1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
31 #include "embeddedice.h"
37 * This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
38 * module found on scan chain 2 in ARM7, ARM9, and some other families
39 * of ARM cores. The module is called "EmbeddedICE-RT" if it has
40 * monitor mode support.
42 * EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
43 * Communications Channel (DCC) used to read or write 32-bit words to
44 * OpenOCD-aware code running on the target CPU.
45 * Newer modules also include vector catch hardware. Some versions
46 * support hardware single-stepping, "monitor mode" debug (which is not
47 * currently supported by OpenOCD), or extended reporting on why the
48 * core entered debug mode.
51 static int embeddedice_set_reg_w_exec(struct reg
*reg
, uint8_t *buf
);
54 * From: ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
64 /* width is assigned based on EICE version */
67 .name
= "debug_status",
69 /* width is assigned based on EICE version */
81 [EICE_W0_ADDR_VALUE
] = {
82 .name
= "watch_0_addr_value",
86 [EICE_W0_ADDR_MASK
] = {
87 .name
= "watch_0_addr_mask",
91 [EICE_W0_DATA_VALUE
] = {
92 .name
= "watch_0_data_value",
96 [EICE_W0_DATA_MASK
] = {
97 .name
= "watch_0_data_mask",
101 [EICE_W0_CONTROL_VALUE
] = {
102 .name
= "watch_0_control_value",
106 [EICE_W0_CONTROL_MASK
] = {
107 .name
= "watch_0_control_mask",
111 [EICE_W1_ADDR_VALUE
] = {
112 .name
= "watch_1_addr_value",
116 [EICE_W1_ADDR_MASK
] = {
117 .name
= "watch_1_addr_mask",
121 [EICE_W1_DATA_VALUE
] = {
122 .name
= "watch_1_data_value",
126 [EICE_W1_DATA_MASK
] = {
127 .name
= "watch_1_data_mask",
131 [EICE_W1_CONTROL_VALUE
] = {
132 .name
= "watch_1_control_value",
136 [EICE_W1_CONTROL_MASK
] = {
137 .name
= "watch_1_control_mask",
141 /* vector_catch isn't always present */
143 .name
= "vector_catch",
149 static int embeddedice_get_reg(struct reg
*reg
)
151 int retval
= embeddedice_read_reg(reg
);
152 if (retval
!= ERROR_OK
) {
153 LOG_ERROR("error queueing EmbeddedICE register read");
157 retval
= jtag_execute_queue();
158 if (retval
!= ERROR_OK
)
159 LOG_ERROR("EmbeddedICE register read failed");
164 static const struct reg_arch_type eice_reg_type
= {
165 .get
= embeddedice_get_reg
,
166 .set
= embeddedice_set_reg_w_exec
,
170 * Probe EmbeddedICE module and set up local records of its registers.
171 * Different versions of the modules have different capabilities, such as
172 * hardware support for vector_catch, single stepping, and monitor mode.
174 struct reg_cache
*embeddedice_build_reg_cache(struct target
*target
,
175 struct arm7_9_common
*arm7_9
)
178 struct reg_cache
*reg_cache
= malloc(sizeof(struct reg_cache
));
179 struct reg
*reg_list
= NULL
;
180 struct embeddedice_reg
*arch_info
= NULL
;
181 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
182 int num_regs
= ARRAY_SIZE(eice_regs
);
184 int eice_version
= 0;
186 /* vector_catch isn't always present */
187 if (!arm7_9
->has_vector_catch
)
190 /* the actual registers are kept in two arrays */
191 reg_list
= calloc(num_regs
, sizeof(struct reg
));
192 arch_info
= calloc(num_regs
, sizeof(struct embeddedice_reg
));
194 /* fill in values for the reg cache */
195 reg_cache
->name
= "EmbeddedICE registers";
196 reg_cache
->next
= NULL
;
197 reg_cache
->reg_list
= reg_list
;
198 reg_cache
->num_regs
= num_regs
;
200 /* FIXME the second watchpoint unit on Feroceon and Dragonite
201 * seems not to work ... we should have a way to not set up
202 * its four registers here!
205 /* set up registers */
206 for (i
= 0; i
< num_regs
; i
++) {
207 reg_list
[i
].name
= eice_regs
[i
].name
;
208 reg_list
[i
].size
= eice_regs
[i
].width
;
209 reg_list
[i
].dirty
= 0;
210 reg_list
[i
].valid
= 0;
211 reg_list
[i
].value
= calloc(1, 4);
212 reg_list
[i
].arch_info
= &arch_info
[i
];
213 reg_list
[i
].type
= &eice_reg_type
;
214 arch_info
[i
].addr
= eice_regs
[i
].addr
;
215 arch_info
[i
].jtag_info
= jtag_info
;
218 /* identify EmbeddedICE version by reading DCC control register */
219 embeddedice_read_reg(®_list
[EICE_COMMS_CTRL
]);
220 retval
= jtag_execute_queue();
221 if (retval
!= ERROR_OK
) {
222 for (i
= 0; i
< num_regs
; i
++)
223 free(reg_list
[i
].value
);
230 eice_version
= buf_get_u32(reg_list
[EICE_COMMS_CTRL
].value
, 28, 4);
231 LOG_INFO("Embedded ICE version %d", eice_version
);
233 switch (eice_version
) {
235 /* ARM7TDMI r3, ARM7TDMI-S r3
237 * REVISIT docs say ARM7TDMI-S r4 uses version 1 but
238 * that it has 6-bit CTRL and 5-bit STAT... doc bug?
239 * ARM7TDMI r4 docs say EICE v4.
241 reg_list
[EICE_DBG_CTRL
].size
= 3;
242 reg_list
[EICE_DBG_STAT
].size
= 5;
246 reg_list
[EICE_DBG_CTRL
].size
= 4;
247 reg_list
[EICE_DBG_STAT
].size
= 5;
248 arm7_9
->has_single_step
= 1;
251 LOG_ERROR("EmbeddedICE v%d handling might be broken",
253 reg_list
[EICE_DBG_CTRL
].size
= 6;
254 reg_list
[EICE_DBG_STAT
].size
= 5;
255 arm7_9
->has_single_step
= 1;
256 arm7_9
->has_monitor_mode
= 1;
260 reg_list
[EICE_DBG_CTRL
].size
= 6;
261 reg_list
[EICE_DBG_STAT
].size
= 5;
262 arm7_9
->has_monitor_mode
= 1;
266 reg_list
[EICE_DBG_CTRL
].size
= 6;
267 reg_list
[EICE_DBG_STAT
].size
= 5;
268 arm7_9
->has_single_step
= 1;
269 arm7_9
->has_monitor_mode
= 1;
272 /* ARM7EJ-S, ARM9E-S rev 2, ARM9EJ-S */
273 reg_list
[EICE_DBG_CTRL
].size
= 6;
274 reg_list
[EICE_DBG_STAT
].size
= 10;
275 /* DBG_STAT has MOE bits */
276 arm7_9
->has_monitor_mode
= 1;
279 LOG_ERROR("EmbeddedICE v%d handling might be broken",
281 reg_list
[EICE_DBG_CTRL
].size
= 6;
282 reg_list
[EICE_DBG_STAT
].size
= 5;
283 arm7_9
->has_monitor_mode
= 1;
287 * The Feroceon implementation has the version number
288 * in some unusual bits. Let feroceon.c validate it
289 * and do the appropriate setup itself.
291 if (strcmp(target_type_name(target
), "feroceon") == 0 ||
292 strcmp(target_type_name(target
), "dragonite") == 0)
294 LOG_ERROR("unknown EmbeddedICE version "
295 "(comms ctrl: 0x%8.8" PRIx32
")",
296 buf_get_u32(reg_list
[EICE_COMMS_CTRL
].value
, 0, 32));
299 /* On Feroceon and Dragonite the second unit is seemingly missing. */
300 LOG_INFO("%s: hardware has %d breakpoint/watchpoint unit%s",
301 target_name(target
), arm7_9
->wp_available_max
,
302 (arm7_9
->wp_available_max
!= 1) ? "s" : "");
308 * Initialize EmbeddedICE module, if needed.
310 int embeddedice_setup(struct target
*target
)
313 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
315 /* Explicitly disable monitor mode. For now we only support halting
316 * debug ... we don't know how to talk with a resident debug monitor
317 * that manages break requests. ARM's "Angel Debug Monitor" is one
318 * common example of such code.
320 if (arm7_9
->has_monitor_mode
) {
321 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
323 embeddedice_read_reg(dbg_ctrl
);
324 retval
= jtag_execute_queue();
325 if (retval
!= ERROR_OK
)
327 buf_set_u32(dbg_ctrl
->value
, 4, 1, 0);
328 embeddedice_set_reg_w_exec(dbg_ctrl
, dbg_ctrl
->value
);
330 return jtag_execute_queue();
334 * Queue a read for an EmbeddedICE register into the register cache,
335 * optionally checking the value read.
336 * Note that at this level, all registers are 32 bits wide.
338 int embeddedice_read_reg_w_check(struct reg
*reg
,
339 uint8_t *check_value
, uint8_t *check_mask
)
341 struct embeddedice_reg
*ice_reg
= reg
->arch_info
;
342 uint8_t reg_addr
= ice_reg
->addr
& 0x1f;
343 struct scan_field fields
[3];
344 uint8_t field1_out
[1];
345 uint8_t field2_out
[1];
348 retval
= arm_jtag_scann(ice_reg
->jtag_info
, 0x2, TAP_IDLE
);
349 if (retval
!= ERROR_OK
)
352 retval
= arm_jtag_set_instr(ice_reg
->jtag_info
,
353 ice_reg
->jtag_info
->intest_instr
, NULL
, TAP_IDLE
);
354 if (retval
!= ERROR_OK
)
357 /* bits 31:0 -- data (ignored here) */
358 fields
[0].num_bits
= 32;
359 fields
[0].out_value
= reg
->value
;
360 fields
[0].in_value
= NULL
;
361 fields
[0].check_value
= NULL
;
362 fields
[0].check_mask
= NULL
;
364 /* bits 36:32 -- register */
365 fields
[1].num_bits
= 5;
366 fields
[1].out_value
= field1_out
;
367 field1_out
[0] = reg_addr
;
368 fields
[1].in_value
= NULL
;
369 fields
[1].check_value
= NULL
;
370 fields
[1].check_mask
= NULL
;
372 /* bit 37 -- 0/read */
373 fields
[2].num_bits
= 1;
374 fields
[2].out_value
= field2_out
;
376 fields
[2].in_value
= NULL
;
377 fields
[2].check_value
= NULL
;
378 fields
[2].check_mask
= NULL
;
380 /* traverse Update-DR, setting address for the next read */
381 jtag_add_dr_scan(ice_reg
->jtag_info
->tap
, 3, fields
, TAP_IDLE
);
383 /* bits 31:0 -- the data we're reading (and maybe checking) */
384 fields
[0].in_value
= reg
->value
;
385 fields
[0].check_value
= check_value
;
386 fields
[0].check_mask
= check_mask
;
388 /* when reading the DCC data register, leaving the address field set to
389 * EICE_COMMS_DATA would read the register twice
390 * reading the control register is safe
392 field1_out
[0] = eice_regs
[EICE_COMMS_CTRL
].addr
;
394 /* traverse Update-DR, reading but with no other side effects */
395 jtag_add_dr_scan_check(ice_reg
->jtag_info
->tap
, 3, fields
, TAP_IDLE
);
401 * Receive a block of size 32-bit words from the DCC.
402 * We assume the target is always going to be fast enough (relative to
403 * the JTAG clock) that the debugger won't need to poll the handshake
404 * bit. The JTAG clock is usually at least six times slower than the
405 * functional clock, so the 50+ JTAG clocks needed to receive the word
406 * allow hundreds of instruction cycles (per word) in the target.
408 int embeddedice_receive(struct arm_jtag
*jtag_info
, uint32_t *data
, uint32_t size
)
410 struct scan_field fields
[3];
411 uint8_t field1_out
[1];
412 uint8_t field2_out
[1];
415 retval
= arm_jtag_scann(jtag_info
, 0x2, TAP_IDLE
);
416 if (retval
!= ERROR_OK
)
418 retval
= arm_jtag_set_instr(jtag_info
, jtag_info
->intest_instr
, NULL
, TAP_IDLE
);
419 if (retval
!= ERROR_OK
)
422 fields
[0].num_bits
= 32;
423 fields
[0].out_value
= NULL
;
424 fields
[0].in_value
= NULL
;
426 fields
[1].num_bits
= 5;
427 fields
[1].out_value
= field1_out
;
428 field1_out
[0] = eice_regs
[EICE_COMMS_DATA
].addr
;
429 fields
[1].in_value
= NULL
;
431 fields
[2].num_bits
= 1;
432 fields
[2].out_value
= field2_out
;
434 fields
[2].in_value
= NULL
;
436 jtag_add_dr_scan(jtag_info
->tap
, 3, fields
, TAP_IDLE
);
439 /* when reading the last item, set the register address to the DCC control reg,
440 * to avoid reading additional data from the DCC data reg
443 field1_out
[0] = eice_regs
[EICE_COMMS_CTRL
].addr
;
445 fields
[0].in_value
= (uint8_t *)data
;
446 jtag_add_dr_scan(jtag_info
->tap
, 3, fields
, TAP_IDLE
);
447 jtag_add_callback(arm_le_to_h_u32
, (jtag_callback_data_t
)data
);
453 return jtag_execute_queue();
457 * Queue a read for an EmbeddedICE register into the register cache,
458 * not checking the value read.
460 int embeddedice_read_reg(struct reg
*reg
)
462 return embeddedice_read_reg_w_check(reg
, NULL
, NULL
);
466 * Queue a write for an EmbeddedICE register, updating the register cache.
467 * Uses embeddedice_write_reg().
469 void embeddedice_set_reg(struct reg
*reg
, uint32_t value
)
471 embeddedice_write_reg(reg
, value
);
473 buf_set_u32(reg
->value
, 0, reg
->size
, value
);
480 * Write an EmbeddedICE register, updating the register cache.
481 * Uses embeddedice_set_reg(); not queued.
483 static int embeddedice_set_reg_w_exec(struct reg
*reg
, uint8_t *buf
)
487 embeddedice_set_reg(reg
, buf_get_u32(buf
, 0, reg
->size
));
488 retval
= jtag_execute_queue();
489 if (retval
!= ERROR_OK
)
490 LOG_ERROR("register write failed");
495 * Queue a write for an EmbeddedICE register, bypassing the register cache.
497 void embeddedice_write_reg(struct reg
*reg
, uint32_t value
)
499 struct embeddedice_reg
*ice_reg
= reg
->arch_info
;
501 LOG_DEBUG("%i: 0x%8.8" PRIx32
"", ice_reg
->addr
, value
);
503 arm_jtag_scann(ice_reg
->jtag_info
, 0x2, TAP_IDLE
);
505 arm_jtag_set_instr(ice_reg
->jtag_info
, ice_reg
->jtag_info
->intest_instr
, NULL
, TAP_IDLE
);
507 uint8_t reg_addr
= ice_reg
->addr
& 0x1f;
508 embeddedice_write_reg_inner(ice_reg
->jtag_info
->tap
, reg_addr
, value
);
512 * Queue a write for an EmbeddedICE register, using cached value.
513 * Uses embeddedice_write_reg().
515 void embeddedice_store_reg(struct reg
*reg
)
517 embeddedice_write_reg(reg
, buf_get_u32(reg
->value
, 0, reg
->size
));
521 * Send a block of size 32-bit words to the DCC.
522 * We assume the target is always going to be fast enough (relative to
523 * the JTAG clock) that the debugger won't need to poll the handshake
524 * bit. The JTAG clock is usually at least six times slower than the
525 * functional clock, so the 50+ JTAG clocks needed to receive the word
526 * allow hundreds of instruction cycles (per word) in the target.
528 int embeddedice_send(struct arm_jtag
*jtag_info
, uint32_t *data
, uint32_t size
)
530 struct scan_field fields
[3];
531 uint8_t field0_out
[4];
532 uint8_t field1_out
[1];
533 uint8_t field2_out
[1];
536 retval
= arm_jtag_scann(jtag_info
, 0x2, TAP_IDLE
);
537 if (retval
!= ERROR_OK
)
539 retval
= arm_jtag_set_instr(jtag_info
, jtag_info
->intest_instr
, NULL
, TAP_IDLE
);
540 if (retval
!= ERROR_OK
)
543 fields
[0].num_bits
= 32;
544 fields
[0].out_value
= field0_out
;
545 fields
[0].in_value
= NULL
;
547 fields
[1].num_bits
= 5;
548 fields
[1].out_value
= field1_out
;
549 field1_out
[0] = eice_regs
[EICE_COMMS_DATA
].addr
;
550 fields
[1].in_value
= NULL
;
552 fields
[2].num_bits
= 1;
553 fields
[2].out_value
= field2_out
;
556 fields
[2].in_value
= NULL
;
559 buf_set_u32(field0_out
, 0, 32, *data
);
560 jtag_add_dr_scan(jtag_info
->tap
, 3, fields
, TAP_IDLE
);
566 /* call to jtag_execute_queue() intentionally omitted */
571 * Poll DCC control register until read or write handshake completes.
573 int embeddedice_handshake(struct arm_jtag
*jtag_info
, int hsbit
, uint32_t timeout
)
575 struct scan_field fields
[3];
576 uint8_t field0_in
[4];
577 uint8_t field1_out
[1];
578 uint8_t field2_out
[1];
584 if (hsbit
== EICE_COMM_CTRL_WBIT
)
586 else if (hsbit
== EICE_COMM_CTRL_RBIT
)
589 LOG_ERROR("Invalid arguments");
590 return ERROR_COMMAND_SYNTAX_ERROR
;
593 retval
= arm_jtag_scann(jtag_info
, 0x2, TAP_IDLE
);
594 if (retval
!= ERROR_OK
)
596 retval
= arm_jtag_set_instr(jtag_info
, jtag_info
->intest_instr
, NULL
, TAP_IDLE
);
597 if (retval
!= ERROR_OK
)
600 fields
[0].num_bits
= 32;
601 fields
[0].out_value
= NULL
;
602 fields
[0].in_value
= field0_in
;
604 fields
[1].num_bits
= 5;
605 fields
[1].out_value
= field1_out
;
606 field1_out
[0] = eice_regs
[EICE_COMMS_DATA
].addr
;
607 fields
[1].in_value
= NULL
;
609 fields
[2].num_bits
= 1;
610 fields
[2].out_value
= field2_out
;
612 fields
[2].in_value
= NULL
;
614 jtag_add_dr_scan(jtag_info
->tap
, 3, fields
, TAP_IDLE
);
615 gettimeofday(&lap
, NULL
);
617 jtag_add_dr_scan(jtag_info
->tap
, 3, fields
, TAP_IDLE
);
618 retval
= jtag_execute_queue();
619 if (retval
!= ERROR_OK
)
622 if (buf_get_u32(field0_in
, hsbit
, 1) == hsact
)
625 gettimeofday(&now
, NULL
);
626 } while ((uint32_t)((now
.tv_sec
- lap
.tv_sec
) * 1000
627 + (now
.tv_usec
- lap
.tv_usec
) / 1000) <= timeout
);
629 LOG_ERROR("embeddedice handshake timeout");
630 return ERROR_TARGET_TIMEOUT
;
633 #ifndef HAVE_JTAG_MINIDRIVER_H
635 * This is an inner loop of the open loop DCC write of data to target
637 void embeddedice_write_dcc(struct jtag_tap
*tap
,
638 int reg_addr
, const uint8_t *buffer
, int little
, int count
)
642 for (i
= 0; i
< count
; i
++) {
643 embeddedice_write_reg_inner(tap
, reg_addr
,
644 fast_target_buffer_get_u32(buffer
, little
));
649 /* provided by minidriver */