtos
) && (target
->rtos
->type
)
5427 && (target
->rtos
->type
->ps_command
)) {
5428 display
= target
->rtos
->type
->ps_command(target
);
5429 command_print(CMD_CTX
, "%s", display
);
5434 return ERROR_TARGET_FAILURE
;
5438 static const struct command_registration target_exec_command_handlers
[] = {
5440 .name
= "fast_load_image",
5441 .handler
= handle_fast_load_image_command
,
5442 .mode
= COMMAND_ANY
,
5443 .help
= "Load image into server memory for later use by "
5444 "fast_load; primarily for profiling",
5445 .usage
= "filename address ['bin'|'ihex'|'elf'|'s19'] "
5446 "[min_address [max_length]]",
5449 .name
= "fast_load",
5450 .handler
= handle_fast_load_command
,
5451 .mode
= COMMAND_EXEC
,
5452 .help
= "loads active fast load image to current target "
5453 "- mainly for profiling purposes",
5458 .handler
= handle_profile_command
,
5459 .mode
= COMMAND_EXEC
,
5460 .usage
= "seconds filename",
5461 .help
= "profiling samples the CPU PC",
5463 /** @todo don't register virt2phys() unless target supports it */
5465 .name
= "virt2phys",
5466 .handler
= handle_virt2phys_command
,
5467 .mode
= COMMAND_ANY
,
5468 .help
= "translate a virtual address into a physical address",
5469 .usage
= "virtual_address",
5473 .handler
= handle_reg_command
,
5474 .mode
= COMMAND_EXEC
,
5475 .help
= "display or set a register; with no arguments, "
5476 "displays all registers and their values",
5477 .usage
= "[(register_name|register_number) [value]]",
5481 .handler
= handle_poll_command
,
5482 .mode
= COMMAND_EXEC
,
5483 .help
= "poll target state; or reconfigure background polling",
5484 .usage
= "['on'|'off']",
5487 .name
= "wait_halt",
5488 .handler
= handle_wait_halt_command
,
5489 .mode
= COMMAND_EXEC
,
5490 .help
= "wait up to the specified number of milliseconds "
5491 "(default 5) for a previously requested halt",
5492 .usage
= "[milliseconds]",
5496 .handler
= handle_halt_command
,
5497 .mode
= COMMAND_EXEC
,
5498 .help
= "request target to halt, then wait up to the specified"
5499 "number of milliseconds (default 5) for it to complete",
5500 .usage
= "[milliseconds]",
5504 .handler
= handle_resume_command
,
5505 .mode
= COMMAND_EXEC
,
5506 .help
= "resume target execution from current PC or address",
5507 .usage
= "[address]",
5511 .handler
= handle_reset_command
,
5512 .mode
= COMMAND_EXEC
,
5513 .usage
= "[run|halt|init]",
5514 .help
= "Reset all targets into the specified mode."
5515 "Default reset mode is run, if not given.",
5518 .name
= "soft_reset_halt",
5519 .handler
= handle_soft_reset_halt_command
,
5520 .mode
= COMMAND_EXEC
,
5522 .help
= "halt the target and do a soft reset",
5526 .handler
= handle_step_command
,
5527 .mode
= COMMAND_EXEC
,
5528 .help
= "step one instruction from current PC or address",
5529 .usage
= "[address]",
5533 .handler
= handle_md_command
,
5534 .mode
= COMMAND_EXEC
,
5535 .help
= "display memory words",
5536 .usage
= "['phys'] address [count]",
5540 .handler
= handle_md_command
,
5541 .mode
= COMMAND_EXEC
,
5542 .help
= "display memory half-words",
5543 .usage
= "['phys'] address [count]",
5547 .handler
= handle_md_command
,
5548 .mode
= COMMAND_EXEC
,
5549 .help
= "display memory bytes",
5550 .usage
= "['phys'] address [count]",
5554 .handler
= handle_mw_command
,
5555 .mode
= COMMAND_EXEC
,
5556 .help
= "write memory word",
5557 .usage
= "['phys'] address value [count]",
5561 .handler
= handle_mw_command
,
5562 .mode
= COMMAND_EXEC
,
5563 .help
= "write memory half-word",
5564 .usage
= "['phys'] address value [count]",
5568 .handler
= handle_mw_command
,
5569 .mode
= COMMAND_EXEC
,
5570 .help
= "write memory byte",
5571 .usage
= "['phys'] address value [count]",
5575 .handler
= handle_bp_command
,
5576 .mode
= COMMAND_EXEC
,
5577 .help
= "list or set hardware or software breakpoint",
5578 .usage
= "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5582 .handler
= handle_rbp_command
,
5583 .mode
= COMMAND_EXEC
,
5584 .help
= "remove breakpoint",
5589 .handler
= handle_wp_command
,
5590 .mode
= COMMAND_EXEC
,
5591 .help
= "list (no params) or create watchpoints",
5592 .usage
= "[address length [('r'|'w'|'a') value [mask]]]",
5596 .handler
= handle_rwp_command
,
5597 .mode
= COMMAND_EXEC
,
5598 .help
= "remove watchpoint",
5602 .name
= "load_image",
5603 .handler
= handle_load_image_command
,
5604 .mode
= COMMAND_EXEC
,
5605 .usage
= "filename address ['bin'|'ihex'|'elf'|'s19'] "
5606 "[min_address] [max_length]",
5609 .name
= "dump_image",
5610 .handler
= handle_dump_image_command
,
5611 .mode
= COMMAND_EXEC
,
5612 .usage
= "filename address size",
5615 .name
= "verify_image",
5616 .handler
= handle_verify_image_command
,
5617 .mode
= COMMAND_EXEC
,
5618 .usage
= "filename [offset [type]]",
5621 .name
= "test_image",
5622 .handler
= handle_test_image_command
,
5623 .mode
= COMMAND_EXEC
,
5624 .usage
= "filename [offset [type]]",
5627 .name
= "mem2array",
5628 .mode
= COMMAND_EXEC
,
5629 .jim_handler
= jim_mem2array
,
5630 .help
= "read 8/16/32 bit memory and return as a TCL array "
5631 "for script processing",
5632 .usage
= "arrayname bitwidth address count",
5635 .name
= "array2mem",
5636 .mode
= COMMAND_EXEC
,
5637 .jim_handler
= jim_array2mem
,
5638 .help
= "convert a TCL array to memory locations "
5639 "and write the 8/16/32 bit values",
5640 .usage
= "arrayname bitwidth address count",
5643 .name
= "reset_nag",
5644 .handler
= handle_target_reset_nag
,
5645 .mode
= COMMAND_ANY
,
5646 .help
= "Nag after each reset about options that could have been "
5647 "enabled to improve performance. ",
5648 .usage
= "['enable'|'disable']",
5652 .handler
= handle_ps_command
,
5653 .mode
= COMMAND_EXEC
,
5654 .help
= "list all tasks ",
5658 COMMAND_REGISTRATION_DONE
5660 static int target_register_user_commands(struct command_context
*cmd_ctx
)
5662 int retval
= ERROR_OK
;
5663 retval
= target_request_register_commands(cmd_ctx
);
5664 if (retval
!= ERROR_OK
)
5667 retval
= trace_register_commands(cmd_ctx
);
5668 if (retval
!= ERROR_OK
)
5672 return register_commands(cmd_ctx
, NULL
, target_exec_command_handlers
);